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Instytut Podstawowych Problemów Techniki PAN

Nakład 400 egz. Ark. wyd. 30

Oddano do druku w lipcu 2008 r.

Druk i oprawa: Drukarnia Braci Grodzickich, Piaseczno, ul.Geodetów 47a



Proceedings of the 36th Solid Mechanics Conference
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Preface

This book contains extended abstracts of papers presented at the 36th Solid Mechanics Confer-
ence held in Gdánsk, Poland, on September 9–12, 2008. The Conference was organized by Institute
of Fundamental Technological Research of the Polish Academy of Sciences. It follows the tradition-
ally organized series of conferences initiated by the 1st Polish Solid Mechanics Conference in 1953.
During the conferences a large number of prominent researchers visited Poland, presented their re-
cent results and established permanent cooperation with Polish partners, often resulting with valuable
joint research results. Such joint papers are also published in this volume.

The progress in mechanics, both theory and technology, is sorapid that every two years
the Conference is organized we are forced to pay attention tonew ideas in all areas of solid me-
chanics. This time the conference concentrated on such fields as: biomechanics, micromechanics,
geo-mechanics, elastic-plastic continuum and other field theories of solids, fracture and damage me-
chanics and fatigue of advanced materials, thermomechanics, phase transitions and shape memory
materials, mechanics of structures and optimization, shells – theory and computations, coupled prob-
lems – thermodynamics of solid–fluid systems, smart structures and computational aspects of solid
mechanics and applications. These problems were presentedin ten Solmech 2008 sessions and are
now presented in ten main parts of this volume, with eight general lectures included in the parts
according to their subject.

Two special sessions are dedicated to Professors Wojciech K. Nowacki and Bogdan Raniecki
on the occasion of their 70 birthdays. They made significant scientific contributions to several
branches of solid mechanics and educated a large number of researchers. Many friends and col-
leagues around the world have contributed to their Anniversary Solmech Sessions: Elastic-Plastic
Continuum and other Field Theories dedicated to Professor Wojciech Nowacki and Thermomechan-
ics, Phase Transitions and Shape Memory Materials dedicated to Professor Bogdan Raniecki.

The papers published in this volume are the result of extensive work of their authors, covering
wide area of the contemporary mechanics. The publication would not be possible without consistent
efforts of members of the Solmech 2008 Committees and the sessions’ organizers. The editors are
grateful to the authors of conference presentations for careful preparation of the manuscripts and all
our colleagues involved in organization of the conference for their continued support and help.

Zbigniew Kotulski
Piotr Kowalczyk

Włodzimierz Sosnowski
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372 K. Szajek, W. Kąkol, T. Łodygowski, M. Wierszycki
Incorporating Two Optimization Algorithms into FEA Environment



xvii

374 A. Garstecki, Z. Pozorski, R. Studziński
Multi-Objective Optimal Design of Multi-Span Sandwich Panels with Soft Core, Allowing
for Variable Support Conditions

376 C. Iancu, A. Nioata
Static FEA of Mechanical Complex Structures

378 M. Chalecki, W. Nagórko
A Nonasymptotic Modelling of Heat Conduction in Solids Reinforced by Short Fibres with
Functional Gradation of Features

380 L. Nunziante, M. Fraldi
A Procedure for Defect Identification of Suspension BridgesCables by means of
Optical-Fibre Strain Measurements

382 R. Górski, P. Fedeliński
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        ON THE FRACTURE MECHANICS OF BONE AND ITS BIOLOGICAL
DEGRADATION 

   
R.O. Ritchie

Materials Sciences Division, Lawrence Berkeley National Laboratory, and
Department of Materials Science and Engineering, University of California, Berkeley

(roritchie@lbl.gov)

The age-related deterioration of both the fracture properties and the architecture of bone, coupled with
increased  life expectancy,  are responsible for increasing incidences of  bone fracture in  the elderly
segment  of  the  population.   In  order  to  develop  effective  treatments,  an  understanding  of  the
mechanisms underlying the structural integrity of bone, in particular, its fracture resistance, is essential.
The origins of the toughness of human cortical bone (and dentin, a primary constituent of teeth and
simple  analog  of  bone)  are  described  in  terms  of  the  contributing  micro-mechanisms  and  their
characteristic length scales in relation to the hierarchical structure of these mineralized tissues.  It is
shown that although structure at the nanoscale is important, it is microstructural features at the scale of
one to hundreds of microns (e.g., the Haversian systems present in the cortical bone of mammals and
the tubule size and spacing in dentin) that  are most important in determining fracture risk.1-3  We
specifically find that the origins of fracture resistance in materials such as bone are extrinsic, i.e.,
associated primarily with crack growth, and are related to such toughening mechanisms as gross crack
deflection and crack bridging (Figs. 1-2), both processes that are induced by preferential microcracking
(at cement lines in bone and at unfilled tubules in dentin).3  In particular, our results, in terms of full
nonlinear elastic crack-resistance curve measurements, show that human cortical bone is actually much
tougher than has been previously thought, because it is largely associated with the growth, rather than
the initiation, of cracking.  In this context, realistic short-crack measurements of both initiation and
growth toughnesses performed on human and small animal bones and human and elephant dentin are
used  to  evaluate  the  effects  of  aging  and  certain  therapeutic treatments  (e.g.,  steroids  and
bisphosphonates). These measurements are combined with structure characterization using UV Raman
spectroscopy, small-angle x-ray scattering and transmission electron microcopy and imaging studies
involving  two-dimensional  in  situ fracture  tests  performed  in  an  environmental  scanning  electron
microscope  (including  quantitative  electron  backscattering  analysis)  and  three-dimensional  ex  situ
examination of crack paths derived using synchrotron x-ray computed tomography (e.g., Figs. 1-2)5, to
determine the microstructural features that underlie the toughness of bone and teeth and how these
properties can degrade with biological factors.2,4

1. R. K. Nalla, J. H. Kinney, and R. O. Ritchie, “Mechanistic fracture criteria for the failure of human cortical bone”,
Nature Materials, 2 (2003) 164-68.

2. R. K. Nalla, J. J. Kruzic, J. H. Kinney, and R. O. Ritchie, “Effect of aging on the toughness of human cortical bone:
Evaluation by R-curves”, Bone, vol. 35, 2004, pp. 1240-46.

3. J. W. Ager III, G. Balooch and R. O. Ritchie, “Fracture, aging and disease in bone”, Journal of Materials Research, 21
(2006) 1878-92.

4. K. J.  Koester,  J. W. Ager III,  and R. O. Ritchie,  “The effect of  aging on crack-growth resistance and toughening
mechanisms in human dentin”, Biomaterials, 29 (2008) 1318-28.

5. K. J. Koester, J. W. Ager III, and R. O. Ritchie, ““How tough is human bone?  In situ measurements on realistically
short cracks”, Nature Materials, 7 (2008) in press.
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Fig. 1:  Synchrotron x-ray computed tomography images of a crack path in human cortical bone (humerus, 37 yr donor) 

obtained in a notched 3-point bend geometry.  The voxel size was 10 µm.  The crack propagation direction (L-R in the 

images) was perpendicular to the long axis of the bone, i.e., in the transverse (breaking) orientation.  A 3-D image showing 

the Haversian system is shown on the left, and a subsurface slice is shown on the right.  The crack has extended 

approximately 1 mm from the notch and has undergone several deflections, which significantly increases the measured 

toughness.  The arrow in the right-hand image shows that one such deflection occurs at a sub-surface Haversian canal.  

Examination of the full series of sub-surface slices found that all crack deflections observed at the surface could be 

associated with cement lines, lamellar boundaries, or Haversian canals present in the in the Haversian system.  (after ref. 5). 

   

Fig. 2:  Three-dimensional synchrotron x-ray computed tomography image of a crack path in human cortical bone 

(humerus, 37 yr donor), again in the transverse (breaking) orientation, showing the toughening obtained by crack deflection, 

and more importantly crack twisting, as the crack path encounters the interfaces of the Haversian canals (the cement lines).  

(Unpublished data from Advanced Light Source beamline 8.3.2: Barth and Ritchie).   
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BIO-POROMECHANICS. PROBLEMS OF MODELL ING  
TISSUES AND BIOMATERIALS 

 
 

M. Kaczmarek 
 Kazimierz Wielki University, Bydgoszcz, Poland  

 
 

1. Motivation 

Most biological (natural) materials and biomaterials (engineered materials replacing 
functions of tissues or organs) in their natural or working environment consist of solid skeleton 
fill ed with fluid. In case of tissues the skeleton is a complex hierarchical structure comprised of 
cells, vascular systems, mineral phase, etc (see e.g. [1]). The fluid in pore - extra cellular space is a 
composition of constituents plying different structural and biological roles within organisms. 
Biomaterials have usuall y less complex constitution and structure and as the result can realize less 
functions than biological materials, see Fig. 1.  

 

carry
loads

transport
fluids

bio/neural
activities

react to
stimuli

adapt
self-
heal

BIOLOGICAL MATERIALS (TISSUES)

BIOMATERIALS

 

Fig. 1. Diagram showing functions of biomaterials and biological materials 

 
The internal complexity of the materials of interest and range of phenomena and functions which 
are to be covered must determine useful modelli ng tools.       
 

2. Poromechanics – a tool  for  modelli ng biological materials and biomaterials 

Poromechanics is the coupled mechanical model of saturated porous materials which 
incorporates basic interactions between porous skeleton and pore fluid, including volumetric 
couplings, viscous and inertial interface forces. More advanced approaches try to include in the 
model characteristics of internal structure and information on properties of phases. Since its origin 
in the mature shape (the foundations of poromechanics were laid by M. A. Biot, see [2], [3], [4]) it 
has found number of successful applications for modelli ng rocks, soils, sound absorbing materials 
but also tissues (e.g. bones, musceles, cartilage, brain) and biomaterials (e. g. scaffolds, hydrogels). 
Among others the model was useful to predict division between phases of dynamicall y applied 
stress to bones and muscles followed by further redistribution of stress in time; It describes basic 
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properties of waves in bones and soft gels; It explains the evolution of deformation and porosity in 
diseased or injured brain. Despite that however there is a growing awareness that notions and 
equations of classical poromechanics when applied for modelli ng biological materials or 
biomaterials must be frequently supplemented with some components resulting from the particular 
material properties and functions.  

From the mechanical point of view the material properties which cause the peculiarities of 
modeling tissues and biomaterials are: high porosity, anisotropy of mechanical and structural 
parameters, micro- and macro-inhomogeneity, complexity of interfacial conditions etc. They 
generate theoretical diff iculties to find proper constitutive equations, boundary conditions and 
finall y make credible simulations without known benchmark solutions. However, the least solved 
problems seem to be that which are related to elaboration of reliable experimental techniques which 
can determine numerous model parameters from tests made for usuall y small , inhomogeneous and 
anisotropic samples of materials. The problem is yet more striking when one realizes that material 
parameters determined in vivo, in situ (death tissue in its environment) and in vitro (death tissue 
removed from its environment) could be significantly different. 

3. Discussion of applications  

We will  discuss some of the above problems as related to applications of poromechanics in 
modelli ng:  

1) wave propagation through trabecular bones,  
2) transport and deformation in brain, and  
3) coupled chemo-mechanical behaviour of reactive gels.  

In all  the above cases the analysis will  concentrate on proving high capabilit y of poromechanics to 
describe phenomena which are specific for biological materials or biomaterials and also show 
limitations and unsolved topics within the approach. Connections of the modelli ng with predictive 
description, diagnostic applications as well  as design of biomaterials will  be highlighted. The 
discussion will  be based on original results (see e.g. [5], [6]) and review of current literature and 
will  be ill ustrated by simulations and results from experiments.   

 

4. References 

 
[1] M. A. Meyers, P-Y. Chen, A. Y-M. Lin, Y. Seki (2008). Biological materials: Structure and 

mechanical properties, Progress Mat. Science, 53, 1-2006. 
[2] M.A. Biot (1962). Mechanics of deformation and acoustic propagation in porous media: J. 

