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Abstract

The work aims to present extensions of the developed methods used in
electrostatic analysis of planar periodic and finite systems for efficient solving
of variety of the acoustic and electromagnetic wave generation and scattering
problems. Specifically, their generalization for application in the acoustic beam-
forming analysis is reported. Moreover, certain electromagnetic wave scattering
problems by periodic waveguiding structures which can be efficiently approached
by these methods are also considered.

The monograph consists of seven Chapters. The Chapter 1 presents the in-
troduction where the main objectives of the work are outlined. Mathematical
principles of the electrostatic methods which are dealt with in the following are
presented in details in the Chapter 2. The cases of infinite periodic and finite
aperiodic systems of infinitesimally thin electrodes (conducting strips), generally
having arbitrary widths and spacings, are considered separately. In the Chap-
ter 3 the electrostatic methods are generalized and extended to the acoustic
beam-forming analysis by linear transducer arrays. The mixed boundary-value
problem is stated and solved for the cases of infinite periodic and finite aperi-
odic arrays of rigid baffles. Also, the developed method of the angular directiv-
ity function evaluation for a linear transducer array with arbitrary excitation is
presented. In the Chapters 4 and 5 several examples illustrating practical appli-
cability of the developed methods are discussed. Specifically, in the Chapters 4
a developed modified multi-element synthetic transmit aperture algorithm for
ultrasound imaging, which incorporates the developed method of linear trans-
ducer array modeling, is reported. And in the Chapter 5 a two-dimensional
electrostrictive transducer array is analyzed. In the Chapter 6 generalization
of the electrostatic methods to the electromagnetic wave scattering analysis is
presented. Specifically, the problems of electromagnetic wave scattering by pe-
riodic gratings like a thick-walled parallel-plate waveguide array and a periodic
system of conducting electrodes of finite thickness are considered. Finally, the
Chapter 7 concludes the monograph.
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Streszczenie

Podstawowym celem pracy jest przedstawienie opracowanych uogólnionych
metod analizy zagadnień elektrostatyki układów planarnych zarówno periody-
cznych jak i nieperiodycznych, zawierających skończoną ilość elementów, do
celów efektywnego rozwiązywania zagadnień brzegowych w teorii generacji i
detekcji fal akustycznych oraz analizy zagadnień brzegowych w teorii fal elek-
tromagnetycznych dla przypadku struktur falowodowych.

Monografia składa się z siedmiu Rozdziałów. Rozdział 1 stanowi wprowa-
dzenie w którym omówiony został cel i zakres pracy. Matematyczne podstawy
metod elektrostatyki, rozwijane i generalizowane w dalszej części monografii,
zostały szczegółowo omówione w Rozdziale 2. Tu osobno rozpatrzono przypadki
periodycznego oraz nieperiodycznego układów infinitezymalnie cienkich elek-
trod (przewodzących pasków), w ogólnym przypadku o różnych szerokościach
oraz odstępach. W Rozdziale 3 przedstawiono uogólnienie metod elektrostatyki
do analizy mieszanego zagadnienia brzegowego dla układów sztywnych prze-
gród, zarówno periodycznych jak i zawierających skończoną ilość elementów,
oraz zaprezentowano opracowany model analityczno-numeryczny do oblicza-
nia charakterystyki promieniowania liniowych szyków przetworników akustycz-
nych dla dowolnego pobudzenia. Przykłady praktycznego zastosowania opra-
cowanych metod przedstawione zostały w Rozdziałach 4 oraz 5. Mianowicie,
w Rozdziale 4 zaprezentowano oryginalny nowoczesny algorytm wieloelemen-
towej syntetycznej apertury nadawczej (ang. multi-element synthetic transmit

aperture) dla obrazowania ultrasonograficznego w którym została zaimplemen-
towana opracowana metoda modelowania liniowych szyków przetworników ul-
tradźwiękowych. Z kolei w Rozdziale 5 przedstawiona została analiza modelu
dwuwymiarowej macierzy przetworników elektrostrykcyjnych. W Rozdziale 6
przedstawiono uogólnienie metod elektrostatyki do analizy zjawisk rozpraszania
fal elektromagnetycznych dla periodycznych struktur falowodowych takich jak
periodyczny układ falowodów płaskich o grubych ściankach oraz periodyczny
układ przewodzących elektrod o skończonej grubości. Na koniec, Rozdział 7
przedstawia podsumowanie monografii.



Symbols and abbreviations

The short list of most frequently used symbols and abbreviations is provided
below:

ω,Ω – angular frequency
f – temporal frequency
f0 – central frequency (of a transducer)
λ – wave-length
k – wave-number
Λ – period of strips (group of strips) or baffles (group of baffles)
K – spatial spectrum wave-number of periodic array of strips (baffles)
Pk – Legendre polynomials of the first kind
Jk – Bessel function of the first kind of order k
Γ – gamma function
φ – electrostatic or acoustic potential
Q – electrostatic charge
V – potential difference (voltage between strips)
σ – surface charge distribution
x, y, z – Cartesian space variables
ǫ0 – dielectric permittivity of vacuum
ǫ – effective surface dielectric permittivity
µ0 – magnetic permeability of vacuum
Ei – components of electric field, i = x, y, z
Hi – components of magnetic field, i = x, y, z
Di – components of electric induction, i = x, y, z
G(ξ) – planar harmonic Green’s function
Φ(ξ) – spectrum representation of the complex (electrostatic) field function
Φ(x) – spatial representation of the complex (electrostatic) field function
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d – strip half-width
r, s – spectral variables related to the x, y spatial coordinates constrained to one
Brillouin zone
F – Fourier transform
p – acoustic pressure
ρa – mass density of the acoustic media
vz – z-component (normal component) of the particle velocity
Π – acoustic power
Πz – normal component of the acoustic Poynting vector

SAW – surface acoustic wave
IDT – interdigital transducer
BIS expansion – Blotekjœr, Ingebrigtsen, and Skeie expansion method
FFT – fast (finite) Fourier transform
SNR – signal-to-noise ratio
SA – synthetic aperture
SAFT – synthetic aperture focusing technique
M-SAFT – multi-element synthetic aperture focusing technique
STA – synthetic transmit aperture
MSTA – multi-element synthetic transmit aperture
TM – transverse magnetic wave polarization
TE – transverse electric wave polarization
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Introduction

Beam-forming is one of the prevailing signal processing techniques having long
history in applications such as radars (electromagnetic wave beam-forming) or
sonars (acoustic wave beam-forming). It is usually implied that beam-former is a
system which consists of certain phased array of elements which receive or trans-
mit waves and advanced post-processing capabilities. As regards applications
in acoustics, a typical beam-forming structures are phased array transducers.
Nowadays they are indispensable parts in applications, for example, in medical
ultrasound diagnostics where they are exploited with great success for a long
time [1, 2]. The nondestructive evaluation and testing is another area where the
ultrasonic phased arrays have been receiving great attention recently [3–9]. The
inspection speed and fast imaging capabilities, flexible control and signal pro-
cessing give rise to their advantages over conventional ultrasonic transducers. A
typical linear ultrasonic array transducer consists of the alternate sets of acous-
tically different materials: piezoelectric, which responds to the incident waves
by electric signal, and acoustically isolating material (like epoxy) between them.
The wave-field excitation by the individual elements of the array with properly
chosen strengths and phases allows to realize the beam steering and focusing
as well as proper beam shape of the wave radiated into the body. Compact
realization of the beam-forming idea developed in microwaves [10] appears to
be also perspective for ultrasound applications, exploiting integrated acoustic
wave-guides. In the case of receiving transducer arrays, the corresponding spa-
tial filtration is adopted by summing up of signals of the transducer elements
with proper weights and phases [11]. In further approximation, the point-like
sources are replaced by periodic baffles; such system has been investigated for
example in [12].

Different methods of the linear phased array modeling are described in the
literature. Among them the most frequently used the beam profile modeling [13]
and point spread function modeling [14]. The beam profile modeling is based
on the intuitive representation of the array as a set of simple point sources [15].
In the point spread function modeling [16] the ability of the imaging system
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which exploits phased array transducer to visualize a point reflector (by means
of certain imaging algorithm) is modeled. For this purpose the ultrasonic data
from the array due to a point reflector at a particular spatial position are sim-
ulated first. Then the image of the reflector is plotted using the appropriate
imaging algorithm applied to the simulated data. Both these methods must
apply certain model of the individual element of the array (they are typically
piezoelectric strips separated by epoxy layers). There are different methods of
modeling the array element, including finite element analysis [17–19] or Huygens
principle [20–22]. In the later case, usually the integration of a series of point or
line sources is performed to obtain the element directivity function due of the
finite size of the array element. The above approaches to modeling the array
transducer assume that the individual elements respond to the incident wave
pressure independently of each other yielding the electric signal proportional to
the incident wave amplitude. However, since piezoelectric materials are closer
to hard, and epoxy is closer to soft acoustic materials, the Bragg scattering
occurs when the incident wave scatters from the array. This phenomenon neces-
sarily distorts the local acoustic pressure on piezoelectric elements of the array
affecting its electric response.

In this study the alternative approach for modeling the ultrasonic linear ar-
ray transducer is developed, which is based on the rigorous full-wave analysis
of the corresponding boundary-value problem for wave excitation or scattering.
The considered system, modeling a transducer array, consists of periodic acousti-
cally hard strips (baffles) where the normal acoustic vibration vanishes [23], and
between them there are acoustically soft domains where the acoustic pressure
vanishes (or it is given constant in the excitation problem). It should be noted,
that in the classical formulation of the scattering problem, which can be found
for example in [24], the reflected and transmitted wave-fields are of primary
interest and the problem is solved using Green’s theorem. The unknown field
on strips is represented by the series of Chebyshev polynomials, and using the
Galerkin method the problem is reduced to a certain system of linear algebraic
equations for unknown expansion coefficients. The scattered field (transmit-
ted and reflected waves) is finally found as a superposition of infinite number
of spatial harmonics. What is considered here is mixed (Dirichlet-Neumann)
boundary-value problem formulated as follows: the given pressure between baf-
fles models the wave-beam generation, and the pressure exerted by the incident
and scattered waves on the acoustically hard baffles models the response signal
from the individual piezoelectric element of the array transducer. Efficient tools
for rigorous solution of the above-mentioned problems can be delivered by the
methods worked out earlier in electrostatics of planar systems of strips [25–28].
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These methods are further investigated and developed in this study for appli-
cation in acoustic beam-forming analysis.

Electrostatic analysis of planar systems of perfectly conducting strips may
explain fundamental features of microwave [29] and micro-acoustic [25] devices.
It also provides the approximated solution to diffraction problems in a long-
wavelength limit [30]. In this case the induced electric charge distribution on
strips varies according to the incident electric field. In classical electrostatics, the
boundary value problem is formulated for electric field or its potential governed
by the Laplace equation appended by the boundary conditions on the system
of strips. The solution provides the electric field in the space around strips and
the electric induction (the electric charge density) distribution on their sur-
face [31]. Another approach exploits the theory of complex functions [32]. Both
these methods, however, are not applicable for the acoustic beam-forming anal-
ysis considered in this study. Here, instead, another approach is presented - the
spectral theory [33]. This is a different method for direct evaluation of the spa-
tial spectrum of the charge distribution on planar system of strips. The charge
spatial distribution itself can be obtained by the inverse Fourier transformation
if needed. In many applications, like extensions of the electrostatic methods for
the acoustic beam-forming analysis which are studied here, the spatial spectrum
of charge distribution is the quantity of invaluable importance (e.g. for model-
ing of the frequency response of SAW transducers, beam pattern of acoustic
transducers etc.).

In the case of planar system of periodic strips having arbitrary potentials or
charge distributions, the spectrum can be obtained using the so-called general-
ized ’BIS-expansion’ method [34]. The approach exploits certain properties of
the series of Legendre polynomials in order to satisfy the boundary condition
in the consider boundary-value problem. The method was first introduced by
Blotekjœr, Ingebrigtsen, and Skeie [34] and was referred to as the BIS-expansion
method. The detailed discussion concerning the BIS-expansion method and its
generalization will be presented in details further in the Chapter 2. The method
was also successfully used in the theory of electromagnetic wave scattering by
planar systems of periodic conducting strips [35], in the theory of elastic wave
scattering by periodic cracks [36], and in generalized form in the theory of sur-
face acoustic wave transducers [37].

For a finite system of strips, generally having arbitrary widths and spac-
ings, in the spectral theory approach a set of the so-called spectral ’template
functions’, being independent solutions to the charge distributions on the plane
of strips expressed in the spectral domain, is defined. The general solution is
built up as a superposition of them. To find a particular solution a set of circuit
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equations (constraints) is specified which have to be satisfied: given strip po-
tentials or charges, or interconnections [38]. The same set of template functions
is used to find the solution of the complementary problem of strips in external
spatially variable (harmonic) electric field. This makes the problem analogous
to the wave scattering one and thus justifies the application of wave-scattering
terminology (like ’radiation conditions’, for instance). This method is discussed
in details in the Chapter 2.

The main objective of the work is to develop the extensions of the above
electrostatic methods for application in acoustic beam-forming analysis, or more
specifically, for solving of the afore-mentioned boundary value problems for baf-
fle arrays. To this end a proper generalization of both the BIS-expansion and
template functions approaches will be developed and discussed to find the rig-
orous solution of the boundary-value problem in the case of planar periodic and
arbitrary aperiodic finite system of baffles, respectively. The presented meth-
ods allow to reduce the initial problem to the small system of linear equations
to be solved numerically, and yields the results which satisfy exactly the en-
ergy conservation law (with machine accuracy [36, 39]), in both the generation
and scattering cases. These problems are studied in details in the Chapters 3-5.
There are also given some other interesting examples of application of the de-
veloped methods. Namely, in the Chapter 4 a practical implementation of the
discussed methods for the performance improvement of the multi-element syn-
thetic transmit aperture (MSTA) method for ultrasound imaging applications
is considered [40]. There the results of beam-forming analysis expounded in the
Chapter 3 are exploited to develop a set of apodization weights accounting for
the transmit and receive aperture directivities in the modified MSTA method.
This allows considerably improve the contrast and visualization depth of the
final ultrasound images. On the other hand, in the Chapter 5 a 2D transducer
array comprised of crossed arrays of electrodes located on the opposite sur-
faces of thin electrostrictive dielectric is briefly referred following [41]. Such a
structure is capable of electronic beam-steering of generated wave-beam both
in elevation and azimuth. The wave-beam control is achieved by addressable
driving of two-dimensional matrix transducer through proper voltage supply of
electrodes on opposite surfaces of the layer.

Furthermore, it appears that the problems of acoustic beamforming analysis
are not the only ones which can be successfully treated by the generalized elec-
trostatic methods. Their applicability to a wide range of physical phenomena is
illustrated in the further Chapters of the work. Namely, a variety of electromag-
netic wave generation and scattering problems can be addressed by these meth-
ods. These generalization of the electrostatic methods based on BIS-expansion
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are further developed and presented in the Chapter 6 where the problem of elec-
tromagnetic wave scattering by the periodic structures like thick-walled parallel-
plate waveguide array [42, 43] and a grating comprised of thick conducting bars,
widely used in applications, are considered [44]. Electromagnetic scattering and
radiation by periodic systems is a classical problem of diffraction theory. From
the theoretical point of view it gives a perfect example for the study of periodic
structures. In the practical aspect the perfectly electric conductor periodic struc-
tures can simulate the phased arrays in micro an millimeter wave applications,
such as filters [45, 46], frequency selective structures [47, 48], splitters and anten-
nas [49, 50], widely used in today’s communication and radar systems [51, 52].
Recently, periodic systems with a particular arrangement of scatterers including
conductors and dielectrics has received growing attention, because such the sys-
tems may behave like negative refractive index materials [53, 54] within a certain
frequency range. Many approaches [55, 56] have been proposed to analyze them,
such as the mode-matching method, finite difference time domain (FDTD) tech-
nique, finite element method (FEM) or Fourier series method. In this study the
problem of electromagnetic wave scattering by the above-mentioned periodic
structures are efficiently solved using a method similar to the BIS-expansion.
In particular, a series of spatial harmonics is exploited for scattered field rep-
resentation and the corresponding mode amplitudes are further expanded into
the series of properly chosen Legendre functions (following a similar procedure
as in the BIS-expansion method).

Another vivid and interesting example is the electrostatic analysis of the
planar system of strips with ’broken’ periodicity originating from an infinite
periodic system by inclusion of the narrower strip and spacing in the middle of
the system [57]. This breaks the system periodicity making it ’quasi-periodic’,
as the system remains periodic outside of the inclusion. The defective periodic
structures are known in physics; they are used in the Fabry-Perot resonators
of solid-state lasers, for instance. The method of analysis of such structures
is also developed and demonstrated in this study. It presents a generalization
of the BIS-expansion method (suitable for periodic structures) and ’template
functions’ approach (suitable for non-periodic finite structures) and illustrates
well the versatility and flexibility of electrostatic methods which are dealt with
in this study.

The work is organized in the following way. In the next Chapter the math-
ematical principles of electrostatic methods are discussed in details. The cases
of infinite periodic and finite aperiodic (generally having arbitrary widths and
spacings) planar systems of perfectly conducting strips are considered sepa-
rately. In this Chapter a peculiar example of a finite planar system of strips in
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external (harmonic) electric field is presented. The problem is studied using a
method combining both the BIS-expansion and ’template functions’ approaches
(see Section 2.4.). In the Chapter 3 the electrostatic methods are generalized
and extended to the analysis of the acoustic linear array transducers. The mixed
boundary-value problem mentioned above is solved for the cases of infinite pe-
riodic as well as for finite array of baffles separately in Sections 3.2. and 3.3.
In the Chapters 4 and 5 several examples illustrating practical applicability of
the developed methods of analysis are discussed. In particular, in the Chapter 4
the developed modified MSTA method for ultrasound imaging is presented and
in the Chapter 5 the 2D electrostrictive transducer array is analyzed using the
generalized extension of the BIS-expansion method for 2D periodic structures.
Finally, in the Chapter 6 generalization of electrostatic methods to the electro-
magnetic wave scattering analysis is presented.
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Mathematical principles of electrostatic

methods

In this Chapter the fundamentals of electrostatics of planar system of perfectly
conducting strips are discussed in details. The variety of methods can be found in
literature ranging from purely theoretical, based on the theory of analytic func-
tions [32] and up to the numerical ones, exploiting the finite element method,
for example [31]. In this study, however, the advantages will be taken from
the so-called spectral theory approach [33] which not only delivers the direct
solution of electrostatic problem in the spatial spectrum domain (which is ex-
tremely important in many practical applications) but also is as much flexible
and versatile that can be easily generalized for successful treatment of numerous
problems of acoustic (as well as electromagnetic) wave generation and scattering
theory. For the sake of clarity it is convenient to consider separately the cases of
infinite periodic and finite aperiodic planar systems of conducting strips. There-
fore, in the Section 2.2. the BIS-expansion [34] method will be presented first.
It is suitable for the case of infinite periodic arrays. Originally it was proposed
and used to solve electrostatic problems related to modeling surface acoustic
wave interdigital transducer [34]. The method was further successfully used in
the analysis of electromagnetic wave scattering by periodic planar system of
conducting strips [35] and in the theory of elastic wave scattering by periodic
system of cracks [36]. The theoretical background of the BIS-expansion method
is outlined in the Section 2.2.1. In the case of finite aperiodic planar system of
strips, generally having arbitrary widths and spacings or kerfs (term ’kerf’ is
widely exploited in the literature related to the acoustic transducers), the so-
called ’template functions’ method is used [38] in the frame of spectral approach.
It is discussed in details in the Section 2.3. The template functions are particular
solutions of the corresponding boundary value problem. Their linear combina-
tion determines the general solution, and unknown coefficients are determined
from the constraints resulting from circuit equations (given voltages, charges
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or strips interconnections). And, finally, in the Section 2.4. a generalization of
electrostatic methods combining both the BIS-expansion method and template
functions method which is suitable for solving the problem of planar system of
strips in external, spatially harmonic, field is presented. This problem is similar
to the wave scattering one. The developed method will be helpful in further
analysis of the of acoustic wave generation and scattering problems presented
in Chapter 3. But at the very beginning it is worthwhile to give some basic
introduction into the electrostatics of planar systems which is briefly referred in
the next Section.

2.1. Basic solution for planar systems

In classical electrostatics the boundary value problem is formulated for elec-
tric field or its potential, governed by the Laplace equation and the boundary
conditions on the surface of conducting body. The conducting body is actu-
ally a system of in-plane perfectly conducting and infinitesimally thin strips
(periodic or finite, having arbitrary width and spacing). The solution provides
the electric field in the space around the body and the electric induction (the
electric charge density) distribution on the body surface. Evaluation of the spa-
tial spectrum of electric charge distribution is then perform by spatial Fourier
transform, usually by means of the Fast Fourier Transform (FFT) algorithm.
Although the charge distribution and its spatial spectrum are simply related
by the Fourier spatial transform, the transformation direct evaluation poses a
serious practical problem due to the square-root singularity of the charge distri-
bution on strips (note that there can be tens or even hundreds of strips in the
analyzed structures, the spatial spectrum in such cases depends strongly on all
these singularities). Moreover, wide domain of the spectrum is interesting for
applications, even spanned over several fundamental harmonics (corresponding
to transducer overtones). Naturally, the numerical results can only be obtained,
and attempting to perform the Fourier transformation, one have to sample the
singular field at discrete values of the spatial variable, what inevitably leads to
significant numerical errors, even if the field is perfectly evaluated.

This drawback is eliminated in the spectral approach considered here. This
means, that the main purpose of the method is to evaluate the spatial spectrum
of the electric charge distribution directly, formally without an earlier evaluation
of the charge spatial distribution with subsequent application of the FFT algo-
rithm. The integrals of the field and induction are only necessary for evaluation
of the strip potentials and charges in order to formulate the equations resulting
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from the circuit theory (the Kirchhoff’s laws), taking into account that some
strips have given potentials, others can be isolated or interconnected. To proceed
further with the methods of analysis of planar systems of strips, a brief intro-
duction to the corresponding electrostatics basics connected with this problems
is presented below.

Let a harmonic potential on the plane z = 0, assumed independent of y, be
of the form e−jξx, where ξ is an arbitrary spatial spectral variable of real value
corresponding to the x spatial coordinate (see Fig. 2.1). On the basis of the
Laplace equation for the potential of electric field ~E = −∇ϕ:

∆ϕ = 0, (2.1)

it is seen that the z-dependence of the solution for ϕ vanishing with growing
distance from the plane z = 0 (in the other words, satisfying the equivalent
’radiation condition’ in the wave-scattering terminology) is e−|ξz|.

Assuming a dielectric permittivity of the surrounding media to be ǫe (for
example it can be vacuum with dielectric constant ǫ0), the following equations
for the field components, as a function of spectral variable, are obtained on the
plane z = 0+ (just above the plane)

Ex(ξ) = jξϕ(ξ), Dz = ǫEz(ξ) = ǫξSξϕ(ξ), ǫ = 2ǫe, (2.2)

where Sξ = 1 for ξ ≥ 0 and −1 otherwise (ξSξ = |ξ|); ǫ - is an effective surface
permittivity [58]. In Eq. (2.2) a typical notation for the electric field vector Ex

and electric induction Dz is applied.
It is convenient to introduce the planar harmonic Green’s function [37, 59]

G(ξ) = Ex(ξ)/Dz(ξ) = jSξ/ǫ, (2.3)

defined for the tangential electric field Ex and normal electric induction Dz on
the plane z = 0, which components vanish at |z| → ∞. The other, complemen-
tary class of the field, satisfying the opposite condition:

EI
x(ξ) = −G(ξ)DI

z(ξ), (2.4)

that is growing at infinity, will be exploited further in the problem of strips
in external spatially harmonic electric field; EI

x, D
I
z denote the components of

the external or ’incident’ field which source resides outside the planar structure,
at infinity. The Green’s function G(ξ) will replace the Laplace equation in all
the analysis that follows for the fields on the plane z = 0. In the spectral
approach described here the concept of the so-called ’complex field function’
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plays fundamental role in the numerical analysis. It is defined in the following
way:

Φ ≡ Ez − jEx = D − jE (2.5)

both in spectral and spatial domain. To simplify notation and to emphasize the
fundamental importance of the spatial spectrum of the surface charge distribu-
tion, determined by the jump discontinuity of the normal electric induction Dz,
the new variables E = Ex and D = Dz/ǫ = Ez were introduced in Eq. (2.5)
and will be exploited in the following (the exception is the Sec. 2.2.1., where
D = Dz, which is annotated explicitly there). This is equivalent to the proper
choice of the units for electric induction (which makes ǫ = 1). In what follows,
the independent variable will be written explicitly to avoid ambiguity, if needed;
otherwise, if it is clear from the context whether the spectral representation or
its spatial counterpart is meant, the independent variable will be dropped to
shorten notation. Taking into account the definition of the Green’s function,
Eq.(2.3), one obtains the fundamental property of the spectral representation
of the complex field:

Φ(ξ) = 0, ξ < 0, (2.6)

which property considerably simplifies the numerical analysis (it is discussed in
details in the following). To illustrate the idea of the complex field function,
the following example is considered. Namely, the simplest conducting body, for
which the analytic solution of electrostatic problem can be found is a conducting
half-plane (see Fig. 2.1). It is known [60] that the charged half-plane x < 0

x

z

Figure 2.1. A perfectly conducting charged half-plane z = 0, x < 0

induces the following field on the plane z = 0+:

E(0)(x) =

{

1/
√
x, x > 0

0, x < 0

}

,E(0)(ξ) =
1

2
√

π|ξ|

{

ejπ/4, ξ > 0

e−jπ/4,ξ < 0

}

,

D(0)(x) =

{

0, x > 0
1/
√
−x, x < 0

}

,D(0)(ξ) =
1

2
√

π|ξ|

{

e−jπ/4,ξ > 0

ejπ/4, ξ < 0

}

,

(2.7)

in the spatial, and spectral representations. The complex field function for the



2.1. Basic solution for planar systems 21

half-plane, therefore, is:

Φ(0)(x) =
1√
−x =

{

−j/
√

|x| , x > 0

1/
√

|x| , x < 0

}

,

Φ(0)(ξ) =

{

e−jπ/4/
√

πξ, ξ > 0,
0, ξ < 0

}

.

(2.8)

The square-root value is chosen to be positive for x ≥ 0, and
√
−1 = j oth-

erwise. The above follows the well-known electrostatic theorem that real and
imaginary parts of any harmonic function represent a solution of certain elec-
trostatic problem. The appropriate boundary conditions considered here:

E(x) = 0, on the conducting body

D(x) = 0, outside the conducting body

(2.9)

are appended by the condition that the field vanishes at |z| → ∞ (analogous
to the ‘radiation condition’ in the wave-scattering theory). Besides, the electric
field exhibits square-root singularity near the strips edges (it will be referred to
as the edge conditions, in what follows) [61]:

E = O(ρ−1/2), D = O(ρ−1/2), i = x, z,

ρ→ 0, ρ =
(

(x± d)2 + z2
)1/2

.

(2.10)

This idea is exploited in the further analysis. Concerning the spectral represen-
tation, it is very important to note that it has a semi-finite support. Namely, it
results from Eq. (2.3) that Φ(ξ) = D(ξ)− jE(ξ) = (1+Sξ)D(ξ) that is zero for
ξ < 0, for fields satisfying the radiation condition, Eq. (2.3). The definition (2.5)
has been chosen to obtain the convenient support ξ ≥ 0. For given Φ(ξ), the
representation of D and E in spectral domain can be inferred from the above
results as

D(ξ) =
1

2

{

Φ(ξ), ξ ≥ 0
Φ∗(−ξ), ξ < 0

}

,

E(ξ) = jSξD(ξ) =
j

2

{

Φ(ξ), ξ ≥ 0
−Φ∗(−ξ), ξ < 0

}

,

(2.11)

which can be easily checked by substitution to Eq. (2.5) and (2.3). Moreover,
functions {D(ξ − ν), E(ξ − ν)} are constituents of another harmonic function
[D(x)− jE(x)]e−jνx satisfying Eq. (2.1), but not necessarily Eq. (2.3) (this will
be exploited later in the Section 2.4.)
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2.2. Electrostatics of periodic system of strips

Let’s now consider the case of infinite Λ-periodic system of perfectly conduct-
ing strips of width 2d, as shown in Fig. 2.2. The spatial complex field function

z
x

Λ 2d

Figure 2.2. A Λ periodic system of conducting strips of width 2d placed on the plane z = 0.

Φ(x) results from the known identity (see Eq. (3.10.2) in [62]):

∞
∑

n=0

Pn(cos θ) cos (n+ 1/2) v =







1
√

2 (cos v − cos θ)
, 0 ≤ v < θ,

0, θ < v < π,

0 < θ < π,

(2.12)

where Pν are the Legendre polynomials. Applying Euler formula for cosine func-
tion, the sum in Eq. (2.12) can be rewritten as follows:

∞
∑

n=0

Pn(cos θ) cos (n+ 1/2) v =

1

2

∞
∑

n=0

Pn(cos θ)e
j(n+1/2)v +

1

2

∞
∑

n=0

Pn(cos θ)e
−j(n+1/2)v =

1

2
e−jv/2

(

∞
∑

n=0

Pn(cos θ)e
j(n+1)v +

∞
∑

n=0

Pn(cos θ)e
−jnv

)

.

(2.13)

The first sum in brackets can be further transformed by introducing a new
summation index p = −n− 1:

p=−1
∑

−∞

P−p−1 (cos θ) e
−jpv =

p=−1
∑

−∞

Pp (cos θ) e
−jpv. (2.14)

In Eq. (2.14) the known property of the Legendre polynomials P−p−1 = Pp was
exploited. Reverting to the previous summation index in the above expression,
and substituting it together with Eq. (2.13) into Eq. (2.12), after straightforward
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rearrangement of terms, one finally obtains:

∞
∑

n=−∞

Pn (cos θ) e
−jnv =







√
2ejv/2√

cos v − cos θ
, 0 ≤ v < θ,

0, θ < v < π.

(2.15)

Another expansion, similar to Eq. (2.15), can be deduced if one substitutes
θ → π − θ, v → π − v in place of θ and v into Eq. (2.12), which yields:

∞
∑

n=0

Pn(− cos θ) cos (n+ 1/2) (π − v) =











0, 0 ≤ v < θ,

1
√

2 (cos θ − cos v)
, θ < v < π,

(2.16)

Repetition of the same steps as above (see Eqs. (2.13), (2.14)) results in the
following expansion (here the property of Legendre polynomials Pn(−x) =
(−1)nSnPn(x) is exploited additionally):

∞
∑

n=−∞

SnPn (cos θ) e
−jnv =











0, 0 ≤ v < θ,

−j
√
2ejv/2√

cos θ − cos v
, θ < v < π.

(2.17)

The expansions given by Eqs. (2.15) and (2.17) can be successfully used to
represent the components of electric field on the plane of strips z = 0 (see
Fig. 2.2). For this purpose it is convenient to substitute the new variables instead
of v and θ as follows: v → Kx, where K = 2π/Λ is the spatial wave-number
of the periodic system, and θ → ∆, where ∆ = Kd. Replacing the variables
in Eqs. (2.15) and (2.17) and multiplying the equations by the exponential
term e−jrx, where r ∈ (0,K) is a spectral variable related to the x spatial
coordinate and constrained to one Brillouin zone for the sake of uniqueness of
the representation, (note, ξ is defined in the entire spectral domain) the following
expressions for the normal electric induction D(x) and tangential electric field
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E(x) vector on the plane of strips can be obtained:

D(x)=
∞
∑

n=−∞

Pn(cos∆)e−jξnx=















√
2e−j(r−K/2)x

√
cosKx− cos∆

, |x|<d,

0, d<|x|<Λ

2
,

E(x)=

∞
∑

n=−∞

jSnPn(cos∆)e−jξnx=











0, |x|<d,
√
2Sxe

−j(r−K/2)x

√
cos∆− cosKx

,d<|x|<Λ

2
.

