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Abstract

Possibly the most common application of spot welding is in the automobile manufac-

turing industry, where it is almost universally used to weld the sheet metal car components.

However, due to manufacturing inaccuracies and fatigue failures an important number of

spot welds may be missing in an operational vehicle. It seems that in order to properly

analyze reliability of such structures, in particular crashworthiness reliability, the spot weld

failures must be considered. Representing properties of each spot weld in a stochastic

model by corresponding random variables is extremely inefficient. Therefore, in the cur-

rent paper an approach is proposed for handling spot weld defects in the reliability analysis

by accounting for their averaged influence on a failure criterion. The approach consists in

appropriate treatment of a random noise component of the limit state function. The noise

results from strategy of deleting a certain number of randomly selected spot weld elements

from the finite element model each time the limit state function value is computed.

Dealing with noisy limit state functions in structural reliability analysis is a challenging

task. The only method that seems to be insensitive to this phenomenon is Monte Carlo

sampling, which for most of the applications of practical interest is prohibitively expen-

sive. Having this in mind, in the paper a method based on the algorithm proposed by Zou et

al. in [23] is investigated. The method combines the best features of the first order reliabil-

ity method, the response surface technique and the importance sampling method to achieve

both accuracy and efficiency. A detailed study on the reliability of thin-walled s-rail sub-

jected to crash is performed. Some suggestions concerning modification of the original

algorithm are proposed.

Keywords: crashworthiness reliability, response surface approximation, adaptive impor-

tance sampling, spot weld failures
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1 Introduction

In the reliability analysis of complex engineering systems, the limit state function (LSF) is gen-

erally implicit and very often, highly nonlinear. Furthermore, each function evaluation is usually

computationally expensive. This is the case of virtual crash simulation. Even with present-day

parallel machines the time to obtain a structural response is very long and only a limited number

of such computer experiments can be afforded. It is therefore extremely important to choose

a reliability analysis method that minimizes the number of function evaluations needed for an

estimation of the failure probability Pf , which is of an acceptable accuracy.

Nonlinearity of the limit state functions in crash related problems arises not only from the phys-

ical nature of the modelled phenomenon but also from the numerical noise introduced by a

computer crash simulation method, e.g., explicit integration of the dynamic equilibrium prob-

lem. Such a numerical noise (high sensitivity to parameter variations) greatly impairs a direct

application of efficient gradient-based reliability analysis methods. However, this noise is dif-

ferent from the one observed in physical experiments, where repeated identical tests usually lead

to a scatter of measured results. Contrary to laboratory tests, repeated runs of a computational

code for the same set of input parameters on the same hardware platform result with the same

values of structural performances. On the other hand, there are problems where it is computa-

tionally advantageous to deal with this type of random noise in reliability analysis rather than

to precisely model its sources with random variables and/or processes. Crashworthiness relia-

bility analysis accounting for random failures of spot weld connections in vehicle components

seems to be such a case. It has been observed that due to manufacturing inaccuracies, fatigue

failures and minor accidents a substantial number of spot welds may be weakened or even ab-

sent in an operational vehicle, see [3]. Associating random variables with material properties

of each finite element used to represent a spot weld is highly inefficient, let aside availability

of the relevant statistical data. Therefore, to represent somehow spot weld failures in reliability

computations and to make this task manageable for practical problems a possible approach is

to delete certain number of randomly selected spot weld elements each time the LSF value is

computed, producing a noise like effect. This technique, however, requires a reliability analysis

method that is able to cope with the noise. A study on such a method with a special emphasis

on crashworthiness reliability problems is the main subject of the current paper.

Even though stochastic analysis for crashworthiness related problems and in particular crash-
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worthiness reliability seem to nowadays gain more and more interest the number of papers

proposing reliability analysis methods for computer simulated crash problems is still low. Most

of the publications available for the authors address these problems only in the context of reli-

ability based design optimization (RBDO) of automotive structures, see, e.g., [5, 9, 21]. These

papers primarily emphasize improvements of optimization algorithms. In order to reduce huge

computational cost of RBDO the basic reliability analysis methods, providing only a rough

failure probability estimation, are usually selected. Unfortunately, despite of the very strong

sensitivity of the optimal design to design parameter variations, optimization for crashworthi-

ness is still often considered as deterministic optimization problem, see, e.g., [6, 16, 18, 20, 22].

Most of the crashworthiness reliability analysis methods reported so far are based to some extent

on the LSF approximation by means of a response surface. The response surface methodology

is a valuable tool for problems with implicit limit state functions. However, for problems with

large number of random variables, even efficient design of experiments (DOE) techniques such

as fractional factorials, central composite design or Box-Behnken design become unaffordable.

When using a response surface as a surrogate of the actual LSF the accuracy of reliability esti-

mate is greatly affected by the accuracy of the response surface approximation. Therefore, it is

rather difficult to propose an accurate and efficient reliability estimation by using the traditional

response surface approach.

