

School of Mathematics

Interior Point Methods for Large Scale Optimization

Jacek Gondzio J.Gondzio@ed.ac.uk http://www.maths.ed.ac.uk/~gondzio

Outline

• Interior Point Methods for Optimization

- log barrier, first-order conditions, Newton method
- linear, quadratic, semidefinite programming, etc.
- IPMs are well suited to large scale optimization

• Sparse Approximations: Signal/Image Processing

- Inverse problems
 - $\rightarrow \ell_1$ -regularized least squares
- Machine Learning (and Big Data)

• Plastic Truss Layout Optimization

- Ground structures
 - \rightarrow linear programming formulation
- Stability constraints
 - \rightarrow semidefinite programming formulation
- Geometry optimization
- Final Remarks

J. Gondzio

Observation

Numerous practical (engineering) problems can be cast as the following optimization problems

LP: $\min c^{T}x$ s.t. Ax = b, $x \ge 0$. QP: $\min c^{T}x + \frac{1}{2}x^{T}Qx$ s.t. Ax = b, $x \ge 0$.

SDP:

$$\begin{array}{ll} \min & C \bullet X \\ \text{s.t.} & \mathcal{A}X = b, \\ & X \succeq 0, \end{array}$$

where $X \in \mathcal{SR}^{n \times n}$.

Observation

All these problems can be solved efficiently using

Interior Point Methods for Optimization

J. Gondzio, Interior Point Methods 25 Years Later, *European Journal of Operational Research* 218 (2012) 587–601.

J. Gondzio, Convergence Analysis of an Inexact Feasible IPM for Convex QP, *SIAM J. on Optimization*, 23 (2013) No 3, 1510–1527.

Interior Point Methods

Shocking mathematical concept: A step against common sense and many centuries of mathematical practice:

"nonlinearize" the linear problem

Take **linear** optimization problem and add **nonlinear** function to the objective.

Mathematical "elements" of the IPM

What do we need to derive the \mathbf{IPM} ?

- duality theory: Lagrangian function; first order optimality conditions.
- logarithmic barriers.
- Newton method.

Primal-Dual Pair of Linear Programs

Primal

Dual

Lagrangian

$$L(x,y) = c^T x - y^T (Ax - b) - s^T x.$$

Optimality Conditions

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = 0, \quad (\text{ i.e., } x_{j} \cdot s_{j} = 0 \quad \forall j),$$

$$(x, s) \ge 0,$$

 $\underline{X = diag\{x_1, \cdots, x_n\}, S = diag\{s_1, \cdots, s_n\}, e = (1, \cdots, 1) \in \mathcal{R}^n.}$

The minimization of $-\sum_{j=1}^{n} \ln x_j$ is equivalent to the maximization of the product of distances from all hyperplanes defining the positive orthant: it prevents all x_j from approaching zero.

Logarithmic barrier

Replace the **primal** LP

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax &= b,\\ & x \ge 0, \end{array}$$

with the **primal barrier program**

min
$$c^T x - \mu \sum_{j=1}^n \ln x_j$$

s.t. $Ax = b.$

Lagrangian:
$$L(x, y, \mu) = c^T x - y^T (Ax - b) - \mu \sum_{j=1}^n \ln x_j.$$

IPPT PAN, Warsaw, 4 November 2019

Conditions for a stationary point of the Lagrangian

$$\begin{aligned} \nabla_x L(x, y, \mu) &= c - A^T y - \mu X^{-1} e = 0\\ \nabla_y L(x, y, \mu) &= & Ax - b = 0, \end{aligned}$$

here $X^{-1} = diag\{x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}\}.$

Let us denote

W

$$s = \mu X^{-1}e$$
, i.e. $XSe = \mu e$.

The First Order Optimality Conditions are:

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = \mu e,$$

$$(x,s) > 0.$$

Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a large system of nonlinear equations

$$f(x, y, s) = 0,$$

where $f : \mathcal{R}^{2n+m} \mapsto \mathcal{R}^{2n+m}$ is a mapping defined as follows:

$$f(x, y, s) = \begin{bmatrix} Ax - b \\ A^T y + s - c \\ XSe - \mu e \end{bmatrix}$$

Actually, the first two terms of it are **linear**; only the last one, corresponding to the complementarity condition, is **nonlinear**.

Interior-Point Framework The **logarithmic barrier** $-\ln x_i$

"replaces" the inequality

$$x_j \ge 0.$$

We derive the **first order optimality conditions** for the primal barrier problem:

$$Ax = b,$$

$$A^Ty + s = c,$$

$$XSe = \mu e,$$

and apply **Newton method** to solve this system of (nonlinear) equations.