Applied Physics, 33, 1482-1498. 
[4] T. Bourbie, O. Coussy and B. Zinszner (1987). Acoustics of porous media, Gulf Publ. Co. 
[3] J. Kubik, M. Cieszko, and M. Kaczmarek (2000). Foundations of dynamics of fluid saturated 

porous materials, IPPT Warsaw, (in Polish).  
[5] M. Kaczmarek, R.P Subramanian, S.R. Neff  (1997). The hydromechanics of hydrocephalus: 

steady-state solutions for cylindrical geometry, Bull . Math. Biol. 59, 295–323. 
[6] M. Pakula, F Padill a, P Laugier, and M. Kaczmarek (2008). Application of Biot’s theory to 

ultrasonic characterization of human cancellous bones: Determination of structural, material, 
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AN ANISOTROPIC MICR OMECHANICALL Y BASED VISCOELASTIC MODEL FOR
SOFT COLLA GENEOUSTISSUES

M. Itskov, A.E.Ehret
Departmentof ContinuumMechanics,RWTHAachenUniversity, 52056Aachen,Germany

1. Intr oduction

Soft biological tissuesare characterizedin generalby time dependentand in particularvis-
coelasticproperties.This becomesapparentin mechanicaltestingwherethesematerialsreveale.g.
stressrelaxationwhenstretchedto a constantlevel andratedependenthysteresisin cyclic loading.
Thesecharacteristicsdependon the directionof loadingandare thusof anisotropicnature. In the
presentcontribution, we proposea micromechanicallymotivatedapproach.The constitutive equa-
tionsarebasedonthemultiplicativedecompositionof thestretchin fiber directioninto anelasticand
a viscouspart. Anisotropy is taken into accountby a non-uniformspatialdistribution of the fiber-
matrixunits.Finally, themodelis generalizedto thethree-dimensionalcaseby integrationover aunit
sphere[1, 2, 3,4].

2. Fiber-matrix unit

The passive mechanicalpropertiesof soft biological tissuesare to a large extent determined
by thehistologicalstructureof theextracellularmatrix. Thelatteroneincludesfibrousconstituents,
primarily differenttypesof collagenandthegroundsubstancewhichcontainsalargeamountof water.
ThetypicalJ-shapedstress-straincurveof softtissuesis usuallydividedinto atoeandalinearregion.
The increasingstiffnessin the toeregion is attributed to the orientationanduncoiling of collagen
fibers. However, this fiber transitionfrom a crimpedto a straightenedstateneedsrearrangementof
thenearbygroundsubstance[2]. Sincethelatteroneis a highly viscousmaterial,fiber straightening
turnsout to beaviscoelasticprocess.

2.1. One-dimensionalmodel

Thestretchλ in a fiber directionis multiplicatively decomposedinto anelasticanda viscous
partasλ = λeλv. While λv is associatedwith uncoilingandstraighteningof thefibers,λe describes
thestretchin thecollagenitself. Accordingly, therheologicalmodelfor thefiber-matrix unit canbe
illustratedin thecaseof smalldeformationsby thefollowing scheme(Fig. 1). Therein,Ψv(λv) is the

Figure 1. Rheologicalmodelfor fiber-matrix unit.

strain-energy associatedwith fiber straighteningandΨe(λe) is thecollagenstrain-energy which de-
scribesthelinearregionof thestress-straincurves.Thedashpotelementreflectstheviscousproperties
of thegroundsubstanceandis characterizedby astretchdependentviscosityfunctionη(λ).



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 7

2.2. Anisotropic three-dimensionalmodel

In order to obtainan anisotropicthree-dimensionalconstitutive model,the free energy of the
fiber-matrix unit is weightedby a directionaldistribution functionandnumericallyintegratedover a
unit sphere(cf. [2, 3, 4]). While thestretchesλ areassumedto beaffine, theviscoelasticstretchesλv

in eachintegrationpoint resultfrom anevolutionequation.

3. Application

We consideredanincompressiblebiologicaltissuesamplewith fibersdistributedarounda pre-
ferreddirection.Fiberdispersionwas describedby thevonMisesdistribution [5] whereadditionally
a constantuniform grounddistribution was added(cf. [1]). The strain-energy functionsand the
viscosityfunctionwerechosenaccordingto

Ψv(λv) =
k1

2k2

{

exp
[

k2(λ
2

v
− 1)

]

− 1
}

, Ψe(λe) = c1(λe−1)2, η(λ) = d1

{

exp
[

d2(λc − 1)2
]}

,

wherek1, k2, c1, d1 andd2 denotematerialparameters.As proposedin [6], Ψv contributesonly
if λv > 1. For numericalintegrationover the unit sphere,a 61 integrationpointsscheme[3] was
utilized.

4. Conclusions

In thispaperaviscoelasticmodelfor theanisotropicbehavior of soft tissueshasbeenproposed.
Themodelis basedon thegeneralizationof a one-dimensionalmodelfor thefiber-matrix interaction
to thethree-dimensionalcase.Anisotropy causedby non-uniformfiberdistributionsis easilyincluded
by adistributionfunction.Theresultssuggestthatmany featuresof soft tissuesarequalitatively well
captured. For example, the strong increasein the hysteresisratio with frequency comparedto a
moderatechangein the storagemodulusreportedfor sometissuetypes[7] canbe obtainedby the
model.
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CYCLIC BEHAVIOR OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE 
(UHMWPE) AND MODELING 

 
 

O. U. Colak1 and T. Hassan2 
1 YildizTechnical University, Istanbul, Turkey 

2 State University of North Carolina, North Carolina, USA 
 
 
Abstract 
 Cyclic stress-strain responses of ultra high molecular weight polyethylene (UHMWPE) are 
investigated under different load control modes. Uniaxial and biaxial experiments are conducted 
under strain and stress controlled load reversals. One of the unified state variable models, 
Viscoplasticity Based Overstress (VBO) model for polymers [1] is used to simulate the recored 
cyclic responses of UHMWPE. The model does not include any yield surface and loading and 
unloading conditions. Apart from many existing work in the literature, material parameters for VBO 
are determined using the genetic algorithm (GA) optimization procedure which is constituted using 
MATLAB Genetic Algorithm and Direct Search Toolbox.  
 Thermoplastics li ke ultra high molecular weight polyethylene (UHMWPE) have been used 
for a wide variety of applications, such as gears, unlubricated bearing, seals and in the field of 
biomechanics due to biocompatibilit y. Accurate prediction of stresses and deformation in service 
conditions is essential to the designer and finite element analyzer.   
 
1. Experiments 
 For understanding the material behavior of UHMWPE under cycli c loading and evaluating a 
constitutive model for simulating cycli c responses, a set of material experiments under stress and 
strain controlled, uniaxial loading cycles are conducted. Tubular, dog-bone shaped specimens are 
machined from UHMWPE solid rods for conducting these tests. The strain-controlled uniaxial 
experiments involved monotonic loading up to 40% strain and cyclic loading with various strain-
amplitudes. In both cases the prescribed loading rate is kept constant at 0.1%/second. Recorded 
axial stress-strain response from a cyclic strain-controlled experiment with 3% amplitude cycle is 
shown in Fig. 1. Stable hysteresis loop response is demonstrated by UHMWPE in this figure. The 
uniaxial stress-controlled cyclic experiments were conducted by prescribing various stress 
amplitudes and means, and loading rates.  Response from such an experiment with the amplitude 
stress, 12.5 MPa prescribed at a rate of 0.77 MPa/ second is shown in Fig. 2. As the mean stress 
prescribed in this experiment is zero, no axial strain ratcheting is obtained. However, after ten such 
cycles when mean stress is increased to a nonzero value axial strain ratcheting is obtained (not 
shown).  
 
2. Modeling 
 Cyclic behavior of UHMWPE in different grades and cross-linking has been the object of 
many researches in the field of biomechanics. Experimental studies have shown that strain softening 
is observed due to the morphology changes [2]. Even though there are some experimental studies in 
the literature, there are not many papers dealing with modeling of cyclic behavior of UHMWPE due 
to the diff iculty of simulating viscous effects. In this work, VBO is used for modeling cyclic 
behavior of UHMWPE. Theory consists of two tensor values state variables, equili brium and 
kinematic stress, and a scalar isotropic stress. Flow law is given in Eq.1. Inelastic strain rate is 
function of overstress which is the difference between Cauchy and equili brium stresses (o = s – g).   
 



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 9
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where s and g are the deviatoric part of the Cauchy (σσσσ) and the equili brium stress (G) tensor, 
respectively. The equili brium stress (G) is nonlinear, rate-independent and hysteretic. Its evolution 
equation in deviatoric form is given as: 
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where k is the deviatoric kinematic stress, which is the repository for the modeling of the 
Bauschinger effect. A is the isotropic stress, rate independent contribution to the stress, which is 
responsible for modeling hardening or softening. The evolution equation for the kinematic stress in 
deviatoric form is,  

in
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and Et is the tangent modulus.  

For more information about model, see Dusunceli  and Colak [3].  
 
3. Results 

Simulation and experimental results of full y reversed symmetric cyclic loading under strain 
and stress-control modes is depicted in Fig.1 and 2.  

 
 
Fig.1 Strain controlled uniaxial loading at the 
strain rate of 1.E-3 /s. 
 

 
Fig.2 Stress controlled uniaxial loading at the 
stress rate of  0.77 MPa/s.  
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SELECTED APPLICATIONS OF INTERVAL AND FUZZY ANALYSIS  
IN BIOMECHANICS  

 
A. John and P. Orantek 

Department for Strength of Materials and Computational Mechanics,  
Silesian University of Technology, Poland   

 

1. Introduction 

Bioengineering concerns many significant problems applied to the human body. The pelvic 
bone is one of the most important supporting elements in human pelvic joint but it is exposed to the 
injuries. Very often before and after surgical intervention the expertises about the stress, strain and 
displacement distributions in the pelvic bone are needed. For the safety of the patient there are only 
two possibiliti es available to derive mentioned values: model testing and numerical calculations. 
The numerical model should be prepared before numerical calculations [1,2,3]. Numerical 
calculations require the characteristics of the material properties and the material parameters from 
the beginning. Usually the literature is the source of the material parameters, but sometimes this 
data is not suitable for the implementation. This is a reason for the experimental investigations to 
identify these parameters [4,5,6]. It is well  known that material properties of the living body depend 
on many factors: age, health, gender, environment and many others changing in time. As we are 
interested in results of analysis not only for a one patient but for a group of patients, we should 
assume an interval value of material parameters. In this paper the test of the interval and fuzzy 
analysis of the pelvic bone is presented. The interval and fuzzy analysis concerns material 
properties. The finite elements method is applied [7,8,9]. 

2. The interval and fuzzy analysis of the human pelvic bone 

The human pelvic bone is restrained in pubic symphysis and on contact surface with sacral 
bone. It is loaded with force F acting in artificial acetabulum. Two cases of the linear elastic 
analysis were carried out. In the first case the material parameters are not position-depended. In the 
second case the selected material parameters depend on the position in the bone. 

 

 
 

Fig. 1. The model of the human pelvic bone 
 

For both cases the interval and fuzzy (two alpha-cuts-trapezoid) approaches are applied.  
It was assumed that for the interval analysis, the Young moduli  of trabecular bone (in both cases) 
was constant and  equal [1.8E8; 2.2E8]. The Young moduli  of the cortical bone (in  the first case) 
was modelled as the interval [1.8E10; 2.2E10]. In the second case the Young moduli  of the cortical 
bone was equal to the interval [1.8E10; 2.2E10] in zone A (Fig.1) and was equal to [0.9E10; 
1.1E10] in the bound B (between P1 and P3). In space between zone A and the bound B, the Young 
moduli  was generated with the linear weight function. 

P1

P2
P3

Zone A

F
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In the fuzzy analysis case, the Young moduli  of the trabecular bone (in both cases) was 
constant and equal to the fuzzy number (see Table.1). First the Young moduli  of the cortical bone 
was modelled as the fuzzy number (see Table.1). The space between zone A and the bound B was 
determined with linear function. 

The rest of parameter were assumed as the determine numbers. 

