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Abstract

This paper describes the M-Xplore extension of the Radiofi&are. The module contains facilities for
the exploration of a parameterized finite element modelgtespace. It supports facilities for interactive
choice of variables and responses, definition of a sampling design space, automatic submission of the
computations, and post-processing of the results. The atatipns are run automatically, either locally
or in ASP-mode, i.e. as a client of a high performance comguerver. The software is described first
in general, then we illustrate its exploration possitahtin terms of a model problem and a more typical
application problem of crash simulation.

1 Introduction

Automotive crashworthiness is a major area of applicatibnamlinear finite element analysis. The rapidly
decreasing cost of computers and the robustness of exptidiés, such as Radioss [1], have revolutionized
design in the past decade. Complete crash simulations Hm@ped to evaluate early design concepts. Com-
putations are also used to investigate the details of thedesgn such as internal paddings, material selection
or ‘tuning’ of parameters.

The advances in hardware and software also open up the jtiiesilbo do statistical analysis and optimization
of the design for crashworthiness. The goal of M-Xplore igptovide tools to make such investigations as
efficient and simple as possible.

A crash simulation is very computationally expensive,iartmore, for the purpose of optimization or statistics,
many such simulations must be done. For this reason sucktigagons are on the limit of what is possible
with the current state of the art technology. One of the me&iures of the module is the built-in possibility
to submit the computations to a high performance computeeceThis means that the definition of the task
and the post-processing are performed locally on a workstatvhile the FE crash analysis is launched on
a supercomputer. One of the first applications of M-Xplores &astatistical investigation for a complete car
model with 200 samples, i.e. 200 full crash simulations. $imeulations for this particular example were
launched at Fujitsu Technical Computing Center in Rungss Raris. The computational time for this task was
in the order of weeks.

In this paper we describe the tools for statistical analieh are implemented in M-Xplore. First we do this
generally by going through the steps concerned and thespmneling GUI-features. Then we present two case
studies where the techniques are applied.

2 Presentation of the software

In this section we discuss the different steps involved imassical investigation of a FE model using M-Xplore.
The presentation contains an overview both of theoretioatepts and the actual implementation and GUI.

In section 2.1 we describe how M-Xplore is integrated in ta@dard FE preprocessor to allow the user to define
the variables and responses of a model. Section 2.2 des¢hbgossibilities to define a sampling-type task:



distributions for the input variables, number of samples] ehoice of a sampling technique. The algorithm
for finding so-called optimal Latin hypercubes is descriliredection 2.3. This technique is crucial for the
stochastic analysis of crash problems when the simulatoasis very high. In section 2.4 we describe how
the computations are launched. Finally, in section 2.5ptis-processing facilities are described. In addition
to the standard statistical results e.g. statistical masnafithe outputs, confidence intervals (or corridors if the
time dependence is studied), histograms or scatter plote advanced topics are mentioned such as analysis
of correlation matrices, clustering, and principle comgraranalysis.

2.1 Model Parametrization

The aim of this step is to create a list of variables and resgmn In this paper we consistently use the ter-
minology variable for input parameters to the simulatios, iparameters describing the model or the initial
conditions. The term response is used for any output of thalation.

M-Xplore is completely integrated with the M-Crash prepmssor. In Figure 1 one can see a screen-shot of a
typical session.
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Figure 1:

GUI for the choice of variables and responses.

‘res| Mol Cance|




Variables
Almost any attribute of the finite elements model can be ddfawevariables:

e Geometric properties (e.g. thickness of a shell part, maésn&rinertia of a beam part, etc.).
e Materials (e.g. Young modulus, yield stress, hardenindficoent, etc.).
e Connections (e.g. spotwelds, glue, welding line, etc.).

e Load cases, initial and boundary conditions, (e.g. addessmiaitial velocities, rigid walls, contact
interfaces, imposed displacements, imposed velocit@s;entrated loads, monitored volumes, etc.).

More advanced variables (meta parameters), controllingym@odel data, are also available. Scaling, transla-
tion and rotation can be applied to a set of parts or a set aé¢s10B0r example, rotations applied to the rigid
wall allow to consider random variations of the impact ariglear crash simulations.