Actually, we fix the barrier parameter μ and make only **one** (damped) Newton step towards the solution of FOC. We do not solve the FOC exactly. Instead, we immediately reduce the barrier parameter μ (to ensure progress towards optimality) and repeat the process.

Self-concordant Barrier

Def: Let $C \in \mathbb{R}^n$ be an open nonempty convex set.

Let $f: C \mapsto \mathcal{R}$ be a 3 times continuously diff'able convex function. A function f is called **self-concordant** if there exists a constant p > 0 such that

$$|\nabla^3 f(x)[h,h,h]| \le 2p^{-1/2} (\nabla^2 f(x)[h,h])^{3/2},$$

 $\forall x \in C, \forall h : x+h \in C.$ (We then say that f is p-self-concordant). Note that a self-concordant function is always well approximated by the quadratic model because the error of such an approximation can be bounded by the 3/2 power of $\nabla^2 f(x)[h, h]$.

Lemma The barrier function $-\log x$ is self-concordant on \mathcal{R}_+ .

Nesterov and Nemirovskii,

Interior Point Polynomial Algorithms in Convex Programming: Theory and Applications, SIAM, 1994.

From LP via QP to NLP, SOCP and SDP

For the quadratic cone

 $K_q = \{(x,t) : x \in \mathcal{R}^{n-1}, t \in \mathcal{R}, t^2 \ge ||x||^2, t \ge 0\},\$

define the logarithmic barrier function, $f : \mathcal{R}^n \mapsto \mathcal{R}$

$$f(x,t) = \begin{cases} -\ln(t^2 - ||x||^2) & \text{if } ||x|| < t \\ +\infty & \text{otherwise.} \end{cases}$$

For the cone $S\mathcal{R}^{n\times n}_+$ of positive definite matrices, define the *logarithmic barrier function*, $f: S\mathcal{R}^{n\times n}_+ \mapsto \mathcal{R}$

$$f(X) = \begin{cases} -\ln \det X & \text{if } X \succ 0 \\ +\infty & \text{otherwise.} \end{cases}$$

LP: Replace $x \ge 0$ with $-\mu \sum_{j=1}^{n} \ln x_j$. **SDP:** Replace $X \ge 0$ with $-\mu \sum_{j=1}^{n} \ln \lambda_j = -\mu \ln(\prod_{j=1}^{n} \lambda_j)$.

Interior Point Methods:

- Unified view of optimization
 - \rightarrow from LP via QP to NLP, SOCP and SDP
- Predictable behaviour
 - \rightarrow small number of iterations
- Unequalled efficiency
 - competitive for small problems $(n \le 10^6)$
 - beyond competition for large problems $(n \ge 10^6)$

Problem of size 10^9 solved in 2005.

Object-Oriented Parallel IPM Solver (OOPS): http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

Gondzio and Grothey, Parallel IPM solver for structured QPs: application to financial planning problems, *Annals of Operations Research* 152 (2007) 319-339.

Overarching Feature of IPMs

They possess an unequalled ability to identify the "essential subspace" in which the optimal solution is hidden.

Machine Learning/Big Data

Sparse Approximation

- Machine Learning: Classification with SVMs
- Statistics: Estimate x from observations
- Wavelet-based signal/image reconst. & restoration
- Compressed Sensing (Signal Processing)

All such problems lead to the same dense, possibly very large QP.

Binary Classification

ℓ_1 -regularization

$$\min_{x} \quad \tau \|x\|_1 + \phi(x).$$

think of LASSO:

$$\min_{x} f(x) = \tau \|x\|_1 + \|Ax - b\|_2^2$$

Unconstrained optimization \Rightarrow easy Serious Issue: nondifferentiability of $\|.\|_1$

Two possible tricks:

- Splitting x = u v with $u, v \ge 0$
- Smoothing with pseudo-Huber approximation

replaces
$$||x||_1$$
 with $\psi_{\mu}(x) = \sum_{i=1}^n (\sqrt{\mu^2 + x_i^2} - \mu)$

Huber:

Continuation

Embed inexact Newton Meth into a *homotopy* approach:

- Inequalities $u \ge 0, v \ge 0 \longrightarrow$ use **IPM** replace $z \ge 0$ with $-\mu \log z$ and drive μ to zero.
- pseudo-Huber regression \longrightarrow use **continuation**

replace
$$|x_i|$$
 with $\mu(\sqrt{1+\frac{x_i^2}{\mu^2}}-1)$ and drive μ to zero.

Questions:

- Theory?
- Practice?