Having in mind application to crashworthiness reliability problems and the particular treatment

of spot weld failures in the current paper a reliability analysis method based on the algorithm

proposed by Zou, Mahadevan, Mourelatos, and Meernik [23, 24] and called here as ZMMM,

is investigated. The two phase algorithm consists of the search of the most probable failure

point using the adaptive response surface approach and eventually the multimodal adaptive im-

portance sampling. It combines the best features of the first order reliability method (FORM),

the response surface methodology and importance sampling to achieve both accuracy and effi-

ciency. The detailed presentation of the method, which closely follows the presentation in the

original article [23], together with some modifications and critical comments are presented in

Sec. 3. In Sec. 4 is presented a study on reliability of the thin-walled s-rail subjected to crash.

Some suggestions concerning modifications of the ZMMM algorithm are also proposed.
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2 Reliability analysis problem formulation

Stochastic parameters describing a structural system are usually modelled as random variables,

X1, X2, . . . , Xn. They are called the basic variables and constitute a random vector X whose

samples x = [x1, x2, . . . , xn]T belong to the Euclidian space. In the space X the probability

measure is defined by the joint probability density function (PDF) fX(x) of the random vector

X . Depending on the sample values of the basic variables, the system will satisfy design

requirements or not (fail). The criterion of structural failure is usually expressed by the equality

g(x) = 0 that defines a hypersurface, called the limit state surface, in the space X . It divides

the space X into two regions: the failure domain Ωf = {x : g(x) ≤ 0} and the safe domain

Ωs = {x : g(x) > 0}. Hence, the failure probability of the structural system is determined by

the following integral:

Pf = P[X ∈ Ωf ] = P[g(X) ≤ 0] =

∫

Ωf

fX(x) dx, (1)

where P[A] means the probability of the random event A. In applications, where the number n

of basic variables Xi can be great, the integral domain Ωf complex and the calculation of the

limit state function g(x) cumbersome, e.g. involving a finite element numerical procedure, the

direct integration appears to be impractical. Therefore, some approximate methods have been

developed that allow in many cases for effective reliability assessment of structural systems.

In the approach that is most commonly used in application, the problem of the reliability calcu-

lation is appropriately transformed, U = T (X) (see e.g. [12, 2, 15]), into the space U where the

probability measure is defined by the probability density function fU (u) =
∏n

i=1 ϕ(ui) being

the product of the n one-dimensional standard normal PDFs of random variables Ui = Ti(X).

Since the limit state condition is also transformed into U , g(x) = 0→ h(u) = g[T−1(u)] = 0,

the failure probability can be calculated as follows:

Pf = P[h(U ) ≤ 0] =

∫

{u:h(u)≤0}
fU (u) du =

∫

∆f

fU (u) du, (2)

where ∆f denotes the failure domain Ωf transformed to the U space.

The axial symmetry of fU (u) assures for any linear function l(u) = β−αTu = 0, the following

equality to be true

P[l(U ) ≤ 0] =

∫

{u:l(u)≤0}
fU (u) du = Φ(−β), (3)
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where the coefficients, −αi, i = 1, 2, . . . , n, are the components of the normalized gradient of

the hyperplane l(u) = 0, i.e. αTα = 1, β = sign[l(0)]δ is the signed distance δ between the

hyperplane and the origin in U and Φ(·) is the standard normal distribution. Thus, the linear

approximation of the transformed limit state surface h(u) = 0 in the point closest to the origin

provides a simple estimate of the failure probability of structural system

Pf = P[h(U ) ≤ 0] ≈ P[l(U ) ≤ 0] = Φ(−β), (4)

where β is called the first order reliability index. The approach based on the linear approxima-

tion of the transformed limit state surface is called the first order reliability method (FORM).

The reliability index is determined as a solution of the following optimization problem:

β = sign[h(0)]δ∗

δ∗ ≡ ‖u∗‖ = min‖u‖ subject to: h(u) = 0.
(5)

The point u∗ is usually referred in the literature as design point or the Most Probable failure

Point (MPP). The problem (5) can, in theory, be solved by any nonlinear optimization algorithm

(cf. [11] for comparison of various methods), however, two algorithms, namely the Rackwitz-

Fiessler algorithm [1] and NLPQL [17] are commonly assumed to be the most efficient ones.

Unfortunately, such an observation is only true for smooth and differentiable LSFs which is not

the case of reliability problems considered in this paper. Therefore, a method that is tailored for

specific needs of crashworthiness reliability has to be devised.

A viable alternative to FORM approach are simulation methods. This is mainly due to the fast

development of computational facilities. Still, for systems with a low failure probability a large

number of simulations will have to be performed to get a stable estimate of the final result.