Table 1. The fuzzy material parameters and displacements of point P1 

 E1 [e+10] [Pa] 
cortical 

E2 [e+8] [Pa] 
trabecular 

Px1 [e-7] [mm] Py1 [e-7] [mm] Pz1 [e-7] [mm] 

1.8     2.2 

 
1.6             2.4 

2.66     3.24 

 
2.44               3.64 

2.66   3.24     

 
2.44               3.64 

2.70   3.27     

 
2.47               3.68 

-3.34    -2.74   

 
-3.76             -2.51    

3. Conclusions 

Arithmetic analysis enables evaluation of the selected characteristics (strain, stress and 
displacements) not only for a discrete deterministic material parameters, but for assumed interval. It 
satisfies reality more precisely. Obtained results can be useful to plan and assess quality of  the 
surgical intervention. The surgeons can observe which states are dangerous for the patients. 
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SOLUTION OF THE CATTANEO-VERNOTTE BIO-HEAT TRANSFER EQUATION  
BY MEANS OF THE DUAL RECIPROCITY METHOD 
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a and J. Poteralska

 Silesian University of Technology, Gliwice, Poland  
 
 

1. Governing equations 

According to the newest opinions the heat conduction proceeding in the biological tissue 
domain should be described by the hyperbolic equation (Cattaneo and Vernotte equation [1]) in 
order to take into account its nonhomogeneous inner structure. So, the following bio-heat transfer 
equation is considered 

   
( ) ( ) ( ) ( ) ( )2

2
2

,  ,  ,  τ λ ,  ,  τT x t T x t Q x t
c T x t Q x t

t t t

 ∂ ∂ ∂
+ = ∇ + + ∂ ∂ ∂ 

 

where c, λ  denote the volumetric specific heat and thermal conductivity of tissue, Q(x, t) is  
the capacity of internal heat sources due to metabolism and blood perfusion, τ  is the relaxation time 
(for biological tissue it is a value from the scope 20-35 s), T is the tissue temperature, x, t denote  
the spatial co-ordinates and time. The function Q(x, t) is equal to 

  ( ) ( ),  ,  B B B mQ x t G c T T x t Q= − +    

where GB is the blood perfusion rate, cB is the volumetric specific heat of blood, TB is the artery 
temperature and Qm is the metabolic heat source. It should be pointed out that for τ  = 0  
the equation reduces to the well -known Pennes bio-heat equation. 

The equation is supplemented by the boundary conditions 
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where Γ1, Γ2 are the surfaces limiting the domain, q(x, t + τ ) is the boundary heat flux, Tb(x), qb(x) 
are the known boundary temperature and the boundary heat flux and T0 is the known initial 
temperature of the biological tissue. 

2. Dual reciprocity boundary element method 

For transition t f −1→ t f  the standard boundary element method leads to the integral equation [2] 
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∫ ∫

∫
 

where 
ξ
 is the observation point, B(

ξ
)∈(0,1), T*(

ξ
, x) is the fundamental solution,  

q(x, t f ) = −λ  ∂T(x, t f )/∂n is the heat flux, q*(
ξ
, x) = −λ  ∂T*(

ξ
, x)/∂n. 
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In the dual reciprocity method the following approximation is proposed [2] 

 ( ) ( ) ( ) ( ) ( ) ( )
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, ,τ τ ,
λ

f

N L
f

B B B B B m k k
kt t

T x t T x t
c G c c G c T T x t Q a t U x

t t

+

==
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∑  

where ak(t 
f ) are unknown coeff icients, Pk (x) are approximating functions fulfilli ng the equations 

  ( ) ( )2λ
k kP x U x= ∇  

and N + L corresponds to the total number of nodes, where N is the number of boundary nodes 
while L is the number of internal nodes. After the mathematical manipulations one obtains 
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where Wk (x) = − λ   n ⋅ ∇Uk (x). This equation is solved in numerical way. 

3. Example of computations 

The biological tissue domain of dimensions 0.01 m × 0.01 m (L = 0.01 [m]) has been 
considered. The initial temperature of tissue equals T0 = 37 oC. On the boundary x1 = 0, 0 ≤ x2 ≤ L  
the Dirichlet condition in the form Tb(x2) = 37 + (50 – T0) x2/L has been assumed, on the remaining 
part of the boundary the temperature Tb = 37 oC  can be accepted. The input data have been taken 
from [1]. The boundary has been divided into N = 40 constant boundary elements, at the interior  
L = 100 internal nodes have been distinguished. Time step: ∆t = 10 s. 

In the Figures 1 and 2 the heating curves at three points (0.0035, 0.0035), (0.0055, 0.0055), 
(0.0075, 0.0075) from tissue domain for τ  = 0 s (Pennes equation) and τ  = 20 s (Cattaneo-Vernotte 
equation) are shown. The differences between the temperatures for these two models are visible. 

              

     Fig. 1. Heating curves for τ  = 0 s                Fig. 2. Heating curves for τ  = 20 s 
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   TRAVELLING WAVES IN TWO  MECHANOCHEMICAL MODELS OF TUMOR 
ANGIOGENESIS 
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1. Introduction 
 
At the early stages of its formation the tumor secrets some chemical signals, called Tumor 
Angiogenic Factors, into the neighbouring extracellular matrix (ECM) to stimulate sprouting  new 
blood vessels from the existing vascular system. This process is an example of the phenomenon 
called angiogenesis. The TAF when reach a blood vessel make the cells forming the outer layer, the 
endothelium, to move via chemotaxis into the direction of the tumor. The travelli ng endothelial 
cells cause some traction within the tissue inducing some deformations of it and changing its 
density, what in turn influences the motion of the endothelial cells themselves..  
 
2. The model 
 
In the mathematical model only four field velociti es are taken into account. They are: 

o ( )xu ,t  - the displacement at time t of a point of ECM being initiall y at the position x, 

o ( )x,tN  -  the density of ECM at time t and position x, 

o ( )x,tn  - the density of the endothelial cells  at time t and position x, 
o ( )x,tr  -  the concentration of TAF at time t and position x. 

The ECM is modelled as a visco-elastic continuum It is assumed  that the  Reynolds number is 
small , consequently, the inertial terms are ignored.  The body force balances the elastic force, the 
viscous force, and the cell  traction within the ECM. The force balance equation reads 

(1)        
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  ,              

( )nss =  is the traction stress, v is the constant Poisson ratio, 21,µµ  are the constant shear and bulk 

viscosities, 21,ββ  are positive constants, I is the unit  matrix, and τ is a positive parameter 

characterising the strength of the traction τ s, and ρ is a positive constant , ( )T

2

1
uu ∇+∇=ε  is the 

strain tensor, where T denotes the transpose, and u⋅∇=θ  is the dilatation                                             
The cells of ECM  move only due  to convection. Hence this equation is of the form 

(2)                                                        .0

convection44 844 76
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t
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The EC cell  density changes due passive convection, random diffusion, chemotaxis and haptotaxis. 
Due to the deformations of the ECM the diffusive  flux is biased. Simply, scalar coeff icient of 
diffusion is replaced by a tensor depending on the strain in the ECM. In our model we assumed for 
sake of some mathematical simplicity that the chemotactic flux is also biased by the same tensor. 
This assumption can be removed at the expense of more complicated formulae.. The equation of the 
EC density reads  
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where  D, α  are positive constants, and ( )Nγ  is the haptotactic function describing the adhesion of 
the endothelial cells to the ECM. 
 Finall y, we assume that the TAF concentration changes in time due to diffusion and 
degradation, i.e. “consumption”  by EC. The equation reads 
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To close the system (1) – (4) we need to know the functional form of  ( ) ( ) ( )rnFNns ,and,, γ . We use 
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and two models of the degradation function  
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where  kkPkP ss ,,,, γγ are positive constants. The reason of considering two models given by IF  

and IIF  is that the “equations of state” li ke ( ) ( )Nns γ, , etc.  are known only in a very rough 
approximation. Frequently they are they chosen for simplicity. We show that despite the small  
difference between  IF  and IIF  the corresponding travelli ng waves  differ  significantly. 

We look for solutions of the system (1) – (4) in the form of travelli ng waves, i. e. the field 
quantities rnN ,,,u  are assumed to be functions of one independent variable tσξ −⋅= xk , where k  

is a given constant vector, and σ is a positive constant, interpreted as the wave speed.  
We prove that the wave propagates only in the direction of the vector k. The main result of 

the paper is    
Theorem  The endothelial cell  density n and  the TAF concentration r are well  defined function on 
the real axis ( )∞∞− , . They  are positive, and for positive wave speed σ, ( )ξr  it is monotonically 
increasing in its domain. Moreover, they satisfy: for  Model I 
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Hence, in the case of Model I the EC density has the form of a kink, whereas in the Model II  its 
profile has the form of an impulse and vanishes at both ends. Therefore, such a wave cannot be 
accepted as a solution of the tumor angiogenesis problem; rather it corresponds to an in vitro 
vasculogenesis   
 
Acknowledgement. This paper was partly supported by the Polish Ministry of Science and Higher 
Education Grant No 1 PO3A 01230. 



16 Selected Topics of Contemporary Solid Mechanics

INTERACTION OF ULTRASONIC WAVES  
WITH CONTINUOUS INHOMOGENEITY  

OF POROUS MATERIALS 
 
 

M. Cieszko, W.  Kriese 
Institute of Environmental Mechanics and Applied Computer Science, 

Kazimierz Wielki University, Bydgoszcz, Poland 
 
 
 

1. Introduction  

The problem of ultrasonic wave interaction with continuous inhomogeneity of material 
is of great importance for theory and applications. On the one hand such materials are 
commonly present in li ving systems, nature, building engineering and industry. The 
macroscopic inhomogeneity is often a result of their formation, production or processes taking 
place during their li fe (e.g. osteoporosis), exploatation (e.g. sedimentation of pollutions on 
filters) or interactions with environment (e.g. degradation of concrete surface). On the other 
hand the ultrasonic research of such materials, due to their non-invasive character, are more 
commonly applied in diagnostics and determination of pore structure parameters and material 
constants. 

The aim of this paper is to apply the new method of description of ultrasonic wave 
interactions with macroscopic inhomogeneity of material to the analysis of wave reflection 
and transmission through a layer of porous material with inhomogeneous pore space structure 
(Fig. 1). 

2. Formulation of the problem 

We consider a one dimensional problem of wave interaction with material 
inhomogeneity caused by a layer of pores. It concerns interaction of waves in the air incident 
on a porous surface layer of an undeformable material with continuously changeable pore 
structure parameters (Fig. 1a), and waves in an elastic solid with a layer of pores in that 
medium (Fig. 1b). We assume that the local acoustical properties of the material are 
characterized by the impedance Z and the wave number k. These parameters, in general, are 
dependent on the spatial coordinate x and the wave frequency ω . 

Fig. 1. The analyzed exemplary problems 

Due to interaction with material inhomogeneity each wave propagating in such material 
generates the coupled backward wave. Therefore, the acoustical field in inhomogeneous 
material is defined by amplitudes T and R of the forward and backward waves, respectively. 
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In that case wave interaction with continuous inhomogeneity can be considered as 
multiple reflections and transition of the wave through the boundaries of infinitesimal layers. 
Such approach allows to derive the following system of equations for amplitudes T and R , [3] 

)2( RT
dx

dI
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dx

dR +=+   , )2( TR
dx
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ikT

dx

dT +=−   , 

where 2/)/ln( o ZZI =  and oZ  is constant. 

Solution of these equations needs the parameters k and Z to be known functions of the 
spatial coordinate and wave frequency. In the paper such relations are obtained in two stages. 
First, both parameters are determined for homogenous materials and next their dependence on 
the spatial coordinate is postulated. 