Responses

The available responses include e.g. energies, displatemeelocities, accelerations, stresses, curvatures,
elongations, forces, etc. They are actually all the tim#éohysvariables that can be observed globally on the
model, or on parts, nodes, elements, sections, accelezmnagid walls, and monitored volumes.

2.2 Task Definition

The next step is to define a task (a statistical investiggteee Figure 2 for a screen-shot of the task definition
window. The user chooses which variables are active, ddfiregsrobability distribution of the active variables,
enters the number of samples to generate, and chooses argpmpthod.

The following information is specified by the user :

¢ Which of the parameters and responses are to be included Biutly. Choice of "Active”/"Not active”
for each.

e Choice of distribution law (in the current version only wrih or normal) and parameters of the distrib-
ution, e.g. mean and standard deviation.

e Number of samples, or number of levels for the full factotygle.

e Sampling method. See below for a discussion of available&ceko

From this window it is also possible to generate the sampleswthe above information has been given.

2.3 Sampling methods

A Monte Carlo simulation is the basic choice in this type atistical investigation. However there are sampling
methods which have better statistical properties. Indudee MC Monte Carlo), RLH (Random Latin
Hypercube) and OLH Optimal Latin Hypercube ) which we describe below. In addition to these sampling
techniques the software offers also the 2-ldweall Factorial Design. This technique of exploring the design
space is still often used in practice. The information itidles are main effects and interactions of the variables
on responses.
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Figure 2: The task definition window. In the two lists, for gareters and responses, the user specifies the
properties according to the possibilities described inde

Both RLH and OLH are based on the idea of descriptive sampliriiich we now describe in the case &f
samples ang (continuous) random variables; with cumulative distribution functiong;. For each variable
X;, we determine point$:nl(.k) Qﬁl by solving the equations
k), 2k—1
Fz(xz ) = oM,
Informally, this means that the real axis is divided itf) intervals with equal probability (according 1g),

thenxgk) is chosen as the probabilistic mean point of thth interval. Descriptive sampling means that we
restrict our choice of samples to the points

k=1,..., M.

X = ($§k1)7 s 7xl(7kp))7 1< kz < MZ (1)

What remains is thus to choose our N samples from this finitéveieh I1:_, M; elements). Some authors
restrict the term descriptive sampling by requiring thathepoint of the type (1) can occur at most once in the
set of samples.

The second (discrete) step of choosing samples of the foyroafi be formulated in the following way. The
goal is to obtain av x p matrix Y with elementsy;;. Each row of this matrix gives the coordinates of one
sample. We can now indicate the choice of samples wittVan p matrix A with integer elementa;; which

is connected with the sample matrix by the relation

Yij = x§-a“ ),
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Obviously it is required thai;; is an integer in the interval, M;].
We now turn to Latin hypercubes (LHs). A LH is given by an matdi where each column is a permutation of
the numbers 1 t&V. Thus for descriptive sampling for LH we must chodge = N above. This requirement

implies that two different samples have all their coordesadlifferent. Also each numbeék) occurs once in
theY matrix with the samples. The construction of (the matfixiescribing) a random LH is elementary and
we do not describe this step. In M-Xplore we have given theenBandom Latin Hypercube to the sampling
resulting from this algorithm. The reason for this name & there is a random step in the LH construction,
different samplings give different LHSs.

Now we will describe the optimal (or optimized) Latin hypebe sample generation. The most important step
is the determination of a (LH) matriXd with as good ‘separation’ properties as possible. By thismean
that we want to avoid clustering of the samples as much asigp@s$ he starting point for the OLH-algorithm
is a RLH, which then is optimized by an algorithm called theltennwise pairwise”(CP)-method. This is
described in detail in [2] and [3].