(2.18)

In the above ξn = r+nK was introduced. It should be noted that the functions
defined by expansions on the left-hand side in Eqs. (2.15) and (2.17) are well
defined for either positive or negative v. If one replace v with −v, the corre-
sponding left-hand side counterpart remains unchanged if its value is real (that
is for 0 ≤ v < θ) or changes its sign in the other case (for θ < v < π). This
explains the introduction of Sx in Eqs. (2.18) and extension of the expansion
to the negative values of Kx. The partial solution for electrostatic field repre-
sented by Eqs. (2.18) obeys the boundary and edge conditions on the plane of
strips specified by Eq. (2.9) and Eq. (2.10), respectively. The spatial spectrum
representations D(ξ) and E(ξ), defined on the entire ξ-axis, immediately result
from Eq. (2.18) (and taking into account Eq. (2.3)) [58]:

D(ξ) = P⌊ξ/K⌋(cos∆), E(ξ) = jSξD(ξ) = jSξP⌊ξ/K⌋(cos∆). (2.19)

(note, Sn = SnK+r for r ∈ (0,K)) ⌊k/K⌋ is an integer floor of k/K. From
Eqs. (2.18) using Eq. (2.5) the complex field function in the spatial domain is

Φ(x) = D(x)− jE(x) = 2
∞
∑

n=0

Pn(cos∆)e−jξnx, ξn = r + nK, (2.20)

and it spatial spectrum counterpart obtained from Eq. (2.19)

Φ(ξ) = D(ξ)− jE(ξ) = 2P⌊ξ/K⌋(cos∆), ξ ≥ 0 (2.21)

has semi-finite support with respect to the spectral variable ξ (see Eq. (2.6)
of the previous Section). Using the spatial representations of the electric field,
Eq. (2.18), the strip charges and potentials can be easily evaluated. Consider a
strip centered at the spatial point xi = iΛ. Integration of the first equation of
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Eq.(2.18) with respect to x over the interval (iΛ− d, iΛ + d) yields:

Qi(r) = Qre
−jriΛ, Qr = ǫ

∫ d

−d
D(x)dx =

ǫ

∫ Λ/2

−Λ/2

∞
∑

n=−∞

Pn(cos∆)e−jξnxdx.

(2.22)

Changing the order of summation and integration an integrating term by term
one obtains:

Qr = 2ǫ sin (πr/K)
∞
∑

n=−∞

(−1)nPn(cos∆)

ξn
. (2.23)

Note, that integration in Eq. (2.22) is performed over entire period since D(x) =
0 outside the domain occupied by the strip. Similarly, the value of the integral
in the second equation of Eq. (2.18) at the point xi = iΛ yields the potential of
the strip:

ϕi(r) = ϕre
−jriΛ, ϕr = −

∫

E(x)dx|x=0 =

−j
∫ ∞

∑

n=−∞

SnPn(∆)e−jξnxdx|x=0.

(2.24)

Integration of Eq.(2.24) term by term yields:

ϕr =
∞
∑

n=−∞

SnPn(cos∆)

ξn
. (2.25)

The sums in Eqs. (2.23), (2.25) can be evaluated analytically using the following
(Dougall) identity (see Eq. (3.10.2) in [62]):

Pν(cos θ) =
sin νπ

π

∞
∑

n=0

(−1)n
(

1

ν − n
− 1

ν + n+ 1

)

Pn(cos θ), (2.26)

valid for −π < θ < π. Introducing a new summation index p = −n − 1 in the
second sum in brackets, Eq. (2.26) can be rewritten as follows:

Pν(cos θ) =
sin νπ

π

(

∞
∑

n=0

(−1)nPn(− cos θ)

ν − n
−

−1
∑

p=∞

(−1)−p−1P−p−1(− cos θ)

ν − p

)

.

(2.27)
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Using the known property of Legendre polynomials P−p−1 = Pp, already ex-
ploited for derivation of Eqs. (2.15), (2.18), and reverting to the previous sum-
mation index, after simple rearrangement of terms the above equation can be
transformed to:

P−ν(cos θ) = −sin νπ

π

∞
∑

n=−∞

(−1)nPn(cos θ)

n+ ν
. (2.28)

In a similar manner, starting with Eq. (2.26) and using the property of Legendre
polynomials Pn(−x) = (−1)nSnPn(x) one obtains:

Pν(cos θ) =
sin νπ

π

(

∞
∑

n=0

Pn(− cos θ)

ν − n
−

∞
∑

n=0

Pn(− cos θ)

ν + n+ 1

)

. (2.29)

Repetition of the same steps as above, namely, introducing the summation index
p = −n− 1, using the property P−p−1 = Pp and reverting previous summation
index, followed by simple rearranging the terms, yields:

P−ν(− cos θ) = −sin νπ

π

∞
∑

n=−∞

SnPn(cos θ)

n+ ν
. (2.30)

Expansions on the right-hand sides of Eqs. (2.28), (2.30) are analogous to those
in Eqs. (2.23), (2.25), respectively. Substitution of Eq. (2.28) into Eq. (2.23)
(with cos θ = cos∆ and ν = r/K) yields:

Qr(r) = −ǫΛP−r/K(cos∆). (2.31)

Similarly, substituting Eq. (2.30) into Eq. (2.25), one obtains:

ϕr(r) = − π

K

P−r/K(− cos∆)

sin (πr/K)
. (2.32)

Note, that both Qr and ϕr are the functions of the reduced spectral variable r.
They in fact can be interpreted as the Fourier transforms of discrete functions
Qi and ϕi taking values at the strip centers xi = iΛ. In real systems some of
the strips may have given potentials while the rest of them are grounded (zero
potential). The solution for arbitrary distribution of strip potentials along the
system can still be obtained using the superposition principle over the domain
of r ∈ (0,K) with some weighting function α(r) defined for r ∈ (0,K):

ϕi =
1

K

∫ K

0
α(r)ϕr(r)e

−jriΛdr = ϕlδli, (2.33)
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where δ is the Kronecker delta, ϕl is the given (specified) potential of the strip
centered at xl = lΛ. Applying α(r) in the form:

α(r) = ϕl
ejrlΛ

ϕr(r)
(2.34)

Eq. (2.33) can be satisfied directly, because the integral is zero for i 6= l, and it
is ϕl for i = l. The function α(r) modifies the spatial spectrum of the electric
charge distribution on the plane of strips:

Q(r) = α(r)Qr. (2.35)

It yields the charge of the strip centered at xi = iΛ which results from the given
potential applied to the strip centered at xl = lΛ:

Qi =
1

K

∫ K

0
Q(r)e−jriΛdr =

2ǫ

K
ϕl

∫ K

0

P−r/K(cos∆)

P−r/K(− cos∆)
e−jr(i−l)Λ sin (πr/K) dr.

(2.36)

Another formulation of electrostatic problem can be stated in terms of given
charges Ql and the resulting voltages between neighboring strips, Vi = ϕi+1 − ϕi

are treated as unknown quantities. The spatial spectrum representation of the
voltages Vi is then given by:

Vr = ϕre
−jrΛ − ϕr = jΛP−r/K(− cos∆)e−jπr/K . (2.37)

The weighting function α(r) in this case can be deduced from the following
condition, similar to Eq. (2.33). Namely, in terms of given charges Ql it sounds:

Qi =
1

K

∫ K

0
α(r)Qr(r)e

−jriΛ = Qlδil, (2.38)

which yields for the α(r) a similar expression as that given by Eq. (2.34):

α(r) = Ql
ejrlΛ

Qr(r)
. (2.39)

Integrating the weighted spatial spectrum (see Eq. (2.35)) V (r) = Vr(r)α(r),
where Vr is defined by Eq. (2.37), from 0 to K with respect to spectral variable r
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one readily obtains the following expression for the voltage between neighboring
strips Vi resulting from the given charge of the strip centered at xl = lΛ:

Vi =
jQl

ǫK

∫ K

0

P−r/K(− cos∆)

P−r/K(cos∆)
e−jr(i−l+1/2)Λdr. (2.40)

The weighting function α(r) introduced above in Eqs. (2.34) and (2.39), depend-
ing on the strips excitation, modifies the spectral representation of the complex
field function Φ(ξ) in the entire domain (see Eq. (2.19)):

Φ(ξ) = 2α(r)Pn(cos∆),

D(ξ) = α(r)Pn(cos∆), E(ξ) = α(r)SnPn(cos∆).

(2.41)

In the above equation the corresponding functions are defined in subsequent
domains of spatial spectrum variable of width K. It is worth noting that in
real systems of strips the total charge of all strips vanishes. Since the charge is
defined as the integral of D(x) with respect to x in spatial domain:

Q(x) = ǫ

∫ x

−∞
D(x)dx, (2.42)

its spectral representation therefore is:

Q(ξ) = jǫD(ξ)/ξ. (2.43)

The total electric charge in the plane of strips is Q(∞), and if the limit exists
in spectral domain

lim
ξ→0

D(ξ)/ξ = 0, (2.44)

then the total charge of the system vanishes. Thus, for real systems α(0) = 0,
because P0(cos∆) = 1.

2.2.1. Principles of the BIS-expansion method

The essence of the BIS-expansion method which is further used in general-
ized form for modeling of acoustic beam-forming structures in the Chapter 3
can be distinctly presented following the work of Blotekjœr, Ingebrigtsen, and
Skeie [34]. To this end, it is assumed here that the dielectric permittivity in the
Green’s function definition (see Eq. (2.3)) is a function of the spectral variable,
tending to certain limit for large value of its argument:

ǫ = ǫ(ξ), ǫ(ξ → ∞) → ǫ∞. (2.45)
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In electrostatic analysis of the surface acoustic wave interdigital transducers
this corresponds to the wavenumber dependent dielectric permittivity, which for
many practical cases, considered for example in [34], possess the above property,
given by Eq. (2.45). In this Section the notation D = Dz is adopted in Eq. (2.5)
(assuming ǫ = 1 for clarity of presentation). To derive the expression for general
solution of electrostatic problem for periodic system of strips the partial solution
given by Eq. (2.18) is used. Multiplying the equations by the exponential term
e−jmKx, where m is arbitrary integer, and taking a linear combination of the
resulting terms, one readily obtains:

∞
∑

m=−∞

αm

∞
∑

n=−∞

jSnPn(cos∆)e−jξnx =















0, |x|<d,
√
2Sxe

−j(r−K/2)x

√
cos∆− cosKx

∞
∑

m=−∞

αme
−jmKx,d<|x|<Λ

2
,

∞
∑

m=−∞

βm

∞
∑

n=−∞

Pn(cos∆)e−jξnx =















√
2e−j(r−K/2)x

√
cosKx− cos∆

∞
∑

m=−∞

βme
−jmKx, |x|<d,

0, d<|x|<Λ

2
,

(2.46)

where αm and βm are certain unknown coefficients. Simple rearrangement of
terms (hint: introduce a new summation index p = m + n and retrieve to the
previous notation p→ n) immediately results in:
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∞
∑

m=−∞

∞
∑

n=−∞

jαmSn−mPn−m(cos∆)e−jξnx =















0, |x|<d,
√
2Sxe

−j(r−K/2)x

√
cos∆− cosKx

∞
∑

m=−∞

αme
−jmKx,d<|x|<Λ

2
,

∞
∑

m=−∞

∞
∑

n=−∞

βmPn−m(cos∆)e−jξnx =















√
2e−j(r−K/2)x

√
cosKx− cos∆

∞
∑

m=−∞

βme
−jmKx, |x|<d,

0, d<|x|<Λ

2
.

(2.47)

The functions defined by expansions on the left-hand side of Eq. (2.47) are Λ-
periodic in x, vanishing in certain domains as required by the boundary condi-
tions for field components on the plane of strips z = 0 (see Eq. (2.9)). Moreover,
they exhibit square-root singularities at the strips edges, as required by the edge
conditions (see Eq. (2.10)). Hence, the functions are well suited for representa-
tion of the tangential electric field and normal electric induction in the form of
series expansion, as follows:

E(x) =
∞
∑

n=−∞

Ene
−jξnx, En =

∞
∑

m=−∞

jαmSn−mPn−m(cos∆),

D(x) =

∞
∑

n=−∞

Dne
−jξnx, Dn =

∞
∑

m=−∞

βmPn−m(cos∆).

(2.48)

The Eqs. (2.48) represent the Fourier series expansions of the electrostatic field
components E and D. The corresponding coefficients En and Dn are further
expanded into the series of properly chosen (’properly’ means here that the cor-
responding functions on the right-hand side in Eqs. (2.18), (2.46) have suitable
square-root singularities near the strips edges) Legendre polynomials. Thus, the
boundary and edge conditions are satisfied directly by the field components D
and E. One only needs to check if the Laplace equation is not violated, that is
the relationship described by the Green’s function, Eq. (2.3), holds. Apparently,
Eq. (2.3) has to be satisfied identically for each component:

En = G(ξn), Dn =
jSn
ǫn

Dn, ǫn = ǫ(ξn), (2.49)
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The Eq. (2.49) states the relationship between the modes amplitudes of the
electrostatic field components vanishing at infinity (satisfying equivalent ’radi-
ation conditions’, see Sec. 2.1.). It has to be obeyed for all n. To obtain a finite
series expansion of the mode amplitudes En, Dn in Eq. (2.48), the following
approximation can be used:

ǫn = ǫ∞, n /∈ [Nmin, Nmax], (2.50)

where Nmin and Nmax are some large but finite integers. Then, substituting
Eq. (2.50) into Eq. (2.49) within some finite domain of m ∈ [Mmin,Mmax] one
obtains:

En =

Mmax
∑

m=Mmin

jαmSn−mPn−m(cos∆),

En =
jSn
ǫ(ξn)

Mmax
∑

m=Mmin

βmPn−m(cos∆),

(2.51)

To find the expansion coefficients αm, βm for the above finite range of m,
it is convenient to apply the approximation given by Eq. (2.50). Hence, the
Eqs. (2.51) should be solved for αm, βm with n ∈ [Nmin, Nmax] assumed. For
n /∈ [Nmin, Nmax], on the other hand, Eqs. (2.51) must be satisfied identically
which is possible only if the following relationships hold [34]:

βm = ǫ∞αm, Sn−m = Sn. (2.52)

Taking into account that Sn = 1 for n ≥ 0 and −1 otherwise, and that r ∈ (0,K)
is restricted to the first Brillouin zone in the definition of ξn = r + nK, the
following requirements for the bounds Nmax and Nmin result:

Nmin ≤ 0, Nmax ≥ −1. (2.53)

Besides, from Eq. (2.52) for n /∈ [Nmin, Nmax] and m ∈ [Mmin,Mmax] in view
of Eq. (2.53) it also follows that:

Nmin − 1−Mmin < 0, Nmax + 1−Mmax ≥ 0. (2.54)

Substituting Eq. (2.52) into Eq. (2.51) the coefficients βm can be eliminated,
which yields:

Mmax
∑

m=Mmin

αm

[

Sn−m − ǫ∞
ǫn
Sn

]

Pn−m(cos∆) = 0. (2.55)
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The above system of linear equations is valid for any integer n. Taking into ac-
count Eq. (2.52), one can easily observe that Eqs. (2.55) are satisfied identically
for n /∈ [Nmin, Nmax]. Accounting for the conditions specified by Eq. (2.54), the
following limits Mmin and Mmax can be obtained:

Mmin = Nmin, Mmax = Nmax + 1, (2.56)

which means that there are Nmax − Nmin + 1 equations for Nmax − Nmin +
2 unknown coefficients αm. To obtain a closed system additional equation is
required. To this end, for example, the following one can be used [34]:

Mmax
∑

m=Mmin

jαmS−mP−m(cos∆) = E0. (2.57)

which allows to express all unknown coefficients αm in terms of E0 (E0 assumed
given; for instance normalized value E0 = 1 can be applied). Alternatively, one
can use the circuit conditions, for example, given potentials of the strips (or
charges). The potential ϕ(x) evaluated at the lth strip’s center position x =
xl = lΛ (note, potentials is constant on strip and for convenience is evaluated
at its center) is:

ϕr(lΛ) = −
∫

E(x)dx|x=lΛ, (2.58)

where the subscript r indicates dependence of ϕ(lΛ) on r - reduced spatial
spectrum variable. Substituting expansion given by Eq. (2.48) into Eq. (2.58)
one obtains:

ϕr(lΛ) =
∑

m

αm

∞
∑

n=−∞

Sn−mPn−m(cos∆)

r + nK
e−jrlΛ, (2.59)

where summation over m ∈ [Nmin, Nmax + 1] is assumed. Using the expression
of the previous Section given by Eq. (2.28), a sum over n can be transformed as
follows (making a simple change of summation index p→ n−m):

ϕr(lΛ) = − π

K sinπr/K

∑

m

(−1)mαmP−m−r/K(− cos∆)e−jrlΛ. (2.60)

The solution, which is sought here, must satisfy the condition that the potentials
at different strips takes different (specified) values ϕl, dependent on l. This
requires integration of the Eq. (2.60) over r ∈ (0,K), which is analogous to the
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inverse Fourier transform of the discrete function ϕl = ϕr(lΛ) defined by (note
that the harmonic term e−jrlΛ is already included in the ϕr evaluated above):

1

K

∫ K

0
ϕr(lΛ) dr = ϕl. (2.61)

This finally yields the last condition for αm dependent on r (ϕl are given):

∑

m

(−1)mαmP−m−r/K(− cos∆) = j
K

π
ϕl e

jrlΛ sinπr/K. (2.62)

Simple substitution of Eq. (2.62) into Eq. (2.60) verifies that Eq. (2.61) is sat-
isfied. This is the last equation that must be appended to the system of linear
equations given by Eq. (2.55) in order to obtain equal number of equations
and unknowns. Now, one can evaluate αm dependent on given ϕl, and finally,
evaluate the electrostatic field components using Eq. (2.48).

2.3. Electrostatics of finite system of strips

For a finite planar system of conducting strips in the frame of the spectral
approach, discussed in this Section, a set of the so-called ’template functions’ in
the spatial spectrum domain is defined. These functions are the partial solutions
of the corresponding electrostatic problem. The general solution is obtain by
the linear combination of the ’template functions’, and unknown coefficients are
determined from the supplementary conditions: given strip voltages or charges
(or interconnections).

z
x

−d d
Figure 2.3. A conducting strip of width 2d placed on the plane z = 0.

It is convenient to start the analysis from considering a single conducting
strip, illustrated in Fig. 2.3. To derive the corresponding ’template function’
the results obtained in Sec. 2.1. (see Eqs. 2.7 and (2.8)) for a conducting half-
plane can be used. Namely, the complex field function in spatial domain for the
strip is described by the product of corresponding functions for half-planes as
follows [60]:

Φ(1)(x; d) = Φ(0)(x+ d)Φ(0)(d− x) =

{

|d2 − x2|−1/2, |x| < d,

jSx|d2 − x2|−1/2, |x| > d.
(2.63)
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Using the convolution theorem, stating that the Fourier transform of a convolu-
tion of two functions is the point-wise product of their Fourier transforms, the
spectral representation of the complex field function in Eq. (2.63) is:

Φ(1)(ξ; d) = [Φ(0)(ξ)ejξd] ∗
[

Φ(0)(ξ)ejξd
]∗
. (2.64)

(the superscript ∗ means the complex conjugation). Taking into account the
semi-finite support of the complex field function Φ(ξ) (see Eq. 2.6), the convo-
lution (2.64) can be written explicitly (hint: change the variable into y − ξ/2):

Φ(1)(ξ; d) =

∫ ξ

0

ej(ξ−y)de−jπ/4

√

π(ξ − y)

e−jyd

√
πy

ejπ/4dy = J0(ξd), (2.65)

where J0 is the 0th order Bessel function of the first kind. Following the same

2N−1x 2Nx

bN

4x3x2x1x

b2b1

12d 22d N2dz
x

Figure 2.4. System of N conducting strips of different widths 2dn placed on the plane z = 0
with displacements bn with respect to the origin x = 0.

considerations, one easily obtains a similar expression as in Eq. (2.63) for the
system of two strips (see Fig. 2.4):

Φ(2)(ξ) = [Φ(1)(ξ; d1)e
jξb1 ] ∗ [jΦ(1)(ξ; d2)e

jξb2 ], (2.66)

where d1,2 and b1,2 are the corresponding widths and displacements of strips
having the shifted spatial field representation given by Eq. (2.63). Multiplication
by j in the second term in Eq. (2.66) is necessary to obtain D(x) = Re{Φ(x)}
and E(x) = Im{Φ(x)}, conveniently analogous to Eq. (2.7). For three or more
strips (N ≥ 3), one has:

Φ(N)(ξ) = [Φ(N−1)(ξ)] ∗
[

jΦ(1)(ξ; dN )ejrbN
]

,

Φ(N)(x) ∼ [|(x− x1)(x− x2)...(x− x2N )|]−1/2,

(2.67)

for spectral and spatial representations, respectively, where x2i−1, x2i are the ith

strip’s edges.
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It can be easily checked, that the electrostatic field discussed above vanishes
fast with |x| → ∞, indicating the multi-pole character of the charge distribution
on the strips. Thus, it cannot form a basis of complete representation of the
arbitrary field generated by the system of strips. The system can, for instance,
possess a net charge different from zero, inducing the electric field vanishing at
infinity like 1/x. The harmonic function representing such cases and exhibiting
square-root singularity at the strip edges is the above derived function Φ(N)(x)
multiplied by a polynomial function of a degree not exceeding N − 1. Hence,
N independent ’template functions’ (partial solutions) result, all satisfying the
boundary and edge conditions, given by Eqs. (2.9) and (2.10), respectively, and
vanishing at infinity (that is, obeying the Eq. (2.4)):

Φ(N,0)(x) = Φ(N)(x), Φ(N,1)(x) = xΦ(N)(x), · · · ,

Φ(N,n)(x) = xnΦ(N)(x), · · · ,
(2.68)

which yield the corresponding field components E(n) and D(n) on the plane
z = 0. Applying the known Fourier transform theorem stating that multiplica-
tion by x in spatial domain corresponds to differentiation in spectral domain,
one formally obtains the above functions in the spectral domain:

Φ(N,0)(ξ) = Φ(N)(ξ), Φ(N,1)(ξ) = −j d
d ξ

Φ(N)(ξ), · · · ,

Φ(N,n)(ξ) = (−j)n dn

d ξn
Φ(N)(ξ), n < N,

(2.69)

yielding the spectral field representations E(n)(ξ) and D(n)(ξ), according to
Eq. (2.11). For the purpose of numerical evaluation it is convenient to redefine
the ’template functions’ as follows [63]:

Φ(N,0)(x) = jN−1
N
∏

i=1

Φ(1)(x− bi, di) = Φ(N)(x),

Φ(N,n)(x) = Φ(N)(x)
n
∏

i=1

(x− bi), n = 1..N − 1,

(2.70)

where bi = (x2i+x2i−1)/2 is the ith strips center position and di = (x2i−x2i−1)/2
is the ith strips half-width; x2i−1, x2i are the ith strip edges positions (see
Fig. 2.4). It is immediately results from the definition of template functions
in Eq. (2.70) that they take real values on strips (representing the charge
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distribution there), and imaginary values between them (representing electric
field there). The subtle difference in definitions of the ’template functions’ in
Eq. (2.70) and in Eq. (2.68) is the choice of the polynomials:

∏i
k=1(x − bk)

instead of xi. This enables derivation of the analytic expressions for the spatial
spectrum representation of the template functions Φ(N,i)(ξ), i = 0, N−1. To do
this, it is convenient to rewrite them in the form of a product of similar terms:

Φ(N,i)(x) = −j
i
∏

m=1

j(x− bm)
√

d2m − (x− bm)2

N
∏

m=i+1

j
√

d2m − (x− bm)2
,

i = 0, . . . , N − 1.

(2.71)

The first product in Eq. (2.71) disappears for i = 0. The spectral representations
Φ(N,i)(ξ) thus immediately results from the convolution theorem:

Φ(N,i)(ξ) = Φ′
1(ξ) ∗ · · · ∗ Φ′

i(ξ) ∗ Φi+1(ξ) ∗ · · · ∗ ΦN (ξ), (2.72)

where the corresponding terms are defined as follows (F denotes the Fourier
transform):

Φm(ξ)=F
{

1
√

d2m − (x− bm)2

}

; Φ′
m(ξ)=F

{

x− bm
√

d2m − (x− bm)2

}

(2.73)

The Fourier transforms of the functions in Eq. (2.73) can be computed in the
closed form. The first term in Eq. (2.73) is essentially the same as in Eq. (2.63)
(with the shift in spatial domain defined by bm). Its Fourier transform can be
written in analogous manner as in Eq. (2.65). Making use of the shift theorem,
that is, multiplying the spectral counterpart (see Eq. (2.65)) by the exponential
term ejξbm one obtains:

Φm(ξ) =







J0(ξdm) ejξbm , ξ ≥ 0,

0, ξ < 0.

(2.74)

The generalized transform of the second term in Eq. (2.73) can be done using
the differentiation theorem: F{xf(x)} = −jd F (ξ)/dξ, yielding:

Φ′
m(ξ) =







−j[δ(ξ)− ξmJ1(ξdm)] ejξbm , ξ ≥ 0,

0, ξ < 0.

(2.75)

It is due to the Dirac δ-function in Φ′
m(ξ) that the evaluation order in Eq. (2.72)

is important: the convolutions of functions Φm(ξ) should be evaluated first
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(counting from the right to the left) to obtain an integrable product of the
regular and δ functions. The algorithm of numerical evaluation of convolutions
in Eq. (2.72), thus, would run as follows:

ΦN−1 ∗ ΦN ⇒ Φ, · · · ,Φi+1 ∗ Φ ⇒ Φ,Φ′
i ∗ Φ ⇒ Φ, · · · ,Φ′

1 ∗ Φ ⇒ Φ(N,i)(ξ).

The superposition of these N independent template functions (see Eq. (2.71))
suffices for representation of an arbitrary field that can be generated by the
system of N strips subjected to N circuit constraints: given strip voltages or
charges, or interconnections. In practical systems usually (e.g. SAW interdigital
transducers) both source terminals are connected to different strips, rendering
the system electric neutrality (the currents flowing into and out of the system
are in perfect balance as flowing through the same source). This means that
the electrostatic field excited by the charge distribution on strips is dipole-like,
at most, vanishing faster than 1/x. Consequently, its spatial spectrum must
vanish at ξ = 0. It is evident that the function Φ(N,N−1)(x), having the Fourier
transform Φ(N,N−1)(ξ = 0) 6= 0, must be excluded from the set of ’template
functions’ representing the charge distributions on strips because this and only
this function represents electric field vanishing like 1/x at infinity:

D(N−1)(ξ) =
1

2

{

Φ(N,N−1)(ξ), ξ ≥ 0,

Φ(N,N−1)∗(−ξ), ξ < 0,

D(N−1)(x) = F−1{D(N−1)(ξ)} ∼ 1/|x| at |x| → ∞.

(2.76)

(F−1 means the inverse Fourier transform). The other functions represent field
vanishing like x−k, k = 2, ..., N , and their spectral representations behave like
ξn, n = 1, ..., N − 1 at ξ → 0, according to the limit theorem for the Fourier
transforms. The above shows that a linear combination with arbitrary (real val-
ued) coefficients of N−1 template functions generates a solution of electrostatic
problem for real system of N strips (vanishing net charge):

Φ =

N−2
∑

i=0

αiΦ
(N,i), (2.77)

To find the coefficients for particular case the circuit equations must be satis-
fied. Let each strip be connected to either of the source terminals. It is clear that
the conditions can be set only on the voltages (potential differences) between
strips, not on the potentials of strips itself. There are N − 1 circuit equations in
this case, and one has a complete system of equations for evaluation of all su-
perposition coefficients mentioned earlier. To formulate the equations however,
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one needs to evaluate voltages Vi (or, alternatively, charges Qi) for fields repre-
sented by each template function. Without loss of generality, this procedure can
be illustrated on the field components D(0) and E(0) evaluated from Eq. (2.11)
using Φ(N,0) in place of Φ: D(0)(ξ) = Φ(N,0)(ξ)/2, ξ ≥ 0 or Φ(N,0)∗(−ξ)/2, ξ < 0,
yielding results marked by the superscript (0). The analysis for the other field
components involving the template functions Φ(N,i), i = 1..N − 2, is simi-
lar. According to the definition of the electric potential E = −dϕ/d x, the
strips potentials can be obtained by integration of E(0)(x), what in spectral
domain corresponds to the division by ξ of the E(0)(ξ) (with accuracy to an
unimportant constant due to the potential difference being only involved in the
circuit equations). As concerns the strip’s charge Q(0)(x) being the integral of
∆Dy = Dy(y + 0) −Dy(y − 0) = ǫD(0), using the Green’s function defined by
Eq. (2.3), one obtains:

ϕ(0)(x) = F−1{−jE(ξ)/ξ} =
1

2π

∫ ∞

−∞
|ξ|−1D(0)(ξ)e−jξxdξ,

Q(0)(x) = F−1{jǫD(ξ)/ξ} =
jǫ

2π

∫ ∞

−∞
ξ−1D(0)(ξ)e−jξxdξ.

(2.78)

Naturally, ϕ(x) is constant on the strips because E(x) = 0 there, and Q(x) is
constant between the strips because D(x) = 0 there. Therefore, the voltage Vi
between the ith and (i+ 1)th strips and the charge Qi of the ith strip are:

V
(0)
i = ϕ(0)(x̃i+1)− ϕ(0)(x̃i),

Q
(0)
i = [Q(0)(x̂i)−Q(0)(x̂i−1)], i = 1, . . . , N,

(2.79)

where x̃i is a point within the ith strip domain (for instance - at its center), and
x̂i can be at the center of spacing between two neighboring strips, the (i+ 1)th

and ith. They can be easily evaluated from the strip edges, except x̂0 and x̂N
the value of which can be applied at certain distances in front of the first strip
and after the last one. Both values are equal because Q(N)(x→ ±∞) are equal.
Note that all the above evaluations involve only the spectral representation of
D(0)(ξ).

Applying the same analysis to all field components D(n) and E(n) as above
(see Eqs. (2.78) and (2.79)) the following system of linear equations can be
deduced:

Aα = V , V = [Vi], A = [Aij ], i, j = 1, . . . , N − 1,

Aij = ϕ(N,j−1)(bi+1)− ϕ(N,j−1)(bi),

(2.80)
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where the elements of the matrix of the system of linear equations Aij are eval-
uated using the first equation in Eq. (2.79) by means of Eq. 2.78. Here, the care
should be taken to evaluate the spatial spectrum (or equivalently Φ(N,n)(ξ)) with
high accuracy. Subsequent application of the FFT (Fast Fourier Transform) in
order to evaluate ϕ(N,j)(x) in discrete representation yields the corresponding
values of ϕ(N,j)(x̃i) - the potential of ith strip (which is taken in the corre-
sponding nearest point to the strip’s center from the FFT output series). It
should be noted that the matrix elements Aij are evaluated without numeri-
cal integration of the square-root singular template functions Φ(N,n)(x), only
their spectral counterparts, evaluated earlier (see Eqs. (2.72), (2.74) and (2.75))
are used. Another, equivalent, formulation of the electrostatic problem can be
stated in terms of given charges Ql. The analysis connected with evaluation of
unknown coefficients αi is similar as in the case of given strip potentials (see
Eq. (2.80)).