3. Acoustical characteristics of air-filled rigid porous material 

To obtain the acoustical characteristics for air-fill ed rigid porous material, the one 
dimensional system of equations has been analyzed, [4] 
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where o)( ρρρ oq −=  , and fv , δ , K are parameters of volume porosity, tortuosity and 

permeabilit y, respectively. Quantity a stands for the wave velocity in bulk fluid, and µ for a 
kinematical viscosity. 
The derived equations for the wave number and impedance of the air-fill ed rigid porous 
material take the form 
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Analysis of influence of parameters characterizing inhomogeneity of pore space structure on 
characteristics of reflected and transmitted waves was performed in the paper for different 
dependence of pore structure parameters on the spatial coordinate. 
 The similar analysis was performed for wave propagating in elastic solid with 
inhomogeneous layer of pores. 
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BIOMECHANICAL STRUCTURES 
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Osteoporosis is metabolic disease of bone which causes progressive decrease of the osseous 
pulp and the changes of bone structure. Such weak bone is more susceptible on fractures. The 
early diagnosis of osteoporosis enlarges chance of the treatment. It is a big problem because 
disease progresses without symptoms – first symptoms appear when the loss of osseous pulp 
is big (about 30%) and it is the large risk of fractures. The treatment of osteoporosis usually 
depends on treatment of results - fractures and consists in providing analgesic and 
stabili zation of places of fractures. It would be better to prevent that disease because lack of 
movement is causes of weakness of bones. Knowledge of physical properties of bone tissue is 
helpful in diagnosing of the diseases of the bone system (especially that properties change 
during progress of disease) [4]. 
From mechanical point of view the fracture of bone occurs in two cases: 
- the correct structure of bone but the loads are so big that cause the stresses larger than 

stress limit, 
- the disorders of bone structure caused decrease of strength properties of bone when 

normal activity of organism can result stresses larger than stress limit. 
The paper concerns the second situation, which take place e.g. in osteoporosis. The most 
common preventive examinations are: 
- densitometry of bone – method of representing of the bone density by using dual energy 

X-ray absorptiometry (DXA) , 
- computed tomography – method depending on mapping cross-section of bone; it makes 

possible localizing the places where is the considerable loss of osseous pulp. 
These are standard examinations which gives enough information and to enable to make        
a correct decision in routine situations. However when data will  be use to building of 
quantitative model of bone tissue these methods can be insuff icient. Then it is necessary to 
perform Quantitative Computed Tomography [5]. 
To present the problem of the osteoporosis the strength analysis of the human hip joint were 
performed (health joint and the joint with osteoporotic changes). Numerical simulations give 
important information about behaviour of object on condition that numerical model is similar 
to analyzed structure (geometry, material properties and boundary conditions). During create 
geometry of the model date from coordinate measuring machine is used (it was concentrated 
on the pelvis bone). There is important the delimitation of material properties which are 
changed during osteoporosis. During examination the bone system as well  as density phantom 
are X-rayed. The phantom is composed of regions representing specimens of bone density. 
The X-ray photographs are analyzed by use specialist software (the dependence between 
quantity of the absorbed radiation and the radiological density is used). The output density is 
standardized in Hounsfield scale (HU). Then the HU density is converted to the density of 
bone tissue. The next step is delimitation of material properties of bone tissue, especially 
elastic modulus (on the basis of experimental research the dependences between bone density 
and material properties were developed) [1, 2]. 
Because Computed Tomography gives cross-section for different places so material properties 
was delimitated in the same places of bone (on the base of linear regression for measuring 
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points the calibration curve is created, it enable to calculate the properties for every voxel of 
photographs) - the more exact data from CT, the better representation of bone structure.    
This is important because bone is non-homogenous, especially pelvic bone, with regard to 
complex geometry and functions in organism, is characterized by changeabilit y of material 
properties [5]. 
Delimitated properties were given to model. Next the boundary conditions were assumed.  
The fixed was realized by use elements type bar type beam (during analysis the number and 
the stiffness of elements were changed). The boundary conditions were given both in the 
points and in the areas [3]. 
Strength calculations were performed in system MSC Patran/Nastran. The structure on the 
base of distributions of equivalent stresses, strains and displacements was analyzed. Obtained 
results can be helpful to estimated effort of pelvis and femoral bone and planning surgical 
interventions during treatment of injuries caused by osteoporosis. 
The exemplary photographs with Quantitative Computed Tomography were presented in 
Fig.1. Examinations were performed in sagittal plate. Density phantom and the pelvic bone 
were X-rayed.   

a)                                                 b)                                              c) 

   

Fig.1. The images from computed tomography: a) density phantom, b) and c) pelvic bone 
 
The work was done as a part of project N51804732/3670 sponsored by Polish Ministry of 
Science and Higher School. 
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1. Introduction

One of the most popular materials used for restorations in dentistry are the resin-based 

composites reinforced by ceramic particles. In contrary to amalgam, the composites are mercury-

free, do not require special cavity shaping and are esthetical. Photo-cured composites are one of the 

types of the resin-based composites. Typical features of the photo-polymerization process are: high 

speed of the polymerization, room temperature process, and limitation of the polymerization depth 

due to light absorption. Typical polymerization time of the photo-cured composite is 20 seconds for 

2 mm thick layer. Fillings are made layer by layer. One of the main disadvantages of these materials 

is volumetric shrinkage that occurs during polymerization. It results in high residual stress in tooth 

and restoration, which can cause gaps between the tooth tissue and the filling. It may leads to 

microleakage and tooth decay. To ensure strong bonding between the tooth tissue and the composite 

restoration, bonding agents are used. The bonding agent is a photo-cured polymer with small 

viscosity. This material creates thin, approximately 0.01 mm layer on the tooth tissue and penetrates 

into it, and this creates kind of mechanical bonding. Adhesives bond with composite restoration 

chemically. For modern systems the bonding strength is 15 – 35 MPa [1]. Experiments reveal that 

the bonding strength of adhesives depends of cavity preparation before coating it with bonding 

agent. Existing of thin layer of bonding agent causes stresses reduction between composite filling 

and tooth tissue [2]. Most recently the effect of bonding agent is assumed to be negligible. Ausiello 

and coauthors had modeled the tooth under load with adhesive layer modeled with springs [3]. The 

tooth filling was assumed to be strain free, without polymerization shrinkage and residual stress.  

Clinical practice reveals that shape of layers and method of layering are important [4]. In this 

study restoration of Class I is modeled with existing adhesive layer. Different shapes of composite 

layers and its influence on stress distribution in dental filling are taken into account. 

2. Materials and methods

Premolar tooth was modeled with ABAQUS - the finite element method software. Mechanical 

properties of the tooth tissues (Young modulus E, and Poisson’s ratio �) are as follows: enamel E = 

80000 MPa, � = 0.33; dentin E = 18000 MPa, � = 0.31; pulp E = 2.07 MPa, � = 0.45 [5]. The tooth 

tissues are assumed to be linearly elastic materials. Properties of the adhesive layer (UniFill) are: 

Young's modulus − 39100 MPa, assumed Poisson's ratio − 0.25  [6]. A 0.01 mm thick adhesive 

layer was modeled with cohesive elements. Properties of the resin-based composite (P50) are: 

Young's modulus − 20000 MPa, Poisson's ratio − 0.24 [4]. Polymerization shrinkage was modeled 

as analogical to thermal deformation. Total linear shrinkage of composite is smax = 0.008. According 

to Versulis [4] shrinkage stress is developed after the gel point. Before this point all stresses are 

fully relaxed by the flowing of the material. Shrinkage value after the gel point is about spost-gel = 

0.0022. The filling material was modeled as linearly elastic with maximal linear shrinkage of 

0.0022. The tooth and its restoration were modeled in assumption of axisymmetric model. Influence 

of adhesive layer is presented in Fig 1. 

In these work, two shapes of horizontal layer are presented: a flat layers and a rounded layers. 

Moreover, a modification of the layering with additional vertical layer (called a pre-layer) is 

presented (Fig.2).  
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3. Results 

Fig. 1 Modeled adhesive layer with cohesive elements and plot of Huber-Mises stress in tooth tissue 

(adhesive layer reduces stresses of about 20%) 

Fig. 2 Three types of layering techniques - a) flat, b) rounded, c) pre-layer, and plot of Huber-Mises 

stress along the right vertical wall of the cavity.

 The horizontal rounded layers give smaller values of stresses along the cavity than flat 

layers. The lowest stress is achieved when an additional vertical layer is added. The pre-layer 

reduces significantly influence of the layers corners, and in consequence, stress accumulations near 

the adhesive layer. Unfortunately the pre-layer can increase stress at the top of restoration due to 

accumulation of the shear stresses at the top of the layer. To avoid this problem, the vertical layer 

should not reach the top of the cavity. The last horizontal layer should be extended on whole area of 

the cavity. 
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1. Introduction  

The natural aortic valve, which is composed of three leaflets, works under the highest 
pressure in the circulatory system. In the case of irreversible failure, the valve is replaced with 
prosthesis. The tendency to create the mechanical valves, whose geometry is based on the real 
valves, is observed. These artificial organs are made of polyurethane (PU) and covered by 
TiN coatings to increase the biocompatibilit y. Development of the mathematical model of the 
TiN/PU/TiN aortic valve, which is connected with the earlier results obtained in [1] and based 
on physical formulas derived in paper [2], is the objective of the present work. Analysis of the 
sensitivity coeff icients [1] calculated for the control parameters of the valve opening decided 
about the assumptions introduced in the new finite element (FE) model. The previous work 
[1] was dedicated to pure PU aortic valve. Since each of the identical leaflets of the real aortic 
valve has a three-coating structure, extending the analysis to structure is another objective of 
this project. The new model satisfies the basic conditions required for the mechanical 
construction of the aortic valve. The valve opening is used to determine the acceptable values 
of Young modulus and the thicknesses of outer coatings. 

2. The FE model of TiN/PU/TiN aortic valve  

The minimal buckling pressure is the basic parameter, which decides about the proper work of 
the aortic valve. According to Reul [2], this parameter depends on Young’s modulus E, 
thickness of the leaflet d and aortic radius R. The conclusions of the sensitivity analysis for 
the pure PU aortic valve led to the new set of parameters of the model of the aortic valve (R = 
7 mm, d = 0.1 mm and E = 10 MPa) [1], which gives the minimal value of the buckling 
pressure. In the present work this new construction of the valve has been tested for the three 
ratios between the thickness of the deposited outer coating and the thickness of the whole 
leaflet (1:100, 2:100 and 3:100). A search for the best value of the Young’s modulus of the 
outer coating, which provides the minimal buckling pressure, was performed for each ratio. 
The buckling pressure, which is the loading of the leaflet and is a constant input parameter of 
the FE model in the present analysis, was taken 0.77 kPa and calculated for the pure PU 
leaflet with the optimal dimensions given above. The displacement of the TiN/PU/TiN leaflet 
reached in its characteristic point (Fig. 1a) is the output parameter of the model. The range of 
this displacement, which is assumed as proper and optimal, is 80-100% of that displacement 
for the pure PU leaflet. This defined range of the displacements is necessary to obtain the 
opening of the aortic valve.  

3. Results and conclusions  

The FE model of three-coating leaflet of aortic valve is generated in the ADINA FE code and 
is composed of 100 000 elements and 40 000 nodes, as it is shown in Fig. 1a. The 
displacements in the characteristic point of the leaflet for the valve opening are shown in Fig. 
1b for the selected elastic moduli  of outer coating and the geometrical ratio 1:100. The thicker 
is the outer coating and the bigger is Young’s modulus, the smaller is the valve opening.  
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Fig.1. a) The FE model of three-coating leaflet of aortic valve in open and closed positions 
(top view), b) The valve opening for the selected elastic moduli  and geometrical ratio 1:100. 

Assuming the opening as the output of the FE model, the sensitivity coeff icients of this 
parameter with respect to the Young’s modulus of outer coating are calculated and plotted in 
Fig. 2a. Following these results, further calculations are dedicated to the remaining 
geometrical ratios (2:100, 3:100) and, especially to these elastic moduli , which have the 
meaningful values of sensitivity coeff icients for the geometrical ratio 1:100. The valve 
opening for the set of elastic moduli  and ratios (1:100, 2:100 and 3:100) is shown in Fig. 2b.  

  

Fig.2. a) The sensitivity coeff icients with respect to Young’s modulus for geometrical ratio 
1:100, b) The valve opening as function of the Young’s modulus for all  geometrical ratios. 

Suggested approach is used to design the optimal values of elastic parameters and thicknesses 
of outer TiN coating of aortic valve using commercial FE code. The solution fulfill s the 
conditions required for the analysed biomedical part. 
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1. Introduction 

Among the popular types of dental restorations are the photo-cured dental resin composite 
inlays. In spite of many qualiti es, one of the main disadvantages of the resin-based restorations is a 
shrinkage that occurs during the cure process. It results in high residual stresses in the restoration 
and the tooth, which can cause microleakages [1]. The most unfavourable stresses are the tensile 
and shear stresses located at the restoration-enamel interface. To reduce the shrinkage stresses, 
specific restorative techniques are used. One of them is applying the composite in a few layers 
instead of one layer. It appears a question whether the layering technique reall y reduces the 
polymerization shrinkage stresses [2]. To answer for this question, behaviour of cured polymer 
layers in the dental cave are described in terms of simpli fied analytical formulae. As the 
macroscopic measure of the conversion degree at time t, temporary volumetric shrinkage s(t) is 
taken. In the case of the light-curing process, the volumetric shrinkage s depends on the li ght 
exposure H applied during the curing process. Simultaneously we observe evolution of Young's 
modulus E and Poisson’s ratio ν. One can assume simple exponential functions describing s, E and 
ν as functions of H [3]. To simulate volumetric changes of the material, its temporary elastic 
properties are assumed and the thermal expansion analogy is used.  