Hence, in practise some variance reduction techniques must be used, e.g. importance sampling,

where sampling is performed in the region where failures are more likely to occur (see, e.g.,

[15] for the review of simulation methods in reliability analysis).

To present the idea of simulation techniques it is convenient to introduce the indicator function

of the failure domain, defined as follows:

IΩf
(x) =





1 if x ∈ Ωf

0 if x 6∈ Ωf

. (6)

In the crude Monte Carlo approach the samples x of the random vector X are being generated

using the joint PDF fX(x) and the following estimator is employed for the probability of failure
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computation

P̂f =
1

K

K∑
i=1

IΩf
(X i), (7)

where X i are the independent random vectors with the joint PDF fX(x) and K is the number of

sample points. By computing the mean value and the standard deviation of the above estimator

it can be shown that its coefficient of variation is given by

ν bPf
=

σ bPf

E[P̂f ]
=

√
1− Pf

KPf

. (8)

It is easy to check that for problems where the expected probabilities of failure are low, 10−7 ÷
10−3, to get an accurate result, say ν bPf

= 5%, it is required to perform K = 4 · 105 ÷ 4 · 109

simulations. This computational burden is certainly not acceptable, especially when obtaining

LSF values requires a nonlinear finite element analysis.

The method that allows to significantly reduce the number of required simulations is the im-

portance sampling. It can be shown that in the U space the importance sampling estimator for

failure probability P̂f takes the form

P̂f =
1

K

K∑
i=1

I∆f
(V i)

ϕn(V i,0, I)

sV (V i)
, (9)

where sV (·) is the joint PDF (also called the sampling density) of the n-element random vector

V , I∆f
is the indicator function of the failure domain ∆f in the U space and ϕn(·,0, I) is

the n-dimensional normal joint PDF with zero mean values and unit covariance matrix. In

order to compute the value of the above estimator we use the realizations vi of the vector V i

generated from sV (·). The key element for the efficiency of importance sampling method is a

good choice of the sampling density that should minimize the variance of (9). Unfortunately,

in general, derivation of the optimal sV (·) function is difficult. However, very often quite

substantial improvement of the computational efficiency can be obtained by selecting it as the

n-dimensional normal PDF ‘located’ over the design point u∗ – the region with the largest

contribution to the value of Pf (see [19])

sV (v) = ϕn(v,u∗, I) =
n∏

i=1

ϕ(vi − u∗i ). (10)

In such a case the estimator is given by

P̂f =
1

K

K∑
i=1

I∆f
(V i)

ϕn(V i,0, I)

ϕn(V i, u∗, I)
. (11)
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With the choice of multi-normal sampling density (10) the estimate of Pf is not very sensitive

to the shape of ∆f and unless it is extremely nonlinear, the “success” rate for sample points

selected from sV (·) is about 50% (i.e. approximately equal likelihood of falling into either the

safe or the failure domain). This is in marked contrast to the conventional Monte Carlo method

for which the probability of having a sample point in the failure region is approximately equal

to the probability of failure to be computed. Experience shows, that in most of the cases only

few thousand simulations are necessary to get good Pf assessment with the estimator (11) (the

estimation quality measured by the coefficient of variation of the estimator), many orders of

magnitude less than for crude Monte Carlo sampling.

Of course, there exist some limitations to the above importance sampling procedure (listing

after [14] only these relevant to sampling in the U space and single LSF).

1. The sampling distribution sV (·) may not be well chosen.

2. The LSF under consideration have many design points (local minima of the function ‖u‖
provided h(u) = 0).

3. Extremely concave LSFs which lead to low efficiency in sampling.

A potential remedy for these problems offer adaptive methods of selecting the sampling density.

It can be shown that the importance sampling is more effective when the sampling PDF sV (·)
is more closely proportional to the original sampling density in the failure region Ωf (or ∆f if

sampling in the U space). A popular approach is to let sV (·) be a composite of k pre-selected

elementary sampling densities s
(i)
V (·)

sV (v) =
k∑

i=1

w(i)s
(i)
V (v), (12)

where w(i), i = 1, . . . , k are weights to be determined so as to let sV (·) approach fX(·) in Ωf

(or ϕn(·,0, I) in ∆f ). Each of the s
(i)
V (·) in Eq. (12) may be pre-selected or may be updated

with increased knowledge of the problem as sampling progresses. In [8] Karamchandani et al.

selected s
(i)
V (·), i = 1, . . . , k to be equal to the original PDF but with mean shifted to some

selected representative points, denoted v̂(i). The corresponding weights are defined (in case of
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sampling in the standard normal space) as

w(i) =
ϕn(v̂(i),0, I)

k∑
j=1

ϕn(v̂(j),0, I)

. (13)

This means that the weights are proportional to the contributions of the respective representative

point to the current estimate of the failure probability. It should be clear that the effectiveness

of sampling in developing the ideal sampling density depends very much on the set of initial k

representative points and on the initial sampling distribution from which they are drown.