The criteria with respect to which the LH is optimized is tbldwing. Recall that thé-th row in A gives the
coordinates of the-th sample (inR?). The distance between sampland samplg, &;; is thus given by

p

&= (am—am)’.

k=1
Now we define the criterion as (see [4])

N

al 1
dA)=%" > = (2)
i=1

j=i+1 gia

and the optimization problem consists of finding an LH (repréed byA) which minimizesd(A). As a
physical analogy, if we consider the samples as electyichlhrged particles, then the problem corresponds to
a minimization of the sum of the absolute values of the reyeiforces. From the point of view of this analogy,

it would be natural with the exponent 1 (instead of 2) in theatainator of the terms in (2). However, with the
power 2 the computation of the square root for each term iglado

The CP-method is computationally expensive because itlseara very large number of LHs during the op-
timization process. Its execution time is approximatelgpartional topN°. In table 1 we give the results of
some experiments investigating the execution time. Thebmusgiven in the table were taken from a partic-
ular run (i.e. they are not mean values). The variations ®fetkecution time due to the random starting point
are usually in the range 10-30%. The derivation of the coriglef the OLH is found in [3]. By the term
complexity we mean the estimate of how the execution timedeémsymptotically on the size of the problem
i.e. the numbersV andp.

To illustrate the benefits with the OLH-algorithm we compawe three sampling methods MC, RLH and OLH
for the following model problem.

We study the function
Y = f(X1,X2) =100(Xo — X7)2 + (1 — X1)?,

of two random variables. This function is strongly nonlin@ad has a ‘valley’ in the shape of the parabola
X9 = X12. It is sometimes referred to as the Rosenbrock function. Newtake X; and X5 to be uniformly
distributed in the interval0, 2]. We estimate the mean value Bfby samplingX; and X, and calculating the
corresponding”-values and their mean. In this simple case the mean can hgiealdy computed and is 187.
In table 2 we compare the accuracy of this estimate of the rfeawur three sampling methods. From these
results we can clearly rank the methods with OLH as the besMiD as the worst.
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N\p| 3 | 5] 7 |10
50 | 0.86| 3.4 | 12 | 21
60 | 2.1 | 11 | 29 | 37
70 | 6.8 | 21 | 51 | 110
80 | 9.9 | 37 | 110 210
90 | 11 | 92 | 170 | 440
100 | 24 | 110 220 | 650

Table 1: Execution time in seconds for the OLH-algorithmhvdifferent values ofV (number of samples) and
p (number of variables). These calculations were perfornmed BC with Pentium 1V (2.4GHz) processor.

N | OLH | RLH | MC
10 9.1 | 20.7 | 37.8
20 35 | 143|178
50 15 | 10.2| 125
100 | 11 | 66 | 94
200 | 06 | 56 | 6.0

500 - 24 | 4.8
1000| - 15 | 32
2000| - 11| 22
5000| - 0.7 | 1.2

Table 2: The average of the error percentage for the diffesampling methods for different sample sizes.
OLH with N greater then 200 have not been computed because of the lorgutational time.

It is evident from this example that if one can afford the Ok&tnpling then it is the best choice. In the area of
crash simulation it is very expensive to perform the caliotefor one sample. Thus one is forced to economize
with the samples and this is a typical situation where OLH:mMmended.

2.4 Job submission and monitoring

The FE simulations which are the most computationally egperpart of the analysis can be performed on the
local computer or on a remote server. For the latter purpmséient/server architecture for the execution and
monitoring of computations has been developed.

The interface between the client and server is transpatentjser never quits M-Xplore when submitting and
monitoring the computation. All transmission of data isrgpted and the execution is performed in a confined
environment to ensure complete security.

The monitoring of the progress of the computations is péssib two levels. On the ‘coarse’ level the user can
get information on the number of completed, running andingiimulations. To be able to discover numerical
or physical instabilities in the model, it is also possildeet more detailed information, both on completed and
running computations. An analysis of this information atfathe user to change the parameters of the waiting
computations.



2.5 Statistical post processing

The software provides a number of post processing toolsglmexthe statistical properties of random variables
and responses.