1. Model of the incremental filling 

The tooth-cavity is assumed to be Class II , which may be modelled under the plain strain 
conditions as a rectangular opening (dimensions 2a×b), with rigid walls and bottom (Fig. 1). A full  
adhesion of restoration and the tooth tissues is assumed. The cave may be fill ed and next irradiated 
into two ways. One can fill  the whole cavity before irradiation (Fig. 1a), or one can do it in two 
steps. At first, half of the prepared cavity is fill ed and irradiated (Fig. 1b). Next, the second layer is 
placed on the cured previously layer and irradiated (Fig. 1c). 

 

Fig. 1. Two ways of tooth-cavity restoration: in one step (a) and in two steps (b-c). 

In our model, displacements of particles of considered resin layer, appearing during the curing 
process are expressed in terms of polynomials, prescribed at each point x of the layer. The 
polynomials satisfy the applicable boundary conditions at the walls and bottom of the cavity. The 
stress boundary conditions on the upper surface of the resin are satisfied approximately using the 
principle of minimum elastic energy. When half of the cavity is fill ed or irradiated, Young modulus 
E, Poisson ratio ν and the volumetric shrinkage s are introduced as step-functions prescribed on the 
whole cross-section of the fill ed cavity. As a consequence, the stresses, strains and displacements 
are given explicitl y as combinations of polynomials and step-functions of s, E and ν. Such an 
approach enables to watch an influence of basic parameters describing the restoration process. 



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 25

2. Results 

Consider a case, when each of polynomials describing horizontal and vertical is determined 
by 9 coeff icients, the cavity dimensions are a = b=1 mm, s = 0.01, E = 4800 MPa and v = 0.25. 
Then, in the case of one-layer restoration, the tension stresses σ (1)

xx and the shear stresses σ (1)
xy, 

along the cavity wall , are described by third order polynomials. For two layers restoration, the 
corresponding stresses σ (2)

xx and σ (2)
xx are described by combinations of third order polynomials 

and step-functions. The results are close to those obtained from FEM analysis with ABAQUS. In 
Figure 2, stresses σσσσ (1) and σσσσ (2) are presented as functions of non-dimensional variable 0<η =y/b<1.  

  

Fig. 2. Comparison of stresses σσσσ (1) (point-lines) and σσσσ (2) (continuous lines) at the cavity wall . 

It is known from dental practice, that the point with the coordinate η = 1 (A at Fig. 1) is the 
most probable place where a leakage may appear. For this place, we have: σΑ 

(2)
xx/ σΑ (1)

xx = 0.89, 
and σΑ 

(2)
xy/ σΑ (1)

xy = 0.80. The result suggests that the layering of the composite material with 
successive irradiation may decrease maximal shrinkage stresses. Indeed FEM simulations of more 
realistic model of the restoration with one, two and four layers confirm this hypothesis (Fig. 3).  

 

  

Fig. 3. FEM model of the 4-layers tooth restoration and stresses at the cavity wall  for 2 and 4 layers. 

Now, the comparison of stress components at the point A, gives the following results: σΑ 
(2)

xx/ 
σΑ (1)

xx = 0.88, σΑ 
(2)

xy/ σΑ (1)
xy = 0.81, σΑ 

(4)
xx/ σΑ (1)

xx = 0.83, and σΑ 
(4)

xy/ σΑ (1)
xy = 0.76. 
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1. Introduction 

Biomechanical models of human body are created for verification of vibration influence on 
individual parts of human body. By using those models, it is possible to estimate acceleration and 
frequency of vibrations, without necessity of experimental research. These experimental researches 
proved to be unreliable. Experiences of individual persons can be subjective and vary widely [4]. In 
biomechanical models, there are some elementary masses, connected by typical viscous-springy 
elements. 

2. Physical models of the seat and of the human body 

There are about 60 models, presented in scientific literature. Usuall y, there are discrete 
mechanical models, which consider lying, seating and standing position [3]. According to ISO and 
DIN standards there are other, simpli fied models. Those models present human body as sum of four 
masses in different configurations. In Fig. 1 models of human body, according to ISO and DIN are 
presented. 

  
a)      b) 

Figure 1. Physical models of the seat and the human body: bio-mechanical model ISO 5982 (a), 
bio-mechanical model DIN 45676 (b). 

3. Simulation results 

For evaluation of human body dynamical behaviour the white, band limited noise as 
excitation signal is used. The courses of power spectral densities of acceleration measured at he seat 
cushion (PSD) and transfer functions of suspension systems (T), are show in Fig.2. The presented 
simulation results are obtained for passive and active seat suspension system. 
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Figure 2. Simulated power spectral densities of acceleration (PSD) and transfer functions (T) 
of passive (a, b) and active seat suspension (c, d). 

4. Conclusions 

Values of power spectral density and transfer function, elaborated on the basis of simulation 
research, show that there are considerable differences between the system loaded by mass of 
modeled human body according to ISO 5982 and DIN 45676. Whereas, comparing dynamic 
properties of the seat, in use of two given biomechanical models, practicall y there is significant 
difference in the frequency range 0 – 5 Hz. Results of computer simulation show necessity of 
further investigations, for the purpose of uniform estimation of vibro-isolation properties. A model, 
which in the best way can reproduce dynamical behaviour of human body is needed. 
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1. Introduction 
 

Determination of the pore space structure parameters of porous materials is very important 
for applications. Porous materials are commonly present in: nature (e.g. the rocks, soils, wood), 
biology (e.g. bone tissue, lung, membranes) and technology (e.g. sintered metals, ceramics, aerogels 
and concretes). Their pore structure plays important role in many physical and chemical processes 
occurring in such materials: in transport of mass, momentum and energy, in wave propagation or 
chemical reactions. It also strongly influences mechanical properties of the skeleton. 

There are many different methods used for identification of pore structure parameters: 
optical, dynamical (e.g. ultrasonic and vibration methods) and static (e.g. permeametry, gas 
picnometry, electric spectroscopy and mercury porosimetry). To the static methods belongs also the 
Micro Computer Tomography (µCT). It is very modern method of identification of microscopic 
structure of inhomogeneous materials. This allows to determinate their stochastic characteristics, 
macroscopic parameters of structure and also material constants.   

The purpose of this paper is to apply the scans of microscopic geometry of human bones 
obtained by µCT method to identification of their macroscopic pore structure parameters: volume 
porosity, permeability and tortuosity of pores and skeleton. These parameters, except the volume 
porosity,  have been determined by simulations of microscopic processes of viscous fluid flow and 
electrical current passage through samples of bones. The simulations were performed using the 
COMSOL’s Multiphysics environment assigned for solution of boundary value problems described 
by partial differential equations, by use of the finite element method.  
 
2. Identification of microscopic geometry of pore space 
 

Virtual models of microscopic geometry of porous samples of human bones ware obtained 
in the paper applying the µCT method. This method like tomography uses X rays to non-invasive 
identification of the three-dimensional internal structure of physical objects. It concerns e.g. small 
animals, tissues, microfossils and micro inhomogeneous materials like bones. 
 

 
 

Fig. 1. Virtual 3D models of small slice of human bone 
identified by  µCT method. 
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The output data obtained from � CT Takes form of three-dimensional 8 bits matrices that 

represent mass density of material in particular points of the sample. In the case of porous materials 
the identification of spatial distribution of the skeleton in the sample, such matrices have to be 
binarized. Next, they are used by specialized software to construct the virtual model of microscopic 
pore space geometry, enable for import by programs like COMSOL assigned for simulations of 
physical processes. The exemplary virtual 3D model of small  slice of human bone identified by  � CT method is shown in Fig. 1. 
 

 
3. Determination of macroscopic parameters of pore space structure 
 

Three kinds of pore structure parameters are determined in the paper: volume porosity 
permeabilit y and tortuosity of pores and skeleton. The volume porosity is calculated directly from 
geometrical relations given by 3D scans of samples whereas the permeabilit y parameter and its 
directional characteristics are determined applying simulations of microscopic fluid flow in virtual 
model of porous material and Darcy law, 

)( pgrad
k

µ
−=v , 

describing this process at the macroscopic level. 
To determine the value of the pore tortuosity parameter, the numerical simulations of an 

electric current passage through perfect conductor (e.g. electrolyte) filli ng pores of a non-
conductive skeleton have been applied. It corresponds to the standard conductometric method of the 
tortuosity measurements in porous materials ([1], [2]). 
These simulations enable calculation of formation factor, 

0ρ
ρ=F , 

that is the ratio of  effective resistivity ρ  of the conductor filli ng porous sample to specific 

resistivity 0ρ  of the bulk conductor. Due to relation, [3], 

Ff v
2 =δ , 

the determination of volume porosity vf  and formation factor F , gives directly the value of pore 

tortuosity δ . The similar approach have been used for determination of the skeleton toutuosity and 
its directional characteristics. 
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ORTHOTROPIC MODEL OF CANCELLOUS BONE.
APPLICATION TO SIMULA TION OF ADAPTIVE REMODELLING

P. Kowalczyk
Instituteof FundamentalTechnological Research, Warsaw, Poland

1. Intr oduction

A numericalmodelthat allows to simulatetheprocessof anisotropicremodellingof cancellous
boneis presented.Theboneis treatedascontinuumwith linearelasticorthotropicmechanicalprop-
erties.Elasticconstantsandrelative densityareexplicitly known functionsof geometricparameters
of microstructure. The parametersare nonuniformly distributed in the bonevolume. The remod-
elling rule is anoptimizationproblemin which the“cost” functionalis a time rateof a certainglobal
measureof bonequality at a givenloadstate.Instantaneousratesof theparametersaresupposedto
minimizethefunctional.Thenumericallypredictedevolution of theparametersis obtainedfrom the
time integrationof theresultsof theinstantaneousoptimizationproblem.

2. Methods

Cancellousboneis amacroscopicallycontinuousmediumthatexhibitsorthotropicelasticprop-
ertieswithin thephysiologicalrangeof smalldeformations.Macroscopicmechanicalpropertiesare
directly relatedto geometryandmechanicalpropertiesof trabecularmicrostructure.The latter are
subjectto evolution — this is the way boneadaptsto changing(in the long time scale)mechanical
conditions.For modellingof theevolution it is crucial to know (i) themechanismof tissuechanges
and(ii) thewaymechanicalpropertieschangealongwith thechangesin microstructure.

Most constitutive modelsknown for cancellousbonedo not directly definethe dependence
betweenmaterialconstantsandmicrostructurecharacteristics.In the following research,cancellous
bonewill be modelledwith the useof the parametricconstitutive model describedby the author
in [2]. In this model,macroscopicelasticconstantsare tabularizedfunctionsof certaingeometric
parameters

�������
— thicknessesof trabecularbars/platesandorientationanglesof principaldirections

of orthotropy,���
	�����
	������������ ���	����������	������ ����� � � �"!#�%$ �'&(1)

Thefunctionsarederivednumericallyfor a family of idealized,repeatablebone-likemicrostructures.
Boneremodellingis understoodasevolutionof trabecularmicrostructurewithin theprescribed

occupieddomain ( in a way ensuringthe fastestpossibleimprovementof bonequality at given
loadingconditionsandat certainlimitations resultingfrom bonephysiology. In particular, it will
be assumedhereafter [4] that bonequality is identifiedwith the total strainenergy accumulatedat
agivenloadandcorrespondingdisplacementfield ) ���+* � ,,.- )0/ � �0�21 ��324 !5 ) �76 	8��
	����9� ����� ) �%6 ��: ((2)

andthustheevolutionof parameters;�<� tendsto minimizetherateof this functional= � ;, � 3>4@? !5 ) �76 	BA8C ���	����C ��� ;���2D ) �%6 �FE ) �76 	G���	����9� ����� ;) �%6 �IH': ( &(3)
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Employing the finite elementdiscretizationand introducingan incrementaltime integration
procedure,we can replacethe functional

=
with its incrementalapproximateat the time interval- ��� � ������� 1 , = ��� � �
	�� �� � �	�� � ��	 , � !5 ���������� ��� ����� � � ������� !5 ������ ��� � � � � �(4)

where � denotesnodaldisplacementvector, � is anarrayof parametervalues
���

at elementintegra-
tion points,and

�
is thestiffnessmatrix.