2.4. Electrostatics of strips - generalization for strips in ’incident’

(external) electric field

To illustrate the flexibility of the discussed electrostatic methods based on
the spectral theory approach, the problem of planar system of strips in external
or, referring to the wave-scattering theory, in the ’incident’ spatially variable
(harmonic) field is considered as an example in this Section. It is therefore
convenient in what follows to adopt the corresponding terminology (’radiation
conditions’, ’incident’ or ’scattered’ field and so on). The obtained results will
be further exploited in the Chapter 3 where the acoustic wave generation and
scattering problem will be considered. In the present analysis not only the strip
total charge is evaluated, but also the Bloch harmonics of the ’scattered’ field
in wide spatial spectrum domain. A periodic system of conducting strips in the
’incident’ electric field is considered first. Then, the same problem for a finite
system is solved. In this case the method of analysis uses the elements of both
the ’template functions’ approach, presented in details in the Section 2.3., and
the BIS-expansion, discussed in the Section 2.2.1.

2.4.1. Periodic system

Consider the planar periodic system of conducting strips (see Fig. 2.2) in
external spatially variable electric field. Without loss of generality the har-
monic filed is assumed here. It is convenient to consider the external field on
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the plane of strips as an ’incident’ wave field in the wave-scattering theory:
(DI , EI)e−jξIx, ξI 6= 0, where ξI = r + IK, r ∈ (0,K), r is again a re-
duced spectral variable, the ’wave number’, from the first Brillouin zone and
I is an arbitrary integer. In contrast to the ’scattered’ field resulting from the
induced strip charges and satisfying the ’radiation condition’, that is vanishing
at |z| → ∞, the ’incident’ field grows there, being a function of the type e|ξIz|.
The components of the ’scattered’ field (Ds, Es) and ’incident’ field (DI , EI)
on the plane of strips obey the conditions given by Eq. (2.3) and Eq. (2.4) re-
spectively. The components of ’incident’ field (DI , EI) are known and the total
electric field is a sum of the ’incident’ and ’scattered’ fields:

(D,E) = (DI , EI) + (Ds, Es). (2.81)

Applying a harmonic expansion one obtains:

∞
∑

n=−∞

(Dn, En)e
−jξnx =

∞
∑

n=−∞

(DI , EI)δnIe
−jξnx +

∞
∑

n=−∞

(Ds
n, E

s
n)e

−jξnx. (2.82)

The harmonic amplitudes of the total field satisfying the boundary and edge
conditions, specified by Eqs. (2.9) and (2.10), respectively, (E(x) vanishes on
strips and D(x) vanishes between strips) can be expanded into the series in a
similar manner as in the Section 2.2.1. (see Eq. (2.48)):

Dn =
∞
∑

m=−∞

αmPn−m(cos∆), En = j
∞
∑

m=−∞

αmSn−mPn−m(cos∆). (2.83)

Substitution of Eq. (2.83) into Eq. (2.82) yields for the nth harmonic field com-
ponent:

∞
∑

m=−∞

αmPn−m = DIδIn +Ds
n,

∞
∑

m=−∞

αmSn−mPn−m = DIδIn + Es
n,

(2.84)

where Es
n = jSnD

s
n (vanishing at infinity) and EI

n = −jSnDI
n (growing at

infinity), in accordance with Eq. (2.3) and Eq. (2.4), respectively. Taking into
account the above relationships and combining both equations in Eq. (2.84) one
obtains an infinite system of linear equations for unknown coefficients αm, as
follows:

∞
∑

m=−∞

αm (1− SnSn−m)Pn−m = 2DIδnI . (2.85)
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However, only the finite number of equations are nontrivial, for n in certain
domain dependent on I [25]. Particularly, for large |n| > max {|m|, I}, the
equations are identically satisfied due to 1−Sn−mSn = 0 and δnI = 0 (compare
analogous consideration regarding the BIS-expansion method discussed in the
Section 2.2.1., Eq. (2.55)). Namely, assume that the ’incident’ harmonics field
belongs to the domain I ∈ [Nmin, Nmax]. Without loss of generality and to
simplify notation, one can apply Nmin = −N and Nmax = N , where N some
arbitrary integer. Consequently, it is sufficient to account for m ∈ [−N,N + 1]
in Eq. (2.85). For m /∈ [−N,N ] the equations for αm are satisfied directly, what
can be checked by inspection (note, it must be N > |I|). Hence, Eq. (2.85)
yields 2N + 1 equations for 2(N + 1) unknowns αm. The last equation can be
obtained, for example, from the condition of the system electric neutrality (zero
net charge). To this end it is convenient to exploit Eqs. (2.42), (2.43) from the
Section 2.2. Taking into account Eq. (2.82), the total charge of the considered
system in ’incident’ electric field can be written as follows:

Q(x) = jǫ
∞
∑

n=−∞

Dne
−j(r+nK)x

r + nK
; Q(ξ) = jǫD⌊ξ/K⌋/ξ, ξ = r + nK, (2.86)

where ⌊ξ/K⌋ is an integer floor of ξ/K (see Eq. (2.19)). Substituting the ex-
pansion of harmonics Dn from Eq. (2.83), the spectral representation of charge
distribution results immediately:

Q(ξ) = jǫ
∑

m

αmP⌊ξ/K⌋−m(∆)/ξ. (2.87)

Accounting for the above equation, the condition of the system electric neutrality
Eq. (2.43) yields:

∑

m

αmP−m(∆) = 0. (2.88)

This equation together with Eq. (2.85) form a closed system of linear equations
for unknown coefficients αm in harmonic mode expansion given by Eq. (2.82).
Evaluating αm dependent on given (DI , EI), one can finally find the total field
at the plane z = 0 (and elsewhere in the media). In Fig. 2.5 a computed example
is shown for periodic planar system of conducting strips in external ’incident’
wave-field.

2.4.2. Finite system

Electrostatic analysis of a finite planar system of strips in external spatially
variable (harmonic) electric field can be conducted combining the elements of
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(a) (b)

(c) (d)

Figure 2.5. A Λ-periodic planar system of conducting strips of width 2d = Λ/2 in external
electric field: (a) the surface electric field Ex(x), and (b) the normal induction Dz(x). The
surface spatial distributions of (c) the electric potential ϕ(x) (note its constant values on
strips) and (d) the charge Q(x). Solid and dot lines represent real and imaginary values,
respectively. Vertical scales are arbitrary; thick lines in lower figures represent the strips (at
the zero level of the corresponding integrals).

both the ’template function’ approach and the BIS-expansion method. It is
shortly presented in this Section. The main results, obtained here, will be ex-
ploited further in the acoustic beam-forming analysis of finite baffle array, dis-
cussed in the Section 3.3. The method of analysis benefits of the main features of
the approach described in [25] for the case of planar periodic system of groups
of strips. Each group is identical and consists of N strips of different width
and spacing between them. Such the system is referred to as a multi-periodic
one [58]. The template functions defined in [25], due to the system periodicity,
are actually the discrete spectral functions represented by certain Fourier series
Fn being the convolutions like these given by Eqs.(2.63) and (2.72) but involving
Legendre polynomials Pn(·) instead of the Bessel function J0(ξ) (for the periodic
system, considered in the Section 2.2. Fn is simply Pn). On the strength of the
asymptotic expansion [64]:

Pn(cos∆) = J0([2n+ 1] sin[∆/2]) +O(sin2[∆/2]), ∆ ∼ Kd→ 0, (2.89)
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it can be inferred that the difference between the functions obtained in both
cases vanishes if ξ = nK,K → 0. This approximation for K small but fi-
nite is exploited here in developing the solution of the finite planar system of
strips in external spatial harmonic field, using the earlier evaluated function
D(N−1)(ξ) (see Eq.(2.17) in the Section 2.3.) [37], which is denoted here as
D̂(ξ) to shorten notation. As it was discussed in the Section 2.3., the template
function Φ(N,N−1)(ξ) which defines the function D̂(ξ), requires only numerical
evaluation of multiple convolutions (see Eq. 2.72). This can be done using the
convolution theorem as follows:

∫ ∞

−∞
f1(ξ − ξ′)f2(ξ

′)d ξ′ = F{f1(x)f2(x)}, fi(x) = F−1{fi(ξ)},

f(x) ≈ κ

M−1
∑

i=0

fi e
−jxξi , κ = ξM/M, ξi = iκ; fi = f(ξi),

(2.90)

where the FFT algorithm is used for numerical evaluation of the Fourier trans-
forms. Its input data is the set of samples of the transformed function evaluated
at discrete spectral points ki = iκ, i = 0 . . .M −1, where M is typically a power
of 2. Therefore, it is the discrete series in the numerical analysis and it actu-
ally represents, on the basis of the theory of FFT [65], the periodic function in
spatial domain with a certain large period 2π/κ. This justifies approximation of
the considered system of strips by certain multi-periodic one and, thus, enables
one to introduce the notations:

D̂i = D̂(iκ), Êi = jSiD̂i; D̂−i = D̂∗
i . (2.91)

In the case of multi-periodic system of strips, only one series is evaluated, namely
Pn [25]. All the other which correspond to Φ(N,n) for different n ∈ (0, N − 1),
are obtained by shifting the index of Pn to obtain the series Pn−m. Moreover,
if m ≤ N/2, the template functions Pn−m satisfy the ’radiation conditions’
and thus are accounted for in the field representation in order to satisfy the
corresponding circuit equations, including electric neutrality of the system. This
is because F|k|≤N/2 = 0 [58]. In the case of the finite system of strips considered

here, the functions Φ(N,n) have an analogous property that, behaving like ξn−N ,
they have small values over a broader domain of ξ ≈ 0 (see Eq. (2.67) and
corresponding discussion in the Section 2.3.) In the following analysis the series
D̂i introduced in Eq. (2.91), with D̂0 6= 0, play an important role in the solution
of the considered problem of strips in external electric field. Note that the pair
of functions with shifted indices D̂n−m and Ên−m places the values D̂0, Ê0 at
the spectral line k = mκ, what corresponds to multiplication by e−jmKx in the
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spatial domain. Naturally, such multiplied functions still satisfy the boundary
conditions on the plane of strips (E(x) = 0 on the strips and D(x) = 0 outside
the strips). This property is exploited below with this important remark that
D and E evaluated from Eq. (2.11) using the shifted D̂i−m

Di = D̂i−m and Ei = Êi−m = jSi−mD̂i−m (2.92)

fail to satisfy Eq. (2.3) (Ei 6= jSiDi, this can be easily verified by inspection),
and thus they fail to satisfy the ’radiation condition’ (the corresponding field
does not vanish at |z| → ∞). This failure, however, takes place only due to the
spectral components within domain 0 ≤ i ≤ m; all the other ones satisfy well
Eq. (2.3).

In a similar way as in the case of periodic strips, the ’incident’ field is intro-
duced in the form (DI , EI)e−jξIx, ξI 6= 0, where ξI = r + IK, r ∈ (0,K). This
field is a function of type e|ξIz| for at |z| → ∞ and obeys Eq. (2.4); explicitly:

EI = −G(IK)D = −jSIDI . (2.93)

To simplify the analysis, I > 0 is assumed. The field on the strip plane z = 0 is
the sum of the ’scattered’ (marked by the superscript s) and ’incident’ spatial
waves; it must satisfy the boundary and edge conditions on this plane. Noticing
that the field (D̂i−m, Êi−m) does, it is convenient to express the surface field by
the combination (the summation convention applied over repeated indices):

Ei = Es
i + EIδiI = jαmSi−mD̂i−m,

Di = Ds
i +DIδiI = αmD̂i−m,

(2.94)

where δ is the Kronecker delta and αm are unknown coefficients. One needs
only to add the requirement that the ’scattered’ field obeys Eq.(2.3), that is
Es

i = jSiD
s
i ; explicitly:

αm(1− SiSi−m)D̂i−m = 2DIδiI . (2.95)

It may be checked by inspection that the solution to this infinite system of
equations (for i in infinite domain) can be solved with αm, 1 ≤ m ≤ I + 1,
for the assumed I > 0. Indeed, for any i > I, the term in brackets turns to
zero satisfying the homogeneous equation (δI,i>I = 0), and similarly for any
i ≤ 0, provided that m takes values in the above limits (compare with the
case of periodic strips discussed in the previous Section). For i = I one has
αI+1 = 1/D̂∗

1. Other αm can be evaluated in recursive manner, starting with
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equation i = I down to i = 1. The resulting field distribution may include a net
charge, D0 6= 0. To assure the system electric neutrality, one needs to add α0D̂i

to the evaluated Di with coefficient α0 chosen to obtain:

D0 + α0D̂0 = 0. (2.96)

This completes the solution of the problem of planar finite system of strips
in external spatial harmonic field; the resulting surface field in the spectral
representation is:

Di = αmD̂i−m, Ei = jαmSi−mD̂i−m; 0 ≤ m ≤ I + 1, (2.97)

satisfies the boundary and edge conditions on the plane of strips. In Fig. 2.6 a
computed example is presented for the planar system comprising 4 conducting
strips of different width and spacing between them.

(a) (b)

(c) (d)

Figure 2.6. A planar finite system comprised of 4 conducting strips in external electric field:
(a) the surface electric field Ex(x), and (b) the normal induction Dz(x). The surface spatial
distributions of (c) the electric potential ϕ(x) (note its constant values on strips) and (d) the
charge Q(x); equal values of Q(x) on both sides of the structure indicates the structure elec-
tric neutrality. Solid and dot lines represent real and imaginary values, respectively. Vertical
scales are arbitrary; thick lines in lower figures represent the strips (at the zero level of the
corresponding integrals).

Moreover, the induced strip voltages and charges can be evaluated in the
already presented manner, using Eq. (2.78), in the corresponding discrete form
(ξ = iκ). These should be treated like originating from the negative external
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voltage source. If, for example the ith strip is assumed to be grounded but gets
certain potential due to the ’incident’ field, then a combination of template func-
tions Φ(N,n) must be added with proper coefficients evaluated in the Section 2.3.



3

Application in acoustic beamforming

analysis

The methods developed in electrostatics for direct evaluation of the surface
charge spatial spectrum in the case periodic and finite systems of conducting
strips, can be successfully generalized for application in the analysis of acous-
tic beam-forming structures. In particular, in this Chapter the acoustic linear
transducer array is considered. Generalization of electrostatic methods for the
case of 2D planar transducer arrays will be considered in the Chapter 5.

Typical transducer array is an alternate set of acoustically different materi-
als: piezoelectric, which responds to the incident waves by electric signal, and
acoustically isolating material (like epoxy) between them [66, 67]. Piezoelectric
materials are closer to hard, and epoxy is closer to soft acoustic materials. Hence,
the Bragg scattering occurs when the incident wave illuminates the transducer.
The idea of beam-forming is based on excitation of the wave-field by a system of
acoustic sources distributed on certain, usually flat surface with their strength
chosen such that the radiated wave into the body evolves into the required wave
beam-shape. In the case of receiving transducers, the corresponding filtration
of spatial signals is adopted by summing up of the transducer element signals
with proper weights and phases [11]. In the simplest case the point-like acoustic
sources are assumed, which is usually treated in the signal theory frame-work. In
further approximation, the point-like sources are replaced by periodic vibrating
strips of finite widths - a periodic baffle system [12].

A similar system is considered here, and the interaction between baffles is
accounted for in the full-wave analysis of the wave excitation problem by rig-
orous formulation of the corresponding boundary-value problem. The analyzed
structure consists of periodic acoustically hard baffles where the normal acoustic
vibration vanishes [23], and between them there are acoustically soft domains
where the acoustic pressure is given constant values (or vanishes in the wave-
scattering problem) [68]. This is a mixed (Dirichlet-Neuman) boundary-value
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problem that is studied here: the given pressure between baffles models the
wave-beam generation, and the pressure exerted on the acoustically hard baffles
by the incident and scattered waves, in the case of wave-scattering problem,
models the response signal from the individual piezoelectric elements of the
transducer. A wave-field excitation by a uniform harmonic pressure distribution
is not novel and was earlier dealt with for instance in [68] where a model of a
narrow strip transducer is presented. The electrostatic methods, presented in the
previous Chapter will be generalized accordingly for solving the mixed-boundary
problem for periodic and finite baffle systems.

In the next Section the boundary value problem for baffle array is formu-
lated. A brief discussion concerning the surface harmonic impedance of acous-
tic half-space which is the acoustic counterpart of the planar Green’s function
introduced in electrostatic method of analysis (see Section 2.1.) is presented
first. Then the boundary conditions for acoustic wave generation and scattering
problems are stated. In the Section 3.2. a periodic baffle system is analyzed us-
ing the generalized BIS-expansion method (see the Section 2.2.1.). The case of
wave generation and scattering are considered in the Sections 3.2.1. and 3.2.2.,
respectively. Finally, in the Section 3.3. a finite baffle system is analyzed using
generalized ’template functions’ electrostatic method (see Section 2.3.).

3.1. Boundary-value problem formulation

3.1.1. Surface harmonic impedance of an acoustic half-space

The concept of planar harmonic Green’s function introduced in the Sec-
tion 2.1. was of primary importance in developing the method of solution of
electrostatic problem for planar system of strips in spatial spectrum domain
(spectral theory). For acoustic wave generation and scattering problems by baf-
fle arrays the corresponding counterpart - the surface harmonic impedance of
an acoustic half-space, can be introduced . For this purpose consider a two-
dimensional acoustic harmonic wave-field ej(ωt−ξx−ηz) independent of y in the
acoustic media governed by equations for acoustic potential ϕ, pressure p and
particle velocity ~v (t -time, x, y, z - spatial coordinates oriented as in Fig. 3.1,
ω, ξ, η - angular temporal and spatial frequencies):

∇2ϕ+ k2ϕ = 0,

~v = −∇ϕ, p = jωρaϕ,

(3.1)
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where k = ω/c is the wave-number. Standard notations are applied: c is the
sound velocity and ρa is mass density of the media. The special attention is paid
to the wave-field at the plane z = 0 in the framework of the present method of
analysis. Assuming known pressure of the form pe−jξx, where p is its amplitude,
the resulting z-component of the particle velocity vz|z=0+ on the upper side of
this plane (denoted by v to shorten notations), can be easily evaluated. Thus,
neglecting the exponential term ej(ωt−ξx) one obtains:

v = vz = −ϕ,z = η/(ωρa)p = Gp, G(ξ) = η/(ωρa),

η =
√

k2 − ξ2 = −j
√

ξ2 − k2,

(3.2)

where G is the surface harmonic admittance of the acoustic half-space; the
relationship between ϕ and p resulting from Eq. (3.1) has been used. Note, that
in Eq. (3.2), the value of η is chosen in order to satisfy the radiation condition
of the acoustic field at z → ∞. In the presented method of analysis the x-
derivative of the pressure p(x) at z = 0 will be exploited, which is denoted as
q = p,x = −jξp. Substituting q into Eq. (3.2) one obtains in spectral domain:

v = (jG/ξ)p,x = g(ξ)q; g(ξ) =
j

ωρa

η

ξ
. (3.3)

The function g(ξ) will be used in place of the Eq. (3.1) in all the analysis which
follows concerning the pressure and velocity on the plane z = 0+. Note that for
large values of its argument the following asymptotic equality holds:

g(ξ → ±∞) = g∞Sξ, (3.4)

where g∞ = 1/(ωρa) is the acoustic admittance divided by k, and Sν = 1 for
ν ≥ 0 and −1 otherwise, for arbitrary real ν. Inside the media, the acoustic
potential ϕ generated by the given pressure distribution p at z = 0 is

ϕ(x, z) = −j p

ωρa
e−jξx−jηz. (3.5)

3.1.2. Boundary conditions on the baffle plane

To formulate the boundary conditions on the plane z = 0, it is convenient to
consider, without loss of generality, a periodic system of the acoustically hard
baffles distributed along the x-axis with period Λ on the boundary z = 0 of the
acoustic medium spanning for z > 0, as shown in Fig. 3.1.
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p
0

p
l−1

p

p , vI I

x

Λz

v=0q=0
d

Figure 3.1. Periodic system of baffles: boundary conditions for wave generation problem (note
different (arbitrary) pressure in different slots) for which pI , vI = 0, and for scattering problem,
where all pl = 0.

Apparently, a similar boundary conditions on the plane z = 0 will also hold
in the case of a finite baffle system (see Section 3.3.) Namely, the z-component
of the particle velocity on baffles vanishes, and in the slot between baffles, a
harmonic pressure of amplitude pl (constant over an entire slot) excites the
wave-field in the medium; lΛ describes the position of the given lth slot center
along the x-axis:

q = 0, x ∈ (−d/2, d/2) + lΛ between strips,

v = 0, x 6∈ (−d/2, d/2) + lΛ on strips,

p(lΛ) = pl, in the middle between strips,

(3.6)

which pl are given values. They are constant in given slots between baffles due to
the condition q = 0 there (analogously as the tangential electric field Ex(x) and
electric potential ϕ(x) on the plane of conducting strips in the corresponding
electrostatic problem, see Section 2.1.). The solutions to the boundary-value
problem of interest are the functions p(x) and v(x) at z = 0 plane. The field
inside the medium, z > 0, can be evaluated using Eq. (3.5).

In the case of the wave-scattering problem, the plane incident wave of the
form ej(ωt−ξIx+ηIz) is assumed, yielding the following wave-field at z = 0:
(pI , vI)e−jξIx, where pI and vI are the corresponding pressure and velocity
(z-component) amplitudes, respectively. It is convenient for the further analy-
sis to rewrite the wave-number component ξI as follows: ξI = r + IK, where
K = 2π/Λ is spatial wave-number of the baffle array, and r ∈ (0,K) is the
reduced wave-number from the first Brillouin zone, I is the corresponding in-
teger. This yields at z = 0 : vI(r)e−j(r+IK)x, pI(r)e−j(r+IK)x (compare with
electrostatic case discussed in the Section 2.4.). The relationship between pI

and vI involves the harmonic admittance −G, Eq. (3.2), because the incident
wave, although propagating in the upper half-space of the medium, satisfies the
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radiation condition at z → −∞:

vI = −G(r + IK)pI , vI = −g(r + IK)qI , qI = −j(r + IK)pI . (3.7)

In the case of any non-planar incident wave, its spatial Fourier expansion on the
plane z = 0 should be applied instead, resulting in certain function vI(r); the
whole domain of r ∈ (0,K), as well as numerous values of I must be included
in the analysis of such non-plane incident wave. In the analysis presented here
however, and for the sake of presentation simplicity, the plane incident wave is
considered, where r depends on the angle of incidence.

The boundary conditions for full acoustic wave-field are the same as in the
previous case, Eq. (3.6), except that pl = 0 should be applied (see Fig. 3.1). The
total force exerted on a baffle by the incident and scattered waves models the
response of the piezoelectric element of the transducer to the incident acoustic
wave.

3.2. Periodic baffle system

Consider a periodic baffle system shown in Fig. 3.1. The BIS-expansion
method discussed in the Sections 2.2. and 2.4. will be generalized and applied for
analysis of the acoustic wave generation and scattering problems. In Λ-periodic
baffle system, Λ = 2π/K and K being the spatial wave-number of the array
(see Fig. 3.1), the wave-field can be represented by the Bloch series like:

p(x) =
∞
∑

n=−∞

pne
−j(r+nK)x, v(x) =

∞
∑

n=−∞

vne
−j(r+nK)x, (3.8)

where ξn = r+nK is the wave-number of nth spatial harmonic (for convenience,
a similar notation as in the Section 2.2.1. is adopted here); r ∈ (0,K) is an
arbitrary spatial wave-number constrained to one Brillouin zone (for uniqueness
of the representation, see Section 2.2. and particularly Section 2.2.1.). The Bloch
components pn, vn are expanded again (the BIS expansion) into the finite series

of Legendre polynomials Pk(·) = P
(0)
k (·), which expansion, possessing crucial

property for the considered boundary-value problem (see Eqs. (2.15) and (2.17)
in the Section 2.2.):

∞
∑

n=−∞

SnPn(cos∆)e−jnKx = 0 for |x| < d/2,

∞
∑

n=−∞

Pn(cos∆)e−jnKx = 0 for |x| > d/2,

(3.9)
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where ∆ = πd/Λ, which will be exploited in order to satisfy the boundary
conditions on the plane of baffles. For (Λ − d)-wide strips centered at x =
lΛ + Λ/2, the corresponding field expansions at z = 0 applied in the solution
to the boundary-value both in wave generation and scattering cases problems
formulated in the previous Section, Eq. (3.6) (compare with Eq. (2.48) in the
Section 2.2.1.) are:

q =
∞
∑

n=−∞

qne
−jξnx, qn =

∑

m

αmSn−mPn−m(cos∆),

v =

∞
∑

n=−∞

vne
−jξnx, vn =

∑

m

βmPn−m(cos∆),

(3.10)

Note, the summation over m in Eq. (3.10) can be done within some finite do-
main (see Section 2.2.1.), as is discussed further. The boundary conditions given
by Eq. (3.6) are fulfilled directly on the strength of Eqs. (3.9). Now, it should be
verified if the applied wave-field solutions satisfy the wave equation inside the
media, which equation is represented at the plane z = 0 by the harmonic admit-
tance G(ξ), or more convenient, by its version g(ξ), given by Eq. (3.3). Only the
spatial harmonics (qn, vn) representing the wave-field (q, v) in Eq. (3.10) which
satisfy the radiation condition at z → ∞ are involved in Eq. (3.3). Therefore,
the incident wave-field, which grows at → ∞ and satisfies Eq. (3.7), must be
excluded from the field expansion at z = 0. This yields the relation for the nth

Bloch component having the wave-number ξn = r + nK (δij is the Kronecker
delta):

(vn − vIδnI) = g(r + nK)(qn − qIδnI), r ∈ (0,K), (3.11)

which must be satisfied for all n. Particularly, for large |n| ≫ |I| where

g(r ±NK) = ±g∞. (3.12)

Formally, N → ∞, but in the applied approximation, N is assumed large but
finite integer - similarly as in the case of electrostatic problem discussed in details
in the Section 2.2.1. As it was shown earlier (see Sec. 2.2.1.) this is possible only
if (compare with Eq. (2.52)):

βm = g∞αm, (3.13)

which substituted into Eq. (3.11) and accounting for the last of Eqs. (3.7) yields
the following system of linear equations for unknown αm:

∑

m

αm[g(r + nK)Sn−m − g∞]Pn−m(cos∆) = 2g(r + nK)qIδnI . (3.14)
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Under condition given by Eq. (3.12), the equations for αm outside the lim-
its n ∈ [−N,N ] and m ∈ [−N,N + 1] (moreover it must be N > |I|) are
satisfied directly, what can be checked by inspection (see discussion in the Sec-
tion 2.2.1., Eqs. (2.52) through (2.57): here Nmin = −N and Nmax = N). There-
fore, Eq. (3.14) yields the system of 2N + 1 equations for 2N + 2 unknowns,
which, appended by the equation resulting from the last boundary condition in
Eqs. (3.6), can be easily solved. This last equation can be evaluated by inte-
gration of q = p,x, Eq. (3.10), using the Dougall identity (see Eq. (2.26) and
derivation of Eqs. (2.30), (2.32) in the Section 2.2.):

P−ν(− cos∆) = −sin νπ

π

∞
∑

n=−∞

,
SnPn(cos∆)

ν − n
(3.15)

yielding (see derivation of Eq. (2.30) in the Section 2.2.):

pr(lΛ) = j
∑

n

qne
−jrlΛ

r + nK
=

−j
∑

m

π(−1)mαme
−jrlΛ

K sinπr/K
P−r/K−m(− cos∆),

(3.16)

which, being constant between neighboring baffles, is evaluated at x = lΛ. Note
the dependence on spatial spectrum variable is indicated by the subscript r. The
solution that is sought, must satisfy certain constraints. Namely, the pressure
distribution at the z = 0 plane at different slots between baffles takes different
(given) values pl, dependent on l. This requires integration of Eq. (3.16) over
r ∈ (0,K), which is the inverse Fourier transform of the discrete function pl =
pr(lΛ) defined by (note that the harmonic term e−jrlΛ is already included in
the pr evaluated above):

1

K

∫ K

0
pr(lΛ) dr = pl. (3.17)

This finally yields the last condition for αm dependent on r (pl are given):

∑

m

(−1)mαmP−r/K−m(− cos∆) = j
K

π
pl e

jrlΛ sinπr/K. (3.18)

Direct substitution of Eq. (3.18) into Eq. (3.16) verifies that Eq. (3.17) is sat-
isfied. This is the last equation that must be appended to the system given by
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Eq. (3.14) in order to obtain a closed system for determining the unknown coef-
ficients αm. Solving it (numerically) for the unknown coefficients αm dependent
on given pI (wave scattering) or pl (wave generation) the wave-field at z = 0
and elsewhere in the media z > 0, can be found using the expansions given by
Eqs. (3.10) and (3.5), respectively.

The main advantage of the the presented method over other methods ap-
plied in scattering theory for similar problems is that the boundary conditions
are satisfied directly by the proposed solution, Eqs. (3.10). However, certain de-
parture is assumed regarding the equation of motion which is represented here
by the harmonic admittance G(ξ) or g(ξ), Eqs. (3.2), (3.3). This departure re-
lies on the approximation that g(r+ nK) ≡ g∞ for r+ nK greater that certain
large but finite value (far above the domain of existence of propagating modes
in the media). In fact, g(ξ) → g∞ like 1/ξ2 and indeed this approximation can
be applied in general in the considered boundary value problem. For instance,
considering the finite spatial spectrum domain bounded by certain upper fre-
quency ξu, where ξu ≈ (5 ÷ 10)k yields approximately (2 ÷ 0.5)% difference
between g(ξu) and g∞, which accuracy is often acceptable in practical applica-
tions. In the consequence of it, the wave-field on the baffle plane is represented
by a finite Fourier series multiplied by the square-root singular function at the
baffle edges [34]. Accounting for more spatial harmonics in Eq. (3.10), that is
applying the larger value of N in Eq. (3.12), the finer approximation is achieved.
Actually, for K ≈ k, N can be chosen quite small (N ∼ 10).