A slightly modified version of the above adaptive importance sampling method, is presented in

section 3.2, where the algorithm of choosing the representative points and updating the sampling

density is described in detail.

3 Description of the chosen reliability analysis method

The proposed approach is composed of two major parts. In the first part, the MPP search is per-

formed by means of adaptive response surface based on the so-called optimal Latin hypercube

(OLH) design of experiments, see, e.g., [10]. In the second part, developing further the idea of

Karamchandani et al. [8] a multi-modal adaptive importance sampling method is proposed to

improve the estimate of the first part. All the useful information from the first part, especially

concerning the MPP location, is passed to the second stage to ensure efficiency of the adaptive

importance sampling technique.

3.1 First part: Most probable failure point search

The main issue in the presented algorithm is to enable its convergence for highly nonlinear limit

states. The most probable failure point is obtained by repeatedly searching for the local MPP

(by some constrained optimization procedure) within the current “trust region” and updating

the trust region until convergence. A polynomial response surface is used for the local approxi-

mation of the implicit LSF. It is based on sample points generated within the trust region by the

OLH design.

The following steps describe the iterative procedure realized in the standard normal space:
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1. Define the initial trust region (box) – its position and size.

Usually, the initial box center is assumed at the origin and the size has to be big enough to

include the sample points from both the safe and failure domains. This, of course, implies

some initial knowledge of the problem. If no prior information is given the hypercube

with the side length equal to 6 may be assumed, which corresponds to [−3σXi
, 3σXi

]

ranges of random variables, where σXi
is the standard deviation of the i-th random vari-

able.

2. Generate a number of points using the OLH-based DOE.

The sample points are realizations of uniformly distributed random variables with mean

values at the box center and the bounds determined by the box size. The points are

transformed back to the original space and the corresponding LSF values are computed.

Another DOEs, like central composite design, factorial design or axial design can be also

used provided that the number of variables is not to large.

3. Build a local LSF approximation with linear or quadratic response surface function.

In the study presented in this article the moving least-squares approach (MLS) is used

for finding coefficients of the regression equation. For the MLS method, weights are

assigned to the squared difference between OLH sample points and a point u where the

LSF approximation is to be computed. By using a weight function w(u − ui), more

emphasis/weight is locally placed on those experiments ui, which are close to u. Hence,

the response surface coefficients are reevaluated each time a new u point is considered.

Such models are able to account for higher than second-order nonlinearity with simple

polynomial models. The LSF model h̃(u) built upon the results of designed experiments

has the form

h̃(u) = aT(u)b(u) (14)

where

b̂ = (ATWA)−1ATWh (15)

is the least-square estimate for the unknown parameters b, W is the weights matrix, A

the regression design matrix, a the vector of the linear independent regression functions

and h is the vector of LSF values computed at OLH generated experimental points. An

exponential, multi-dimensional weight function similar to Gaussian distribution is usually
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employed. W is a diagonal matrix with the weights

wii = exp

[
−

n∑
j=1

(uex
ij − uj)

2/(2nη2)

]
, η > 0. (16)

In the above equation uex
ij stands for the j-th component of the i-th experimental point, uj

is the j-th component of the reference point u and η is a parameter controlling the shape

of the weight function.

4. Find an approximate MPP location by solving the following optimization problem:

find: u, (17)

that minimizes: ‖u‖2 = uTu, (18)

subject to: h̃(u) = 0, (19)

where h̃(u) is the local approximation of the LSF given by Eq. (14). The exact LSF value

corresponding to MPP is computed and the point is added to the database of generated

experimental points.

5. Move the trust region center and decide if to change its size

5.1 If the MPP found in the previous step is inside the trust region then the box center

is moved there and the size of the trust region (measured by the length of the hy-

percube’s side) is reduced. The reduction strategy is a very important factor for the

convergence of the algorithm. The solution proposed in [23], consists in dividing

the side of the box by a constant factor e.g., by two. Unfortunately, such an ap-

proach can lead to too rapid trust region reduction, which may greatly impair the

convergence, especially for problems with many random variables and noisy LSFs.

The method adopted in this study consists in dividing the volume of the trust region

rather than dividing the side length. This reduction strategy is discussed in more

detail in Sec. 4.

5.2 If the MPP found as the solution of the problem (17)–(19) is outside the trust region

then it is projected on the trust region boundary in the direction of the current trust

region center. The projection point becomes the new box center but the trust region

size is not changed. However, sometimes it may be advantageous to enlarge it,

especially when a number of consecutive iterations lead to MPPs outside the trust
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region. This is usually the case for nonlinear and/or noisy LSFs. Basing on the

experience gained by performing a number of numerical tests it is proposed to adopt

a strategy where three consecutive MPPs outside the trust region result in the trust

region expansion by the same factor as used for the reduction.