For each sample, the user has access to the entire timeyhadtdine chosen responses (In the case when
the computations are run on a server, only this data is coruateédl and not the entire output of the FE

computation). Scalar values can be obtained by the follgwerations: time average, maximum or minimum

value over time, time integral, value at specified time inst&ome other values that are important mainly in

crash test simulations like the so-called Head Injury @ote(HIC) can also be computed (see e.g. [5]).

In M-Xplore the following statistical information can beroputed for all (input and output) random variables:
¢ Statistical moments and intervals of confidence
e Histograms and scatter plots
e Confidence corridor plots
¢ Correlation coefficients
e Principal component analysis

The confidence intervals are determined using either theilaiive frequency curve or assuming a distribution
for the responses according #alistribution. Still it is realized that a proper parametstudy should be per-

formed to determine the probability law, which is planneduriher developments of the software. Plotting the
histograms of a given response (see Figure 3) can help ifywmgrithe assumptions about the distribution type.

=| Simulation Results for OLH_300
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Figure 3: Histogram of a response with superimposed nornahlgbility density function.

The confidence corridor plots, see Figure 4, provide verjulggformation about the changes of a scatter of
results in time. By analyzing the representative respoiisesy be observed that the abrupt change of the
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corridor's width (increase in a scatter of results) oftedicates the existence of various post-critical behaviors
of a structure.

=/ Simulation Results for OLH 300
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Figure 4. Confidence corridor plot of a nodal velocity. Thdden change of the corridor’s width may indicate
the ‘separation’ of significantly different deformationtfggins corresponding to various failure modes.

Similar information can also also be found be examiningtsecatiots. Clustering of points in a scatter plot
should always be the subject of careful analysis. Pointsitgt! far from the main cloud may be of particular
importance for the proper understanding of the structushblsior. See Figure 5 for the GUI for scatter plots.

The functionality is provided for building a data matrix fincdhe whole set of variables and time responses, and
computing the corresponding correlation matrix. To un@ded how changes in the different variables affect the
behavior of the model, it is useful to study the data matrialbvariables and one, suitably chosen, response.

More advanced statistical post-processing is offered tighPrincipal Component Analysis (PCA). For in-
vestigations involving many descriptors (responses andigables), it is often useful to simplify the analysis
by considering a smaller number of linear combinations efdhginal descriptors. By doing this we want to
summarize, in a few dimensions, most of the variability obsaziance matrix of a large number of descrip-
tors. Because of the varying physical nature of the consttldescriptors, the implemented PCA operates on
the correlation matri® which is the covariance matrix of standardized descriptdle principal component
analysis is based on the solution of the following eigenf@ob

(R—)\Z‘I)’U,Z':O, i:1,...,p, (3)

wherep is the number of descriptors ang andu;, are the eigenvalues and normalized eigenvectors, respec-
tively. We assume the eigenvalues are sorted accordingamsth the largest first (all eigenvalues are real and
positive). The line through the origin directed aloag is called the first principal axis. The corresponding
line directed alongu; is called the second principal axis etc. The maUlix the columns of which are the
normalized eigenvectors, allows to compute the valuesiatjpal components for to the-dimensional data
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where N is the number of data points (samplesf),is the N x p matrix containing the coordinates of data
points in the space of principal components andindo,,, are the mean values and standard deviations of
the descriptors, respectively. Correlation of thila descriptor withj-th principal component is given by the

formula
uij\/Aj (5)

where)\; is the eigenvalue corresponding to t#h principal component and; is thei-th component of the
corresponding eigenvector. A very convenient way of prisgrithese quantities is by the so-called correlation
circle (see Figure 6). In this plot descriptors are represkiby points which coordinates are equal to their
corresponding correlations with the selected principahgonents. The correlation circle shown in Figure 6
was made for the first two principal components explainimgcst 80% of the total variability (check the value
of cumulative variance in the table under the plot).
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Having identified a group of samples leading to a certainctiral behavior it is interesting to study the cor-
responding domain of design space. In other words the negtistto obtain a simple description of the set of
designs which lead to the behavior in question.
In the case of one or two design variables a simple plot of éingpdes corresponding to the two behaviors (the
behavior under study and the rest, the ‘complementary’\det)agives practically all information. With more
than two variables, however, the investigation can be mdhg complicated. In M-Xplore there is implemented
an algorithm to find a separating hyperplane, or a hyperplenieh separates the two clusters as ‘good’ as
possible (precise statement below).
Even when the boundary between the two behaviors is cungesdparation hyperplane gives useful informa-
tion. It can also be seen as a first approximation to the shiaibe oeal boundary. Furthermore it is, of course,
convenient to have an explicit formula for the boundary.
Now we turn to the formulation of the optimization problemiathdetermine the separation hyperplane. A
hyperplane is described by the equation