3.2.1. Wave generation by periodic baffle system

The method of analysis presented here yields the spatial spectrum of the
acoustic pressure at the baffle plane, in contrast to the earlier developed meth-
ods discussed in the literature [68–70]. To illustrate the advantages of the spec-
tral approach the acoustic wave generation by given constant pressures in the
slots between baffles, in accordance with the boundary conditions given by
Eq. (3.6), is considered first. As shown above, the solution in this case is given by
Eqs. (3.8), (3.10) and the corresponding coefficients αm result from the system
of linear equations, Eqs. (3.14), (3.18) (βm in Eq. (3.10) can be computed using
Eq. (3.13)). More specifically, in this Section evaluation of the far-field radiation
pattern for given aperiodic excitation of the baffle array is illustrated. Taking
the advantage of the known spatial spectrum of the pressure field distribution
on the baffle plane, the radiation pattern can be simply evaluated from the in-
verse Fourier transform of p(ξ), dependent on the wave-number ξ = r+ nK (as
was already defined in Eq. (3.17)). The unified representation p(ξ) includes all
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Bloch orders and can be defined in the following manner:

p(ξ) =
qn(ξ − nK)

−jξ , n = ⌊ξ⌋, (3.19)

where n is the integer floor of ξ. At the axial distance z above the baffle plane
z = 0, the acoustic pressure behaves according to Eq. (3.5), thus introducing
spatial angular variables: x = R sin θ, z = R cos θ, the pressure dependent on θ
at certain fixed spatial distance R is:

pR(θ) =

∫ ∞

−∞
p(ξ)e−jRξ sin θe−jRη cos θdξ/K, (3.20)

where η is given by Eq. (3.2). At large distance R→ ∞, the part of the integral
representing the localized field at the baffle plane, which depends on imaginary
valued η (see Eq. (3.2)) can be ignored. This is made by constraining ϑ to
the domain (−π/2, π/2) in the transformed integration where ξ = k sinϑ, η =
k cosϑ:

pR(θ) =

∫ π/2

−π/2
(k/K)p(k sinϑ) cosϑe−jkR cos(ϑ−θ) dϑ. (3.21)

The integration in Eq. (3.21) can be easily done using the stationary phase
method [71, 72] (the stationary point of interest here is θ = ϑ):

pR(θ) = p(k sin θ) cos θ
k

K

√

j2π

kR
e−jRk. (3.22)

This is an alternative method of evaluation of the angular radiation characteris-
tics to the one presented in [68–70]. It can be however, evaluated in more efficient
method explained below. Solving the system of equations defined by Eqs. (3.14),
(3.18), the nth Bloch order of the acoustic pressure pn = jqn/(r+nK) is obtained
for given r (see Eq. (3.10)). This is the pressure wave-field radiated into the
half-space z > 0 in the direction described by the corresponding wave-numbers
(ξn = r+ nK, ηn =

√

k2 − (r + nK)2) provided that ηn is real. Therefore, only
limited number of spatial harmonics pn contribute to the angular radiation pat-
tern at θ = atan(ξn/ηn) (there are multiple directions for small K). Repeating
this for all allowed r ∈ (0,K) in Eq. (3.8) (followed by evaluation of αm from
Eqs. (3.14) and (3.18) and qn from Eq. (3.10) in the manner presented above),
the angular radiation pattern can be fully reconstructed.

The angular radiation pattern concerns the acoustic amplitude a which is
related to the acoustic power by Π = |a|2/2. It is more convenient to evaluate
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Figure 3.2. Radiation pattern |pR(θ)| and pressure distribution on the baffle plane p(x) for
different Λ/λ and for slots of different width d.

first the normal component of the acoustic Poynting vector Πz using the solu-
tions for the acoustic pressure p and normal velocity v on the baffle plane z = 0.
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For given r and Bloch order n for which η is real, it can be written as:

Π(n)
z = Re{vnp∗n}/2, Πz =

∑

n

Π(n)
z , (3.23)

where Πz is the total power radiated from the baffle plane into the half-space

z > 0. Having Π
(n)
z , it is easy to guess the absolute value of the Poynting vector

Π(n) for given Bloch order by taking into account the wave propagation direction
described by its wave-vector (ξn, ηn):

Π(n) =
k

ηn
Π(n)

z , a(θn) =
√

2Π(n), (3.24)

where ηn =
√

k2 − ξ2n and θn = acos((ηn/k). The radiation pattern a(θ) evalu-
ated this way exploits the results already obtained in evaluation of the acoustic
field at the baffle plane. Taking into account that v = 0 outside the domain of
given constant pressure pl = p0 (the current discussion concerns the particular
case when the given pressure takes non-zero value in a single slot, l = 0, as in the
computed examples shown in Fig. 3.2. The generalization is straightforward),
the delivered power is:

P = Re{vp∗}/2 = Re

∫ w/2

−w/2
p∗l v(x)dx/2 ⇒ p∗l

∫ Λ/2

−Λ/2
v(x)dx/2, (3.25)

w = Λ − d being baffle width. The last integral can be evaluated using the
Dougall identity (see Eq. (2.26) and derivation of Eqs. (2.28), (2.31) in the
Section 2.2.):

1

2

∫ Λ/2

−Λ/2
v(x)dx = g∞

π

K

∑

m

αmP−m−r/K(− cos∆). (3.26)

Direct computations show that the evaluated delivered (P ) and outgoing (Πz)
acoustic powers agree well in numerical analysis (up to ten digits in double-
precision arithmetics (see also discussion in Conclusion); similar accuracy takes
place in the scattering problem discussed further below).

In the computed numerical examples presented in Fig. 3.2 both the pressure
on the baffle plane p(x) and the radiation pattern p(θ) are presented, evalu-
ated for several values of slot width d and for three different baffle periods:
Λ/λ = {0.5, 0.7, 1.0}. For convenience, the real and imaginary parts of the pres-
sure distribution in Figs. 3.2(b), 3.2(d) and 3.2(f) are shown for positive and
negative values of x-coordinate respectively, since in the above examples the odd
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number of active slots is considered, resulting in the symmetry of the graph of
p(x) with respect to the origin. The number of Bloch orders N = 16, accounted
for in the solution (see Eq. (3.12)), was applied in all numerical examples con-
cerning the periodic baffle system (the examples shown in this and in the next
Section). Note that the pressure built-up on baffles can significantly modify the
radiation pattern and it is even able to suppress the radiation in certain direc-
tions. In the above examples the given pressure takes non-zero value in one slot
only: pl = δl0. This is further illustrated in Fig. 3.3, where the 2D view of the
generated acoustic wave-field in the media above the baffle plane z > 0 is shown
for chosen values of Λ/λ and d/λ. It is seen, that for Λ/λ = 0.7, d/λ = 0.1
in Fig. 3.3(b) and Λ = λ, d/λ = {0.2, 0.5} in Figs. 3.3(c), 3.3(d) (correspond-
ing to the examples of the radiation pattern shown in Fig. 3.2(c) and 3.2(e),
respectively) the generated wave-field due to the pressure distribution on the
plane z = 0 (see Figs. 3.2(b), 3.2(d) and 3.2(f)) for certain values of θ (≈ 30◦

for Λ/λ = 0.7 and 0◦ for Λ = λ) adds up destructively, yielding suppression of
acoustic wave in these directions.

To illustrate the influence of the inter-element interaction in the periodic
baffle system for non-periodic excitation, in the example shown in Fig. 3.4 the
comparison of the far-field radiation pattern pR(θ) computed for one active slot
by the present method and using analytic expression [68]:

f(θ) =
sin (πd/λ sin θ)

πd/λ sin θ
cos θ, (3.27)

is given. In Eq. (3.27) f(θ) is an angular directivity function of a strip transducer
considered with time harmonic uniform pressure distribution along its width (it
is in agreement with the results of the experimental studies of [68] and obey
Rayleigh-Sommerfeld formula [73]).

An example of wave-beam steering by the baffle system is shown in Fig. 3.5.
The radiation pattern is computed for the case of 15 active slots excited with
the chosen phase shift pl = ejklΛ sinϑ, for l = −7, ..., 7 and pl = 0 otherwise.
The steering angle was chosen ϑ = 30◦ and 0◦ for comparison. In Fig. 3.5(a) the
case of Λ/λ = 0.5, d/Λ = 0.5 (d/λ = 0.25) is illustrated, whereas Fig. 3.5(c)
corresponds to Λ/λ = 0.7 and d/Λ = 0.8 (d/λ = 0.56). As can be seen in
Fig. 3.5(c) for Λ/λ = 0.7 and d/Λ = 0.8 the grating lobe appears for steering
angle ϑ = 30◦. This is due to violation of the spatial sampling theorem (Λ ≥
λ/2).

In Figs. 3.5(b) and 3.5(d) the corresponding spatial distributions of the pres-
sure p(x) on the baffle plane are shown. And in Fig. 3.6 the 2D pressure field
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(a) (b)

(c) (d)

Figure 3.3. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of Λ/λ and d/λ.

distribution in the media z > 0 is shown for the considered system of 15 ac-
tive slots and steering angles {0◦, 30◦}. The same system parameters were as-
sumed: Λ/λ = 0.5, d/Λ = 0.5 (Figs. 3.6(a), 3.6(b)) and Λ/λ = 0.7, d/Λ = 0.8
(Figs. 3.6(c), 3.6(d)). Note in Fig. 3.6(c) the appearance of the wave-beam gen-
eration in the direction associated with the grating lobe (see Fig. 3.5(c)).

In the above examples the beam-steering is achieved by applying a lin-
ear phase shift for the excitation signals of active slots. Similarly, applying a
quadratic phase shift [74] a beam-focusing capabilities can be accomplished as
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Figure 3.4. Comparison of the radiation pattern pR(θ) computed by the present method (solid
line) and by the method described in [68] (see Eq. (3) of the cited work): (a) for d/Λ = 0.75
and different values of Λ/λ, (b) for Λ/λ = 0.5 and different values of d/Λ.

well. In Fig. 3.7 the computed examples of 2D pressure field distribution in the
media z > 0 is shown for the case of 15 active slots excited with the chosen
quadratic phase shift pl = ejk(lΛ)

2β, for l = −7, ..., 7 and pl = 0 otherwise;
β = 1/2F and z = F - is the focal plane. The same values of Λ/λ = 0.5,
d/Λ = 0.5 (Figs. 3.7(a), 3.7(b)) and Λ/λ = 0.7, d/Λ = 0.8 (Figs. 3.7(c), 3.7(d))
as in the beam-steering examples are considered here. The focusing at the two
axial distance from the origin F = 10Λ and F = 20Λ were simulated.

Combining both the linear and quadratic phase shifts of the excitation signals
applied to active slots in the baffle array, the beam-focusing and beam-steering
can be achieved simultaneously. This is illustrated in Fig. 3.8 where the 2D
pressure field distribution in the media z > 0 is shown for the same 15 active slots
and parameters Λ/λ, d/Λ as in the above examples of beam-steering and beam-
focusing (see Figs. 3.6, 3.7). Here the focused beam at the distances F = 10Λ
and F = 20Λ is additionally steered at the angle ϑ = 30◦ by applying the linear
and quadratic phase shifts as in the examples shown in Figs. 3.6 and Figs. 3.7,
respectively.

3.2.2. Plane wave scattering

The solution for the plane acoustic wave scattering problem obtained in the
framework of the spectral theory presented in the Section 3.1. (see Eqs. (3.14),
(3.18)) are exploited here to illustrate the receiver beam-forming capabilities
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Figure 3.5. Radiation pattern p(θ) for (a) Λ/λ = 0.5, d/Λ = 0.5, (c) - Λ/λ = 0.7, d/Λ = 0.8
and 15 active slots excited with linear phase shift and steering angle ϑ = 30◦ (solid line) and
0◦ (dashed line); (b), (d) - corresponding pressure filed distribution on baffles.

of the considered baffle array. The total force, exerted by the acoustic wave-
field (incident and scattered waves) can be evaluated integrating the pressure
distribution over the baffle width, given by Eq. (3.8):

p̄ =

∫ Λ−d/2

d/2
p(x)dx =

∫ Λ

0

∑

n

pne
−jrnxdx, (3.28)

where pn =
∫

qndx can be obtained from Eq. (3.10). In Eq. (3.28) the limits
of integration can be extended to entire baffle period since p(x) = 0 between
baffles is assumed. Evaluating the integral term by term, one obtains:

p̄ = 2j sin(rΛ/2)e−jrΛ/2
∑

m

αm

∑

n

Sn−mPn−m

(r + nK)2
, (3.29)
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(a) (b)

(c) (d)

Figure 3.6. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of Λ/λ and d/λ and the steering angles 30◦ (a),(c) and 0◦ (b), (d).

which series converges fast and can be easily evaluated numerically. Fig. 3.9
presents Bragg orders of the scattered wave-field for the case of small value of
K/k = 0.6 and the slot width d = 0.85Λ for two different values of the incidence
angle ϑ = {10◦, 30◦}.

The directional characteristics of the wave detection by baffles for several
values of normalized (with respect to the wave-length of the incident wave) slot
width d/λ and the baffle period Λ/λ are shown in Fig. 3.10. Specifically, the
Figs. 3.10(a), 3.10(c) and 3.10(e) present the magnitude of the total force p̄(θ)
exerted on baffle, and Figs. 3.10(b), 3.10(d) and 3.10(f) its real and imaginary
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(a) (b)

(c) (d)

Figure 3.7. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of Λ/λ and d/λ focused at the distances of 10Λ (a),(c) and 20Λ (b),
(d).

parts for Λ/λ = 0.5, d/λ = {0.1, 0.25, 0.4}, Λ/λ = 0.7, d/λ = {0.1, 0.3, 0.6}
and Λ/λ = 1.5, d/λ = {0.8, 1.0, 1.5}, respectively. The inflection points of the
curves are easily noticed. The phenomenon takes place when, for instance, the
−1st Bragg component of the scattered field (see Fig. 3.10(e)) approaches the
tangential direction of propagation with respect to the baffle system, that is
at r − K → −k. In the above examples, the value r = 10−4k was used in
the numerical computations instead of r = 0 in order to avoid evaluation of the
corresponding limits r → 0 [39]. In the example of receiver wave-beam synthesis,
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(a) (b)

(c) (d)

Figure 3.8. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of Λ/λ and d/λ focused at the distances of 10Λ (a),(c) and 20Λ (b),
(d) and additionally steered at the angle ϑ = 30◦.

the output signal was the Hamming-windowed [75] sum of signals p̄l from 20
transducer elements:

S(θ) =
20
∑

n=1

p̄nWne
jxnk cosϑ, xn = (n− 10.5)Λ,

Wn = 0.08 + 0.92 cos2(π(n− 10.5)/20),

(3.30)

where ϑ in this case denotes the chosen observation direction: 0◦ or 30◦ in the
examples presented in Fig. 3.11, while the angle of incidence θ sweeps over an
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Figure 3.9. Bragg orders of the scattered wave-field for the case of K/k = 0.6 and w/Λ = 0.85
and the incident angle (a) ϑ = 10◦, (b) ϑ = 30◦.

entire domain (p̄n depends on r = k sin θ). The results are compared with ideal
cases of point receivers responding to the incident wave by p̄n = e−jrxn . Since the
baffle period Λ = 0.7λ does not obey the spatial sampling theorem (Λ ≥ λ/2),
the grating lobe appears for ϑ = 30◦ in Fig. 3.11(d). The exact formula:

θm = asin {±mλ/Λ− sinϑ} (3.31)

yields for ϑ = 30◦ and m = −1 the value θ−1 = −68◦ which is in a good
agreement with the numerical results shown in Fig. 3.11(d). For the case Λ =
0.5λ illustrated in Fig. 3.11(b), there is no grating lobe for the considered angles
of observation 0◦ and 30◦, as expected.

In Fig. 3.12 dependence of the reflection coefficient R0 = p0 (see Eqs. (3.8))
versus the kd/2 is shown for different values of λ/Λ and different plane wave
incidence angle. The choice of independent variable kd/2 corresponds to the
analysis presented in [24] (see Eq. (6.1) of the cited paper). The graphs in
Fig. 3.12 illustrate the normalized values R̄0 of the reflection coefficients with
respect to its maximum value in the considered range of independent variable
kd/2. The qualitative comparison of the results shown in Figs. 3.12(a) (ϑ = 0◦)
and Figs. 3.12(c) (ϑ = 45◦) for the case of d/Λ = 0.5 reveals a good agreement
with corresponding results obtained in [24] (compare with Figs. 3, 4 of the cited
work).
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Figure 3.10. Directional characteristic of the wave detection by baffles p̄(θ) for different values
of system period Λ/λ and several values of slot width d/λ: (a), (c), (e) the magnitude of p̄(θ),
(b), (d), (f) its real and imaginary parts.

3.3. Finite baffle system

In the previous Section the full-wave analysis of the periodic baffle system
was presented using the generalization of the BIS-expansion method of elec-
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Figure 3.11. Directional characteristic of the wave detection by baffles computed from
Eq. (3.30) for observation angles: (a), (c) ϑ = 0◦ and (b), (d) ϑ = 30◦; Λ = 0.5λ, d = 0.25λ
(a), (b) and Λ = 0.7λ, d = 0.6λ (c), (d).

trostatic spectral approach. Specifically, the results of Section 2.2.1. were ex-
ploited to develop the corresponding extension of the method for application
in the acoustic beam-forming analysis. In the current Section a similar mixed
boundary-value problem is considered for the case of a finite system [76], illus-
trated in Fig. 3.13(a). To this end a generalization of the ’template functions’
method (see Section 2.3.) combined with the BIS-expansion will be exploited
in a similar manner as presented in the Section 2.4.2., where the electrostat-
ics of strips in the external ’incident’ (spatially harmonic) field was discussed.
The detailed analysis concerning the boundary-value problem for the case of
acoustic wave generation, formulated in the Section 3.1., will be presented here,
particularly. Similarly, as in the case of periodic baffle array, the normal acoustic
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Figure 3.12. Normalized reflection coefficient R̄0 versus kd/2 for different values of d/Λ and
several values of incident angle: (a) - normal incidence, (b) - incident angle ϑ = 30◦, (c)
ϑ = 45◦ and ϑ = 60◦.

vibration vanishes on baffles and between them the acoustic pressure is given
constant values (see Eq. (3.6)). Following the same approach as discussed in the
Section 2.4.2., the initial finite baffle system of interest is approximated by some
periodic one with certain large period Λ, comprised by the multiple replica of
the analyzed structure (see Fig. 3.13(b)). This enables one to benefit from the
BIS-expansion method.

Consider a finite system of N acoustically hard baffles distributed along the
x-axis on the boundary plane z = 0 of the acoustic medium spanning for z > 0,
as shown in Fig. 3.13(a). Their edges are defined by x-coordinates (ai, bi), i =
1 . . . N . The baffles are assumed to be infinitely long along the y-axis. Without
loss of generality the baffles having the same width 2w (to facilitate the analogy
with corresponding electrostatic methods it is convenient to adopt the 2w notion
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Figure 3.13. (a) A system of N rigid baffles (strips) on the boundary of acoustic media spanning
for z > 0; (b) multi-periodic structure with certain large period Λ comprised by the replicas
of the finite baffle system (a).

for the baffle width in contrast to w, applied in the case of periodic baffles) and
equally spaced along the x-axis with the pitch P , which is usually the case in
practical linear arrays. The slots between baffles are denoted by d = P − 2w
and the system spatial wave-number is K ′ = 2π/P . In this Section the notion of
pitch is introduced to distinguish it from the period Λ as illustrated in Fig. 3.13
(in the acoustic literature usually the period of the transducer array is referred
as the pitch, and the space between elements as the kerf). To find the solution
fulfilling the boundary conditions given by Eq. (3.14), the ’template functions’
which were defined in the Section 2.3., can be successfully exploited here. For
convenience they are referred below in the fundamental form (see Eq. 2.68):

Φ(N)(x) = jN−1
N
∏

m=1

1
√

d2m − (x− cm)2
,

Φ(N,i) ∼ xiΦ(N), i = 0...N − 1,

(3.32)

where wm and cm are the half-width and center coordinate of the mth baffle.
The function Φ(N) is the basis ’template function’ and the rest of them, Φ(N,i),
can be derived from Φ(N), as shown in Eq. (3.32). The above functions have
known spectral representations in the form of multiple convolutions of Bessel
functions of the first kind J0(ξdm) and J1(ξdm). For the basis template function
Φ(N) the spatial-frequency counterpart is:

Φ(N)(ξ) = Φ1(ξ) ∗ Φ2(ξ) ∗ · · · ∗ ΦN (ξ), (3.33)
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where

Φm(ξ) = F
{

1
√

d2m − (x− cm)2

}

=

{

J0(ξdm) ejrcm , ξ ≥ 0,
0, ξ < 0,

(3.34)

and F denotes the Fourier transform. The semi-finite support of the above
functions, which is of great importance in the subsequent numerical analysis,
must be emphasized here. The real and imaginary parts of Φ(N)(x) vanish in
subsequent domains of the x-axis, as required by the boundary conditions given
by Eq. (3.14). For the acoustic boundary value problem considered here the
following ’template functions’ are introduced:

Q(N)(ξ) =

{

Φ(N)(ξ), ξ ≥ 0

Φ∗(N)(−ξ), ξ < 0

}

,

V (N)(ξ) = SξQ
(N)(ξ) =

{

Φ(N)(ξ), ξ ≥ 0

−Φ∗(N)(−ξ), ξ < 0

}

.

(3.35)

In the Section 2.3. it was shown, that the functions defined in Eq. (3.35) have
their spatial counterparts vanishing on the x-axis in accordance with Eq. (3.14).
Namely, Q(N)(x) vanishes between baffles as the q(x) does (see Eq. 3.14) and
V (N)(x) vanishes on baffles similarly as the v(x). These functions, defined by
Eq. 3.35, evaluated at discrete values of the spectral variable ξn = n∆ξ, are
the discrete series in the numerical analysis and actually they represent, on the
basis of the theory of FFT [65], the periodic functions in spatial domain with a
certain large period Λ = 2π/K, K = ∆ξ (see Fig. 3.13(b)):

Q(N)(x) =
∑

n

Q(N)
n e−jξnx, Q(N)

n = Q(N)(ξn),

V (N)(x) =
∑

n

V (N)
n e−jξnx, V (N)

n = V (N)(ξn).
(3.36)

The functions defined by Eq. (3.36) will be exploited further to satisfy the
boundary conditions on the plane of baffles. Following the same considerations
as in the Section 2.2.1. (see derivation of Eq. (2.46)), one first multiplies the
functions in Eq. (3.36) by the term e−jmKx and then takes a linear combinations
of the resulting terms. After simple rearrangement of terms one readily obtains
the following representation of the wave-fields (q, v)(x) by their inverse Fourier
transforms, written in the discrete form for the assumed large period Λ:

q(x) =
∞
∑

n=−∞

qne
−jξnx, v(x) =

∞
∑

n=−∞

vne
−jξnx, (3.37)
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where

qn =
∑

m

αmQ
(N)
n−m, vn =

∑

m

βmV
(N)
n−m =

∑

m

βmSn−mQ
(N)
n−m. (3.38)

Formally, in Eqs. (3.37) Λ → ∞ should be applied (K → 0), but in the approx-
imation used here the Λ is large but finite (see discussion in Sec. 3.3.1. for more
details).

The expansions given by Eq. (3.38) are the convolutions in spatial spectrum
domain, written in discrete form, which in spatial domain correspond to the
products of the ’template functions’ Q(N)(x), V (N)(x), defined in Eq. (3.35),
with certain unknown functions (α, β)(x) represented by their Fourier trans-
forms (in discrete form):

α(x) =

∞
∑

n=−∞

αne
−jξnx, β(x) =

∞
∑

n=−∞

βne
−jξnx. (3.39)

The corresponding spectral samples (α, β)n occur in Eq. (3.38) as unknown
expansion coefficients that have to be determined. The functions in Eqs. (3.37),
(3.38), being the solutions to the considered boundary-value problem for the
finite system comprised of N baffles, satisfy the boundary conditions given by
Eq. (3.14) due to the properties of the ’template functions’ defined in Eqs. (3.35),
(3.36). Now it has to be checked if the applied solutions, Eqs. (3.37), (3.38)
satisfy the wave equation in the media z > 0, which equation is represented on
the baffle plane z = 0 by the harmonic admittance G(ξ), defined by Eq. (3.2)
or, more conveniently, by its version g(ξ) (see Eq. (3.3)). Only this part of the
wave-field (q, v)(x) which satisfies the radiation condition at z → ∞ is involved
in the solution, yielding the following relation for the nth spectral line having
wave-number ξn:

vn = g(ξn)qn. (3.40)

Following the same considerations as for the case of infinite periodic baffle sys-
tem a similar approximation can be applied for large |n|: g(ξn) = ±g∞, n > N1

(N1 some large but finite integer). As was discussed earlier (see Section 2.2.1.)
this is possible only if (compare with Eqs. (2.52) and (3.13)):

βm = g∞αm. (3.41)

Substituting Eq. (3.38) into Eq. (3.40) and taking into account Eq. (3.41), the
following system of linear equations for unknown coefficients αm is obtained:

g∞
∑

m

αm[Sn−m − j(ηn/ξn)]Q
(N)
n−m = 0, m, n ∈ [−N1, N1]. (3.42)
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It can be easily checked by inspection, that outside the limits m,n ∈ [−N1, N1]
the above equations are satisfied directly.

To obey the last condition in Eq. (3.14), that the pressure takes given con-
stant values in the slots between baffles, a similar technique as described in the
Section 2.3. (see derivation of Eqs. (2.78) through (2.80)) is exploited. Specif-
ically, given N baffles there are Ns = N − 1 slots and the same number of
constraints which have to be satisfied. To this end the number of coefficients
αm in Eq. (3.42) should be increased to 2N1+1+Ns and the above Ns constrains
are added to the system of equations, Eq. (3.42):

pi ≡ p(x = si) =

∫

q(x)dx |x=si , i ∈ [1, Ns] . (3.43)

where si is the ith slot center (see Fig. 3.13(a)). According to definition q = p,x
(see Section 3.1.), the pressure at the slot centers can be evaluated by inte-
gration of q(x), as in Eq. (3.43). This corresponds to the division by ξ of the
q(ξ) in spectral domain. Here the known spatial-frequency representation of the
template solution Q(N)(ξ) given by Eq. (3.35) proves useful to find the pressure
at the slot centers without performing the integration like in Eq. (3.43), in a
similar manner as was presented in the Section 2.3. (see Eqs. (2.78)):

p(x) = F−1{−jq(ξ)/ξ} =
1

2π

∫ ∞

−∞
|ξ|−1q(ξ)e−jξxdξ, (3.44)

where F−1 denotes the inverse Fourier transformation. Consequently, substitut-
ing Eqs. (3.37), (3.38) into Eq. (3.44) one obtains immediately for the pressure
pi in the slot center between the ith and (i+ 1)th baffles:

pi = j
∑

m

αmF−1

{

Q
(N)
l−m

ξl

}

|x=si , i ∈ [1, Ns] , l ∈ [−L,L− 1] . (3.45)

For numerical evaluation of the Fourier transformations usually the FFT algo-
rithm is used. For this purpose the number of samples 2L in the above discrete
series is usually integer power of 2. Similarly, as in the case of electrostatic prob-
lem for strips, here the discrete representation of the inverse Fourier transform is
used for numerical evaluation of the pressure pi ≡ p(x = si). Since the pressure
in the slot between baffles takes constant value, it can be determined in any
point x̃i within the ith slot. This considerably simplifies the analysis, because
the inverse Fourier transform in Eq. (3.45) is evaluated in discrete points equally
spaced on the x axis with the step ∆x = π/(L∆ξ) [65]:

pi ≡ p(x = si) = p(x̃i). (3.46)
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In this case, for instance, x̃i can be the closest point to the slot center x =
si. Summarizing, the system of linear equations for unknown αm for m ∈
[−N1 −Ml, N1 +Mu], whereMu =Ml = Ns/2 for evenNs andMl = (Ns−1)/2
and Mu = (Ns + 1)/2 for odd Ns, is:

[Anm][αm] = [bn] , n ∈ [−N1, N1 +Ns] . (3.47)

The elements of matrixAnm are given by Eq. (3.42) and bn = 0 for n ∈ [−N1, N1]
and

Anm = F−1

{

Q
(N)
l−m

ξl

}

|x=si , bn = pi,

n ∈ [N1 + 1, N1 +Ns] , i ∈ [1, Ns] , l ∈ [−L,L− 1] .

(3.48)

Solving the system of linear equations given by Eq. (3.47) for unknown coeffi-
cients αm, m ∈ [−N1 −Ml, N1 +Mu] the solution to the considered boundary-
value problem can be obtained from Eq. (3.37) using Eqs. (3.38) (note, βm =
αm/(ωρa)).

3.3.1. Beam-forming by finite baffle system

In this Section some numerical examples of the acoustic beam-forming by
the finite baffle systems considered in the previous Section are given. As it
was emphasized in the earlier Sections, the main advantage of the method of
analysis, discussed in this work, is that it yields the spatial spectrum of the
acoustic pressure field distribution on the baffle plane directly. Therefore, the
radiation pattern can be evaluated as the inverse Fourier transform of the p(ξ)
which is related to q(ξ) = −jξp (note, p(ξ → 0) = 0) in a similar way as in the
case periodic baffle array (see Sec. 3.2.1., Eq. (3.22)):

pR(θ) = p(k sin θ) cos θ
k

K

√

j2π

kR
e−jRk, (3.49)

where K = 2π/P , P - is the pitch. The angular dependence in the far-field
region can also be written in terms of the q(ξ) as follows:

pR(θ) ∼ q(k sin θ) cot θ. (3.50)

In the computed numerical example, shown in Fig. 3.14, the beam-steering by
a finite system comprised of 8 baffles is shown. The far-field radiation pattern
is evaluated using Eq. (3.49) for given pressure in the slots: pl = ejlPk sinϑ,
l = 1 . . . 7, and different values of the steering angle: ϑ = 0◦ and 20◦. Two cases



74 3. Application in acoustic beamforming analysis

of the system pitch are considered: P = 0.7λ in Fig. 3.14(a) and P/λ = 1 in
Fig. 3.14(a). For convenience, the pressure distribution (its real part is depicted
by the solid and imaginary part - by the dashed line) on the baffle plane are
shown in Figs. 3.14(b) and 3.14(d).
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Figure 3.14. Radiation pattern p(θ) for (a) P/λ = 0.7, (c) - P/λ = 1 and 8 active slots excited
with linear phase shift and steering angle ϑ = 20◦ (solid line) and 0◦ (dashed line); (b), (d)
- corresponding pressure (solid line - its real part and dashed line - its imaginary part) filed
distribution on baffles: thick line - ϑ = 20◦ and thin line - ϑ = 0◦; d/P = 0.75.

As can be seen in Fig. 3.14(c) for P/λ = 1 the grating lobe appears for
steering angle ϑ = 20◦ due to violation of the spatial sampling theorem. The
corresponding 2D pressure field distribution in the media z > 0 evaluated from
Eq. 3.5 is shown in Fig. 3.15 for the considered baffle system and the steering
angles {0◦, 20◦}; the system parameters are similar as above: P/λ = 0.7 in
Figs. 3.15(a), 3.15(b) and P/λ = 1 in Figs. 3.15(c), 3.15(d), respectively.
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(a) (b)

(c) (d)

Figure 3.15. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of P/λ and the steering angles 20◦ (a),(c) and 0◦ (b), (d); d/P = 0.75.

In Fig. 3.16 the examples of the wave-beam focusing achieved by the proper
quadratic phase shift for the active slots excitations: pl = ejk(lP )2β , l = −3, ..., 3,
where β = 1/2F and z = F - is the focal plane (see discussion in Sec. 3.2.,
Fig. 3.7), are illustrated for the same baffle system as in the examples shown
above in Fig. 3.15. The wave-beam is focused at the depths of F = 5P and
F = 10P for the considered values of P/λ = 0.7 and 1.

Combining the linear and quadratic phase shifts between active slots in the
baffle array the focusing and steering of the generated wave-beam can be ac-
complished (see discussion in the Section 3.2., Fig. 3.8). The corresponding
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(a) (b)

(c) (d)

Figure 3.16. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of Λ/λ focused at the distances of 5P (a),(c) and 10P (b), (d);
d/P = 0.75.

computed examples are shown in Fig. 3.17 where the 2D pressure field distri-
bution in the media z > 0 is shown for the same baffle system (see Fig. 3.16).
Here the focused beam at the distances F = 5P and F = 10P is additionally
steered at the angle ϑ = 20◦ by combining the linear and quadratic phase shifts
as in the examples shown in Figs. 3.15 and 3.16, respectively.

As it was stated in the Section 2.3. in the ’template functions’ method
the care should be taken when evaluating the convolutions using Eqs. (3.33)
and (3.34). To this end in the case of electrostatic problem for finite system of
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(a) (b)

(c) (d)

Figure 3.17. 2D view of the generated pressure wave-field in the medium above baffle plane
z > 0 for different values of P/λ focused at the distances of 5P (a),(c) and 10P (b), (d) and
additionally steered at the angle ϑ = 20◦.

conducting strips the advanced numerical algorithms were developed [63]. These
can also be adopted in the case of the acoustic beam-forming by finite baffle
system discussed here.