6. Repeat the steps 2 to 5 until the convergence criteria are satisfied.

The convergence check is performed only if MPP is found inside the trust region (see step

5.1). In addition to the stop criterion based on the distance between the last two iteration

points (box centers), it is proposed to verify if the MPP approximation is really located

on the limit state surface h(u) = 0. In order to account for the LSF noise multiple LSF

computations at MPP are performed and the mean LSF value is checked whether it is in

an epsilon vicinity of zero or not.

When constructing a local LSF approximation, all the points that ‘fall’ into the current box

should be used in the regression analysis, i.e. not only newly generated points but also the

sample points from previous iterations.

3.2 Second part: Multi-modal adaptive importance sampling

As it has been already mentioned, the second part of the method is the modified Karamchandani

procedure of the multi-modal adaptive importance sampling. It is described below:

1. Generate m0 sample points using the original joint PDF of the random vector U but with

the means shifted to MPP. Compute the corresponding LSF values.

In [24] it is suggested to take m0 = 10 to 50, however, it seems more appropriate to

relate m0 to the space dimension n, e.g., m0 = 5n ÷ 10n . In the example analyzed

in Sec. 4 m0 = 10n points are used. Keeping the convention adopted in section 2 of

denoting by V the “sampling variables” and remembering that sampling is performed in

the standard normal space, the PDF used to generate m0 sample points is ϕn(v, u∗, I),

where u∗ = v̂(1) is the MPP.

2. Determine k representative points from all the points generated so far.

By all the points we mean points generated during the second as well as the first part

of the algorithm. The current representative status of some points is disregarded. The

procedure is schematically shown in Fig. 1 and can be described as follows:
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Figure 1: General idea of multi-modal adaptive importance sampling strategy.

2.1 Select a sample point with the highest original PDF in the failure domain.

2.2 Eliminate all other points within a specified cluster radius around the selected point.

The cluster radius may be set equal to half of the distance from MPP to the origin

(β/2), say.

2.3 Find the point with the highest probability density among the remaining points,

excluding those that have been already selected as representative points.

2.4 Repeat the sub-steps 2.2 and 2.3 until no points are left.

3. Calculate the coefficient of variation of the failure probability estimator ν bPf
correspond-

ing to m0 sample points.

It is given by

ν bPf
=

√
Var[P̂f ]

P̂f

, (20)

where

P̂f =
1

m0

m0∑
i=1

I∆f
(vi)

ϕn(vi,0, I)

sV (vi)
, (21)
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Var
[
P̂f

]
=

1

m0(m0 − 1)

m0∑
i=1

(
I∆f

(vi)
ϕn(vi,0, I)

sV (vi)
− P̂f

)2

, (22)

and sV (v) is the multi-modal PDF defined by Eq. (24) and I∆f
(v) is the failure domain

indicator function. For the first sample of m0 points sV (v) = ϕn(v, v̂(1), I). If ν bPf
is

greater than some target value, the procedure is continued, otherwise, go to step 5.

4. Use the current k representative points to construct a multi-modal sampling density

sV (v) as follows:

4.1 Calculate the value of the original PDF ϕn(v,0, I) for each representative point.

4.2 Calculate the weight for each representative point v̂(j), j = 1, . . . , k, as

(see Eq. (13))

ŵ(j) =
ϕn(v̂(j),0, I)

k∑
r=1

ϕn(v̂(r),0, I)

. (23)

4.3 The multi-modal PDF sV (v) is assumed to be the weighted sum of the probability

densities corresponding to representative points, see Eq. (12)

sV (v) =
k∑

j=1

ŵ(j)ϕn(v, v̂(j), I), (24)

where ϕn(v, v̂(j), I) denotes the original PDF with mean shifted to the j-th repre-

sentative point v̂(j).

4.4 Generate m1 additional points using sV (v) from Eq. (24). It is suggested that m1 is

a multiple of the number of representative points, e.g., m1 = 5k ÷ 10k. Compute

the corresponding LSF values.

4.5 Update the value of P̂f then compute the updated value of Var[P̂f ] and finally coef-

ficient of variation of the estimator ν bPf
using Eq. (20). Here, it must be remembered

to replace m0 by a total number of points generated in the sampling phase and to ac-

count for proper sampling densities when performing summations in (21) and (22).

If ν bPf
is greater than some target value then the new representative points are deter-

mined according to the procedure described in step 2 and all the actions from the

step 4 are repeated. If ν bPf
is smaller than the target value then the algorithm pro-

ceeds to step 5. In [23] it is suggested that the target value for ν bPf
should be taken

in the range 0.2÷ 0.3.
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5. Generate m2 sample points using the multi-modal sampling density (24) constructed us-

ing the final set of representative points.