n-x=d.

Heren denotes the unit normal vector of the hyperplane @ddnotes the signed orthogonal distance from the
origin to the hyperplane. The problem is now to fincandd such that the hyperplane separates two clusters
{yi}f.\/:y1 and{zi}ﬁ\fl, i.e. such that aly; are on the side to which the normal points andzglére on the other.
We formulate this as an optimization problem in the follogvimay. First we introduce one additional unknown
r, this will turn out to be the shortest distance between anmyt@md the hyperplane.

The optimization problem is as follows:

find Niyeen s Ny, d, T

that maximize r (6)
p

subjectto Y nf =1 (7)
=1

ny,—d>r, t=1,..., Ny, (8)

nz, —d< —r, i=1,...,N,, (9)

—-6<d<9d, (11)

0<r<n. (12)

Heren; denotes thé-th component of thex-vector,é is chosen as the maximum distance between the origin
and a sample andis the minimum distance between samples of the two clusters.

To solve the problem (6)-(12) the sequential quadratic Eogning algorithm NLPQL is used, see [6], . This
has proven successful in many studies including the two plesof section 3. In Figure 7 we see a snap shot
of the window containing the results of a successful clusgaration calculation. If NLPQL fails to find a
solution, often such a failure is due to inaccuracy of thedtlgpsis, i.e. the boundary between the two clusters
is far from a hyperplane. In such a case the algorithm trieséoa quadratic hypersurface to separate clusters.

3 Case studies
In this section we will illustrate some of the features dixsat above in the context of two case studies. The

first is a stationary model problem with only one degree oédiam. The second one deals with FE crash
simulation of the rear frame of a car.

11



View hMark

&
Best Separation Plane rho = 0.087
2
J . .
28] . e ° 0, ® e ®
1 ol & - e s a0 ¢ .
2.7 4 -- ® ® ! see,
o .-.:- . o'.'.‘-'." .‘ o te® 5 o %° ® <
b - PUMLX S =g ° -
E (g0 eeg :-.,.:.... . . _..*:'_.__olo:, o.. .
* " 28 L
il ¢ . e - ._.. ’o 3.5 -."‘_¢,‘a s.. 2o
: ° : o2® e e ®
2.5 °® e oq *%se’g o © ® :
il il S s 8 2 o4 K '. . 008 g%,
24 o ’.'._ R T (]
) . 0 H
1 LR ® o .
1 THE CLUSTERS SEPARATION ALGORITHM CONVERGED
P
[ . IT WAS POSSIBLE TQ SEPARATE CLUSTERS
—0.1 0
SUM OF THE DISTANCES FROM THE HYPERPLANE TO 'NOT SEPARATED POINTS
SUM =D
-I ) K = —6.26+03 EQUATION OF THE HYPERPLANE
. —0.67092935 * Thicknessd
. +0.37312127 * Thickness5
- Data Matrix +0,17527614 * Thickness 13
‘ Back to Selection | ‘ Save to Flle | ‘ Reverse I I: ;gi;g;gﬂ; : m:g;g:g
[ = 5 I ~0.0329 13548 * Material 13
i 1185000100 1487006400 2.09200e+00 Loog|| 082880463 = 0 o
2 119500200 1.57200e+00 2.05500e+00 1.035 .
5| 1.16000e+00 1.705006+00 1.944000+00 9,250} Erf;f”pm; olle - 3!
4 1.176002+00 1.61500e+00 153200e+00 1.042{f Th?(*”esss S
5 1178000400 1683002400 2035000+00 98601 Tth(”eSSB A R
B 1185000400 1666002400 2147000400 6420112 M‘t Uelff 1 B
7 1211000+00 1,60000e+001.87700e+00 1.081{42 MaterTals i
8 1.20500e+00 1.69900e+00 2.05700e+00, 1‘135-‘§6 Mzthm 1
E E| Close | | Save I | Print I &
=