It should be noted, that the ’template functions’ have to be evaluated at
discrete points in spatial spectrum domain with sampling interval ∆ξ = 2π/Λ.
In order to make the multi-periodic system approximation finer, Λ → ∞ should
be applied (see Fig. 3.13), yielding ∆ξ → 0. In fact, Λ can be applied large but
finite. For instance, in the numerical calculations, presented above, Λ ≈ 102P
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(see Fig. 3.13(b)) was assumed, which is sufficient for considering the finite
baffle array as an isolated cell of the multi-periodic system [76]. Similarly, as
in the case of periodic baffle array, to obey the approximation which yields the
Eq. (3.41) (see Eq. (3.12) in the Section 3.2.), it is sufficient to consider the
spatial spectrum components bounded by certain upper frequency ξu, where
ξu ≈ (5 ÷ 10)k. For k ∼ K ′, where K ′ = 2π/P is the spatial wave-number
of the finite baffle system (not to be confused with K = 2π/Λ - the multi-
periodic system spatial wave-number), this yields N1 ∼ 103 in Eq. (3.42) and
approximately 2N1 unknown coefficients αm to be determined from Eq. (3.47).

It should be noted, however, that for the purpose of accurate evaluation
of the integrals in Eq. (3.43) by means of the inverse Fourier transform (see
Eq. 3.45), yielding the pressure distribution on the plane z = 0, the ’template
functions’ have to be evaluated over a wider spatial spectrum domain [38]. The
aspects of numerical evaluation of the ’template functions’ given by Eqs. (3.33)
and (3.34) (in application to electrostatic analysis of finite systems of conducting
strips) were studied thoroughly in [63]. More specifically, it was shown that for
the number of baffles N = 10÷ 20 they should be evaluated within the spatial
spectrum domain (0, ξ′u), where ξ′u ≈ 50k. Note, that the semi-finite support
of the ’template function’ Φ(N)(ξ), given by Eqs. (3.42) and (3.34), is exploited
here. This property simplifies considerably evaluation of multiple convolutions in
Eqs. (3.42) [38, 63] (see also discussion in Section 2.3.). Therefore, it is sufficient
to evaluate the ’template functions’ for the purpose of evaluation of integrals in
Eq. (3.45) within the domain (0, ξ′u), which yields L ∼ 213 samples in the corre-
sponding data-sets for FFT algorithm, provided ξ′u = 50k is assumed. For larger
number of baffles, in order to maintain the accuracy of integration in Eq. (3.45)
the sampling step ∆ξ should be decreased [63]. Specifically, for N = 30 ÷ 40
baffle system at least L ∼ 215 samples of the ’template functions’ within the
domain (0, ξ′u) should be evaluated. In this case the ∆ξ should be decreased at
least by a factor of 4 yielding the corresponding increase of N1 in Eq. (3.42) to
approximately 5 · 103. Moreover, the system of equations given by Eq. (3.48)
tends to be bad-conditioned for growing N (see also discussion in Conclusion),
which restricts the application of the method described in this Section to small
systems, comprising approximately 10 ÷ 20 baffles. This is vastly insufficient
for modeling of modern practical transducer arrays used in ultrasound applica-
tions having at least 128 elements. Nevertheless, the method presents original
and uncommon theoretical approach to solving the acoustic beam-forming prob-
lem by finite baffle system. In the case of practical acoustic transducer arrays
having large number of elements the method of analysis developed for periodic
structures which was discussed in details in the Section 3.2. can be successfully
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applied with sufficient accuracy for practical applications. This is illustrated in
the next Chapter where the developed method is used to improve performance
of the ultrasound imaging technique based on synthetic aperture principles.
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4

Application in ultrasound imaging

In this Chapter practical application of the results of acoustic beam-forming
analysis presented in the Chapter 3 will be shown. Specifically, the synthetic
aperture method in medical ultrasound imaging will be discussed here. As ev-
idenced below the results obtained for periodic baffle array in the Section 3.2.
can be successfully exploited to improve its performance. Ultrasound imaging
has become one of the primary techniques for medical imaging mainly due to
its accessibility, non-ionizing radiation, and real-time display. Similar techniques
are also employed in the non-destructive testing and evaluation of materials and
constructions [5, 6, 8]. The phased arrays, widely exploited in these applications
for wave generation and detection, enable high speed inspection with increased
sensitivity and coverage compared with conventional ultrasonic techniques. The
most popular ultrasound medical scanning is provided by the pulse-echo modal-
ity, in which the piezoelectric transducers act as both the transmitters of the
acoustic pulse and the detectors of reflected and scattered waves. In the mod-
ern medical ultrasound B-mode (brightness mode) scanners e.g. a linear (1D)
array of transducers simultaneously scans a plane through the body that can
be viewed as a two-dimensional image on the screen. It represents the magni-
tude of the back-scattered ultrasound wave-field (the pressure measured by the
transducer) and relates to the impedance mismatch of tissues in the body.

High resolution ultrasound images are usually obtained by using phased ar-
ray transducers and delay-and-sum beamforming techniques. However, proper
focusing at the whole image space is done at a large cost of slowing the frame
rate. Synthetic aperture imaging methods offer a solution to this problem. Ini-
tially implemented in remote sensing/imaging by radars [77, 78] and in sonar
imaging [79, 80] later they found their application in the ultrasound imaging [81]
where they are also known as synthetic aperture focusing techniques (SAFT). In
SAFT imaging, at each time a single array element transmits a pulse and receives
the echo signal [82]. The drawbacks of this method are the low signal-to-noise
ratio (SNR) due to the low energy of the transmitted pulse and inferior contrast
resolution due to the higher side-lobe level as compared to the conventional
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phased arrays, resulting in poor image quality. To overcome these difficulties
a multi-element synthetic aperture focusing (M-SAF), as an alternate to the
SAFT, was proposed [83]. A group of elements transmits and receives signals
simultaneously. The transmit beam is unfocused to emulate a single element
response. The acoustic power and the SNR are increased as compared to SAFT.
Further significant improvement of the ultrasound image quality was due to the
synthetic transmit aperture method (STA) [84, 85]. At each time a single array
element transmits an ultrasound pulse and all elements receive the echo signals.
The advantage of this approach is that a full dynamic focusing can be applied in
transmit and receive modes, giving the high imaging quality comparable to the
conventional phased arrays beam-forming. To improve the SNR and the visu-
alization depth of the resulting synthesized images the multi-element synthetic
transmit aperture (MSTA) [40] was proposed. MSTA is done by splitting the
transmit aperture into several sub-apertures. At each time a single sub-aperture
comprised of several elements transmits an ultrasound pulse and all the elements
receive the echo signals. This allows to increase the transmit power, which, in
turn, leads to improvement of the SNR and penetration depth. Moreover, a
data acquisition cycle can be reduced to several firings which results in consid-
erable improvement of the frame rate at the cost of minor decrease of the final
synthesized image quality.

A ’common’ approach to the synthetic aperture methods in ultrasound imag-
ing considers a single element of a multi-element probe as a point source trans-
mitting a spherical wave-front [86] This approach is reasonable for elements hav-
ing their size much smaller than the wavelength of the probing or interrogating
signal. Yet, when the element size is comparable to the wavelength of the prob-
ing wave the influence of the element’s directivity on the wave field generation
and reception can no longer be neglected. Hence, an application of the simple
point source model to reconstruct the image might lead to errors and artifacts
worsening the quality of the resulting image. To alleviate this problem a proper
modification of the MSTA algorithm taking into account the transmit/receive
sub-aperture directivity when the element’s lateral width is comparable with
the operating frequency wavelength can be developed. This is introduced by
applying predefined apodization weights evaluated for every focal point in the
image in both transmit and receive modes. To this ends the results of the beam-
forming analysis of the periodic baffle array discussed in the Section 3.2. will be
exploited.

Modification and control of the beam patterns by applying the aperture
apodization in the ultrasonic imaging systems was reported in several works [1,
87, 88]. Frequently, fixed weights corresponding to Hamming-, Hann-, Blackman
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etc. window functions [89, 90] are applied to echo signals recorded from different
channels during dynamic focusing of the received beam. To obtain a more flexible
control over transmitted and received wave-fields, the specific, optimal sets of
weights generated for each focus point in the image are determined. This enables
synthetization of the desirable beam patterns [91]. The sets can also be used to
obtain the required field distribution at a given, user controlled, depth [92].

As evidenced in the following in this Chapter the application of proposed
apodization weights considerably improves the penetration depth and dimin-
ishes the hazy, blurring artifacts observable in the case of the conventional
MSTA algorithm. This improvement in imaging quality is particularly visible in
the immediate vicinity (near -field distance) of the transducer surface, which is
critical in such applications as breast and skin imaging. The image optimization
in the immediate vicinity of the scanhead surface using the MSTA (and STA)
approach with individual weighting functions was not explored previously.

4.1. Multi-element synthetic aperture method

Before proceeding further it is expedient to give a brief introductory discus-
sion concerning the fundamentals of the MSTA method. In the MSTA approach
at each emission a transmit aperture comprised of several elements is used as it
is illustrated in Fig. 4.1. The back-scattered waves are received by each element
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Figure 4.1. Transmit and receive elements combination and the focal point in MSTA method.

independently and the resulting RF echo signals are digitized and stored in
memory for further processing. For an N -element array, Nt - element transmit
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aperture and Nsh-element shift of the transmit aperture between subsequent
emissions, there are M = ⌈(N −Nt)/Nsh⌉ emissions in each cycle altogether,
where ⌈x⌉ denotes the integer ceiling of x. Assuming Nt = 1 results in con-
ventional synthetic transmit aperture (STA) method. In the case of MSTA the
frame rate is increased by N/M as compared to the STA method due to de-
crease of the total number of emissions, which speeds up the data acquisition
process. Thus, for N -element aperture upon completion of the data acquisition
cycle M ×N RF echo signals are recorded for further image synthetization. To
this end the coherent summation of all received RF echoes is performed. For
the N -element array for each point in the image, the final focused signal can be
expressed as follows [93]:

SMSTA(r, θ) =
M
∑

m=1

N
∑

n=1

sm,n

(

2r

c
− τm,n

)

, (4.1)

where sm,n(t) is the RF echo signal and τm,n is the round-trip delay defined for
the (m,n) transmit/receive pair by expression:

τmn = τm + τn, 1 ≤ n ≤ N, 1 ≤ m ≤M. (4.2)

The corresponding delays for mth transmit and nth receive elements relative
to the imaging point (r, θ) can be easily evaluated by tracing the path of the
ultrasound wave as follows:

τi =
1

c

(

r −
√

r2 + x2i − 2xir sin θ

)

, i = m,n, (4.3)

where xm, xn are the positions of the mth transmit and nth receive elements,
respectively, and r, θ, are the polar coordinates of the focal point with respect to
the origin, placed in the center of the transducer’s aperture (see Fig. 4.1). The
first and second summations correspond to the transmit and receive focusing,
respectively. It should be noted that the angular dependence is not taken into
account in the applied point-like source model. However, when the width of the
array element is comparable to the wavelength, corresponding to the nominal
frequency of the emitted signal, the point-like source model becomes inaccurate.
The directivities of the individual transmit and receive elements influence the
partial contributions of the resulting focused signal S(r, θ) in Eq. (4.1) depending
on the mutual positions of the focal point and transmit/receive pair, determined
by the angles θm, θn (see Fig. 4.1).
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4.2. Modified multi-element synthetic aperture method

In this Section a modified STA imaging algorithm which accounts for the
element directivity function and its influence on the total focused signal S(r, θ)
is presented. The underlying idea can be conveniently introduced by assum-
ing two similar reflectors that are located at the points with polar coordinates
(ri, θi); i = 1, 2, and considering the mth element of the transducer array, which
acts as transmitter (see Fig. 4.2). For simplicity a single-element transmit aper-
ture is assumed without loss of generality (thus referring to the STA algorithm
- a particular case of the MSTA method).

θ2

θ2

r2
θ2m r m2

r1m

=0θ1m

r1

θ1

θ11(r ,   )

xm

transmit−receive
element #m

x

2

reflector #1

reflector #2
(focus point)

z

(r ,   )

Figure 4.2. Transmit and receive elements combination and the focal point in MSTA method.

The corresponding RF echo signal received by this element is denoted as
sm,m(t). Since r1m = r2m, both reflectors contribute to the corresponding echo
signal sm,m(t) simultaneously due to the equal round-trip propagation time:
2rim/c; i = 1, 2. The scattering amplitude of the reflector #1 located at the
point (r1, θ1) is dominant, since the angle θ1m coincides with the mth element’s
normal direction (direction of its maximum radiation), whereas the reflector’s
transmit-receive efficiency at the angle θ2m, corresponding to the reflector #2,
is lower. If the focus point coincides with the location of the reflector #2, the
partial contribution from sm,m(t) to S(r2, θ2) evaluated from Eq. (4.1) intro-
duces the spurious echo from the reflector #1. This is in addition to the signal
scattered from the reflector #2 (which is relatively small due to the large ob-
servation angle θ2m). Due to its location (the normal direction with respect to
the considered mth element), the corresponding ’false’ contribution is relatively
large, which results in an excessive signal amplitude increase at the point (r2, θ2)
of the final image. In other words, the scattered signals from distant reflectors
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(scatterers) are spuriously "transferred" into the region adjacent to the trans-
ducer aperture, where the large observation angles exist, and produce an image
distortion there. To alleviate this problem, a proper spatial filtering, account-
ing for the observation angle in accordance with the transmit/receive element
directivity function, is needed. Assume that the angular directivity function of
the considered element is known and denoted by f(θm), where θm is measured
from the mth element normal direction (see Fig. 4.2). To suppress the influence
from the reflector #1 on the imaging signal S(r2, θ2) at the focal point (r2, θ2),
coinciding with location of the reflector #2, the partial contribution of the echo
sm,m(t) is weighted by the corresponding value of f(θ2m). This corresponds to
the spatial filtering of the superposed signal in accordance with the positions of
the focal point and transmit/receive elements, accounting for their angular di-
rectivity functions. The above considerations lead to the following modification
of the MSTA imaging algorithm using arbitrary number of elements in transmit
mode:

Smod
MSTA(r, θ) =

M
∑

m=1

N
∑

n=1

wmnsm,n

(

2r

c
− τm,n

)

,

wmn = fT (θm)fR(θn), θi = θi(r, θ), i = m,n,

(4.4)

where θi(r, θ), i = m,n are the corresponding observation angles for the trans-
mit and receive elements and fT (θm), fR(θn) are their directivity functions,
respectively. Note, that the angles θm and θn depend on the spatial position of
the focal point (r, θ). In the case of STA algorithm [94] the corresponding direc-
tivity function of single-element transmit and receive apertures, which is used
for evaluation of weights wmn, can be calculated in the far-field approximation
using analytical expression [68]:

f(θ) =
sin (πd/λ sin θ)

πd/λ sin θ
cos θ, (4.5)

where d is the element width, and λ is the wavelength. A few representative
examples of the directivity patterns determined for a single transducer element
having width of d = 0.28 mm, and operating at frequencies of 4, 5, and 7.2 MHz
are shown in Fig. 4.3. These patterns correspond to the ratios d/λ = 0.75, 0.94
and 1.35, respectively.

The results shown in Fig. 4.3 are in agreement with the experimental results
reported in [68]. The above Eq. (4.5) applies to a strip transducer with a time
harmonic uniform pressure distribution along its width and is obtained by means
of the Rayleigh-Sommerfeld formula in the far-field region [95]. The value of
λ in Eq. (4.5) corresponds to the working frequency of the probing wave. In
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Figure 4.3. Directivity functions for transducer array element with d = 0.28 mm for different
frequencies 4, 5, 7.2 MHz corresponding to d/λ = 0.75, 0.94, 1.35.

the case of MSTA method discussed here, however, the analytic formula given
by Eq. (4.5) cannot be used for evaluation of the directivity function of the
multi-element transmit aperture (it can be applied, however, to compute the
weights for the single-element receive aperture, for instance). Here, instead, the
results of the solution of a mixed boundary-value problem for periodic baffle
array discussed in the Section 3.2. can be successfully used in order to evaluate
the corresponding directivity functions. Specifically, the expression given by
Eq. (3.22) is used to this end, which is rewritten here in slightly modified form:

f(θ) = p(k sin θ) cos(θ), (4.6)

where f(θ) is a normalized value of pR in Eq. (3.22) representing the angular
dependent term in the far field region. In Eq. (4.6) k = 2π/λ is the wave-number,
and p - is the spatial spectrum of the pressure distribution on the plane of strips
(see Eq. (3.8) in the Section 3.2.) modeling the transducer array illustrated in
Fig. 4.1:

p(ξ) = pn(ξ − nK) ≡ pn(r); ξ = r + nK; n = ⌊ξ⌋ ; K = 2π/P, (4.7)

ξ is the spatial spectrum variable related to the x spatial coordinate; ⌊ξ⌋ - is the
integer floor of ξ; P - is the transducer pitch; r ∈ (0,K) is an arbitrary spatial
wave-number constrained to one Brillouin zone (see Section 3.2., Eq. 3.8):

p(x) =
∑

n

pne
−j(r+nK)x, pn(r) =

∑

m

αm(r)Sn−mPn−m(cos∆), (4.8)
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where ∆ = cos (πd/P ), d - the width of array element; Pn are the Legendre
polynomials; Sn = 1 for n ≥ 0 and 0 otherwise. The coefficients αm (dependent
on r) representing the corresponding Bloch components are evaluated from the
system of linear equations (see Section 3.2., Eqs. (3.14) and (3.18)):

∑

m

αm

[

j
η

ξ
Sn−m − 1

]

Pn−m(cos∆) = 0,

∑

m

(−1)mαmP−r/K−m(− cos∆) = j
K

π
pl e

jrlP sinπr/K,

(4.9)

where pl = 1 for l = 0 . . . Nt − 1, and pl = 0 otherwise are given constant
pressures of the corresponding active elements (slots in the considered boundary-
value problem formulation) which model the Nt-element transmit aperture. In
Eq. (4.9) the summation over a finite domainm ∈ [−M,M ] is assumed,M being
determined by the BIS-expansion approximation discussed in the Section 3.2.
(see Eqs. (3.12) and (3.13), which states in context of Eq. 4.9 that η/ξ = jSξ
for m > M (compare with Eq. (3.3), (3.4)), where η is the spatial spectrum
variable related to the z spatial coordinate and is defined as follows (see also
Eq. (3.2)):

η =
√

k2 − ξ2 = −j
√

ξ2 − k2. (4.10)

Typically, for k ∼ K it is sufficient to take several Bloch components pn into
account in the solution for the pressure filed (in the numerical examples shown
further M = 16 is applied). In the case of a single-element receive aperture
to evaluate its directivity function and corresponding apodization weights (see
Eq. (4.4)) instead of Eq. (4.5) the above method, Eq. (4.6), can also be exploited
in the modified MSTA algorithm, provided pl = δl0 is applied in Eq. (4.9), where
δ - is the Kronecker delta.

Some computed examples of the directivity function evaluated for different
number of active elements and different parameters d/λ and λ/P are shown
in Fig. 4.4. Specifically, in Fig. 4.4(a) the case of a single-element aperture
is considered for the same operating frequencies as in the example shown in
Fig. 4.3. Both methods, Eq. 4.5 and Eq. 4.6, yields similar results. In Fig. 4.4(b)
the case of Nt = 2 is illustrated.

4.3. Numerical examples

In this Section the developed modified MSTA algorithm is tested using the
data obtained by the Field II [69, 96] program for Matlab R© and from experimen-
tal measurements. To verify the performance of the modified MSTA algorithm
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Figure 4.4. Directivity functions for transducer array element with d = 0.28 mm for different
frequencies 4, 5, 7.2 MHz corresponding to d/λ = 0.75, 0.94, 1.35 evaluated using Eq. (4.6); (a)
Nt = 1, (b) Nt = 2

and estimate the lateral resolution and penetration depth as compared to the
conventional MSTA method, the synthetic aperture data of a system of point
reflectors were simulated for the case of 4 MHz 128-element transducer array
with the 0.3 mm pitch and 0.02 mm kerf. The point reflectors were placed in 7
columns, each spaced 4.9 mm apart laterally (this corresponds to 16 transducer
pitches). The columns were centered with respect to the transducer middle point
for convenience. In each column reflectors were spaced 5 mm axially. Such ar-
rangement of point reflectors, covering entire imaging region, was considered to
be convenient for visual assessment of the imaging quality in the whole area.
The resulting 2D visualization of point reflectors is shown in Fig. 4.5 over a 60
dB dynamic range.

Considerable improvement of the image quality in the region adjacent to the
transducer’s aperture can be observed. The blurring artefacts clearly visible in
the case of the conventional MSTA algorithm (left subplots in Fig. 4.5(a), and
Fig. 4.5(b)) in the vicinity of the first row of point reflectors, are substantially
reduced in the case of the modified MSTA algorithm (right subplots). This is
clearly observable in Fig. 4.6 and Fig. 4.7 where the lateral cross-section (in
logarithmic scale) of the first row of point reflectors and the axial section of
the central column are shown, respectively (only 4 first reflectors are visualized
for convenience). As seen in Fig. 4.6, the ’noise’-like spatial variations of the
scattered signal from the reflectors positioned near the transducer surface are
substantially suppressed from approximately -20 dB (MSTA, Nt = 2) to -37 dB
(modified MSTA, Nt = 2), see Fig. 4.6(a), and from -25 dB (MSTA, Nt = 4) to -



90 4. Application in ultrasound imaging

(a) (b)

Figure 4.5. Comparison of the image reconstruction by the conventional (left subplot) and
modified (right subplot) MSTA algorithms of the Field II simulated synthetic aperture data
for point reflectors and 4 MHz 128-element transducer array with 0.3 mm pitch and 0.02 mm
kerf; (a) Nt = 2, (b) Nt = 4. All images are displayed over 60 dB dynamic range.
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Figure 4.6. Lateral cross-section of the first row (depth 1 mm) of point reflectors in logarithmic
scale; (a) Nt = 2, (b) Nt = 4; solid lines - modified MSTA algorithm, this work; dashed lines
- regular MSTA algorithm.

35 dB (modified MSTA,Nt = 4), see Fig. 4.6(b). Also, an increase in penetration
depth can be observed in Fig. 4.7 which is further illustrated in Fig. 4.8, where
a detailed view of the axial section (central column) showing the maxima of
the scattered echo signals as a function of depth is presented. As shown in
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Figure 4.7. Axial section of the central column of point reflectors: (a) Nt = 2, (b) Nt = 4;
solid lines - modified MSTA algorithm, this work; dashed lines - regular MSTA algorithm.

Fig. 4.8(a) and Fig. 4.8(b) for Nt = 2, the scattered echo amplitude obtained
using the modified MSTA algorithm is 3.67 and 3.74 times larger than that
obtained by means of the conventional one at the depths of 50 and 90 mm,
respectively. Similarly, from Fig. 4.8(c) and Fig. 4.8(d) for Nt = 4 it is seen that
the scattered echo amplitude increases by 1.52 and 1.75 at the same depths if
the modified algorithm is used.

In Fig. 4.9 the results related to the lateral resolution are summarized. The
lateral cross-sections corresponding to the scattered echo signals of the point
reflectors positioned in the central column at the depths of 50 and 90 mm are
shown. The cases of Nt = 2 and Nt = 4 were considered again. As shown in
Fig. 4.9(a) through Fig. 4.9(d) for the modified MSTA algorithm the lateral res-
olution is slightly decreased as compared to the conventional one. It is quantified
here by the full width at half maximum (FWHM). Accordingly, at the axial dis-
tance of 50 and 90 mm for the conventional MSTA the lateral resolution is 0.88
and 1.06 mm in the case of Nt = 2. For Nt = 4 the corresponding data are
0.93 and 1.12. In the case of the modified MSTA algorithm at the depths of 50
and 90 mm the lateral resolution is 0.91 and 1.07 mm if the 2-element transmit
aperture is used (Nt = 2). For Nt = 4 the corresponding data are 1.01 and 1.16
mm. These represent 4.16 and 1.21% for Nt = 2 along with 8.08 and 3.16 %
for Nt = 4 decrease in the lateral resolution at the above identified depths. It is
worth noting that the decrease in the lateral resolution diminishes with depth.

In Fig. 4.10 the improvements in the image contrast offered by the modified
MSTA algorithm are demonstrated. For this purpose the performance of the
modified MSTA algorithm was tested using the experimentally obtained syn-
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Figure 4.8. Normalized axial section of the image line coinciding with the central column of
point reflectors at different depths: (a) 50 mm, Nt = 2; (b) 90 mm, Nt = 2; (c) 50 mm,
Nt = 4; (d) 90 mm, Nt = 4. Solid lines - modified MSTA algorithm, this work; dashed lines -
conventional MSTA algorithm.

thetic aperture data of a cyst phantom (an extra large scan- and elevation-plane
tissue mimicking phantom model 57119 Dansk Fantom Service). The measure-
ments were done using the Sonix-TOUCH Research system (Ultrasonix Medical
Corporation). The scanner was equipped with a linear transducer model L14-
5/38: a 128-element transducer with 0.3 mm element pitch, 0.02 mm kerf and
70% fractional bandwidth was excited by 3 cycles of transducer’s center fre-
quency equal 4 MHz. As anticipated (see Section 4.2.), the images presented in
Fig. 4.10 show that the modified MSTA algorithm provides a considerable im-
provement of the image quality in the immediate vicinity of the array’s aperture
(see Fig. 4.6), as compared to the conventional MSTA. Also, the results shown
in Fig. 4.10, demonstrate that the image contrast of the cysts located at the
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Figure 4.9. Normalized lateral cross-section of the scattered signal corresponding to the point
reflectors placed in central column at different depths: (a) 50 mm, Nt = 2; (b) 90 mm, Nt = 2;
(c) 50 mm, Nt = 4; (d) 90 mm, Nt = 4. Solid lines - modified MSTA algorithm, this work;
dashed lines - conventional MSTA algorithm.

axial distance exceeding 40 mm is also slightly improved (visual assessment).

The examples illustrated above confirm that the modified MSTA method
presented in this Section allows to achieve considerable improvement of the in
the image quality in the region lying in the immediate vicinity of the transducer
surface. Also, the hazy blurring artifacts obtained using the conventional MSTA
algorithm were substantially suppressed due to the directivity weights applied
in the modified MSTA. In addition, an increase in the visualization depth was
demonstrated. Concurrently, however, a slight degradation of the lateral reso-
lution was observed, on the other hand this decrease in the lateral resolution
decreased with increasing penetration depth. The proposed modification is based
on implementation of the apodization weights accounting for the finite trans-
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(a) (b)

Figure 4.10. Image reconstruction of the measurement synthetic aperture data for cyst phan-
tom (Dansk Fantom Service, model 571 [97]) and 4 MHz 128-element transducer array with
0.3 mm pitch and 0.02 mm kerf (a) Nt = 2, (a) Nt = 4. All images are displayed over 40 dB
dynamic range. Left subplot - conventional MSTA algorithm; right subplot - modified MSTA
algorithm, this work.

mit and receive apertures dimensions. To this end the results of beam-forming
analysis presented in the Section 3.2. were successfully exploited.

It should be noted, that the proposed algorithm can be applied to improve
the imaging quality in both transmit and receive modes for transmit aperture
comprised of up to 16÷ 20 elements. For larger apertures the increased angular
directivity of the transmit aperture leads to stronger spatial filtering in wider
range of angles. But, in such cases the apodization weights can be applied in
receive mode only, which still yields considerable improvement of the imaging
quality as compared to the conventional MSTA algorithm. This is illustrated
in Fig. 4.11, where the modified MSTA algorithm is compared both with the
conventional one and with the MSTA, having the apodization weights applied
only in receiving [93]. Fortunately, in practical realization of the MSTA method
not large number of elements in transmit mode is used [83], since there exists
a trade-off between penetration depth and the lateral resolution: the former
increases and the latter decreases as the number of elements in transmit aperture
increases [98].

The inherent advantage of the MSTA method, using several elements in
transmit mode, over the STA, using a single element, is that it allows to increase
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Figure 4.11. Image reconstruction of the measurement synthetic aperture data for cyst phan-
tom (Dansk Fantom Service, model 571 [97]) and 4 MHz 128-element transducer array with
0.3 mm pitch and 0.02 mm kerf; Nt = 8. All images are displayed over 40 dB dynamic range.
Left subplot - conventional MSTA algorithm; right subplot - modified MSTA algorithm, this
work. Left subplot - conventional MSTA algorithm; right subplot - modified MSTA algorithm,
this work; central subplot - modified MSTA algorithm with apodization weights applied in
receive mode only.

the frame rate, as discussed in the Section 4.2., which means that the processing
time can be reduced so it can be performed in such a way that the image is
updated at each launching of the probing wave. This promises the modified
MSTA method will be well suited to being employed in clinical examinations,
especially in the applications where the quality of the "near-field" image, that
is the image in the immediate vicinity of the scanhead is of critical importance
such as for instance in skin- and breast-examinations.
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5

Modeling of 2D periodic structures

In the Chapters 3 and 4 the acoustic beam-forming analysis of the linear trans-
ducer arrays was discussed using the methods which are generalized from cor-
responding spectral approach developed in the electrostatics of planar systems
of conducting strips. It appears that the method can be also equally well suited
for treatment of 2D acoustic beam-forming structures. This subject is briefly
discussed in the current Chapter.

Up-to-date ultrasound probes comprised of hundreds of the elementary trans-
ducers can be approximated as a periodic plane arrays and successfully modeled
using the method of analysis based on the BIS-expansion (see Section 2.2.1.
and 3.2.). In the case of ultrasound imaging (e.g. B-mode) using a linear trans-
ducer array the 2D cross-section slices are obtained. Mechanical steering in
the elevation direction can be used to combine these cross-sectional slices to
achieve volumetric imaging. To accomplish completely electronic focusing and
high-speed volumetric scanning the 2D matrix of piezoelectric transducers were
developed and implemented recently. Introducing the second dimension in the
array of transducers allows to perform electronic steering in elevation (in con-
trast to the mechanical steering mentioned above in the case of 1D arrays) and
reduce the slice thickness, resulting in better volumetric imaging quality and res-
olution [99, 100]. This offers potentialities for developing of the 3D ultrasound
imaging. This new modality overcomes limitations of 2D viewing of 3D anatomy,
using conventional ultrasound techniques. In contrast to 2D case, where the se-
quence of 2D images is transformed by the operator in his mind to obtain the
impression of 3D viewing, in 3D ultrasound imaging this activity is performed
by the computer. This leads to more efficient and faster examination, diagnostic
and monitoring of therapeutic procedures free of potential inaccuracies related to
subjective operator dependent treatment. To achieve high imaging quality and
faultless work of medical 3D scanners, the corresponding 2D matrix of trans-
ducers must be carefully designed including the array fabrication, the electronic
integration and the device packaging. And a matter of great importance is de-
veloping corresponding analytical and numerical models of 2D array transducers
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in order to perform its accurate analysis and performance verification prior to
fabrication. Several 2D planar phase-array transducer configurations have been
proposed for medical diagnostics [101, 102]. Among them the classical design is
the square or matrix architecture [103] (see Fig. 5.1), which is mainly dealt with
in this Chapter. The typical geometry of a 2D transducer array is illustrated in
Fig. 5.1.

Figure 5.1. Typical 2D square array of piezoelectric transducers with signal wires.