6. Calculate the probability of failure and the coefficient of variation using the formulas

(20)–(22) accounting for the comments from the point 44.5.

7. Repeat steps 5 and 6 until the value of P̂f converges

|P̂ (j+1)
f − P̂

(j)
f |

P̂
(j)
f

6 ε , (25)

where ε is the tolerance (e.g., ε = 0.1 can be assumed) and P̂
(j)
f is the probability of

failure for the j-th iteration. The calculated coefficient ν bPf
should remain under the preset

target value as well.

We can list several aspects of the presented approach that make it particularly attractive in the

context of reliability analysis of crash related problems. They are as follows:

• The first part of the algorithm, the MPP search based on the LSF approximation by a

response surface is relatively insensitive to the numerical noise inherent to crash simula-

tions.

• No sample points are ‘wasted’. The information generated in the first part is subsequently

utilized for finding representative points in adaptive importance sampling part.

• The accuracy of the algorithm is easy to control. In case when only some crude estimate

of the probability of failure is needed (or if it is all the budget permits) the importance

sampling part can be skipped.

• The method has “potential” to deal with multiple MPPs.

4 Reliability of s-rail subjected to crash

Here we consider a thin-walled steel s-rail, shown in Fig. 2, clamped at one end and hit at the

other end by the 100 kg mass moving with the initial velocity v0 = 15 m/s (54 km/h) in the

x-axis direction. The beam consists of 3 omega-shaped parts and the cover plate. The omega

parts are attached to the cover with 64 spotwelds. The elastic-plastic-brittle material is assumed
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[7]. The finite element model consists of 5760 MITC4 type shell elements [4] and 64 spring

elements to model the spotwelds. The finite element analysis is performed using Radioss [13],

explicit finite element solver, developed for analysis of highly dynamic and nonlinear problems,

in particular crash.

30 160

80

30

320 320320

v0

m = 100 kg

v0

y

z

x

1

2
3

4

Figure 2: S-rail crash problem. The finite element model and geometry. Dimensions are in

millimeters. The arrows indicate position of the parts.

The beam acts here as an energy absorbing device, so the major concern in its design is to

ensure a good energy management by collapsing in regular folding rather than buckling mode

(see Fig. 3). However, very often a design that performs satisfactorily in the ideal (nominal)

operating conditions is not reliable due to large sensitivity to unavoidable uncertainties of some

parameters. In reality it is hard to guarantee that the mass will impact the beam precisely in

the assumed direction that all the spotwelds are well manufactured and the thicknesses of metal

parts do not differ from their nominal values. For this reasons it seems essential that a design is

verified for its sensitivity to parameter uncertainties and, if possible, to assess the probability of
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Figure 3: left: buckling type deformation, little absorbed energy; right: regular folding, good

energy management

its unsatisfactory behavior.

In our problem there are 8 basic random variables. Their description and properties presented

in Tab. 1. They correspond to thicknesses of the sheet metal parts, material parameters and

initial conditions. To address the problem of uncertain quality of the spotweld connections

3 (≈ 5%) randomly selected spring elements are always being deleted from the model, each

time the crash analysis is performed. In the first part of the analysis, the MPP search, such a

simplified approach may be considered as a way of accounting for some average influence of

spot weld failures. Choosing randomly the spot weld elements to be deleted an additional noise

effect is introduced to the LSF computations. Therefore a specially adapted method, like the

one described in Sec. 3, is needed.

The crash duration is 20 ms. In order to define the reliability analysis problem an insufficient

energy absorbtion is assumed as the failure event. The minimal admissible value of absorbed

energy emin is taken to be equal to 6000 J, which is about 80% of the energy absorbed by the

nominal beam (corresponding to the mean values of random variables and perfect spot welds).

Hence, the limit state function can be expressed as

g(X,A) = 1− emin

e(X, A)
, (26)

where e(X,A) is the energy absorbed by the beam and A stands for a vector of discrete two-

point distributed random variables accounting for the good/failed state of spot welds. It is
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Description Distribution Mean Std. dev.

X1 t1 - thickness of the part 1 lognormal 1.5 [mm] 0.075 [mm]

X2 t2 - thickness of the part 2 lognormal 1.5 [mm] 0.075 [mm]

X3 t3 - thickness of the part 3 lognormal 1.5 [mm] 0.075 [mm]

X4 t4 - thickness of the part 4 lognormal 1.0 [mm] 0.05 [mm]

X5 σ0 - yield stress lognormal 180 [MPa] 15 [MPa]

X6 E - Young modulus lognormal 210000 [MPa] 21000 [MPa]

X7 vy
0 - y component of the initial normal 0 [m/s] 1.5 [m/s]

velocity of impacting mass

X8 vz
0 - z component of the initial normal 0 [m/s] 1.5 [m/s]

velocity of impacting mass

Table 1: Random variables of the s-rail crash problem

assumed that every realization of A produces 3 failed spot welds, which leads to removing the

corresponding finite elements from the model. It was observed that due to random spot weld

failures, the scatter of values of such defined LSF, measured by the maximal deviation from the

sample mean, can be up to 0.07, depending on a given realization x of the vector X . Since

the analytical form of the joint probability density function of A variables is unknown and it

is impossible to include them in the set of basic random variables X , in the first part of the

algorithm, due to the strategy of spot weld removing, the influence of these variables manifests

through the noisy character of LSF. The noise is handled by using the reliability analysis method

presented in the current paper.