Figure 7: Cluster separation. The small cluster of five gototthe left of the straight line (which is the
projection of the hyperplane) is separated from the reshefsamples. In the window “Clusters Separation
Results” the equation for the hyperplane is shown.

3.1 A model problem

Here we treat a nonlinear stationary model problem with oegree of freedom, taken from [7] pp.2. The
geometry of the problem is shown in Figure 8. The nonlingaesults from the geometry, the constitutive
relation for the bar and the spring are taken to be lineatielaBhe unknown of the problem is, the vertical
displacement of the right node of the bar. The data are

e F: The Young modulus of the bar material.

o A: The cross-sectional area of the bar.

[: The length of the unloaded bar.

z > 0: The vertical coordinate of the right node of the bar when iinloaded.

e K: The stiffness of the spring.
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Initial Configuration (F=0)

Figure 8: The single bar structure prone to 'snap-througpétinstability. The force” shown on the picture
has the negative sign.

e F: The vertical force applied to the right node of the bar.

The displacement) can be determined from the following equation (cf. [7]):

F= E—A <z2w + gzw2 + %w3> + K w. (13)
In the derivation of this equation, it is assumed that thdefidsee Fig. 8) is small which implieg w < I.
Equation (13) is a third degree polynomial equation #or For some values of the parameters there is one
(unique) real root, for other values of the parameters thezdhree roots. In the case of three roots we choose
the one corresponding to the smallest magnitude of displanée This situation occurs when the applied force
is smaller than the critical force that cause the bar to $hegqigh to the other equilibrium position. The case
with one root of the equation (13) corresponds to the statlkeedlbar after snap-through or when the stiffness of
the spring is so big that it prevents this kind of instability

Now we turn to the description of the task we have performedHis problem. The purpose of our test is to
illustrate the clustering caused by the strong nonlingavite choose parameter values so that our samples will
give solutions of the two types, i.e. with or without snapstigh. We take the spring stiffness and the force as
random variables

K,  uniformly distributed iff0.9, 1.1](N/mm)
F  uniformly distributed iM—25, —20](N).

The rest of the parameters are given the following fixed \s&lue
EA=5-10"N, [ = 2500mm, z = 25mm.

We generate 100 samples with an OLH. These samples are eselgd over the allowed square in design
spaceKs x F. We next solve (13) for all the samples. In Figure 9 we showrdselting scatter plot in the
Kg-w plane and thé'-w plane. The clustering is clearly seen in both planes.

The most important question now is to identify the two regidan design space corresponding to the two
clusters. Since our design space is two-dimensional wecjustk the scatter plot in th&g-F plane. In
Figure 10 we see a picture of the design space where the bgubeaveen the two regions is approximated
with a straight line.
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Figure 9: Clustering of the samples for the model probleme §haphics show the projection on the two
coordinate plane& g-w and F-w respectively. Cluster 2 correspond to snap-through.
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Figure 10: The boundary between the two regions in desigresparresponding to the two clusters in Figure 9.
For parameter values in the smaller region (lower left come have snap-through behavior and in the other
we do not.
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This model problem illustrates some nonlinear phenomergavery simple context. We knew the qualitative
picture beforehand with the two possible behaviors.