Compressed Sensing and Continuation

Replace
$$\min_{x} f(x) = \tau \|W^*x\|_1 + \frac{1}{2}\|Ax - b\|_2^2, \quad \longrightarrow \mathbf{x}_{\tau}$$
with
$$\min_{x} f_{\mu}(x) = \tau \psi_{\mu}(W^*x) + \frac{1}{2}\|Ax - b\|_2^2, \quad \longrightarrow \mathbf{x}_{\tau,\mu}$$

Solve approximately a family of problems for a (short) decreasing sequence of μ 's: $\mu_0 > \mu_1 > \mu_2 \cdots$

Theorem (Brief description)

There exists a $\tilde{\mu}$ such that $\forall \mu \leq \tilde{\mu}$ the difference of the two solutions satisfies $\|x_{\tau,\mu} - x_{\tau}\|_2 = \mathcal{O}(\mu^{1/2}) \quad \forall \tau, \mu$

Primal-Dual Newton Conjugate Gradient Method:

Fountoulakis and Gondzio, A Second-order Method for Strongly Convex ℓ_1 -regularization Problems, *Mathematical Programming*, 156 (2016) 189–219.

Dassios, Fountoulakis and Gondzio, A Preconditioner for a Primal-Dual Newton Conjugate Gradient Method for Compressed Sensing Problems, *SIAM J on Scientific Computing*, 37 (2015) A2783–A2812.

Simple test example for ℓ_1 -regularization

$$\min_{x} \tau \|x\|_1 + \|Ax - b\|_2^2$$

Special matrix given in SVD form $A = Q\Sigma G^T$, where Q and G are products of Givens rotations. The user controls:

- the condition number $\kappa(A)$,
- the sparsity of matrix A.

Matlab generator:

http://www.maths.ed.ac.uk/ERGO/trillion/

K. Fountoulakis and J. Gondzio,

Performance of First- and Second-Order Methods for ℓ_1 -regularized Least Squares Problems,

Computational Optimization and Applications 65 (2016) 605–635.

Let us go big: a trillion (2^{40}) variables

n (billions)	Processors	Memory (TB)	time (s)
1	64	0.192	1923
4	256	0.768	1968
16	1024	3.072	1986
64	4096	12.288	1970
256	16384	49.152	1990
$1,\!024$	65536	196.608	2006

ARCHER (ranked 25 on top500.com, 11 March 2015) Linpack Performance (Rmax) 1,642.54 TFlop/s Theoretical Peak (Rpeak) 2,550.53 TFlop/s

Optimization of truss structures

Potential applications:

the design of

- bridges
- exoskeleton of tall buildings
- large span roof structures, etc

Optimization of truss structures

Given the following:

- d nodes,
- n bars and their lengths,
- external forces f,
- boundary conditions (some fixed nodes),

find the **lightest** truss structure that can support the applied loads.

The truss problem: plastic design formulation

$$\begin{array}{ll} \underset{a,q_{\ell}}{\text{minimize}} & l^{T}a \\ \text{subject to} & Bq_{\ell} = f_{\ell}, & \ell = 1, \cdots, n_{L} \\ & -\sigma^{-}a \leq q_{\ell} \leq \sigma^{+}a, \ \ell = 1, \cdots, n_{L} \\ & a \geq 0 \end{array}$$

- n_L number of load cases,
- $l \in \mathcal{R}^n$ is a vector of bar lengths,
- $a \in \mathcal{R}^n$ is a vector of bar cross-sectional areas,
- $f_{\ell} \in \mathcal{R}^m$ is a vector of applied load forces,
- $q_{\ell} \in \mathcal{R}^n$ are axial forces in members,
- $\sigma^- > 0$ and $\sigma^+ > 0$ are the the material's yield stresses in compression and tension,
- $B \in \mathcal{R}^{m \times n}$ nodal equilibrium matrix.

This is a large-scale LP. For *d* nodes, *N*-dim problem: $m = Nd, \quad n = \frac{d(d-1)}{2}$ hence $n \gg m$.

A challenge for optimization methods!

Difficult optimization problem

For fine grid, the resulting linear programming problem may be very large (m is in millions and n easily goes to billions).

Design a specialized IPM for it

- $n \gg m$
 - \rightarrow use column generation technique
- a sequence of 'similar' problems to be solved
 - \rightarrow use warm-starting ability of IPM
- difficult linear systems to solve
 - \rightarrow exploit special structure of the problem, i.e., use appropriately preconditioned Krylov-subspace method

Numerical results

Stability constraints

Design domains, bc, and loads.

Without stability considerations.

With stability considerations.