The algorithm follows closely the one described in the section 3. The first part of the algorithm

is the most probable failure point search based on the adaptive response surface strategy. In

computer simulated crash problems due to the nonlinear and noisy character of LSF the goal is

to determine a vicinity of MPP rather than to find its “exact” location. Therefore, there is no

reason for setting too strict convergence criteria since there is a high probability that they will

never be fulfilled. In addition, the convergence criterion (described in point 6) should account

somehow for the dimension of the problem. The criterion of the form d < ε, where d is the

distance between the last two iteration points (box centers) and, e.g., ε = 0.1, may be too

restrictive for problems with many variables. A possible modification of this criterion could

be d < k
√

nε2, the right-hand side being k times the length of the diagonal of n-dimensional
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hypercube, its side equal to ε. In the current example n = 8, ε = 0.15 and k is taken equal to

1, which gives the criterion d < 0.42. The second criterion imposed on the mean value of LSF

at MPP is defined as h(u∗) < 0.1. To avoid an extensive computational effort a limit is also

set on the maximal number of iterations of the first part of the algorithm. Based on numerical

experiments, it is decided to restrict the number of iterations to 15.

Another change with respect to the original algorithm consists in a different strategy of reducing

the trust region. In [23] it was proposed to reduce the size of the trust region to the half of the

size from previous iteration. Again, from numerical tests we have found that such an approach

can often lead to a rapid reduction of the trust region and, in consequence, undesirable behavior

of the algorithm. In such cases, the response surface is based on a very localized sample of

points, which, accounting for the noise influence, often leads to design point approximations

outside the trust region. This effect is particularly important in high dimensional sample spaces.

In the version of the algorithm implemented for this study the volume of the trust region (n-

dimensional hypercube) rather than its size is reduced by a constant factor. It is assumed that

if the current MPP approximation is inside the trust region then the new volume is taken to be

25% of the current one. This leads to a simple formula for the size reduction

bi = 0.25
1
n bi−1, (27)

where bi and bi−1 are the current and the previous trust region sizes, respectively. For n = 8

variables and initial size of the trust region equal to 6 such a strategy produces the follow-

ing sequence of sizes: 6, 5.05, 4.24, 3.57, 3, 2.52, . . . , while the halving approach would give

6, 3, 1.5, 0.75, 0.325, 0.1625, . . . .

In the analysis the liner response surface and the moving least squares strategy for weighted

regression are employed. The OLH design with 4n = 32 points is used as the plan of experi-

ments.

The results of the first part of the algorithm are shown in Fig. 4. In the left hand side graph there

is presented the history of changes of the FORM reliability index corresponding to subsequent

iterations of MPP. Labels “IN” and “OUT” placed by the data point markers indicate whether

MPP is found inside or outside the current trust region, respectively. The right hand side graph

shows how the value of the convergence criterion changes over iterations. The criterion is
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Figure 4: Design point search: reliability index changes history and the convergence (distance)

criterion history

fulfilled after 5 iterations and the following results are obtained:

βI = βFORM = 4.04, P I
f = 2.7 · 10−5, (28)

u∗ = {−0.89,−0.29,−1.20,−1.26,−2.19,−0.80, 1.92,−1.81}, (29)

h(u∗) = 0.0038,

No. of LSF calls = 213,

where the superscript I stands for the first part of the algorithm. Analyzing coordinates of the

point u∗ it can be noticed that the most probable failure event will occur if thicknesses of parts 3

and 4 and the yield stress are well below their respective mean values and there is an important

lateral component of the velocity of impacting mass. It should also be noticed here that the point

u∗ corresponds to the most probable realization of the variables X leading to the failure event

and some averaged influence of spot weld failures (A variables). Hence, it cannot be treated

as the equivalent of the most probable failure point obtained for the problem where the random
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variables A with a known joint probability distribution would be included in the set of basic

random variables. Accounting for 4n sample points used to fit each linear response surface,

MPP verification calls and the computation of the average LSF value at the final MPP the total

number of Radioss calls in the first part of the algorithm is 213.