The following difficulties did not occur in this problem buteapresent in most of the real life problem and
especially the stochastic analysis of crash simulations

e Design space with more than two space dimensions, i.e. rharettvo variables. In the case of two
variables it is very simple to identify interesting regicas we did in Figure 9. For three variables it is
still possible, but much more complicated. When the numbeaables is four or higher itis, of course,
impossible to visualize the complete situation.

e The separation into two behaviors was extremely clear innoodel problem. In general there will be
many different behaviors and often not so clearly separdhlehermore the distribution of samples may
be such that we have only very few in some of the regions arglttigre is not sufficient information.

e We must of course mention the high cost of crash computatibms makes it very expensive, sometimes
prohibitively so, to obtain sufficiently many samples toritiy the different regions.
3.2 Arear frame crash

In this section we study an example of the rear frame of a @shing into a wall. This is a Radioss simulated
problem. The rear frame finite element model is shown in Edur.

xv

Time= 0.000e—2 Moq,%gmlifg

Figure 11: The rear frame finite element model. The rear franfiged to the right and a wall moves in from
the left with a constant speed of 35 km/hour. The part withtkg color to the left is denoted part 1. The darker
part to the right is part 2. Finally inside part 2 there is a kangart denoted part 3. It is possible to see a few
elements of it in lighter color inside the frame to the fahtigf the picture.

The rear frame consists of, in total, approximately 600éhelets. We have done a statistical investigation with
300 samples, i.e. 300 crash simulations have been perforiitedlsamples were generated by the OLH. The
time interval for simulation is from contact of the moving ivand the frame until 0.04 seconds has passed.
During this time the wall moves approximately 40 centimgtehich corresponds to about 1/3 of the total

length of the frame.

In this situation the frame will be deformed by a combinatafrcompression and buckling. In Figure 12 we
see the result of two crash simulations with different patmnvalues for the beam. In the first picture we
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see a deformation which is dominated by compression anceipititure to the right the buckling is important.
In the statistical test we describe below we investigateitflaence of some properties of the beam on the
deformation behavior, in particular if buckling occurs. reeally, in the design for crashworthiness of cars,
compression is considered the good behavior. In case of rmsipn the energy absorption is high and the
transversal displacements are relatively low. On the eoytbuckling results in large and potentially dangerous
displacements in the structure and represents poor enksgyion.

< fy

imee _ i Time= 3.000e-2 ModAnim
Time= 3.000e-2 MOC}M{? ime S pai

Figure 12: Two types of behavior. compression and bucklDgpending on the parameters the rear frame is
deformed in different ways. In the left picture compress®dominant while in the right the frame is buckled
in the middle. The rigid wall which moves in from the left anauses the deformation is in contact with the
left side of the frame, but it is not shown in the pictures.

To define a statistical test we take six variables in totahftbe three parts discussed in the caption of Figure
11. These three parts consist of shell elements of an efdastic material with a piecewise linear constitutive
relation. For each part we take its thickness as a varialdleaatimensionless parameterin the constitutive
relation. The stress depend on both the plastic straipand the strain rate

o =af(ep,€).

Here we find our variable: as a scaling parameter.
We take these six variables to be uniformly distributed efthllowing intervals

e Thickness, part 1, in [1.02mm,1.38mm]

Thickness, part Z; in [1.36mm,1.84mm]

Thickness, part 33 in [1.7mm,2.3mm]

Material parameter, part &y in [0.7,1.3]

Material parameter, part 2, in [0.7,1.3]

Material parameter, part 3;3 in [0.7,1.3]
For responses we have made the following choices. We hawecHour nodes. One in the middle of each

part and the fourth at the interface of part 1 and 2. For theske$ we take the three components of the
displacement and the three components of the velocity a®mess. Furthermore, for each part we take the
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three components of the average velocity and also the aitemergy of each part. Finally we take the global
energy and the components of the global velocity as respoii$is amounts to a total of 40 responses.

We start the analysis of the results by looking for clustprid the samples, i.e. different physical behaviors.
In Figures 13 and 14 we have two scatter plots which displaydifiision of the samples into two clusters,
furthermore it is the same clustering found in the two piesurTo discover buckling, it is natural to try a plot
such as Figure 13 with thedisplacement of a node in part 2.

songs |E_part2 vs. N_MID_P2_DZ rho = 0.712
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Figure 13: Scatter plot at time 0.04 seconds, i.e. the stgpiiine of the computation. On the horizontal axis
we have thez-displacement of a node in the middle of part 2 measured ilimneiters. On the vertical axis is
the internal energy of part 2. The cluster in the upper rigiber correspond to the buckling behavior.