As seen from Fig. 5.1 fabrication of a typical square 2D array transducer
requires a large number of signal wires to be connected to individual piezoelec-
tric elements which introduces considerable technological difficulties, such as
increased costs and complexity of electronic drive circuits wiring, especially at
higher operating frequencies [104]. For instance given 256×256 matrix there are
above 65e3 signal channels with typical dimensions ∼ λ/2 in water so that each
5 MHz array element is 0.15 × 0.15 mm. To alleviate these problems recently
in the literature a novel 2D transducer array architecture has been considered.
Namely, a 2D structure of an edge-connected, crossed-electrode array was first
considered in [105]. The proposed transducer is capable of control N ×M el-
ements with N +M signal channels. It, however, does not allow to generate
arbitrary wave fronts and perform beam-steering in both azimuth and elevation.
This problem was partially solved in [106] where a novel approach to generate a
2D ultrasound field using an edge-connected crossed electrode array containing
nonlinear transducers such as electrostrictive or electrostatic transducers was
proposed. The problem was superficially approached in the signal processing
framework without thorough research. However no profound theoretical analy-
sis of the considered crossed-electrode array has been carried out so far.

In this study a generalization of the earlier discussed electrostatic methods
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to the problem of 2D periodic structures beam-forming analysis is presented.
To this end a 2D ultrasound transducer array comprising crossed periodic metal
electrodes placed on both sides of thin dielectric layer exhibiting electrostric-
tive properties (see Fig. 5.2) is treated in details. The arrangement of strips
corresponds to the 2D matrix rows and columns and represents a novel 2D
beam-forming and beam-steering approach.

Figure 5.2. System of crossed planar arrays of strips located at the opposite faces of thin
electrostrictive dielectric layer.

The system, shown in Fig. 5.2 is capable of electronic beam steering of gen-
erated wave both in elevation and azimuth. Perspective application of such a
device may be in 3D ultrasound imaging systems. The wave beam control is
achieved by addressable driving of the 2D matrix transducer through proper
voltage supply of electrodes on opposite surfaces of the electrostrictive layer.
Recently electrostrictive materials have been receiving growing attention due to
their application as sensors, actuators [107] or transducers [108]. They belong to
the class of electroelastic materials exhibiting a quadratic dependence of stress
fields upon electric fields. Typically, uniform electric field is applied to entire
device, being a plate or membrane made of electroactive polymers and placed
between two compliant electrodes, causing its uniform deformation [109]. In this
study, however, the case of arbitrary nonuniform electric field distribution yield-
ing nonuniform stress in the plate and its nonuniform vibrations is considered.
To evaluated the stress in the layer excited by potentials (voltage) applied to
electrodes the formulation of nontrivial electrostatic problem is required. Its
solution is based on application of the BIS expansion method (see the Sec-
tion 2.2.1.) which was used for solving of electrostatic problems discussed in the
Section 2.2. and for acoustic beam-forming analysis discussed in the Section 3.2.

Consider a structure containing an electrostrictive dielectric layer with di-
electric permittivity ǫ and the systems of parallel conducting strips placed on
the opposite surfaces and oriented perpendicularly to each other, as shown in
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Fig. 5.3. Let’s denote the driving signal applied to the upper and bottom strips

(a) (b)

Figure 5.3. Periodic metal strips (electrodes) arranged perpendicularly on both faces of the
electrostrictive layer and connected to external voltage sources. (a) Unitary voltage is applied
to the upper lth strip residing on a d-thick dielectric layer; other strips are grounded.

as fi and sj , respectively, where the i, j are the row and column numbers of the
(i, j) matrix cell, located at an intersection of ith upper and jth bottom side
strips. For the case of time-harmonic signals:

fi = cosωit, sj = cos(ωi +Ω)t; Ω << ωl, l = i, j, (5.1)

the resulting stress in the (i, j)-cell can be approximated as follows [58]:

σ(ij) = ǫ

(

fi − sj
d

)2

≈ 1− cos(ωi − ωj)t− cos(ωi + ωj)t+ · · · (5.2)

In most applications the high frequency vibrations of the cells can be neglected.
This yields the tool for selective (addressable) excitation of given cells: only this
cell will vibrate with low frequency Ω, which resides between strips driven by
the signals fi and sj with frequencies differing by Ω. Thus, applying different
amplitudes and phase-shifts to fi, sj or frequencies difference Ω, one obtains
quite flexible tool for controlling vibrations of cells and the induced stress dis-
tribution over entire electrostrictive transducer matrix. The shape of vibrations
require detailed analysis of electric field distribution in the layer.
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5.1. Generalization of BIS-expansion method

To carry out the theoretical analysis the known results from the theory of sur-
face acoustic waves interdigital transducers or electrostatics of planar periodic
system of conducting strips, discussed in details in the Sections 2.2. and 2.2.1.
will be used. Namely, the BIS-expansion method will be generalized and ap-
plied to the case of the considered 2D periodic array modeling [110, 111]. The
electric field defined as E = −∇ϕ, where ϕ is electrostatic potential (as in the
Section 2.1.), on the plane of strips can be expanded into the Bloch series as
follows [110]:

~E = {Ex, Ey} =
∑

n,m

Enm

{

rn
knm

,
sm
knm

}

e−j(rnx+smy),

rn = r + nK, sm = s+mK, knm =
√

r2n + s2m,

(5.3)

where Λ = 2π/K is strip period; K - is a wavenumber of the strip array; w -
is the strip’s width; r ∈ (0,K) and s ∈ (0,K) are arbitrary spatial spectrum
variables reduced to one Brillouin zone for the uniqueness of representation.
In Eq. (5.3) Enm can be viewed as the amplitude of the plane harmonic field
varying along the axis u, rotated by the angle ϑ with respect to the x axis in
the xy-plane:

E(u) = Ex cosϑ+ Ey sinϑ = Enme
−jknmu, tanϑ = sm/rn. (5.4)

In the above equation Ex and Ey denote the components of the electric field
corresponding to (n,m) spatial harmonic. The electrostatic potential appropri-
ate to the Eq. (5.3) can be represented by the following expansion on the plane
of strips:

ϕ =
∑

n,m

Enm

knm
e−j(rnx+smy). (5.5)

It should be noted that generally, the tangential component of the electric field
on the plane of strips depends on both the x and y spatial coordinates. This
is achieved by using a strip model assuming that each strip is a stack of lat-
eral sub-strips, so that the strip potential can vary between sub-strips (but it
is constant on the sub-strips). The more detailed discussion can be found for
instance in [112]. The normal component of electric induction D ≡ Dz (whose
jump discontinuity on the strips plane defines a surface electric charge) can be
expanded into a similar series of spatial harmonics as in Eq. (5.3) but with corre-
sponding amplitudes Dnm. The boundary conditions on the upper (superscript



102 5. Modeling of 2D periodic structures

u) and bottom (superscript b) surfaces of the dielectric layer imposed on the
field components are:

Eu
x = 0, Eb

y = 0, on strips,

Du = 0, Db = 0, between strips.

(5.6)

Applying the BIS-expansion (see Sec. 2.2.1.) the surface fields components sat-
isfying the boundary conditions given by Eq. (5.6) can be expressed in the
following manner (compare with Eq. (3.9) and Eqs. (2.15), (2.17)):

Eu
x =

∑

n′,n,m

αm
n′Sn−n′Pn−n′(cos∆)e−j(rnx+smy),

Du =
∑

n′,n,m

α̃m
n′Pn−n′(cos∆)e−j(rnx+smy),

Eb
y =

∑

m′,n,m

βnm′Sm−m′Pm−m′(cos∆)e−j(rnx+smy),

Db =
∑

m′,n,m

β̃nm′Pm−m′(cos∆)e−j(rnx+smy),

(5.7)

where ∆ = Kw/2; Pk(·) - is the Legendre polynomials; Sν = 0 for ν < 0
and Sν = 1 otherwise. The unknown coefficients αm

n′ , α̃m
n′ and βnm′ , β̃nm′ can be

evaluated using the relation between spatial spectra of the tangential electric
field Eu,b and normal electric induction Du,b on the upper and bottom surfaces
of the dielectric layer, which governs the field inside the layer [110]:

[

Eu

Eb

]

=
Sk
jǫ

[

coth |k|d −1/ sinh |k|d
1/ sinh |k|d − coth |k|d

] [

Du

Db

]

. (5.8)

The above relation directly results from the solution of the Laplace equation
∆ϕ = 0 inside the dielectric layer, where the electric potential ϕ(z) can be
expressed in the following form:

ϕ(u, z) =
[

Ae−|k|z +Be|k|z
]

e−jku, |z| < d/2. (5.9)

In the above equation u is defined for the (n,m) component in Eq. (5.4). Eval-
uating the field components Eu, Dz:

Eu(u, z) = jk
[

Ae−|k|z +Be|k|z
]

e−jku,

Dz(u, z) = ǫ|k|
[

Ae−|k|z −Be|k|z
]

e−jku,

(5.10)
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and eliminating the constants A,B from the above using the surface field Eu,b =
Eu±d/2, Du,b = Dz±d/2 one readily obtains Eq. (5.8). It plays here a similar
role as the plane harmonic Green’s function defined for a half-plane by Eq. (2.3)
in the Section 2.1. or the surface harmonic admittance of acoustic half-space,
defined by Eq. (3.3) in the Section 3.1. Namely, the field expansion given by
Eqs. (5.7) must obey Eq. (5.8) for any Bloch component having wave-numbers
k = knm included in the expansion. It is worth noting, that the higher Bloch
orders vanish fast inside the layer and are negligible on its opposite surface due to
the term 1/(sinh knmd). Thus, for large knm the corresponding spatial harmonics
are well-localized at a given dielectric surface. This significantly simplifies the
analysis due to the equations separation for large knm. The Bloch components
from Eq. (5.7) must obey Eq. (5.10) for any numbers (n,m). Particularly, for
(n,m) sufficiently large, such that coth |kNM |d = 1, 1/ sinh |kNM |d = 0 and
rN/kNM = 1 for the upper and sM/kNM = 1 for the bottom surface field
representations, where N,M some large but finite integers (see Sec. 3.2. and
discussion further in this Section), a similar approximation as in Eq. (3.13) can
be applied:

α̃m
n′ = jǫαm

n′ ; β̃nm′ = −jǫβnm′ . (5.11)

Substituting the above equation into Eq. (5.7) yields:

Eu
x =

∑

n′,n,m

αm
n′Sn−n′Pn−n′(cos∆)e−j(rnx+smy),

Du = jǫ
∑

n′,n,m

αm
n′Pn−n′(cos∆)e−j(rnx+smy),

Eb
y =

∑

m′,n,m

βnm′Sm−m′Pm−m′(cos∆)e−j(rnx+smy),

Db = −jǫ
∑

m′,n,m

βnm′Pm−m′(cos∆)e−j(rnx+smy),

(5.12)

Substitution of the Bloch components having the same wave-number knm from
Eqs. (5.12) into Eqs. (5.8) for n ∈ [−N,N ], m ∈ [−M,M ] yields the system of
linear equations for the unknown coefficients αm

n′ and βnm′ , m′ ∈ [−M,M ] and
n′ ∈ [−N,N ]:

αm
n′

[

Sn−n′ tanh knmd−
rn
knm

]

Pn−n′−βnm′

rn
knm

Pm−m′

cosh knmd
= 0,

−αm
n′

sm
knm

Pn−n′

cosh knmd
+ βnm′

[

Sm−m′ tanh knmd−
sm
knm

]

Pm−m′= 0.

(5.13)
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In Eq. (5.13) Pl = Pl(cos∆) is applied to shorten notation. Due to the conditions
leading to the approximation in Eq. (5.11) the equations for αm

n′ and βnm′ given
by Eq. (5.13) outside the limits n ∈ [−N,N ],m ∈ [−M,M ] are satisfied directly,
what can be checked by inspection (see discussion in Sec. 2.2.1., Eqs. (2.52–2.57)
and in Sec. 3.2., Eq. (3.14)). The number of equations in Eq. 5.13 can be further
reduced for the considered case of s = 0 exploiting the symmetry properties of
the unknown coefficients βnm′ . Namely, substituting the identities involving the
Legendre polynomials [64]:

P−1−ν(cos∆) = Pν(cos∆); Pl(− cos∆) = (−1)lSlPl(cos∆), (5.14)

into Eq. 5.13 yields:
βnm′(r) = βn1−m′(r), (5.15)

where the dependence of the coefficients on r is shown explicitly. Taking into
account Eq. (5.15) the equations in Eq. (5.13) can be transform for 0 ≤ m,m′ ≤
M , with −N ≤ n, n′ ≤ N as follows:

αm
n′

[

Sn−n′ tanh knmd−
rn
knm

]

Pn−n′−βnm′

rn
knm

Pm−m′−P−m−m′

cosh knmd
= 0,

αm
n′

sm
knm

Pn−n′

cosh knmd
−βnm′

∑

l=−m,m

[

Sl−m′ tanh knmd−
sm
knm

]

Pl−m′ = 0.

(5.16)

In Eq. (5.16) the last equation for m = 0 should be replaced with the following:

Pn−n′

cosh kd
α0
n′ − 2

[

(−1)m
′ k

K
tanh kd

d

dξ
P−m′+ξ

∣

∣

ξ=0
− P−m′

]

βnm′ = 0, (5.17)

where k = kn0. The truncation numbers M,N involved in the system of linear
equations, Eq. (5.16) and Eq. (5.17), generally, should be infinite, but practically
it is sufficient to apply N,M not very large finite integers. Let N ′,M ′ be such
that

tanhN ′Kd ≈ tanhN ′Kd ≈ 1, (5.18)

then N > N ′ and M > M ′ should be chosen such that rN/kNM ′ ≈ 1 and
sM/kN ′M ≈ 1, respectively (see Eq. (5.11) and the foregoing discussion).

Integrating corresponding tangential components of the electric field (see
Eq. (2.58) in Sec. 2.2.1.) one obtains the potential distribution on the plane of
strips on the upper and bottom sides (which assumed to be given in the con-
sidered boundary-value problem as additional constrains to determine unknown
expansion coefficients uniquely). Following the same considerations as in the
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Section 2.2.1. when deriving Eq. (2.62) (see Eqs. (2.58) through (2.62)), for the
case, shown in Fig. 5.3(b), where the unitary voltage is applied to lth upper strip
and all the bottom strips assumed to be grounded (s = 0, sm = mK in this
case) this condition results in (see also derivation of Eq. (3.18) in Sec. 3.2.):

(−1)n
′

αm
n′P−n′−r/K(− cos∆) = δm0

K

π
ejrlΛ sinπr/K, (5.19)

where δij - is the Kronecker delta. Solving Eqs. (5.16), (5.17) and Eq. (5.19)
for αm

n′ and βnm′ the planar electric field can be determined on both surfaces of
dielectric layer from Eq. (5.12).

5.2. Induced electrostrictive stress in the dielectric layer

According to Eq. (5.2), the electrostrictive stress in the layer σ(ij) or, more
exactly, its z-component, considered here, is proportional to the product of
normal component Ez(x, y) of the electric field vector, resulting from the applied
potential to the upper ith electrode and Ez(x, y) excited by the bottom jth

electrode. In the considered case of the same strip periodicity and width on
both upper and bottom sides of the layer, the latter equals to the Ez(y, x)
on the upper face of the layer. It is known [113, 114] that the electric field is
singular at the strip edges. In order to avoid the corresponding difficulty, the
Ez components of electric field at the layer middle plane z = 0 are evaluated.
It can be reconstructed from the surface normal induction Dz on both surfaces
of the layer given by Eq. (5.12). In general case the electric field representation
on both surfaces of the dielectric layer, Eq. (5.12), are defined for any ̺ =
r + nK and τ = s + mK, being the spectral variables corresponding to the
x and y spatial coordinates. Therefore, Eqs. (5.12) can be considered as the
2D Fourier transforms of the corresponding spatial distributions of the electric
field components on the planes of strips. Thus, using the spatial spectra of the
normal induction on the upper Du and bottom Db faces of the dielectric layer,
Eq. (5.12), the normal induction on the plane z = 0, resulting directly from
Eq. (5.10) (the constants A,B being expressed in terms of Du, Db), is:

Dz =
Du +Db

2 cosh |k|d/2 , k = kmn =
√

̺2 + τ2. (5.20)

In the particular case considered here (s = 0) the function in Eq. (5.20) is
defined in the spectral domain of continuous variable ̺ = r + nK and discrete
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τ = mK and the corresponding spatial counterpart can be found by the inverse
2D Fourier transform. Using the relation Ez = Dz/ǫ one finally obtains:

Ez(x, y) =
2j

K

∫ ∞

−∞
e−j̺xd̺

×
∞
∑

m=−∞

αm
n′Pn−n′(cos∆)− βnm′Pm−m′(cos∆)

cosh(knmd/2)
e−jmKy.

(5.21)

Fast growing term 1/(cosh knmd/2) makes the above equation suitable for nu-
merical evaluation.

In Fig. 5.4 the numerical example of the σz component of the electrostrictive
stress in the layer middle plane z = 0 is shown in relative scale for w/Λ = 0.6
and different thickness of the dielectric layer. As is seen from Fig. 5.4, the stress
distribution at the middle plane of the dielectric layer significantly departs from
uniform and spans somewhat outside the cell covered by the supplied strips.

Summarizing, the extension of the BIS-expansion method, originally devel-
oped for electrostatic analysis of 1D periodic planar systems of strips, was pre-
sented in this Section for modeling of 2D periodic structure comprised of crossed
arrays of strips placed on the opposite surfaces of the thin dielectric electrostric-
tive layer. It is an example of novel architecture of 2D transducer with potential
application in 3D ultrasound imaging. Numerical examples show the resulting
nonuniform electrostrictive stress induced in the area of the excited matrix cell
for one upper strip excited by a uniform voltage and all bottom strips grounded.
The method is of great importance for analysis of more general cases, like, double
periodic structures comprised of crossed arrays of strips placed on piezoelectric
plate and arbitrary voltage supply. This case is being developed and the promis-
ing results are being expected.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4. The electrostrictive stress generated in the 2Λ× 2Λ domain of the dielectric layer
at the plane z = 0 for w/Λ = 0.6 and different plate thickness: (a), (b) - d/Λ = 0.15; (c), (d)
- d/Λ = 0.5; (e), (f) - d/Λ = 1.
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6

Other applications

In the previous Chapters of this study the electrostatic methods of analysis of
planar system of conducting strips (see Chapter 2) were generalized for acous-
tic beam-forming applications using the linear phased-array transducers (see
Chapters 3, 4). Both the BIS-expansion and the template function approaches
(see Sections 2.2.1. and 2.3., respectively) were exploited for the solution of
the corresponding boundary-value problem for baffle array, discussed in details
in the Chapter 3. Also an extension for the case of 2D acoustic beam-forming
structures was presented in the Chapter 5, where the novel geometry of ma-
trix transducer composed of the crossed arrays of strips was considered. To
this end a generalization of the BIS-expansion method to the analysis of 2D
periodic structures was discussed. As already mentioned in the Chapter 1, the
range of physical problems which can be analyzed by the methods of electro-
static spectral theory, discussed in details in the Chapter 2, is not restricted to
the acoustic waves only. In particular, the problems of elastic wave scattering
by periodic cracks [36] and electromagnetic wave scattering by a planar peri-
odic system of perfectly conducting strips [35] were successfully approached by
the BIS-expansion method. Recently, it was further generalized for analysis of
non-planar periodic structures [42–44] in the theory of electromagnetic wave
scattering. Also a theoretical study of the planar system of strips with broken
periodicity (to be defined in Sec. 6.2.) in electrostatic applications was con-
ducted. In this Chapter the above extensions of the electrostatic method based
on the BIS-expansion will be discussed to show its flexibility and versatility.
In the Section 6.1. the scattering of electromagnetic waves by periodic thick-
walled parallel-plate waveguide array and by the system of thick conducting
electrodes will be considered following [43] and [44], respectively. And, finally,
in the Section 6.2. electrostatic analysis for the planar system of strips with
broken periodicity (quasi-periodic system) will be presented [57].
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6.1. Electromagnetic wave scattering by non-planar periodic

structures

Electromagnetic scattering and radiation by periodic systems is a significant
and important problem of the diffraction theory which is still of current impor-
tance from the theoretical and practical points of view. Different systems and
methods are described in the literature. In the practical aspect the perfectly
electric conducting (PEC) periodic structures can simulate the phased arrays in
micro an millimeter wave applications, such as filters [45, 46], frequency selec-
tive structures [47, 48], splitters and antennas [49, 50], widely used in today’s
communication and radar systems [51, 52]. From the theoretical point of view
it gives a deeper insight into the study of periodic structures. Recently, peri-
odic systems with a particular arrangement of scatterers including conductors
and dielectrics has received growing attention, because such the systems may
behave like negative refractive index materials [53, 54, 115] within a certain
frequency range. Many approaches [55, 56, 116, 117] have been proposed to an-
alyze them, such as the mode-matching method, finite difference time domain
(FDTD) technique, finite element method (FEM), and Fourier series method.
In this Section the problems of plane wave scattering by a periodic array of
thick-walled parallel-plate waveguides and by a periodic system of conducting
electrodes of finite thickness will be considered.

6.1.1. Plane wave scattering by a thick-walled parallel-plate waveguide array

The scattering of electromagnetic waves by a parallel-plate waveguide array
is a classical problem of diffraction theory and has been investigated by many
authors [118–123]. Exact closed-form solutions has been obtained only in few
cases of waveguides with infinitesimally thin walls [124], [61]. In the case of
thick waveguide walls different methods from Wiener-Hopf [118] and variational
technique [119] to purely numerical treatment of integral equation [120] and
finite-element time-domain method [121] were used to obtain an approximate
solution.

Here the problem of plane wave scattering by an array of parallel-plate
waveguides with thick walls for oblique incidence will be approached using a
method discussed earlier in the Sections 2.2.1. and 3.2. which exploits a similar
field representation as in the case of the BIS-expansion method and, therefore,
can be referred as its generalization to the case of analysis of non-planar struc-
tures. Specifically, the scattered field is sought in the form of spatial harmonics
in the space above the array and in the form of parallel plate waveguide modes
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in the waveguide regions. The presented method is based on application of a
Fourier series expansion for representation of the spatial harmonics amplitudes
in free space above the waveguides. The corresponding coefficients are properly
chosen Legendre functions, similarly as in the BIS-expansion method studied
in earlier Sections. This helps one to satisfy the boundary and edge conditions
directly by field representation. Similarly as in [42] a problem is reduced to nu-
merical solving of certain system of linear equations with coefficients given by
explicit formula.

Consider an infinite system of perfectly conducting thick-walled parallel-
plate waveguides shown in Fig. 6.1. The period of the structure is Λ and the

E

k

x

Λ

d

y

z

γ
φ

θ

Figure 6.1. Thick-walled parallel-plate waveguide array

waveguide aperture is d. The system is homogeneous in the direction of the
y-axis, and direction of periodicity is along the x-axis. Waveguides occupy the
lower half-plane z < 0. An incident plane harmonic wave of angular frequency
ω impinges on the system at the angle θ counted from the z-axis in the plane
rotated with respect to the plane y = 0 by the angle φ, counted from the x-axis
as shown in Fig. 6.1. In what follows, the term ejωt will be omitted. The total
field can be represented in the form:

{ ~E+, ~H+} = { ~Es+, ~Hs+}+ { ~EI , ~HI}, z > 0,

{ ~E−, ~H−} = { ~Es−, ~Hs−}, z < 0,

(6.1)

where the superscripts +,− denote the field components above the waveguides
(z > 0) and in the waveguides (z < 0), respectively. The superscripts s and I
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denote the scattered field and given field of the incident wave, respectively. The
components of the electric and magnetic field vectors can be written in terms of
the Hertz electric and magnetic potentials ~nzΦ and ~nzΨ [29] (except for the case
of normal incidence along the z-axis which is not considered here) as follows:

~E = −jωµ0∇× ~nzΨ+∇∇ · ~nzΦ+ k20~nzΦ,

~H = ∇∇ · ~nzΨ+ k20~nzΨ+ jωǫ0∇× ~nzΦ,

(6.2)

where ǫ0 and µ0 are dielectric permittivity and magnetic permeability of free
space, respectively; k = ω(ǫ0µ0)

1/2 is the wave number of plane incident wave;
~nz is a unity vector along the z-axis. The Hertz potentials of the incident wave
field are assumed in the form:

ΦIe−j(kxx+kyy−kzz), ΨIe−j(kxx+kyy−kzz), k2 = k2x + k2y + k2z ,

kx = k sin θ cosϕ, ky = k sin θ sinϕ, kz = k cos θ,

(6.3)

with corresponding amplitudes ΦI and ΨI . According to the Floquet’s theorem
in the upper half-space z > 0 the solution for Φ and Ψ is tried in the form of a
linear combination of spatial harmonics:

ψn=e
−j(k+xnx+kyy+k+znz), k2=k+2

xn +k2y+k
+2
zn , k

+
xn=kx + nK,

k+zn =







(k2 − k+2
xn − k2y)

1/2, k2 ≥ k+2
xn + k2y,

−j(k+2
xn + k2y − k2)1/2, k2 < k+2

xn + k2y,

K = 2π/Λ

(6.4)

with amplitudes Φ+
n and Ψ+

n . Substituting Eq. (6.3) and Eq. (6.4) into Eq. (6.2)
the expressions for the spatial harmonics of the total electric and magnetic field
components in the upper half-space can be deduced:

E+
xn=

(

ωµ0kyΨ̃
+
n +k

+
xnk

+
znΦ̃

−
n

)

ψn,

E+
yn=

(

−ωµ0k+xnΨ̃+
n +k

+
znkyΦ̃

−
n

)

ψn,

E+
zn=(k2−k+2

zn )Φ̃+
nψn,

H+
xn=

(

−ωǫ0kyΦ̃+
n +k

+
xnk

+
znΨ̃

−
n

)

ψn,

H+
yn=

(

ωǫ0k
+
xnΦ̃

+
n +k

+
znkyΨ̃

−
n

)

ψn,

H+
zn=(k2−k+2

zn )Ψ̃+
nψn,

(6.5)
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with new amplitudes Φ̃±
n , Ψ̃±

n defined as follows:

Φ̃+
n = δn0Φ

I +Φ+
n , Φ̃

−
n = δn0Φ

I − Φ+
n ,

Ψ̃+
n = δn0Ψ

I +Ψ+
n , Ψ̃

−
n = δn0Ψ

I −Ψ+
n .

(6.6)

In Eq. (6.6) δn0 is Kronecker delta; n ∈ Z. In the lower half-space z < 0 the
solution for the electric and magnetic Hertz potentials is sought in the form of
linear combination of parallel plate waveguide modes given below for one period
of the structure −d/2 ≤ x ≤ d/2:

Φ−
p ψ

s
p : ψ

s
p=sin

(

k−xp (x+d/2)
)

e−j(kyy−k−zpz), p∈N,

Ψ−
p ψ

c
p : ψ

c
p=cos

(

k−xp (x+d/2)
)

e−j(kyy−k−zpz), p∈N∪0,

k2 = k− 2
xp + k2y + k− 2

zp , k
−
xp = pπ/d,

k−zp =







(k2 − k− 2
xp − k2y)

1/2, k2 ≥ k− 2
xp + k2y,

−j(k− 2
xp + k2y − k2)1/2, k2 < k− 2

xp + k2y,

(6.7)

with amplitudes Φ−
p , Ψ

−
p . The partial wave amplitudes in the lth period, −d/2+

lΛ<x<d/2+lΛ, are as follows:

Φ
(l)−
p = Φ−

p exp(−jkxlΛ), l ∈ Z, p ∈ N,

Ψ
(l)−
p = Ψ−

p exp(−jkxlΛ), l ∈ Z, p ∈ N ∪ 0.
(6.8)

Substituting Eq. (6.7) into Eq. (6.2) the following expressions for the partial
waves representing the total electric and magnetic field components in the
waveguides can be written:

E−
xp =

(

jk−xpk
−
zpΦ

−
p (1− δp0) + ωµ0kzΨ

−
p

)

ψc
p,

E−
yp =

(

kyk
−
zpΦ

−
p + jωµ0k

−
xpΨ

−
p

)

(1− δp0)ψ
s
p,

E−
zp =

(

k2 − k− 2
zp

)

Φ−
p (1− δp0)ψ

s
p,

H−
xp = −

(

jk−xpk
−
zpΨ

−
p + ωǫ0kyΦ

−
p

)

(1− δp0)ψ
s
p,

H−
yp =

(

kyk
−
zpΨ

−
p + jωǫ0k

−
xpΦ

−
p (1− δp0)

)

ψc
p,

H−
zp =

(

k2 − k− 2
zp

)

Ψ−
p ψ

c
p,

(6.9)
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where p ∈ N ∪ 0 and the arguments of ψs
p and ψc

p has been dropped to shorten
notation. The tangential electric field must vanish on the surface of perfectly
conducting waveguide walls yielding the following boundary conditions:

Ex = 0; Ey = 0; d/2 < |x| < Λ/2, z = +0

Ey = 0; Ez = 0; x = ±d/2, z < 0.

(6.10)

Besides, near the edges of the waveguides walls the tangential field components
exhibit singular behavior [61]:

Ei = O(ρ−1/3), Hi = O(ρ−1/3), i = x, z,

ρ→ 0, ρ =
(

(x± d/2)2 + z2
)1/2

.

(6.11)

The tangential field components must obey a continuity condition across the
apertures of the waveguides on the plane z = 0:

E+
i = E−

i , H
+
i = H−

i , −d/2 < x < d/2, z = 0, i = x, z. (6.12)

Next, the mode matching technique is applied to deduce a system of equations
for unknown amplitudes Φ̃±

n , Ψ̃±
n defined in Eq. (6.6). Namely, the expressions for

the field components in the upper and lower half-spaces given by Eq. (6.5) and
Eq. (6.9) are substituted into Eq. (6.12) first. Then, multiplying by cos(k−xl(x+
d/2)) and sin(k−xl(x+ d/2)) (l ∈ Z) of the continuity conditions, Eq. (6.12), for
Ex, Hy and Ey, Hx, respectively, and integrating with respect to x from −d/2
to d/2 one obtains for Ex, Hy:

(

jk−xpk
−
zpΦ

−
p (1− δp0) + ωµ0kyΨ

−
p

)

(1 + δp0) =

∑

n

k+xn

(

k+xnk
+
znΦ̃

−
n + ωµ0kyΨ̃

+
n

)

Fpn,

(

jωǫ0k
−
xpΦ

−
p (1− δp0) + kyk

−
zpΨ

−
p

)

(1 + δp0) =

∑

n

k+xn

(

ωǫ0k
+
xnΦ̃

+
n + kyk

+
znΨ̃

−
n

)

Fpn,

(6.13)
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where p ∈ N ∪ 0. Similarly, for Ey, Hx, one obtains:

(

kyk
−
zpΦ

−
p + jωµ0k

−
xpΨ

−
p

)

=

−jk−xp
∑

n

(

kyk
+
znΦ̃

−
n − ωµ0k

+
xnΨ̃

+
n

)

Fpn,

(

ωǫ0kyΦ
−
p + jk−xpk

−
zypΨ

−
p

)

=

−jk−xp
∑

n

(

ωǫ0kyΦ̃
+
n − k+xnk

+
znΨ̃

−
n

)

Fpn,

(6.14)

where p ∈ N and the term Fpn, defined as follows:

Fpn =
4ejpπ/2

d

sin
([

k+xn − k−xp
]

d/2
)

k+2
xn − k− 2

xp
(6.15)

was introduced to shorten notation. To eliminate Ψ−
p and Φ−

p from Eq. (6.13)
and Eq. (6.14) the first equation in Eq. (6.13) is multiplied by the ωǫ0 and
then the second equation multiplied by the k−zp is subtracted. Similarly, multi-
plying the first equation in Eq. (6.14) by the ωǫ0 and subtracting the second
equation multiplied by the k−zp allows one to eliminate Φ−

p . Consequently, the
following system of linear equations for the unknown amplitudes Ψ−

p (p ∈ N∪0)
is obtained:

ky
(

k2 − k− 2
zp

)

(1 + δp0)Ψ
−
p =

∑

n

[

ky

(

k2Ψ̃+
n − k+znk

−
zpΨ̃

−
n

)

+

ωǫ0k
+
xn

(

k+znΦ̃
−
n − k−zpΦ̃

+
n

)]

k+xnFpn,

(

k2 − k− 2
zp

)

Ψ−
p =

∑

n

[

ωǫ0ky

(

k−zpΦ̃
+
n − k+znΦ̃

−
n

)

+

k+xn

(

k2Ψ̃+
n − k+znk

−
zpΨ̃

−
n

)]

Fpn.