• Without stability considerations:

- A slender bar lacks any kind of support or bracing (?)
- A bridge includes only independent planar trusses (?)

• With stability considerations:

- The bar has bracing.
- The planar trusses in the bridge are connected.

M. Stingl, On the solution of nonlinear semidefinite programs by augmented Lagrangian method, *PhD thesis* 2006, IAM II, Friedrich-Alexander U. of Erlangen–Nuremberg.

Stability constraints

The stiffness matrix K(a) is given by $K(a) = \sum_{j=1}^{n} a_j K_j$, with $K_j = \frac{E}{l_j} \gamma_j \gamma_j^T$ (E = Young's modulus)

and the geometry stiffness matrix G(q) is given by

$$G(q) = \sum_{j=1}^{n} q_j G_j, \text{ with } G_j = \frac{1}{l_j} (\delta_j \delta_j^T + \eta_j \eta_j^T),$$

such that $(\delta_j, \gamma_j, \eta_j)$ are mutually orthogonal $(\eta = 0 \text{ for } 2D \text{ probs})$.

Global stability constraint:

$$K(a) + \tau G(q) \succeq 0.$$

M. Kočvara, On the modelling and solving of the truss design problem with global stability constraints,

Structural and Multidisciplinary Optimization 23(2002), 189–203.

The truss problem with stability constraints

We consider the so-called global stability which is based on linear buckling. This leads to the following SDP formulation

$$\min_{\substack{a,q_{\ell},u_{\ell} \\ \text{s.t.}}} l^{T}a \\ \frac{a_{j}E}{l_{j}} \gamma_{j}^{T}u_{\ell} = q_{\ell,j}, \qquad \forall \ell, \forall j \\ Bq_{\ell} = f_{\ell}, \qquad \forall \ell \\ -\sigma^{-}a \leq q_{\ell} \leq \sigma^{+}a, \qquad \forall \ell \\ K(a) + \tau_{\ell}G(q_{\ell}) \succeq 0, \qquad \forall \ell \\ a \geq 0.$$

Ignore the kinematic compatibility constraint $\frac{a_j E}{l_j} \gamma_j^T u_\ell = q_{\ell,j}$. But control its violation:

$$\min_{u_{\ell}} \quad \max_{\ell} \sum_{j} \left(\frac{a_j E}{l_j} \gamma_j^T u_{\ell} - q_{\ell,j}\right)^2$$

Constraints on eigenfrequency

Minimum compliance problem with a constraint on eigenfrequency

The three constraints K(a)u = f, $K(a) \succeq 0$ and $f^T u \leq c$ are replaced with a (linear) SDP constraint

$$\begin{bmatrix} c & f^T \\ f & K(a) \end{bmatrix} \succeq 0.$$

M. Kočvara, On the modelling and solving of the truss design problem with global stability constraints,

Structural and Multidisciplinary Optimization 23(2002), 189–203.

Example: The bridge problem

Small-scale problem: 3,240 bars.

Example: The bridge problem

Large-scale problem: 90,100 bars.

A.G. Weldeyesus and J. Gondzio,

A specialized primal-dual interior point method for the plastic truss layout optimization, *Computational Optimization and Applications*, 71(2018) 613–640.

A.G. Weldeyesus, J. Gondzio, L. He, M. Gilbert, P. Shepherd, A. Tyas,

Adaptive solution of truss layout optimization problems with global stability constraints, *Structural and Multidisciplinary Optimization*. https://doi.org/10.1007/s00158-019-02312-9

Example (cont'd)

	With member adding Without member addi:					
	Objective function value Final number of bars # col. generation iter	38.235 666(21%) 5	38.235 3240 1			
Without member adding	Total CPU(sec)	45	310			

#bars	in	the large	est SD	P =	90,100	(m =	1	,263, n	L =	180,200	in	standard	SDP)
#bars	in	original	SDP =	5,	644 (6.4%) (m	=	1,263,	n	= 11,283	8 in	n standard	I SDP)

		With	WS	With	out WS
ne	mAddIt	IPMitr	CPU(sec)	IPMitr	CPU(sec)
	1	23	184	23	184
	2	25	360	25	360
	3	26	560	26	560
	4	23	592	30	799
	5	25	783	35	991
	6	24	1035	35	1170
_	Total	146	3514	174	4064

Geometry Optimization

Allow to move nodes

Geometry Optimization: Bridge design

vol = 3.1796

Conclusions

- IPMs are well-suited to solving large scale optimization problems
 - predictable behaviour
 - high accuracy
- IPMs can be applied in various contexts

Use IPMs in your research!