For this problem it is more difficult to find the regions in dgsispace which correspond to the two cases.
The first possibility is to look at the projection of the saempinto a two dimensional subspace parallel to the
coordinate axes, and use coloring to identify the samplagsgponding to the two clusters. With six variables
there are 21 different such subspaces. None of them shovagasiep of the clusters.

The cluster separation algorithm described in section 8vielier gives the solution to the problem. Thus the
following equation for a separating hyperplane is obtaiaetbmatically.

—0.70t17 — 0.38a1 4 0.43t2 + 0.42a9 + 0.02¢3 4+ 0.05a3 = 0.21 (14)

In Figure 15 the solution is illustrated by a scatter plot plane orthogonal to the hyperplane of (14).

The hyperplane divides the design space into two parts. @rsigle we have the designs which buckle and on
the other the compression behavior. Using the left handisifle4) we can evaluate other designs, which were
not among our samples, without performing a FE calculatibthe expression in the left hand side is greater
than 0.21 then we almost certainly have compression andsitielow 0.21 we have buckling. We have thus
obtained one convenient design criterion.

A heuristic way to analyze equation 14 is to first neglect tiiience ofts andag since their coefficients are
small. Then we group the remaining four terms in the left hsidd in the following way to get an equation for
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Figure 14: Scatter plot at time 0.04 seconds. Here the cuoatel of the samples are the internal energies of
part 1 and 2 respectively. The same clustering is visiblendggure 13. The cluster in the upper left corner
correspond to the buckling behavior.
34 —
3.3 —
32 —
3.1 —
3 —1

29 —

28 —

2.7 —

26 —

25

Figure 15: Here we see the separation of the two clustersebliytperplane of equation (14). The plane of the
scatter plot is spanned by the normal vector of the hypeeptard an arbitrarily chosen vector orthogonal to
this normal vector. We emphasize that this separation ipoggible to see in any plane spanned by the original
coordinate axes.
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a hyperplane close to the one determined above.
—0.4(2t1 + 1) + 0.4(t2 + ) = 0.2 (15)

Here we have rounded the numbers to one significant digit. Wewbserve that the quantiyy, = 2¢; + oy
clearly correspond to the ‘global’ stiffness of part 1.5 is large, then the shell elements are thick and the
material is stiffer. In the same way we ha%e = t, + a5 as a measure of the global stiffness of part 2. Inserting
S1 andSs in equation (15) and rearranging leads to the expression

Sy =51 +0.5

This expression is very easy to interpret physicallySdf> S; + 0.5, then part 2 is so stiff that it does not
bend. Instead the deformation begins with a compressioanflp On the other hand, if the inverse inequality
holds, then part 1 is so stiff that we will have bending of [Zainstead of compression of part 1.

The presented approach proved to be useful in many applicatiowever, the relative position, the shape and
the number of clusters can make the problem much more diffiéualincreasing number of variables of course
also complicates the process.

4 Conclusion

In this paper we present M-Xplore which is a new module of tlagliBss software for crash simulations. It
provides facilities to perform statistical investigatsowith the principal aim of design for crashworthiness.

In the module, variables and responses can be defined in driepelly way using new features of the FE
preprocessor. Then a (statistical) task can be definedkilidion law of each variables, sample size, sampling
method), and the computations can be automatically lauheftber locally or remotely on a supercomputer.
Advanced post processing facilities are also availabléifeuser to explore the behavior of the design.

In this paper we also analyze two example problems. By thilusdrate typical problems in the domain, the
techniques used and also how to work with the software. Wehasipe the problem of finding failure modes
and design criteria to avoid them.

In this challenging area there is no universal method whighgive all information of all the models. The
diversity of the problems require the use of many differgmgraaches. The goal of M-Xplore is to incorporate
many efficient methods for exploration and fit them into a ement tool to facilitate the investigation of
crashworthiness problems.
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