(6.16)

In a similar manner the first equation in Eq. (6.13) is multiplied by the
k−zp and then the second equation multiplied by the ωµ0 is subtracted. Next,
multiplying the first equation in Eq. (6.14) by the k−zp and subtracting the
second equation multiplied by the ωµ0 yields the system of linear equations
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for the unknown amplitudes Φ−
p (p ∈ N):

k−xp
(

k2 − k− 2
zp

)

Φ−
p = j

∑

n

[

ωµ0ky

(

k−zpΨ̃
+
n − k+znΨ̃

−
n

)

−

k+xn

(

k2Φ̃+
n − k+znk

−
zpΦ̃

−
n

)]

k+xnFpn,

ky
(

k2 − k− 2
zp

)

Φ−
p = −jk−xp

∑

n

[

ky

(

k2Φ̃+
n − k+znk

−
zpΦ̃

−
n

)

+

ωµ0k
+
xn

(

k−zpΨ̃
+
n − k+znΨ̃

−
n

)]

Fpn.

(6.17)

From Eq. (6.16) and Eq. (6.17) the unknown partial wave amplitudes in the
waveguides Ψ−

p and Φ−
p can be easily eliminated. After some straightforward

algebra one obtains for p ∈ N:

∑

n

(

k2y + k+2
xn

)

[

k+znΦ̃
−
n − k−zpΦ̃

+
n

]

Fpn = 0,

∑

n

[

ωµ0k
+
xn

(

k2 − k− 2
zp

)

(

k−zpΨ̃
+
n − k+znΨ̃

−
n

)

+

ky
(

k+2
zn − k− 2

zp

)

(

k2Φ̃+
n − k+znk

−
zpΦ̃

−
n

)]

Fpn = 0,

(6.18)

and for p = 0:

∑

n

k+xn

[

ωµ0ky

(

k+znΨ̃
−
n − k−z0Ψ̃

+
n

)

+k+xn

(

k2Φ̃+
n − k+znk

−
z0Φ̃

−
n

)]

=0. (6.19)

It should be noted that the boundary conditions given by Eq. (6.10) in the
waveguides (z < 0) are satisfied directly by the corresponding field represen-
tation (see Eq. (6.7) and Eq. (6.9)). To obey the conditions on the rest of the
boundary, that is for the tangential components of the electric field vector in the
plane z = +0 (upper equation in Eq. (6.10)) and the edge conditions, Eq. (6.11)
the following expansion is used [62] (compare with Eq. (2.12) and Eq. (2.15) in
the Section 2.2.):

∑

n

Pµ
n (cos∆)e−jnKx =











CejKx/2

(cos(Kx)− cos∆)µ+1/2
, |x| < d/2,

0, d/2 < |x| < Λ/2,

(6.20)
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where the constant terms:

C = (π/2)1/2(sin∆)µ/Γ(1/2− µ), ∆ = πd/Λ

were introduced to shorten notation; Pµ
n are the Legendre functions; Γ is the

gamma-function.
Multiplying Eq. (6.20) by the e−jmKx, where m is some integer, and taking

a linear combination of the resulting equations, after straightforward algebraic
manipulations, we obtain (compare with Eq. (2.46) and Eq. (2.47) in the Sec-
tion 2.2.1.):

∑

m,n

αmP
µ
n−m(ϑ)e−jnKx =











CejKx/2

(cos(Kx)− ϑ)µ+1/2

∑

m

αme
−jmKx, |x| < d/2,

0, d/2 < |x| < Λ/2.

ϑ = cos∆, ∆ = πd/Λ, C = (π/2)1/2(sin∆)µ/Γ(1/2− µ),

(6.21)

where m,n ∈ Z ∪ 0 hereinafter, unless otherwise stated. Apparently, Eq. (6.21)
represents the Fourier series of certain Λ-periodic function, vanishing in certain
domains and having singular behavior at the bounds of the above domains (at
the edges of the waveguide walls) in accordance with Eq. (6.11), if µ = −1/6
is applied. In what follows, the argument of the Legendre functions Pµ

n−m will
be omitted to shorten notations. The expression for the Ex(x,+0, 0) can be
rewritten in the following form which allows application of the Eq. (6.21):

Ex(x) =
∑

n

E+
xne

−jk+xnx = e−jkxx
∑

n,m

αmP
µ
n−me

−jnKx, (6.22)

where µ = −1/6 hereinafter. It is easy to see, that the x-component of the
electric field written given by Eq. (6.22) satisfies Eq. (6.10) and Eq. (6.11). A
similar expansion is then applied to the x-derivative of the Ey(x,+0, 0) (since
this function is singular at the edges of the waveguide walls):

∂Ey(x)

∂x
=−j

∑

n

k+nxE
+
yne

−jk+xnx = e−jkxx
∑

n,m

βmP
µ
n−me

−jnKx. (6.23)

Besides, to obey Eq. (6.10) the following supplementary constraint should be
added:

Ey(x, 0,+0) = 0, x = (m+ 1/2)Λ. (6.24)
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Substituting the corresponding expressions for E+
xn and E+

yn from Eq. (6.5) into

Eq. (6.22) and Eq. (6.23) the system of linear equations relating Φ̃+
n and Ψ̃+

n

with αm and βm can be obtained:

k+xnk
+
znΦ̃

−
n + ωµ0kyΨ̃

+
n =

∑

m

αmP
µ
n−m,

k+xn

(

−kyk+znΦ̃−
n + ωµ0k

+
xnΨ̃

+
n

)

=
∑

m

βmP
µ
n−m.

(6.25)

which yields the expressions for Φ̃+
n and Ψ̃+

n :

Φ̃−
n =

k+xn
k+zn

(

k+2
xn + k2y

)

∑

m

(

αm − ky

k+2
xn

βm

)

Pµ
n−m,

Ψ̃+
n =

1

ωµ0
(

k+2
xn + k2y

)

∑

m

(kyαm + βm)Pµ
n−m.

(6.26)

Substituting Eq. (6.26) into Eq. (6.18) and Eq. (6.19) and taking into account
that:

Φ̃+
n = 2δn0Φ

I − Φ̃−
n , Ψ̃

−
n = 2δn0Ψ

I − Ψ̃+
n , (6.27)

after some algebra one obtains a system of linear equations for unknown coeffi-
cients αm and βm for p > 0:

∑

n,m

Pµ
n−m

[

kyk
+
xnk

−
zpαm+

(

k+zn(k
2
y+k

− 2
xp )−k2yk−zp
k+xn

)

βm

](

k+zn+k
−
zp

k+zn

)

Fpn=

2Fp0

(

ωµ0kxkz(k
− 2
xp +k2y)Ψ

I−k2ky(k2z−k− 2
zp )ΦI

)

,

∑

n,m

Pµ
n−m

[

k+xnαm− ky

k+xn
βm

]

(

k+zn+k
−
zp

k+zn

)

Fpn=2Fp0k
−
zp(k

2
x + k2y)Φ

I ,

(6.28)

and for p = 0:

∑

n,m

Pµ
n−m

[(

k+zn(k
+
zn+k

−
z0)+k

+2
xn

)

αm−kyβm
]k+xn
k+zn

F0n=

2F00kx
(

ωµ0kykzΨ
I+k2kxΦ

I
)

.

(6.29)



6.1. Electromagnetic wave scattering by non-planar periodic structures 119

Additionally, the constraint given by Eq. (6.24) yields:

∑

n,m

(−1)n

k+xn
Pµ
n−mβm = 0. (6.30)

The system of equations, given by Eqs. (6.28), (6.29) together with Eq. (6.30)
should be solved numerically. To this end it should be properly truncated (this
is discussed briefly below). Once the coefficients αm and βm are known, the field
components in both regions can be found. Namely, for z > 0 the Eq. (6.26) and
Eq. (6.6) are used to find the field amplitudes from Eq. (6.5). The amplitudes
of partial waves Φ−

p and Ψ−
p for z < 0 can be evaluated using the following

expressions:

Ψ−
p =

Cp

(1 + δp0)ky

∑

n

[

ky

(

k2Ψ̃+
n − k+znk

−
zpΨ̃

−
n

)

−

ωǫ0k
+
xn

(

k−zpΦ̃
+
n − k+znΦ̃

−
n

)]

k+xnFpn, p ≥ 0,

Φ−
p =

jCp

k−xp

∑

n

[

kyωµ0

(

k−zpΨ̃
+
n − k+znΨ̃

−
n

)

−

k+xn

(

k2Φ̃+
n − k+znk

−
zpΦ̃

−
n

)]

k+xnFpn, p > 0,

Cp = 2 exp(jpπ/2)/
(

d(k− 2
xp + k2y)

)

,

(6.31)

resulting directly from Eq. (6.18) and Eq. (6.19). Substituting Eq. (6.31) into
Eq. (6.9) the field amplitudes for z < 0 can be found. Investigation of the unique-
ness and existence of the solution of infinite system of linear equations like that
given by Eqs. (6.28) through (6.30) is fraught with difficulties and is beyond the
scope of present study. A detailed discussion concerning a similar problem can
be found e.g. in [125]. To obtain a numerical solution the systems of equations
like that given by Eqs. (6.28) through (6.30) should be truncated. Physically this
means that only the modes transporting the energy away from the y = 0 plane
and a finite number of lower order evanescent modes are accounted for in the
solution. The truncated system for unknown vectors αm and βm, m = −M..M
(where M is a truncation index) has the coefficients in the form of infinite series
(summation over n). In order to calculate the matrix elements of the truncated
system, the series have to be truncated too at some index N large enough to
assure convergence. Taking into account that Pµ

n = O(n−2/3) for µ = −1/6 (see
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e.g. [126], Eq. (2)) and the term Fpn = O(n−2), n→ ∞ in Eq. (6.15) one readily
obtains: the coefficients of the system give by Eq. (6.28) and Eq. (6.29) behave
like O(n−5/3) for αm and O(n−8/3) for βm, whereas the coefficients in Eq. (6.30)
behave like O(n−5/3) which makes them suitable for numerical evaluation. Gen-
erally, the series in Eq. (6.28) through Eq. (6.30) are fast converging [127] and
even for M = 15 ÷ 30 the results assure acceptable accuracy, provided that N
is at least about one order of magnitude higher than M [42]. Eliminating the
coefficients αm from Eq. (6.28) and Eq. (6.29) the following truncated system
for unknown coefficients βm is obtained:

Bβ = b, (6.32)

where the elements of matrix B and vector b are:

B0m =
∑

n

(−1)n

k+xn
Pµ
n−m, b0 = 0,

Bpm=
∑

n

(

k+zn+k
−
zp

k+xn

)

FpnP
µ
n−m, bp=2Fp0kz

(

ωµ0kxΨ
I−kykzΦI

)

,

(6.33)

and m = −M...M , n = −N...N , p = 1...2M − 1 hereinafter. Solving Eq. (6.32)
for the unknown β and substituting them into the second system of equations
in Eq. (6.28) and into Eq. (6.29) yields the system of linear equations for the
unknown coefficients α:

Aα = a, (6.34)

where the elements of A and a are defined below:

A0m=
∑

n

k+xn
k+zn

(

k+zn(k
+
zn + k−z0) + k+2

xn

)

F0nP
µ
n−m,

a0=
∑

m

(

∑

n

k+xn
k+zn

kyF0nP
µ
n−m

)

βm+2F00

(

ωµ0kykzΨ
I+k2kxΦ

I
)

,

Apm=
∑

n

(

k+zn + k−zp

k+znk
−
zp

)

k+xnFpnP
µ
n−m,

ap=
∑

m

(

∑

n

(

k+zn+k
−
zp

k+xnk
+
zn

)

ky

k−zp
FpnP

µ
n−m

)

βm+2Fp0(k
+2
xn +k2y)Φ

I .

(6.35)
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Some computed examples are shown in Fig. 6.2 where the dependence of the
transmitted field power versus the normalized period is shown. The former is
defined as the real part of the complex Poynting flux:

P− =
d

2Λ

∑

p:k−zpreal

(1 + δp0)(k
− 2
xp + k2y)k

−
zpω

(

µ0
∣

∣Ψ−
p

∣

∣

2
+ ǫ0

∣

∣Φ−
p

∣

∣

2
)

. (6.36)

Similarly, the reflected field power is:

P+ =
∑

n:k+znreal

(k+2
xn + k2y)k

+
znω

(

µ0
∣

∣Ψ+
n

∣

∣

2
+ ǫ0

∣

∣Φ+
n

∣

∣

2
)

. (6.37)

In turn, the incident wave power is:

P I = (k2x + k2y)kzω
(

µ0
∣

∣ΨI
∣

∣

2
+ ǫ0

∣

∣ΦI
∣

∣

2
)

. (6.38)

The incident wave of unit power density is assumed here. Moreover, for sim-
plicity, ΦI = 0 is applied (the electric field vector of the incident wave is parallel
to the z = 0 plane, see Fig. 6.1). The resonant phenomena (the peaks of the
transmitted field power) are clearly observable for the values of Λ/λ ≥ 0.5. The
inflection points of the curves correspond to the critical values of wavelength
λk of the harmonics in the upper and lower half-planes. From Eq. (6.4) in the
upper half-plane one has:

Λ/λk = n

(

sin θ sinϕ+ Sn
√

sin2 θ cos2 ϕ+ cos2 θ

cos2 θ

)

,

where Sn = 1 for n > 0 and −1 for n < 0; + and − signs correspond to the
backward and forward propagating harmonics respectively. In the waveguides,
y < 0, from Eq. (6.6) it results:

d/λk = p/

√

1− sin2 θ sin2 ϕ, p = 1, 2, ... .

Thus, for instance, in the case of θ = 30◦ and ϕ = 45◦ the inflection points are
located at Λ/λ ≈ 0.76n for the backward propagating modes and Λ/λ ≈ 1.72n
for the forward propagating ones in the upper half-plane, whereas the waveguide
modes start propagating at Λ/λ ≈ 1.07p (for the considered case of Λ/λ = 2).

In Fig. 6.3 the dependence of the transmitted filed power versus the incidence
angle θ for different fixed values of the angle ϕ (see Fig. 6.1) and unit power
density of the incident wave is shown. In the case, illustrated in Fig. 6.3(a), the
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Figure 6.2. Dependence of the transmitted field power versus the normalized period for dif-
ferent angles φ and θ: (a) φ = 10◦, (b) φ = 30◦, (c) φ = 60◦, (d) φ = 80◦; Λ/d = 2

electric field vector of the incident wave is parallel to the plane z = 0, and in
Fig. 6.3(b) a similar polarization of the magnetic field vector of the incident
wave is assumed. These examples correspond to ΦI = 0, ΨI = 1/

√
ρ0k

2 sin θ
(Fig. 6.3(a)) and ΨI = 0 and ΦI =

√
ρ0/k

2 sin θ (Fig. 6.3(b)), respectively,

where ρ0 =
√

µ0/ǫ0 is the intrinsic impedance of free space
Finally, in Fig. 6.4 an example analogous to the one considered in [128] where

the diffraction by an infinite array of infinitesimal strips was studied. For the
limiting case of semi-infinite strips the authors derive the expression for the
magnitude of the reflection coefficient (see Eq. (27) on p.1928 in [128]):

|H+
y0/H

I | = (1− cos θ)/(1 + cos θ) (6.39)

provided Λ < λ/2. In Fig. 6.4 the magnitude of the reflection coefficient defined
by Eq. (6.39) is shown for two different values of the waveguide walls thickness
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Figure 6.3. Dependence of the transmitted field power versus the angle θ for fixed values of
ϕ: a) ~EI parallel to the plane z = 0; b) ~HI parallel to the plane z = 0. 30◦, 45◦ and 60◦ and
b) ϕ for fixed values of θ: 30◦, 45◦ and 60◦; Λ/d = 2, Λ/λ = 0.5.

w. The case of ϕ = 0 is considered. It should be noted that for waves propagating
in the y = 0 plane, with ky = 0 (see Fig. 6.1), the field components separate
in H and E polarized waves. In this example the reflection coefficient |H+

y0/H
I |

concerns the H wave (ΨI = 0). It is easy to observe that the curves approach
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w = 0.05Λ
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Figure 6.4. Dependence of the reflection coefficient versus the incidence angle θ for small values
of the waveguide walls thickness w; Λ = λ/4. Dashed line corresponds to the limiting case of
infinitesimal strips (see Eq. (6.39)).

the limiting case of infinitesimal strips depicted by the dashed line in Fig. 6.4,
which corresponds to Eq. (6.39), as w → 0.
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6.1.2. Plane wave scattering by a periodic system of thick electrodes.

The method of analysis presented in the previous Section for the case of
a thick-walled parallel-plate waveguide array can be easily generalized for the
case of a grating comprised of perfectly conducting electrodes of finite thickness
(bars), shown in Fig. 6.5. The period of the structure is again denoted as Λ; d

HI
yTE: 

 E I
 yTM:   

x
h

−d/2 d/2 Λ

θ z

Figure 6.5. Periodic array of perfectly conducting electrodes of finite thickness (bars).

and h are the distance between bars and the bar’s thickness, respectively. The
following variables are introduced to shorten notation in the further analysis:
Λ̂ = Λ/2, d̂ = d/2 and ĥ = h/2. The system homogeneous in the y-axis direction
and periodic in the x-axis direction is assumed. An incident plane harmonic wave
of the angular frequency ω impinges on the system at the angle θ counted from
the z-axis and the term ejωt will be omitted again. In the case of TM incidence
the only nonzero component of the magnetic field vector is Hz, whereas Ez is
the only nonzero component of the electric field in the case of TE polarization
of the incident wave. The total field resulting from the Maxwell equations can
be represented as follows:

TM incidence: Hy, Ex = −jνHy,z, Ez = jνHy,x

TE incidence: Ey, Hx = −jνEy,z, Hz = jνEy,x,

(6.40)

where ν = (ωǫ0)
−1 for TM and ν = (ωµ0)

−1 for TE case. The total field can be
represented in the following form (TM):

TM incidence:
Hy = H+

y +HI
y , Ei = E+

i + EI
i , z > h,

Hy = H−
y , Ei = E−

i , z < h,

TE incidence:
Ey = E+

y + EI
y , Hi = H+

i +HI
i , z > h,

Ey = E−
y , Hi = H−

i , z < h,

(6.41)
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where i = x, z and I denotes the field of given incident wave:

TM incidence: HI
y = e−j(kxx−kzz), EI

x = νkzH
I
y , E

I
z = νkxH

I
y ,

TE incidence: EI
y = e−j(kxx−kzz), HI

x = νkzE
I
y , H

I
z = νkxH

I
y ,

kx = k sin θ, kz = k cos θ, k = 2π/λ,

(6.42)

and the superscripts +/− in Eq. (6.41) denote the scattered field above and
below the bars, respectively. Due to the system periodicity the scattered field
outside the bars (z > h or z < 0) can be represented by a series of spatial
harmonics according to the Floquet’s theorem:

ψ±
n = e−j(kxnx±kzn(z+ĥ±ĥ)), k2 = k2xn + k2zn, kxn = kx + nK,

kzn =

{

(k2 − k2xn)
1/2, k ≥ kxn,

−j(k2xn − k2)1/2, k < kxn,
K = 2π/Λ,

(6.43)

with amplitudes Ψ±
n . Substituting Eq. (6.43) into Eq. (6.40) one obtains for the

scattered field the following expression:

TM incidence: H±
y =

∑

n

Ψ±
nψ

±
n ,

E±
x = −ν

∑

n

kznΨ
±
nψ

±
n , E

±
z = ν

∑

n

kxnΨ
±
nψ

±
n ,

TE incidence: E±
y =

∑

n

Ψ±
nψ

±
n ,

H±
x = ν

∑

n

kznΨ
±
nψ

±
n , Hyz

± = −ν
∑

n

kxnΨ
±
nψ

±
n ,

(6.44)

where n ∈ Z, unless otherwise stated. The scattered field between bars can be
represented by a series of the parallel plate waveguide modes as follows (for
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−Λ̂ < x < Λ̂, 0 < z < h):

TM:

Hb
y =

∑

p

(

Φ+
p e

jηpz +Φ−
p e

−jηpz
)

cos(ξp(x+ d̂)),

Eb
x = ν

∑

p

ηp
(

Φ+
p e

jηpz +Φ−
p e

−jηpz
)

cos(ξp(x+ d̂)),

Eb
z = −jν

∑

p

ξp
(

Φ+
p e

jηpz +Φ−
p e

−jηpz
)

sin(ξp(x+ d̂)),

TE:

Eb
y =

∑

p

(

Φ+
p e

jηpz +Φ−
p e

−jηpz
)

sin(ξp(x+ d̂)),

Hb
x = −ν

∑

p

ηp
(

Φ+
p e

jηpz +Φ−
p e

−jηpz
)

sin(ξp(x+ d̂)),

Hb
z = −jν

∑

p

ξp
(

Φ+
p e

jηpz +Φ−
p e

−jηpz
)

cos(ξp(x+ d̂)),

(6.45)

where Φ±
p are unknown mode amplitudes; p ∈ N ∪ 0 for TM and p ∈ N for

TE incidence, unless otherwise stated. The propagation constants ξp and ηp are
defined below:

ξp = pπ/d, ηp =

{

(

k2 − (ξp)
2
)1/2

for real ηp,

−j
(

(ξp)
2 − k2

)1/2
for imaginary ηp.

(6.46)

The mode amplitudes in different periods of the array are related to that defined
in Eq. (6.45) by simple relation (see also Eq. (6.8))

Φ±m
p = Φ±

p e
−jkxmΛ, Φ±

p = Φ±0
p , m ∈ Z. (6.47)

The boundary and edge conditions similar as in the case of the waveguide array
(see Eq. (6.10) and Eq. (6.11)) must be satisfied. Namely, for TM polarization
of the incident wave:

Ex = 0, d̂ < |x| < Λ̂, z = +h, z = −0, outside bars,

Ez = 0, x = ±d̂, 0 < z < h, between bars.
(6.48)

In the case of TE polarization the above conditions hold for the Ez component
of electric field. Besides, near the bars’ edges the tangential components of the
electric (TM) and magnetic (TE) field vectors exhibit singular behavior:

TM: Ei = O(̺−
1

3 ), TE: Hi = O(̺−
1

3 ), i = x, z,

̺ =

√

(x± d̂)2 + z2, ̺→ 0.

(6.49)
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Conditions between bars given by Eq. (6.48) are satisfied directly by field rep-
resentation, Eq. (6.45). To obey the boundary conditions outside the bars, the
solution for the Ex component of the electric field in TM case is assumed in the
form of expansion (compare with Eq. (6.22)):

Ex(x,+h) = ν
∑

n,m

α+
mP

µ
n−m(cos∆)e−jkxnx,

Ex(x,−0) = ν
∑

n,m

α−
mP

µ
n−m(cos∆)e−jkxnx,

(6.50)

where µ = −1/6; P are the Legendre functions; ∆ = πd/Λ.

Comparing Eq. (6.50) with Eq. (6.41) through Eq. (6.43) the following re-
lationship between the corresponding amplitudes of spatial harmonics Ψ±

n and
the expansion coefficients α±

m can be deduced:

Ψ+
n = δn0e

jkzh − k−1
zn

∑

m

α+
mP

µ
n−m,

Ψ−
n = k−1

zn

∑

m

α−
mP

µ
n−m,

(6.51)

where δnI is Kronecker delta. In Eq. (6.51) the arguments of the Legendre func-
tions were dropped to shorten notation. In the case of TE polarization a similar
expansion is applied to the x-derivative of the Ey component (compare with
Eq. (6.23)):

Ey,x(x,+h) =
∑

n,m

α+
mP

µ
n−me

−jkxnx, Ey(lΛ,+h) = 0,

Ey,x(x,−0) =
∑

n,m

α−
mP

µ
n−me

−jkxnx, Ey(lΛ,−0) = 0, l ∈ Z.
(6.52)

In Eq. (6.52) the additional condition is applied to obey the boundary conditions
outside the bars, Eq. (6.48) for the Ey component of the electric field. Taking
into account Eq. (6.41) through Eq. (6.43) the following relationship between
Ψ±

n and α±
m can be obtained for TE polarization:

Ψ+
n = −δn0ejkzh + k−1

xn

∑

m

α+
mP

µ
n−m,

Ψ−
n = k−1

xn

∑

m

α−
mP

µ
n−m.

(6.53)
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To find the unknown expansion coefficients α±
m the continuity of tangential field

components on the planes z = h and y = 0:

TM: Hy = Hb
y, Ex = Eb

x, x ∈ (−d̂, d̂),

TE: Ey = Eb
y, Hx = Hb

x, x ∈ (−d̂, d̂),
(6.54)

combined with the mode matching is used, as in the case of the parallel-plate
waveguide array discussed earlier (see Section 6.1.1.)

It could be easily noticed from the above discussion that the field represen-
tations for both TM and TE polarization are quite similar. It appears that it
is sufficient to derive the system of linear equations for unknown α±

m for the
TM incidence only. Applying the same considerations and following a similar
scheme one can easily solve the problem for TE polarization too. Hence, in what
follows, the case of TM incidence will be addressed in details. Only the general
remarks will be given, if needed, to emphasize the main differences of both TM
and TE polarizations. Substituting the expressions for the tangential compo-
nents from Eq. (6.41) through Eq. (6.45) into Eq. (6.54) and multiplying the
resulting equations by cos(ξpx+ pπ/2), after integration with respect to x from

−d̂ to d̂, the following system of linear equations can be obtained for the case
of TM polarization of the incident wave:

(Φ+
p +Φ−

p )e
j2ηph = Lp

∑

n

kxnFpn(δn0e
jkzh +Ψ+

n ), (6.55a)

(Φ+
p − Φ−

p )e
j2ηph = Lpη

−1
p

∑

n

kxnFpnkzn(δn0e
jkzh −Ψ+

n ), (6.55b)

Φ+
p +Φ−

p = Lp

∑

n

kxnFpnΨ
−
n , (6.55c)

Φ+
p − Φ−

p = Lpη
−1
p

∑

n

kxnFpnkznΨ
−
n , (6.55d)

where

Fpn =
sin d̂(kxn − ξp)

k2xn − ξ2p
, Lp =

2ejpπ/2

d̂(1 + δp0)
. (6.56)

To eliminate the waveguide mode amplitudes Φ±
p from the above one first sub-

tracts the sum of Eq. (6.55b) and Eq. (6.55d) from the sum of Eq. (6.55a) and
Eq. (6.55c). Afterwards, one subtracts the sum of Eq. (6.55b) and Eq. (6.55c)
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from the sum of Eq. (6.55a) and Eq. (6.55d). This yields:

(ηp tan ηpĥ)
∑

n

kxnFpn(δn0e
jkzh + Ψ̂+

n ) =

j
∑

n

kxnFpnkzn(δn0e
jkzh − Ψ̂+

n ),

(ηpj cot ηpĥ)
∑

n

kxnFpn(δn0e
jkzh + Ψ̂−

n ) =

∑

n

kxnFpnkzn(δn0e
jkzh − Ψ̂−

n ),

(6.57)

where the new amplitudes have been introduced: Ψ̂±
n = Ψ+

n ± Ψ−
n . The coeffi-

cients Ψ̂±
n can be expanded in a similar way into the series like those given by

Eq. (6.51) and Eq. (6.53):

Ψ̂±
n = δn0e

jkzh − k−1
zn

∑

m

β±mP
µ
n−m, (6.58)

and the relation between coefficients β±m and α±
m can be readily obtained:

β±m =
1

2
(α+

m ± α−
m) ⇒ α±

m =
1

2
(β+m ± β−m). (6.59)

Substituting the expansions given by Eq. (6.58) into Eq. (6.55), after some
straightforward algebra the following systems of linear equations for unknown
coefficients β±m can be deduced:

∑

m

G±
pmβ

±
m = g±p , (6.60)

where

G+
pm =

∑

n

Pµ
n−mFpn

(

jkxnη
−1
p cos ηpĥ− kxnk

−1
zn sin ηpĥ

)

,

G−
pm =

∑

n

Pµ
n−mFpn

(

kxnη
−1
p sin ηpĥ− jkxnk

−1
zn cos ηpĥ

)

,

g+p = −2Fp0kx sin ηpĥe
jkzh,

g−p = −2Fp0jkx cos ηpĥe
jkzh.

(6.61)
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Following the same steps as above a similar system of linear equations can be
obtained for the case of TE incidence. The corresponding coefficients G±

pm can
be obtained from Eq. (6.61) by swapping over kxnη

−1
p with kznk

−1
xn , whereas g±p

can be obtained by swapping over kx with kz and the sine with cosine functions,
respectively. Besides, in the case of the TE polarization to obey the conditions
in the centers of the bars on the planes z = h and z = 0 (see Eq. (6.52)) the
constraint should be added:

∑

m

β±m
∑

n

(−1)nPµ
n−m/kxn. (6.62)

The doubly infinite systems of linear equations given by Eq. (6.60) through
Eq. (6.62) should be solved numerically. If the coefficients β±m are known, the cor-
responding α±

m and Ψ±
n can be found from Eq. (6.58) and Eq. (6.51), Eq. (6.53),

respectively. The scattered field outside the bars can be evaluated then using
Eq. (6.44). Between bars the scattered field can be found from Eq. (6.45), where
Ψ̂±

p can be evaluated from Eq. (6.55). Here, the final results are given for TM
incidence case:

Φ±
p = e∓ηπĥ(Φ̂+

p ± Φ̂−
p )/4,

Φ̂+
p = sec(ηpĥ)Lp

∑

n

kxnFpn(δn0e
jkzh + Ψ̂+

n ),

Φ̂−
p = j csc(ηpĥ)η

−1
p Lp

∑

n

kznkxnFpn(Ψ̂
+
n − δn0e

jkzh),

(6.63)

where Ψ̂+
n = Ψ+

n + Ψ−
n as before. For TE polarization in the above expressions

the kxn should be replaced with −jξp, p ∈ N for TE and p ∈ N ∪ 0 for TM
polarization of the incident wave; n ∈ Z; Fpn and Lp are defined by Eq. (6.56).