=
is goingto beminimizedat thetime interval with respect

to theincrement	�� .
The minimization problemis subjectto constraints: the equilibrium equation

� ����� � ����� �
�������

, prescribedtotal mass,andphysiologicalconstraintson
���

and ;��� . Seedetailsin [3].
Theprocedurehasbeenimplementedin anauthor’s finite elementcodefeaturingdesignsensi-

tivity analysis.Optimizationateachtime stepis performedwith theuseof theHOPDMroutine[1].

3. Results

Figure1 presentsresultsof computersimulationof massandanisotropy distribution in ahuman
femur (2D model). Initially boneis assumeduniformly filled with isotropicmaterial. Application
of threestaggeredload casescorrespondingto real every day activities stimulatesthe remodelling
processwhichfinally leadsto a distributioncloselyresemblingpatternsobservedin naturalbones.

� � �

Figure1. Evolutionof massandanisotropy in aF.E. modelof ahumanfemur.
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Abstract 

The aim of this paper is to consider dynamics of a system composed of bone and implant, 
with different qualit y of their attachment, using theoretical and experimental modal analysis. The 
studies are focused on development of a diagnostic tool based on the vibration technique.     

Artificial bone replacements used for implants have become widely applied elements of 
treatments in orthopedic surgery for recent years. Destructive diseases or accidents call  for 
prosthesis, which in many fields have achieved a certain degree of perfection, yielding pain-free 
functionalit y and longevity. However, gradual loosening of the implant-bone attachment integrity 
due to wear, bone regress (related to ageing or diseases) and micro-mechanical  damage lead 
eventuall y to the failure of the replacement and thus to painful consequences: a repetition of the 
implanting surgery takes place under unfavourable conditions. On the other hand total costs of the 
healing are multiplied. 

The existing methods of qualit y monitoring of implants are based either on the X-ray imaging 
or ultrasonic inspection (among them: standard radiography, contrast radiography and 
scyntigraphy). They are therefore impaired by shielding effects when complicated shapes of the 
prosthesis are needed. All  methods above mentioned reveal not suff icient sensitivity and specificity 
when needed. Moreover, too frequent X-ray irradiation may lead to other serious injures. 

 

 
 

Fig. 1. Mesh of substitute – simpli fied model.      Fig. 2. Mesh of anatomical model. 
 



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 33

 An alternative method of diagnosis is considered, based on the monitoring the integrity of 
the implant and bone by checking the changes of its vibrational characteristics. Unlike the 
ultrasonic inspection, which works on the principle of pulse dispersion and reflection for waves of 
certain frequency chosen for the tested tissue, the proposed method would rely on monitoring of the 
shifts of the frequency spectrum caused by the changes in the mechanical properties due to the 
deteriorating state of the system. A feasibilit y study for this relatively new method begins with the 
modelli ng of attachment integrity. This constitutes a starting point for both  FE simulations using 
numerical modal analysis and experimental study based on vibrational techniques. 

 In the numerical part of the research two general types of models, taking into account 
geometry, are considered: substitute - simpli fied models which are grounded on beam model and 
anatomical models, fig. 1, based on real geometry of femur bone and implant. In this part of study 
called theoretical modal analysis Abaqus numerical environment is used to perform computations.  

In the experimental study  substitute-simpli fied systems  are investigated using modal analysis 
which model the attachment. The set of dynamic parameters of the system is identified by 
measuring vibrations. The experimental tests are accomplished by introducing either  impulse or 
harmonic excitation.  

Analysis of numerical and experimental data which include: shifts in frequency spectrum, 
changes in eigenmode shapes, fluctuations of amplitude revealed significant changes in frame of 
proposed model of bone-implant integrity deterioration. It creates a starting point for  determination 
of  quantitative assessment of  bone-implant integrity. 
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MODELING OF BONE – BIORESORBABLE GRAFT INTERACTION
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1. Introduction

In recent orthopedic practice bioresorbable materials get more and more attention in bridging
bony defects and filli ng bony losses. The application of such materials is associated with important
advantages, among the others – it  allows to avoid the usage of  autogenic and allogenic implants
associated with a risk  of  graft  contamination and possibility  of  rejection as well  as results in
reduction of surgery  invasiveness compared to cases of  autogenic implants.  Mathematical  and
computational models of effects present after graft implantation might be used in many situations,
among the others – in surgery planning, in optimization of  graft material  characteristics, and in
planning therapy after operation.

2. Modeling of tissue evolution in presence of resorbable material

Changes in bone after bioresorbable graft implantation are complex and not entirely known
yet. Generally speaking there exist two major effects interacting with each other namely, tissue
formation and remodeling and resorption of implanted graft. The interaction between them is of
biological and mechanical nature. This is well  known fact that bone adapts its micro structure and
shape to variable in time mechanical loading what is known as functional adaptation. On the other
hand the resorption of graft has sometimes significant influence in overall  or local bone mechanical
characteristics what evidently affects the activities of cells playing a fundamental role in the process
of  bone healing and adaptation after  surgery.  However  graft  resorption is not completely
independent on its environment, it  is also dependent of cells activity. Therefore these two effects
can not be considered separately and models including both are needed.

3. Results

Mathematical  description of simultaneous formation and remodeling of  bone and resorption
of bioresorbable graft was proposed. In this model  three groups of bone cells are considered, one
playing role of mechanical  sensors, second responsible for tissue formation and the last for tissue
resorption. These two simultaneous processes are affected by the third process - graft resorption
which depends to some extent on cells activities. To derive necessary mathematical  relations an
approach proposed earlier by the author based on the hypothesis of  optimal  response of bone was
used , see e.g. Lekszycki {1, 2]. They form nonlinear problem defined by a set of partial differential
equations,  integral  inequaliti es,  and algebraic inequaliti es and equations.  It  can be only  solved
numerically by incorporating finite element method to determine an actual  state of  system under
examination with bone adaptation relations and graft resorption relations in one subroutine. This
way the simulations of the process in bone after surgery are possible. Selected results of  computer
calculations will  be presented to ill ustrate the application of proposed model in solution of practical
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problems.  Additional  works are necessary  and are being performed  to  compare effects of
calculations with the clinical observations and results of experimental investigations.
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Abstract

In the paper (n + 1) dimensional models describing carcinogenesis mutations are stud-

ied. The models are formulated on the basis of the Lotka–Volterra systems (food–chains

and competition systems) with linear diffusion. We study the properties of the systems

without diffusion (ODE systems), and with the Neumann boundary conditions as well

as the Dirichlet ones. It occurs that the behaviour of solutions to the systems without

diffusion and with the Neumann boundary conditions is similar, i.e. does not depend on

diffusion coefficients, but strongly depends on the type of model. On the other hand, in

the case of the Dirichlet boundary conditions this behaviour is related to the magnitude

of diffusion coefficients. For sufficiently large diffusion coefficients it is similar for every

model, i.e. the trivial solution which is unstable for zero diffusion gains stability.

1. The models

Depending on the environmental conditions we study the folowing systems of
equations (compare [1] for detailed explanation):







∂y0

∂t
= d0∆y0 + a0y0(1 − y0) − µ1y0y1

∂yi

∂t
= di∆yi + aiyi(1 − yi) + ηiyiyi−1 − µi+1yiyi+1, i = 1, . . . , n − 1

∂yn

∂t
= dn∆yn + yn + ηnynyn−1

, (1)







∂y0

∂t
= d0∆y0 + a0y0(1 − y0) − µ1y0y1

∂yi

∂t
= di∆yi + aiyi(1 − yi) + ηiyiyi−1 − µi+1yiyi+1, i = 1, . . . , n − 1

∂yn

∂t
= dn∆yn + yn − ηnynyn−1

, (2)







∂y0

∂t
= d0∆y0 + a0y0(1 − y0) − µ1y0y1

∂yi

∂t
= di∆yi + aiyi(1 − yi) + ηiyiyi−1 − µi+1yiyi+1, i = 1, . . . , n − 1

∂yn

∂t
= dn∆yn − yn + ηnynyn−1

, (3)

with non-negative coefficients and non-negative initial functions yi(0, ω) ≥ 0, yi

sufficiently smooth and ω ∈ Ω ⊂ IR, Ω is the open interval in IR (for simplicity),
or Ω is open, convex, with smooth boundary bd Ω in three-variable space IR3. We
study these systems with the homogenous Neumann (zero-flux) or Dirichlet (zero)
boundary conditions.



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 37

2. Results

We start our analysis with the case without diffusion. In this case, in favourable
conditions, that is for Eqs. (1), there is always unrestricted tumour growth and
without any treatment the patient cannot survive. In the competitive conditions the
dynamics can be similar to those obtained from Eqs. (1) but can be also different
from it. If for every t ≥ 0 there is yn−1 < 1

ηn

, that is the number of pre-malignant

cells always stays at the level smaller that the threshold value 1

ηn

, then we observe
unrestricted tumour growth. On the other hand, if yn−1 is bounded above this
threshold, then the solution is attracted by the critical point yn with yn = 0. In this
system depending on the model parameters, we can also expect bi-stable behaviour,
as in the typical competitive Lotka–Volterra system, compare e.g. [3]. The most
stable behaviour we get for unfavourable conditions, described by Eqs. (3). For this
model if the positive critical point ȳ exists, then it is globally attractive. If not, then
we expect that one of the semi-trivial critical points is attractive, compare also the
analysis for n = 2 in [2].

We also considered the influence of spatial arrangement due to diffusivity of
cells. It occurs that for the case with diffusion the behaviour of the systems strongly
depends on the boundary conditions. In the case of the Dirichlet boundary conditions
the qualitative behaviour of solutions to every studied system for sufficiently large
diffusion is the same — every solution tends to the trivial one for t tending to ∞. On
the other hand, the solution to the systems with the Neumann boundary conditions
strongly depends on the system. In the author’s opinion this suggest that either
diffusion coefficients cannot be large or the Neumann boundary conditions better
reflect the real process. In fact, even in the case of malignant cells occurrence we do
not expect extinction of all cellular populations.

It should be marked that in every considered case there is no possibility to re-
covery, because the semi-trivial critical point which describes a healthy organism is
always unstable. Therefore, we should try to target tumour cells paralelly increasing
the competition coefficient ηn.

Acknowledgements. This paper was supported by the Polish Ministry of Science, grant
No 1 P03A 028 30.
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1. Introduction 

Contemporary design methods include optimization procedures on each of design stage. In 
case of structural design the optimization assists the engineers from the earliest design idea up to 
the end of the design process. In case of the living entities all  kind of the optimization must be 
simultaneous. The example of such simultaneous adaptation is the phenomenon of the trabecular 
bone remodeling process. 

2. Trabecular bone remodeling process 

There are many models of bone remodeling. In the Huiskes’  ‘regulatory model’  [1] 
conception based on clinical observation of trabecular bone tissue behavior, the main assumption of 
this model is existence of homeostasis (perfect balance between bone gain and loss). This 
equili brium can occur only in presence of mechanical stimulation. The network of osteocytes plays 
the role of sensors of the mechanical energy distribution along the trabecular bone tissue. The 
model used here postulates strain energy density (SED) on the surface of trabecular bone, as a 
scalar measure of mechanical stimulation and distinguished value of SED, corresponding to bone 
remodeling homeostasis.  

3. The Principle of the Constant Strain Energy Density 

The notable assumption of the presented model is existence of the homeostasis of the 
remodeling process described by the distinguished value of SED. It is interesting, that SED, as a 
energy measure, is also emphasized in optimization research, distant from biomechanical 
applications. In Pedersen’s [2] considerations the optimal shape of the structure, minimizing the 
strain energy is thought. 
The derivative of the total potential Π with respect to an arbitrary parameter h is: 
 

(1)  
h

U

dh

d

∂
∂=Π ε           

 
For a local design parameter he that only changes the design in the domain e of the structure: 
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∂
∂=

∂
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where eu  is the mean strain energy density in the domain of, and eV  is the corresponding volume. 