At the beginning of the importance sampling part of the algorithm m0 = 80 new points are

generated using the PDF ϕn(u,u∗, I) and the OLH design. Then, the stage of building the

multi-modal sampling density, as described by points 1–4 in Sec. 3.2, is carried out with the

only modification concerning the sample size. It is decided to make it equal to 5k̃, k̃ being the

number of the most important representative points. They are chosen as points with the highest

weight values satisfying the criterion that the sum of their corresponding weights is grater than

0.75. The target value for the coefficient of variation ν bPf
is set equal to 0.2. The final form

of multi-modal sampling density is obtained after 18 iterations (1195 Radioss calls). It is the

function of the type (24) based on 17 representative points with the following weights:

ŵ = { 0.195, 0.169, 0.138, 0.064, 0.057, 0.051, 0.045, 0.043, 0.035,

0.035, 0.034, 0.031, 0.026, 0.024, 0.019, 0.019, 0.017}.

There are three dominating representative points that are in approximately the same distance

from the origin, u = 0, as the MPP localized in the first part of the algorithm. In Figs. 5 and

6 there are presented the sampling history graphs of the weight values and the distances from

the origin corresponding to the first five representative points. The numbers shown next to the

point markers of the line #1 in Fig. 5 stand for the total number of representative points.

It can be noticed by comparing Figs. 5 and 6 with the evolution of P̂f in Fig. 7 that substantial

changes of the probability of failure estimate between, approximately, the 500-th and the 900-th

generated points are connected to sampling using a better adapted sampling density. In Fig. 8

there is shown the history of changes of the coefficient of variation ν bPf
. One may observe that

the trend is not monotonic. The jump may be due to rare events of generating points with a high

ratio ϕn(vi,0, I)/sV (vi), see Eq. (21). The final approximation of the probability of failure

and the corresponding generalized reliability index are

P II
f = 5.37 · 10−5, βII = −Φ−1(P II

f ) = 3.87, (30)

No. of LSF calls = 1195,

where the superscript II is for the second part of the algorithm.
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Comparing values of P I
f and P II

f one may conclude that the limit state function is not strongly

nonlinear and it is arguable if the importance sampling correction brings much with respect

to FORM approximation based on the MPP determined in the first phase of the algorithm.

Even though the sampling results with two times higher failure probability than P I
f it is not

a qualitative change and this can be questioned whether the big computational effort is worth

the effects it produced. This, however, cannot be known beforehand and in order to gain some

confidence in the FORM results importance sampling serves as a method for verification.

This is interesting to assess the influence of spot weld defects on the crashworthiness reliability

of the s-rail. For this purpose the analysis is repeated, applying the same algorithm but, this

time all the spot welds are assumed to be in perfect shape. Below there are given the results for

the first and the second part of the method, respectively.

First part, no. of LSF calls = 199,

βI = βFORM = 4.02, P I
f = 2.9 · 10−5, (31)

u∗ = {−1.14, 0.15,−0.99,−1.84,−1.61,−1.30, 1.81,−1.72}, (32)

h(u∗) = −0.0016,

Second part, no. of LSF calls = 660,

P II
f = 1.9 · 10−5, βII = −Φ−1(P II

f ) = 4.12. (33)

From the comparison of failure probabilities corresponding to the cases with and without spot

weld failures (equations (30) and (33), respectively) it can be immediately concluded that the

spot weld quality has an important influence on the s-rail reliability. It is about 3 times less prob-

able that the component with undamaged spot weld joins fails to absorb the required amount

of impact energy than the component with some spot weld defects. The most probable failure

points (32) and (29) are different, however, they are qualitatively very similar. They reflect

an intuitive failure scenario with the weaker material, thinner metal sheets and significantly

non-axial impact direction.

5 Conclusions

Deformation behavior of thin-walled steel or aluminium components in dynamic crash is very

often bifurcation driven, therefore, random spot weld connection failures may determine fail-

ure modes of the entire component. In the paper there is proposed a method of accounting for
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spot weld failures in reliability analysis of crash related problems. Due to a great number of

such joins, a precise modelling of spot weld parameters is rather unrealistic and would lead to

unmanageable stochastic model. The suggested approach, based on introducing an additional

uncertainty (random noise) to computed limit state function values, requires a specialized al-

gorithm employing a response surface approximation of the limit state function and adaptive

sampling techniques.

The algorithm investigated in the current paper, on test examples as well as on the s-rail crash

problem is an improved version of the method proposed by Zou et al. in [23]. The presented

approach seems to be well suited for the crashworthiness reliability analysis applications. How-

ever, its performance depends on many arbitrarily selected parameters. They should be carefully

chosen to reduce the computational cost and not to impair the accuracy of the method for a broad

class of crashworthiness reliability problems. Such a study has been done and some guidelines

are formulated, nevertheless, this is still a challenging task for further research.

The performed s-rail reliability analysis example has shown that the effect of spot weld failures

on the crashworthiness reliability of the component is not negligible and should be accounted

for in realistic analysis.
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