For numerical computations the system of equations given by Eq. (6.60)
through Eq. (6.62) should be truncated so as to take into account only the
propagating modes and a finite number of lower order evanescent modes in
the solution in a similar manner as it was done in the case of the thick-walled
parallel-plate waveguide array, discussed in the Section 6.1.1. The truncated
system for unknown vectors β±m, m = −M..M , M is the truncation index, have
the coefficients in the form of infinite series (summation over n). In order to
calculate the matrix elements of the truncated system from Eq. (6.61), the cor-
responding series have to be truncated too at some index N large enough to
assure convergence. Taking into account that Pµ

n = O(n−2/3) for µ = −1/6 (see
e.g. [126], Eq. (2)) and the term Fpn = O(n−2) for large n in Eq. (6.55), one
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readily obtains: the coefficients of the system given by Eq. (6.61) behave like
O(n−5/3) for TM and O(n−8/3) for TE incidence, respectively; the coefficients
of the system given by Eq. (6.62) behave like O(n−5/3). Generally, the series like
that appearing in Eq. (6.61) and Eq. (6.62) are fast converging [127] and even
for M = 15 ÷ 30 the results assure acceptable accuracy, provided that N is at
least about one order of magnitude higher than M [42]. Some computed numer-
ical examples are shown in Fig. 6.6 where the dependence of the transmission
coefficient Ψ−

0 versus Λ/λ is shown for different values of the incidence angle.
The examples are analogous to those considered in [125] (for convenience they
are referred in the embedded graphs) where a similar problem was solved by
the direct mode matching method. The comparison reveals a good qualitative
agreement of the results obtained by two different methods.

(a) (b)

Figure 6.6. Dependence of the transmission coefficient Ψ−

0 versus Λ/λ for different values of
the incident angle and d = Λ/2, (a) TM and (b) TE polarization. The embedded graphs
illustrate the results shown in Figs. 92, 82 of [125] for comparison.

Another example is shown in Fig. 6.7 where the dependence of the transmis-
sion coefficient Ψ−

0 versus the Λ/λ is shown for incidence close to normal: the
angle of incidence 10−2 degrees is applied in the computations (compare with
Figs. 86, 87 and Figs 70, 71 of [125]). It should be noted that, similarly as in the
case of thick-walled parallel-plate waveguide, the method fails for the case of
θ = 0◦ since the corresponding systems of equations given by Eq. (6.60) through
Eq. (6.62), as well as those given by Eq. (6.32) through Eq. (6.35) in the analysis
of the parallel-plate waveguide array, become near singular and numerical solu-
tion can not be obtained. But the method works well for θ → 0 (10−6 degrees)
provided that the double precision arithmetic is used for calculations.
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Figure 6.7. Dependence of the transmission coefficient Ψ−

0 versus Λ/λ for normal incidence
and d = Λ/2, (a) TM and (b) TE polarization; the values of h are fixed: 1–h = 0, 2–h = Λ/20,
3–h = Λ/2, 4–h = 2Λ.

6.2. Electrostatics of strips with broken periodicity

In this Section another example of application of the suitably generalized
BIS-expansion method is presented. Namely, a planar system of conducting
strips with broken periodicity applied in electrostatic analysis is considered.
The considered structure (see Fig. 6.8) results from a periodic system by inclu-
sion of certain narrower strip and spacing in the middle of it and is also referred
as a ’quasi-periodic’ system. Far from this inclusion it remains "periodic", al-
though the positions of strips and spacings at the left-hand side of the inclusion
are interchanged with respect to the original periodic structure. The defective

z
x

x

(a)

(b)

(c)

Λ/2 Λ/2

Figure 6.8. A periodic system of strips (a), and its quasi-periodic counterpart (b). Ez takes
real values on strips (thick lines), and Ex is real in the other domains. The position of the
conducting half-plane discussed in Sec. 2.1. is shown in (c).

periodic structures are known in physics; they are used in the Fabry-Perot res-
onators of solid-state lasers, for instance. Two distributed reflectors (which are
periodic structures) are placed there at certain distance (a cavity region), usu-
ally of Λ/2 + nΛ length, where Λ is the structural period of the reflectors. In
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the considered system of strips, this cavity region is Λ/2 wide where Λ is the
strip period.

The basic solution for the electric field in periodic system of strips arranged
on the plane z = 0 plane was derived in the Section 2.2., Eq. (2.18), and the
corresponding complex field function is given by Eq. (2.20) and Eq. (2.21) in
spatial and spectral domains, respectively. On the other hand, the basic elec-
trostatic solution for the half-plane x > 0 is given by Eq. (2.7), the complex
field function being defined by Eq. (2.8) in the Section 2.1. The product of two
complex field functions given by Eq. (2.18) and Eq. (2.8) is also a valid solution
for certain electrostatic problem, like the product of two laterally shifted func-
tions defined by Eq. (2.8) resulting in the solution for a strip, (see Section 2.3.,
Eq. (2.63)). This is because the product of analytic functions is an analytic one,
hence describing certain electrostatic field (this can be easily checked by inspec-
tion). Thus, multiplication of Eq. (2.18) and Eq. (2.8) yields a basic solution for
the quasi-periodic system of strips, shown in Fig. 6.8(b)

Φ(x) = Φp(x)Φh(x), (6.64)

where a new notation was introduced for convenience; Φp denotes the solu-
tions for periodic system given by Eq. (2.20) and Φh(x) is the solution for the
half-plane, Eq. (2.8). It results from Eq. (2.3) that the normal induction D(x)
evaluated form the corresponding complex field Φ(x) given by Eq. (6.64) us-
ing Eq. (2.8) remains real-valued in the same domains of x > 0 because of the
real-valued 1/

√
x. On the other hand, for x < 0 the value of 1/

√
x is imagi-

nary causing that the domains of real and imaginary values of the complex field
Φ(x), given by Eq. (6.64), are interchanged with respect to the corresponding
field of periodic system. Therefore, the electric field components correspond to
the system of strips shown in Fig. 6.8(b). It should be noted that the original
strip placed at x = 0 is divided: its part placed at x > 0 remains the strip where
E(x) = 0 and D(x) 6= 0, and the other part placed at x < 0 becomes the spac-
ing, where E(x) 6= 0 and D(x) = 0. Therefore, the system is no longer periodic,
but quasi-periodic, because outside this perturbation at x ≈ 0 the remaining
strips are ’periodic’. The spectral representation of the Φ(x) for the considered
system is a convolution of two spectral functions Φp(ξ) and Φh(ξ):

Φ(ξ) = Φp(ξ) ∗ Φh(ξ), (6.65)

where ξ is the spatial spectral variable corresponding to the x spatial coordinate.
Due to the half-finite support of both spectral functions and simple form of Φp(ξ)
given by Eq. (2.21) and Φh(ξ) given by Eq. (2.8), the convolution can be easily
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evaluated [58], as presented below schematically:

∫ p

0

P⌊η⌋√
p− η

dη =

⌊p⌋−1
∑

n=0

2Pn

(

−√
p− n− η

)∣

∣

1

0
+

∫ p

⌊p⌋

P⌊p⌋√
p− η

dη,

where p = ξ/K, K = 2π/Λ. This yields for the Φ(ξ):

Φ(ξ) =
4(1 + j)√

Λ





⌊p⌋−1
∑

n=0

Pn√
p− n+

√
p− n− 1

+ P⌊p⌋

√

p− ⌊p⌋



 , (6.66)

from which the spectral representations of the field components E(ξ) and D(ξ)
can be easily evaluated using Eq. (2.11). The integration of the field in spatial
domain corresponds to division by ξ in spectral domain.

The solution for arbitrary distribution of strip potentials along the sys-
tem can be obtained using the same technique discussed in the Section 2.2.,
Eq. (2.33). To this end the complex field Φ(x) in Eq. (6.64) must be multiplied
by arbitrary real-valued function α(x) having its spectral representation closed
within domain ξ ∈ (0,K):

Φ(x) = α(x)Φp(x)Φh(x) ⇒ Φ(ξ) = α(ξ) ∗ Φp(ξ) ∗ Φh(ξ). (6.67)

Particularly, for α(ξ) = 1, ξ ∈ (0,K), the function Φ(x) has its spatial spectrum
distributed over the entire positive semi-axis ξ > 0 (Fig.6.9).

In general case arbitrary function α(ξ) can be conveniently approximated by
a step function taking constant values in subsequent sub-domains. For instance,
the series of Walsh functions can be used, which take constant values αi on the
sub-intervals ((i − 1)κ < ξ ≤ iκ) of the domain (0,K), where κ = K/M , i =
1 . . .M ; M is the number of applied sub-intervals. This enables one to evaluate
the convolution integrals like in Eq. (6.66), which corresponds to the function
α(ξ) taking unitary value in the entire domain ξ ∈ (0,K). In a similar manner
as in Eq. (6.66) (which corresponds to the case of M = 1), each component of
α(ξ) contributes to the convolution integral in the following way:

i+1
M
∫

i
M

αiP⌊η⌋√
p− η

dη = 2αi

⌊p⌋−1
∑

n=0

Pn

(

−√
p− n− η

)∣

∣

i+1
M
i
M

+

b
∫

⌊p⌋+
i
M

αiP⌊p⌋√
p− η

dη, (6.68)

where the second integral appears in the equation only if ξ > ⌊p⌋+i/M , in which
case b = min(ξ, ⌊p⌋+ (i+ 1)/M). Also note that the first component (the sum)
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Figure 6.9. (a) The applied spectral function |Φp(ξ)| for periodic system of planar strips. (b)
The spatial distribution of electric potential ϕ(x) (thick line); thin line presents the spatial
charge distribution Q(x).

disappears if ⌊p⌋ = 0. The above discussion presents how the functions Φ(i)(ξ)
can be obtained for each αi and for any value of ξ = ξn = nκ, n = 0 . . . N − 1
used in computations, with adequate small κ (correspondingly large number M
of Walsh functions involved in approximation of α(ξ)) and sufficiently large N
required by the numerical FFT algorithm. In the final form Φ(ξ) is given by a
series:

Φ(ξ) =
M−1
∑

i=0

αiΦ
(i)(ξ), (6.69)

truncated here to finite M . In the numerical analysis the truncated function is
represented by its values at discrete points ξn = nκ, n = 0 . . . N−1 (typically, N
is an integer power of 2 for the purpose of FFT algorithm), yielding a numerical
vector of data Φn:

Φn =

M−1
∑

i=0

αiΦ
(i)
n , Φ(i)

n = Φ(i)(ξn). (6.70)

It results from Eq. (6.68) that Φ(i)(0) = 0 hence Φ0 = 0. Applying Eq. (2.11), one
easily obtains the analogous vector data of length 2N for electric field E(ξn), n =
−N . . .N − 1, and similarly for D(ξn). Taking into account that

E(x) = −∂ϕ/∂x⇒ E(ξ) = jξϕ(ξ), (6.71)

where ϕ is the electric potential distribution in the plane of strips z = 0, the
strip potentials can be evaluated with the help of FFT algorithm in a similar
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manner as discussed in the Section 2.3.:

[ϕn] = αiFFT{[−jE(ξn)/ξn]}, Φ0/ξ0 → 0, (6.72)

where the numerical data vectors are denoted by [·]. The evaluated ϕn are the
potentials at discrete spatial points x ∼ n(Nκ)−1 in the plane of strips. Let
m denote these values of n corresponding to the points nearest to the centers
of strips. The immediate verification of the computation accuracy, depending
on both κ and N , is whether ϕn = const on strips (certain violation of this
condition cannot be avoided at the strip edges even for the smallest κ and
largest N possible due to the known Gibbs phenomenon). The values of αi is
obtained by solving the above equation from the constraints that the ϕm takes
given values (in the mth strip’s center).
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Figure 6.10. (a) The evaluated spectrum |Φ(ξ)|, and (b) the spatial distribution of electric
potential ϕ(x) (solid line); thin line presents the spatial charge distribution Q(x).

In Fig. 6.10 the numerical example is shown for the case when the unity
potential is given only to the narrow strip at x ∈ (0,Λ/4); the other strips are
assumed grounded. The results shown in Fig. 6.10(a) present both Φ(ξ) and
ϕ(x). The constant values of the potential on strips (thick line) can be easily
noticed, as well as good accuracy concerning the strip voltages. In the presented
examples the following values of parameters were used: Λ = 1, M = 25 and
κ = 2π/32, N = 216. Computations show that the evaluated strip potentials
vanishes fast for farther strips from the system center. This justifies the above
mentioned truncation of the vector of unknowns αi. The thin line presents the
spatial charge distribution being the integral of 2ǫ0D(x).
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Conclusion

Electrostatics of planar systems of conducting strips is a problem of fundamental
importance in the theory of surface acoustic wave (SAW) devices. Particularly,
the interdigital transducer [59], which are widely used for the surface acoustic
wave generation, detection and scattering in a variety of SAW devices, including
delay lines, band-pass filters (these are the key components of the terminals and
base stations of mobile radio networks, satellite receivers, multimedia equip-
ment etc.) can be wholly characterized by the spatial spectrum (spatial Fourier
transform) of the electric charge distribution on the surface of its electrodes. It is
defined as a jump discontinuity of the normal electric induction on the surface of
conducting body (planar system of conducting strips, modeling the transducer).
It directly results from the solution of the classical boundary value problem for-
mulated for electric field or its potential, governed by the Laplace equation, and
the boundary conditions defined on the surface of the conducting body and in
the general case a numerical solution can be obtained for example as discussed
in [31]. In the particular case of the planar system of conducting strips, which
was of main concern in this study, also the analytical solution can be obtained
using approach exploiting the theory of complex functions [32, 129, 130]. Both
these methods allow to find the electric charge distribution on the surface of
conducting body - conducting strips. For instance, in the case of N strips the
charge distribution is:

σ(x) =







































ǫ
N−2
∑

m=0

(−1)m+Nαmx
m

√

√

√

√

N
∏

n=1

|(x− x2n−1)(x− x2n)|

, x on strips,

0, otherwise,

(7.1)

where (x2n−1, x2n) are the nth strip’s edge positions on the x-axis and αm

are some unknown coefficients which can be determined from the circuits con-
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straints. The corresponding charge spatial spectrum evaluated by direct Fourier
transform gives rise to a serious numerical problems due to the square-root sin-
gularity of the charge distribution on strips. For example, attempting to perform
the Fourier transformation using the fast Fourier transform (FFT) algorithm,
one has to sample the singular field at discrete values of the spatial variable. Due
to the charge singularities at the strip edges and strong dependence of the spec-
trum on the distribution details over the entire system, the direct application
of the Fourier transformation to the charge spatial distribution yields results
with unsatisfactory accuracy (even if the field is perfectly evaluated [63, 131]).
To overcome this difficulty, another approach, called the ’spectral approach’ is
favorable which evaluates the charge spatial spectrum directly, formally without
any earlier evaluation of the spatial charge distribution and subsequent applica-
tion of the FFT algorithm. The spatial field distributions are only necessary for
evaluation of the strip potential and charge integrals in order to formulate the
equations resulting from the circuit theory (the Kirchhoff’s laws), taking into
account that some strips have given potentials, others can be isolated or inter-
connected, yielding the conditions for the strips total charges. In fact, several
independent solutions, called the ’template’ solutions or ’template functions’
(in the case finite aperiodic system of strips) for the spatial spectrum of electric
charge can be constructed for given strip system. In the case of planar system of
periodic strips having arbitrary potentials or charge distributions, the spectrum
can be obtained using the so-called generalized BIS-expansion method [34], [37].
Here the ’template’ solutions are defined in the form of a series of spatial har-
monics with the coefficients further expanded in a series of the properly chosen
Legendre polynomials (see discussion in the Section 2.2.1.). In this case the
spectral representation of the ’template functions’ is given by expression:

Φm(ξ) = P⌊ξ/K⌋−m(cos∆), ξ ≥ 0, (7.2)

where K = 2π/Λ is the spatial wave-number of the Λ-periodic system; ∆ = Kd,
d being the strip width. In turn for a finite system of strips of arbitrary width
and spacing a set of ’template functions’, being multiple convolutions of the
0th and 1th order Bessel functions of the first kind, can be defined [38] (see
discussion in the Section 2.3.) in the spectral domain directly:

Φ(N,m)(ξ) = Φ′
1(ξ) ∗ · · · ∗ Φ′

m(ξ) ∗ Φm+1(ξ) ∗ · · · ∗ ΦN (ξ), (7.3)

where
Φi(ξ) = J0(ξdi) e

jξbi , ξ ≥ 0,

Φ′
i(ξ) = −j[δ(ξ)− ξiJ1(ξdi)] e

jξbi , ξ ≥ 0.

(7.4)



139

In the above di and bi are the ith strip’s half-width and center position on the
x-axis.

A general solution in spatial spectrum domain is given by a superposition
of finite number of ’template functions’ both for finite aperiodic and infinite
periodic systems of strips. In the case of feasible system of N strips having van-
ishing net charge there areN−1 terms in the linear combination (see Eq. (2.77)).
A corresponding system of linear equations can be constructed using the cir-
cuit constraints (see discussion in the Section 2.3.) to find unknown real-valued
coefficients. And as concerns a periodic system of strips, the BIS-expansion ap-
proximation (see Eq. (2.50)) can be used to obtain a finite linear combination
of ’template function’ representing a solution also in this case. The system of
linear equations for unknown coefficients is obtain in a similar manner (see
Eqs. (2.55) and (2.62) and corresponding discussion in the Section 2.2.1.). The
field spatial distribution is often the least important in applications (measured
are either the mutual strip capacitances depending on the total strip charges
(the integrals of the charge distribution), or the spatial spectrum (in the scat-
tering cases, like the Bragg scattering by strips or frequency characteristics of
surface wave transducers)). Having the spatial spectrum, one can easily evaluate
the spatial distribution and its integral (in order to evaluate the measured total
charges of strips) with similar high accuracy, what is not true in the reverse
way. The inverse Fourier transformation yields the tool for verification of the
spectral results, lacking in the standard analysis [132–134]. Moreover, the fea-
ture of high importance in the numerical analysis is the semi-finite support of
the spectral representations of ’template solutions’. This simplifies evaluation of
multiple convolutions in Eq. (7.3) in particular. However, the main advantage of
the ’spectral approach’ worked out in the electrostatic theory of planar systems
of conducting strips is its versatility and flexibility. Namely, it allows further
successful extension over a wide range of the wave generation and scattering
problems of different nature. In this study the main attention was focused on
the acoustic phenomena. Specifically, the emphasis was put on generalization of
the above electrostatic methods for solving the problems of acoustic wave gen-
eration and scattering by planar structures used in beam-forming applications.
To this end the mixed boundary-value problem for planar system of rigid baffles
was formulated. The following boundary conditions were specified on the plane
of baffles: the normal component of particle velocity field vanishes on baffles and
the pressure is given constant values in the case of wave generation problem. In
the case of acoustic wave scattering the pressure vanishes between baffles and
the pressure exerted by the incident and scattered waves on the acoustically hard
baffles models the response signal from the individual piezoelectric elements of
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the array transducer. Generalization of the BIS-expansion method (see discus-
sion in the Section 2.2.1.) made it possible to solve the problem of acoustic wave
generation and scattering in the case of infinite periodic baffle array. Similarly
as in the electrostatic analysis, application of the BIS-expansion approximation
(see Eq. (3.12)) results in a small system of linear equations which can be solved
numerically:

∑

m

αm[g(r + nK)Sn−m − g∞]Pn−m(cos∆) = 2g(r + nK)qIδnI ,

∑

m

(−1)mαmP−r/K−m(− cos∆) = j
K

π
pl e

jrlΛ sinπr/K,

n ∈ [−N,N ] , m ∈ [−N,N + 1] ,

(7.5)

where g(r+nK) is the harmonic admittance given by Eq. (3.3) and g∞ is defined
in Eq. (3.4).

Specifying arbitrary aperiodic constant (complex in general case) amplitudes
pl of the pressure in the slots between baffles one can easily evaluate the spatial
distribution of the generated wave-field in the acoustic media using the solution
for spatial spectrum of the pressure distribution on the baffle plane. The far-
field radiation pattern also results immediately. To this end the stationary phase
method, for example, can be used to evaluate certain fast varying integrals (see
discussion in the Section 3.2.) yielding the angular radiation characteristics of
the baffle array with arbitrary aperiodic excitation:

pR(θ) ∼ p(k sin θ) cos θ, (7.6)

where p(·) is the spatial spectrum of pressure distribution on the baffle plane.
The wave scattering problem was approached by the method for the plane har-
monic acoustic wave incidence without any loss of generality. In the case of
arbitrary non-planar incident wave, its spatial Fourier expansion on the plane
of baffles should be applied instead, and certain wider domain (dependent on
particular application) of the spatial spectral variable must be included in the
analysis of such non-plane incident wave. Numerous examples presented in
the Section 3.2. confirm that the applied generalization of electrostatic BIS-
expansion method is worth consideration for numerical experiments concerning
the beam-forming systems. It is very efficient numerically, yielding all interest-
ing characteristics of the system within the same simple analysis. Using the
BIS-expansion approximation (see Eq. (3.12)) the problem is reduced to solving
the system of linear equations given by Eq. (7.5). In beam-forming applications
usually k ∼ K (k - the acoustic wave-number; K - the spatial wave-number
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of the baffle array) is relevant. As discussed in the Section 3.2. in this case
applying N ∼ 10 in the BIS-expansion approximation yields the results with
sufficient accuracy for practical applications. Moreover, the energy conservation
law is satisfied (with machine accuracy [36, 39]), which is the valuable feature
allowing one to check the computed results easily. The system of linear equation
(dependent on r ∈ (0,K), see Eq. (7.5)), is generally well-conditioned, except
the case r → 0 or r → K. This is illustrated in the Fig. 7.1 where the depen-
dence of the matrix condition number for N = 16 (the value applied in the
numerical results presented in the Section 3.2.) versus the r/K is shown. In the
proximity of 0 and K, the values r = 10−4k and r = K − 10−4k were used in
the numerical computations, in order to avoid evaluation of the corresponding
limits [39] (see also discussion at the end of the Section 3.2.2.).
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Figure 7.1. Dependence of the condition number of the matrix of system of linear equations,
Eq. (7.5) for N = 16 (34× 34 matrix size) versus r/K. In the example Λ/λ = 1; d/Λ = 0.75,
d being slot width.

Evidently, for the considered 34×34 matrix the condition number is ∼ 102 in
the entire domain of r ∈ (0,K), except the boundaries, where it growth to ∼ 107.
But even in this cases the system of equations can be efficiently solved using
the double-precision arithmetics and the singular value decomposition (SVD)
algorithm [65]. In Fig. 7.2 the relative error in power relation δP versus r/K is
shown for the same parameters Λ/λ as above. The δP is defined as follows:

δP =
|Πz − P |

P
∗ 100%,
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where Πz and P are the total power radiated from the baffle plane and the
delivered power defined by Eq. (3.23) and Eq. (3.25), respectively. As shown in
Fig. 7.2 the energy conservation law is satisfied accurately for N = 16 and the
relative error δP ∼ 10−10 in the entire domain of r ∈ (0,K), as expected (see
discussion in the Section 3.2.1.). This evidences the numerical efficiency of the
BIS-expansion method in acoustic beam-forming applications, discussed in the
following.
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Figure 7.2. Dependence of the relative error in power relation δP for N = 16 (34× 34 matrix
size) versus r/K. In the example Λ/λ = 1; d/Λ = 0.75, d being slot width.

Further generalization of the BIS-expansion method (applicable for periodic
arrays) and the ’template functions’ approach (applicable for the finite system
of strips of arbitrary width and spacing) allowed to worked out the method of
analysis of the acoustic wave generation problem by a finite array of rigid baffles
(see discussion in the Section 3.3.). To this end the initial system was considered
as a single cell of certain multi-periodic system with large (tending to infinity)
but finite period. Application of the approximation made possible generalization
of the results of electrostatic analysis concerning the finite system of conducting
strips in external spatially harmonic electric field, discussed in details in the
Section 2.4. This allowed to construct the solution as superposition of ’template
functions’ obtained from the basis one:

Φ(N)(ξ) = Φ1(ξ) ∗ Φ2(ξ) ∗ · · · ∗ ΦN (ξ), (7.7)

defined in electrostatics of finite system of strips (see Eqs. (7.3) and (7.4)) by
simple index shift (discrete series of samples in spatial spectrum domain in the
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applied numerical analysis as discussed in details in the Section 3.3., Eq. (3.36)
through Eq. (3.38)). This is analogous to discrete convolution with certain func-
tions whose spectral representation yields the unknown coefficients of the linear
combination. Using the BIS-expansion approximation (see Eq. 3.41) the prob-
lem was reduced to numerical solving of certain system of linear equations for
the above unknowns:

g∞
∑

m

αm[Sn−m − j(ηn/ξn)]Q
(N)
n−m = 0, n ∈ [−N1, N1],

∑

m

αmF−1
{

Q
(N)
l−m/ξl

}

= pi, i ∈ [1, Ns] , n ∈ [N1 + 1, N1 +Ns]

m ∈ [−N1 −Ml, N1 +Mu] , l ∈ [−L,L− 1] ,

(7.8)

where Ns is the number of active slots with given constant pressures pi, and
Mu, Ml are some integers dependent on Ns: Mu + Ml = Ns (see discussion
in the Section 3.3.). In the above ξi = i∆ξ is the spectral variable evaluated
at discrete points with sampling interval ∆ξ, directly related to the period of
the above multi-periodic system ∆ξ = 2π/Λ. Generally, the larger Λ/P , the
finer the multi-periodic approximation. For the number of baffles N = 10 ÷ 20
it is sufficient to apply Λ/P ≈ 102, which yields N1 ∼ 103 for k ∼ 2π/P in
Eq. (7.8) (see discussion in the Section 3.3.1.) and approximately 2N1 unknown
coefficients αm to be determined. In this case for evaluation of integrals rep-
resenting the pressure on the plane of baffles by means of the inverse Fourier
transform (computed using FFT algorithm), the ’template functions’ should be
evaluated within the spatial spectrum domain bounded by the upper frequency
ξ′u ≈ 50k [38, 63]. This yields L ∼ 213 samples in corresponding data-sets in
Eq. (7.8). It should be noted, that here the advantage was taken of the semi-finite
support of the spectral representation of the ’template functions’ (see Eqs. (7.7)
and (7.4)). Generally, for accurate evaluation of the multiple convolutions in
Eqs. (7.3) and (7.7) the advanced numerical algorithms developed in [63] for
analysis of electrostatic problem for finite system of conducting strips can be
used (see also discussion in Section 2.3.). However, for larger number of baffles,
N = 35÷ 40, to maintain the same accuracy of integral evaluation in Eq. (7.8),
the data-sets representing the ’template functions’ should be evaluated with the
step ∆ξ quartered, at least, within the same domain (0, ξ′u) [63]. This yields
L ∼ 215 samples in the data-sets in Eq. (7.8). Decrease of the sampling step ∆ξ
also results in increase of Λ ≈ 5 · 102P , which, in turn, yields N1 ≈ 5 · 103 in
Eq. (7.8). Moreover, the resulting system of linear equations, Eq. (7.8), become
bad-conditioned as the number of elements in the baffle array grows. This is
illustrated in Fig. 7.3 where a condition number of the matrix of the system of
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equations is shown versus the number of active slots Ns. Evidently, for baffle ar-
ray comprising up to 20 elements the condition number is approximately within
bounds 1012÷1014 and the corresponding system of equations can be solved us-
ing, for example, the singular value decomposition (SVD) method [63, 65]. The
limitations connected with evaluation of multiple convolutions in Eq. (7.7) and
bad-conditioning of the system given by Eq. (7.8), however, restrict application
of this method to small systems consisting of about 10÷ 20 baffles, which is far
insufficient to meet the needs of modeling of the modern practical transducer
arrays used in ultrasound applications.
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Figure 7.3. Dependence of the condition number of the matrix of system of linear equations,
Eq. (7.8) versus the number of active slots Ns. In the example Λ/λ = 1; d/Λ = 0.75, d being
slot width.

Nevertheless, it presents original and uncommon theoretical approach to
solving the acoustic beam-forming problem for finite baffle system. On the other
hand, the modern ultrasound transducer arrays, comprised at least of 128 el-
ements, can be successfully approximated by a periodic system of baffles and
modeled with sufficient accuracy using the generalized BIS-expansion method,
worked out and discussed in details in the Section 3.2. This was well illustrated
in the Chapter 4 where this method was used to improve the performance of
the Multi-element Synthetic Transmit Aperture (MSTA) ultrasound imaging
technique exploiting the principles of synthetic aperture. The modified MSTA
method (see discussion in the Chapter 4) is based on the coherent summation
of the received backscattered echo signals with weights which account for the
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finite size of the transmit and receive apertures:

Smod
MSTA(r, θ) =

M
∑

m=1

N
∑

n=1

wmnsm,n

(

2r

c
− τm,n

)

, (7.9)

where sm,n are back-scattered echo signals corresponding to mth transmit and
nth receive apertures, delayed properly by τm,n (see discussion in the Chap-
ter 4). The apodization weights wmn were calculated for each imaging point
and all combinations of the transmit-receive pairs using their angular directiv-
ity functions:

wmn = fT (θm)fR(θn), θi = θi(r, θ), i = m,n, (7.10)

denoted by the superscripts T and R, respectively. To this end the results of the
analysis of the mixed boundary-value problem for periodic baffle array, discussed
in details in the Section 3.2., where used with great success. Specifically, the far-
field radiation pattern, given by Eq. (7.6) was used for the purpose of apodiza-
tion weights evaluation, as discussed in details in the Chapter 4. This allowed to
develop a new and efficient imaging algorithm which improves considerably the
imaging quality, especially in the immediate vicinity of the transducer surface.
More specifically, the hazy blurring artifacts observable in the images obtained
using conventional MSTA algorithm were substantially suppressed due to the
directivity weights applied in the modified MSTA. Moreover, an increase in the
visualization depth was demonstrated at the cost of slight degradation of the
lateral resolution, which degradation, however, decreased with increasing pen-
etration depth, as evidenced in the Chapter 4. The developed modified MSTA
algorithm is an important contribution to the nowadays imaging techniques used
in the modern ultrasound scanners for real-time imaging applications. It proves
to be well suited for clinical examinations, especially in the applications where
the quality of the "near-field" image, that is the image in the immediate vicin-
ity of the scanhead is of critical importance such as for instance in skin- and
breast-examinations. The presented method is now being further investigated
and implemented within the framework of ongoing project designed to develop
a research ultrasound imaging platform.

The acoustic beam-forming analysis related to the linear transducer arrays
is not the only problem which can be approached by the methods of electro-
statics discussed above. They proved to be suited for analysis of the doubly
periodic structures as demonstrated in the Chapter 5, where a novel 2D trans-
ducer array geometry was examined. It is comprised of crossed periodic metal
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electrodes placed on both sides of electrostrictive layer which represent the rows
and columns of 2D beam-forming matrix. Such a system has potential capability
of electronic beam-steering of generated wave both in elevation and azimuth as
required for fast volumetric imaging in modern ultrasound scanners. The wave-
beam control can be achieved by addressable driving of 2D matrix transducer
through proper voltage supply of electrodes on opposite surfaces of the layer. A
proper generalization of the BIS-expansion method (see discussion in the Sec-
tion 2.2.1.) allowed to extend it to the case of doubly periodic structures and
enabled development of an efficient semi-analytical method of analysis of the
considered problem. The obtained results are being subjected to further gener-
alization for the case of doubly periodic crossed-electrode array on thin periodic
layer within the framework of ongoing research project connected with devel-
opment and design of 2D planar transducer array for application in volumetric
ultrasound imaging.

Finally, some non-acoustic extensions and applications of the generalized
BIS-expansion method were presented in the Chapter 6. Specifically, the prob-
lems of electromagnetic wave scattering by periodic gratings like thick-walled
parallel-plate waveguide array and periodic system of conducting electrodes of
finite thickness were considered in the Section 6.1. The developed methods of
analysis represent original and valuable contribution to the theoretical mod-
eling of the waveguiding structures which are widely used in many practical
applications. Moreover, these extensions illustrate well and prove the suitability
and versatility of the considered electrostatic methods, which were successfully
generalized for efficient solving the variety of wave generation and scattering
problems of different physical nature related to planar and non-planar, periodic
and finite aperiodic arrangements of elements - the arrays.
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