Assuming two parameters hi, hj, the total volume V of the structure is: 
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then the increment of the elastic energy: 
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for design independent loads, and when only the local energies are involved: 
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and with the constant volume assumption the a necessary condition for optimalit y ∆U = 0 with 
constraint ∆V = 0 leads to the conclusion, that the strain energy densities must be equal. Similar, 
with all  design parameters, the total energy change equation leads to the conclusion, that a 
necessary condition for optimalit y is constant value of the strain energy density. Thus for the stiffest 
design the energy density along the shape to be designed must be constant: 

 
(6)  const.=su           

4. Conclusions 

 
From our resent research in the area of numerical simulation of bone remodeling phenomenon 

and studies on structural optimization, the astonishing conclusions can be formulated. The bone 
remodeling phenomenon is a biological realization of the optimal structure principle, requiring 
equal value of surface energy distribution. On the other hand, the optimization scenario based on 
the osteoclasts, osteoblasts activity and osteocytes mechanosensitivity assumption leads to the 
optimization results identical to these obtained by traditional optimization methods based on the 
minimal potential assumption [3]. 
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1. Introduction 

Anatomy and physiology of neck spine is quite well  known but knowledge about biomechanical 
aspects as soft tissue mechanical influence on skeletal system is not satisfied. Especiall y correlation 
between spine movement, internal forces and muscles roles demands precise interdisciplinary 
researches, engaged medical and technical scientists. Activity of neck muscles is very important for 
head and cervical vertebrae movement during physiological and accidents situations. Many science 
institutions focus researches on neck muscles influence on head behaviour during situations 
corresponding to road accidents less attention concentrate on physiological aspects. Improvement of 
knowledge about correlation between dynamics, human body behaviour and internal cervical 
phenomena could contribute to the defence against spine failures. The best information about above 
mentioned correlation could be obtained during test on volunteers but experimenting on people is 
usuall y impossible because of its dangerous character moreover nowadays not exist suitable 
technique. Another way to study the behaviour of the human body and internal interactions during 
different situations is the mathematical modelli ng. This is proposal a non-invasive method [1,2].  

The general aim of the presented researches is creation dynamical 3-dimensional model suitable 
for analysis of correlations between head movement and internal dynamical forces.    

2. Modelli ng research 

Modelli ng process was preceded by studies on anatomy of human cervical spine, properties of 
particular elements and kinds of li ving organisms modelli ng. 3–dimensional dynamical model of 
human cervical spine as author program was created on the basis of multibody methodology. Model 
consists of (figure 1a): 

– head, seven cervical vertebrae are treated as 6 degrees of freedom rigid elements and 
immovable trunk, movement of the elements is depended on muscles, intervertebral discs, 
facet joints and li gaments activity,    

– muscles are divided in two main groups: first deep muscles treated as non-linear spring 
dumper elements and second group main muscles responsible for head and vertebrae 
movement. Muscles of second group are represented by forces calculating on the basis of 
optimization methods, coeff icients was determined on the basis of experimental MRI and 
EMG methods, 

– intervertebral disc is divided into isolated segments, representing anulus fibrosus as 
nonlinear spring element acting during extension and compression and nucleus pulposus 
as nonlinear spring - damper element acting only during compression, 

– facet joints is treated as nonlinear spring – damper element taking into consideration 
relative motion possibilit y of connected vertebrae, additional resisting moment appears 
when physiological relative motion between neighbour vertebrae is exceeded,  

– ligaments are divided in parallel strips acting as forces only during elongation,  
The model was verified on the basis of experimental researches as comparison of vertebrae 

relative motion and action of muscles (figure 1b).. Necessary information about material parameters 
were obtained from tests on specimens of cadaver spines (figure 1c). 
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a)                                 b)                                                         c) 
 

Head 

C3 
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C4 

C6 

C7 

C1 

Trunk 

   
Figure 1 a) Model of human cervical spine.  

Experimental research: b) MRI scans of cervical spine during movement  in middle saggital plane, 
c) test on spacemen of cadaver spine with use of special device 

3. Results  

Two variants of spine loading were analysed:  during physiological head flexion movement and 
during situation corresponding to car head-on colli sion (8kmph velocity of accident). Figure 2 
presents maximal forces insight examples anatomical parts for two variants.        
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Figure 2 Comparison of maximal forces insight anatomical parts 

for physiological activity and accident situation 

4. Conclusions 

Neck muscles it is very complicated system. Analysis of biomechanical aspects of relations 
between movement, internal reactions and muscles forces demands to carry out common 
experimental and modelli ng researches. Presented model allows to carry out numerical simulation 
of dynamical forces inside anatomical parts of human cervical spine. Neck loading analysis in case 
of two variants  physiological activity and car colli sion revealed increase of internal forces about 
five times.  
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1. Introduction 

A method for bone material properties evaluation of bone tissues „ in situ”  based on a CT 
images is presented. Calculations were made on the assumption that bone tissue was the orthotropic 
material. Calculation results obtained for chosen points of the femur section (trochanter minor) have 
been shown, as well .  

2. Method  

Computer tomography (CT) data on the patient, having the form of images of sections, were 
stored in the digital form DICOM (Digital Imaging and Communications in Medicine). They were 
then analyzed by means of the specialist software Mimics 9,0 to determine the distribution of 
radiological density CT in terms the Hounsfield units [HU]. Those data make it possible to calculate  
other parameters of bone tissues, i.e. apparent density, Young modulus, shear modulus and 
Poisson’s ratio, for evaluation the values of compliance matrix [bij] elements. The consecutive steps 
of bone material property calculations are presented in Fig. 1.  

 
CT 

IMAGES 
Image 

Processing 
CT, 

 
[HU] 

Experimental 
functions [4] 

ρ, ρ, ρ, ρ, [g/cm3] 
Ei, MPa 
i = 1,2,3 

Relationships and 
experimental data [3]  

[bij] 
at points 

A, B, C, D,E 

Figure 1. Method for evaluation of orthotropic properties of the bone tissue material “ in situ.”  

3. Measurements  and calculations  

Using the Mimics technique „profile lines”  one obtains the curves representing the changes in 
radiological density CT, [HU] (Fig 2b), along the lines marked in the picture of section (Fig.2a). The 
CT values read off  at characteristic points A, B, C, D, E, are shown in Table.1. 

 

 

Figure 2. ”Profile lines”  technique for evaluation of radiological density at  points A, B, C, D, E of 
the section through  trochanter minor of the femur. 

Basing on the CT data, the values of apparent density were calculated. For the proximal femur the 
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relationship ρ  = f(HU) represented  by equation (1) [5] was employed.  

 ρ  = 1,67·  HU  + 131           [kg/m3]                                                                                             (1) 

On the assumption that points A, B, C, D are situated within the area of cortical bone and after 
accepting suitable coordinate system the values of Young modulus: E1, E2, E3 were calculated using 
equations (2), [5].  While since point E is situated within the spongy bone area equation (3) [5]  
should be applied.  

E1 = 0.014·  ρ  – 6.142,      E2 = 0.009 ·  ρ  – 4.007,      E3 = 0.010 ·  ρ  – 6.087,  [ GPa], ρ [g/cm3]     (2) 

  E1  = 0,58 ·  ρ 1,30,     E2  = 0,01 ·  ρ 1,86 ,     E3 = 0,004 ·  ρ 2,01,    [MPa], ρ [kg/m3]                      (3) 

Other parameters characterizing material properties of the bone tissue; i.e., Poisson’s ratio and 
values of the shear modulus Gij can be calculated using formula (4), [1,4 ].  

  ji;3,2,1j,i
)ν1(2

E
G,

E

Eνν
ij

i
ij

i

j
ijji ≠=

+
=⋅=                                                          (4) 

The values of parameters: ν12= 0,307, ν23 = 0,622, ν31 = 0,119, for the cortical bone [4] and 
ν12=ν23=ν31=ν=0,2 [2] for the spongy bone respectively, were taken from the literature for 
calculations the compliance matrix [bij] elements. The calculations results  for points A, B, C, D, E 
are presented in Table1. 
 

 CT, 
HU 

ρ, 
g/cm3 

E1 

MPa 
E2 
MPa 

E3 

MPa 
ν21 ν32 ν13 G12 

MPa 
G23 
MPa 

G31 
MPa 

A 776 0,959 7284 4624 3503 0,195 0,471 0,247 2786 1425 1565 
B 1076 1,279 11765 7505 6704 0,196 0,556 0,209 4501 2313 2996 
C 920 1,113 9435 6007 5039 0,195 0,522 0,223 3609 1852 2252 
D 1170 1,386 13259 8465 7771 0,196 0,571 0,203 5072 2609 3472 
E 326 0,479 1769 966 976 0,109 0,202 0,366 737 402 406 

Table 1. Values of bone materials constants at points of the section through the trochanter minor  

3. Conclusions 

The introduced method makes it possible to calculate the parameters of orthotropic model of 
bone tissues in the organism (“ in situ” ) on the basis of CT data. The results obtained for the plane 
sections can be transformed in to a 3D model [3] of the proximal femur . 
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1. Abstract

The paper is devoted to long wave propagation in composite material  which is used as a 

model of cancellous bone. First, homogenized (macroscopic)  properties of composite are calculated 

taking into account the multilevel structure of cortical bone. Next, the macroscopic properties of 

cancellous bone are calculated treated as two-phase composite built by trabeculae and marrow. 

Then, we deal with  higher order terms in asymptotic expansion method of homogenization theory 

to take into account effects due to finite characteristic dimension of heterogeneities. Hence the 

scattering of waves which are long as compared to the dimension is determined.   

2. Effective elastic properties of cancellous bone material 

The mathematical homogenization of periodic media as well as  stochastic media is based on 

assumption that an inhomogeneous medium behaves as a homogeneous one provided that 

macroscopic size, L, is infinitely large as compared to size l  of its heterogeneities. The macroscopic 

behavior is described by effective (macroscopic) properties of a “homogenized” material, which are 

obtained in the case when the small dimensionless parameter  � = l/ L tends to zero.  

The first step is to find the effective macroscopic elastic moduli of compact  (cortical) bone by 

using reiterated homogenization method elaborated in [1]. Biological material like compact bone is 

characterized by several structural levels, cf.  [2-4].   In this case three structural levels are of 

primary importance. At the lowest level, the lamellar structure is considered: collagen fibers are 

embedded in hydroxyapatite crystals. In a single lamella, all the collagen fibers have the same 

orientation but the orientation of these fibers can differ between two adjacent lamellae. The second 

level corresponds to a single osteon and of a part of the interstitial system, an osteon being a set of 

concentric lamellae, which surround the Haversian canal, cf. Fig. 1.  

Fig. 1 . The method of calculation of effective material constants 

of osteon with Haversian canal.

At the highest level, compact bone is examined. The compact bone consists of large number 

of osteons embedded in the interstitial system. The osteons are packed tightly together, mutually 

parallel and oriented in the direction of the long axis of the bone, cf. Fig. 2.  

Fig. 2. Third step of calculations. 
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Consequently, three successive steps allow us to derive the final form of the macroscopic 

elastic moduli of compact bone. These moduli of compact bone are taken for moduli of trabecular 

component of cancellous bone. At the end the effective properties of cancellous bone are obtained 

as a result of homogenization applied to the two phase structure of the bone composed of fluid 

(marrow) and solid (compact bone) components.  

3. Acoustic waves in cancellous bone  

This study deals with long wave phenomena i.e. we assume that the wavelengths are large as 

compared with the characteristic size of pore dimension in trabecular structure of bone, but not 

infinitely large. This situation corresponds to wavelengths which are about 10-100 times greater 

than heterogeneities, i.e. 100< � <10.  It is typical for ultrasounds excitations used in extended bone 

diagnostic techniques,  cf. [5].  Thus, classical homogenization method  must be enlarged to take 

into account higher order effects due to the size of inhomogeneities. It is done by using the formal 

asymptotic expansion method and preserving the terms proportional to successive powers of small 

parameter �. Numerical results show, particularly, explicit dependence of velocities and 

polarizations on geometrical characteristics of trabecular structure, i.e. direction of anisotropy and 

volume fraction of  marrow, cf. Fig. 3. 

Fig. 3. Polarization vectors – red, wave vectors – green of the wave propagating in the 

direction along the length of the bone. 

3. Results 

All scattering effects are analyzed and polarization, dispersion and attenuation coefficients are 

visibly related to microstructure information about trabecula and marrow distributions. An example 

of layered structure being of great practical importance for ultrasounds diagnostic is studied in 

detail. 
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FABRIC TENSOR AND STRENGTH SURFACE OF BONE-LIKE MATERIALS 
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1. Abstract 

The porous microstructure plays an important role in the damage resistance of bones, [1], [3]. 
The aim of the paper is to establish the strength criterion for the bone-like porous material, which 
takes into account the porous geometry explicitl y, Fig.1. Firstly, we define a new fabric tensor 
based on the mathematical homogenization theory to separate geometrical effects from mechanical 
ones. Next, we construct the strength surface using the introduced fabric tensor. 

 

 
 

Fig.1. Anisotropic porous structure of a bone. 

2. Fabr ic tensor  based on the mathematical homogenization theory 

 The mathematical homogenization of periodic as well  as stochastic media is based on the 
assumption that an inhomogeneous medium behaves as a homogeneous one, provided that 
macroscopic size L, is infinitely large as compared to the size l of its heterogeneities. The 
macroscopic behavior is described by effective (macroscopic) properties of a “homogenized”  
material, which are obtained in the case, when the small  dimensionless parameter ε  = l/ L tends to 
zero.  
Let us assume that the local elastic properties described by the fourth order tensor, depend on the 
position x  belonging to the space occupied by a material body. The material body is composed of 

two-phase inhomogeneous material in the following way: )/()()/(
)2()1()2(

εχε xCCCxC −+= . Here 
)2()1(

, CC  are elastic properties of components, and )(yχ  denotes a characteristic function of the set 
occupied by the component denoted by the index (1). Effective properties of the composite are 
given by:  

1)2()1(
)4(

)2()1()2(

)()(
−








 −∗+−+= χχ CC
Γ

ICCCCeff , 

where the components of 4th rank tensor )'.()',( )()( yyGyy kl
y
j

y
iijkl ∂∂=Γ  compose the  kernel of a 

integral operator. The operator can be defined by the Green function of the  periodic boundary 
problem of elasticity for homogeneous material (2) if in a  periodic structure of the composite was 
assumed. The brackets denote averaging over statistical ansamble or over the periodic cell . If  

)1(

C 0→ , then the effective elastic properties of porous material with the skeleton described by  
)2(

C  

are given by the formula  
)2()2(

:: CTCC =eff , where ( ) 1)4()4( −∗−−= χχ AIIT  , 
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)2()2(

:: C
Γ

CA = . )4(I - denotes unity in the space of the symmetric 4th rank tensors and two dots 
denote double contraction of the tensors. The tensor T is called  the fabric tensor and it can be 

rewritten in the following form: ∫ −
−=

1

0

)4(

1

)(

x

xd�
IT .  The measure )(xd� , namely their moments, 

describe geometry of the porous structure. In what follows, the index (2) is omitted. Let us define 

two tensors, ( ) 1

L ::
−

= CTCT  and ( ) CTCT ::
1−

=R ,  which are called the left and right 

damage tensors, respectively. The names are justified by the relations σTσ :L
eff =   and  εTε :)( 1−= R

eff , where the first one is a stress relation between damaged ( material with pores) and 
virgin material. It is assumed that strains are the same in damaged  and virgin material and the 
second one is a strain relation between damaged and virgin material. Moreover, it is assumed that 
stresses are the same in both materials. The following relations also holds: CTC :L

eff =  and 
eff

R CCT :1−= .  

 3. Strength sur face        

A homogenized failure criterion for an arbitrary two-phase elastic composite is formulated 
in [2]. The criterion incorporates an elegant first approximation to the microscopic stress fluctuation 
due to the interaction between the homogenized stress and the microstructure. To formulate 
homogenized criteria for trabecular bone, we assume that such criterion is known for the skeleton 
material i.e. compact bone, which is a component of composite. The criterion has the form of 
inequalit y for microstresses in the skeleton material: 1:: ≤mikromikro σΠσ  , where Π  is given as 4th 
rank positively definite tensor. Now, the strength criterion of the trabecular bone, expressed by  the 
4th rank positively definite tensor, is given by the formulae 

11 )(:][::::)( −− ∇= effeffeffeff CCC
Π

CC
Π

C , 

where  ][ effCC∇    denotes so-called phase gradient of the effective tensor with respect to properties 

of  compact bone material. It is the 8th rank tensor. The tensors effC , 1)( −effC  denote stiffness and 
compliance effective tensors of the trabecular bone, respectively. The phase gradient is obtained 
from the solutions of a so-called local problem. In the case of periodic structure it is called 
“problem on the periodic cell ” . The criterion is applied to macroscopic stresses in the trabecular 
bone. The strength criterion is given by the inequalit y 1:: ≤makroeffmakro σΠσ , where the equalit y 
defines the strength surface. Using the dependence on fabric tensor of effective elastic tensor 
introduced above, the influence of geometry on the strength criterion is analyzed with various 
assumptions concerning microstructure of bones. 
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1. Introduction 

In the oil  and gas industry, steel threaded pipe connections are commonly used e.g. as 
couplings between drill  pipes, risers and pipelines. Due to environmental influences, li ke waves and 
vortex induced vibrations in offshore applications, these tubular structures are subjected to both 
static and dynamic loading conditions. To maintain a secure connection, the couplings are installed 
with a preload to avoid them coming apart. To introduce the preload on the connection, conical 
threaded connections or rotary shouldered connections are used. These connections are installed by 
applying the so-called make-up torque.  

Due to the combination of the preload and external loading the stress distribution in the 
connection is complex. Additionall y, the stress distribution depends on the coupling’s geometry 
(pipe dimensions and thread type) and material properties (coeff icient of friction between the 
threads). The resulting stress concentrations can initiate fatigue cracks and cause a premature failure 
of the connection. The influence of the different geometrical and material parameters on the 
connector’s applicabilit y and service li fe are not well  known. However, improved pipe connections 
are necessary to meet new industrial needs. 

This study aims to get a better understanding on the influence of the different parameters on 
the connection’s performance through finite element analyses of different connection types. In this 
paper the analysis of an API line pipe connection is presented. 

2. Modeling of threaded pipe connections 

The stress distribution in the connection is calculated by finite element analysis (FEA). A 
widely used method to model threaded pipe connections is by the use of 2D axisymmetric models 
[1], [2]. This approach does not take into account the thread helix nor the exact run-out region. 
However it is known from [3] and [4] that 2D axisymmetric models give accurate results compared 
to full  3D models. Moreover, axisymmetric models are less time-consuming and hence finer 
element meshes can be calculated. 

FEA were carried out using the software package ABAQUSTM. An elastic-plastic material 
model of AISI 4340 HSLA steel is used. This material has a yield strength of 800 MPa.  

To model the preload an initial overlap is given to the male and female part of the connection 
(pin and box), corresponding to the specified number of make-up turns according to the API 
standard [5]. This overlap is shown in figure 1 together with a detail  of the model’s mesh.  

 

 
Figure 1: Detail  of model mesh and initial overlap to model the make-up torque. 
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During the first step of the analyses, the overlapping surfaces of pin and box are brought into 

contact. This results in the von Mises stress distribution as shown in figure 2 a). The stress at the tip 
of the pin is a hoop stress of about 450 MPa.  

An additional external axial load is applied on the connection giving the stress distribution of 
figure 2 b). As can be expected from [1], the highest stress concentration is located at the root of the 
last engaged thread of the pin. This stress concentration is mainly caused by axial stress, while the 
stress state at the tip of the pin is caused by hoop stresses from make-up and opening between the 
threads of the pin and box.  

Figure 2. Stress distribution resulting from a) make-up, b) make-up + 200 MPa axial load. 
 
When the wall  thickness of the box is increased, the box becomes more rigid. This increases 

the hoop stresses in the pin. If on the other hand, the wall  thickness of the pin is increased, the 
acting hoop stress on the pin will  decrease while the hoop stress in the box will  increase. 

It can be seen in figure 2 b) that the box has an unthreaded extension at the left side. Due to a 
combination of hoop stress and bending of the extension, an additional stress concentration is 
introduced where it is connected to the threaded section of the box. When this extension is left out 
however, the opening between the threads under load increases together with the hoop stress in the 
pin, reducing the connection’s strength.  

It was observed that the opening between pin and box threads is significantly influenced by 
the coeff icient of friction between the threads. Since a larger opening will  decrease the static pull -
out strength of the connection, it is important to have accurate data of the coeff icient of friction. 
However, this data is generall y not present and can only be determined experimentall y.  

4. Conclusions  

A finite element analysis of a preloaded conical threaded connection is presented. Results are 
consistent with data known from literature. The strength of the connection depends on both 
geometrical and material properties. The coeff icient of friction between the threads should be 
determined experimentall y to predict the connection’s behavior accurately. 
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1. Introduction

Application of the fast multipole method (FMM [1]) reduces the complexity of the boundary

element method (BEM) analysis. Reference [2] gives a review on applications of the fast multipole

boundary element method (FMBEM) and directions of further research, which should be carried out.

Among others, a fast evaluation of domain integrals is mentioned. Reference [3] gives a comparison

of efficiency and accuracy of different methods applied to evaluation of such integrals, for both

Poisson and Helmholtz equations. Four methods were considered, namely: particular solution, dual

reciprocity, direct integration and multipole method [4]. It is shown, that the domain integration

methods are more efficient and provide better accuracy than the other ones, in spite of necessity

of discretization of the domain. In Reference [5] analysis of gradient materials by the BEM, using

the classical fundamental solutions of two-dimensional elasticity, is presented. The method requires

evaluation of domain integrals. Results of the analysis are compared to the ones obtained using

isoparametric finite element method (FEM). It is shown, that the BEM is more accurate than the FEM

in the cases of stress concentration and distorted internal cells (finite elements). In Reference [6]

a FMBEM application to analysis of elasto-plastic plates is presented. Linear or quadratic boundary

elements and constant triangle internal cells are used. In the present work, a FMBEM analysis of

elastic plates loaded by volume forces is presented. Here, quadratic boundary elements and quadratic

triangle internal cells are used.

2. Fast multipole boundary element method

The linear elasticity problem can be described using an integral equation. In this equation,

boundary and volume integrals occur, which are dependent on the fundamental solutions of Navier-

Lamé operator [7]. Boundary integrals depend also on boundary displacements and traction forces,

and the volume integral depends on a known field of body forces. The boundary of analysed structure

is discretized, and for each boundary node as the collocation point the integrals are evaluated. In order

to calculate the volume integrals, the domain of analysed body is discretized, using internal cells.

Thus, a linear system of algebraic equations is obtained. The conventional algorithm has complexity

O(N × (M + N)), where N is the number of boundary elements and M is the number of internal

cells. The complexity is reduced to O(N + M) by hierarchical grouping of influences coming from

integration points. A tree structure of clusters, containing groups of boundary elements and internal

cells is formed. The integrals evaluated for clusters located far enough from collocation points are

expanded into multipole series, near to integration points. The coefficients (multipole moments) of

the expansion are transformed by shifting the expansion points to larger clusters. The integrals are

also expanded near to collocation points (local expansion). The local moments are formed from the

multipole ones, and then the influences are distributed to smaller clusters, by shifting the expansion

points. Finally, the far-field terms of potentials are evaluated for each collocation points, using the

local moments. The near-field terms of potentials are calculated directly. The operations lead to

obtaining the matrix-vector products. The matrices are not built explicitly, so the system of equations

is solved iteratively. More details can be found in References [1, 2, 3, 6, 8].
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3. Computer code

A FMBEM code for analysis of elastic plates, loaded statically by traction and volume

forces, is developed [8]. The boundary of the structure is discretized using three-node quadratic

boundary elements and the domain is discretized using six-node quadratic internal cells. The regular

boundary integrals are calculated using the Gauss quadrature. The singular boundary integrals are

calculated using logarithmic Gauss quadrature or rigid body movement method, respectively. The

regular domain integrals are calculated using 7-point Gauss cubature, and the singular ones are

regularized using transformation to the polar coordinates. The system of equations is solved using the

preconditioned GMRES.

4. Numerical example

A rotating disk loaded by centrifugal forces was analysed. Results were obtained using three

versions of the BEM. In the first version, all integrals were calculated directly. In the second one,

only the volume integrals were calculated by using expansions. In the third version, the expansions

were used for calculation of all the integrals. An influence of the number of the expansion terms on

the error of displacements and stresses were analysed. The efficiency of the three considered versions

of the BEM was also analysed.

5. Conclusions

The accuracy and the effectiveness of the FMBEM can be adjusted to a particular problem by

changing the number of the expansions terms, dependently on the case, whether only displacements,

or also stresses are to be analyzed. The application of the method to the evaluation of the volume

integrals gives capability of effective analysis of a broader range of deformable structures, e.g. made

of elastoplastic materials, gradient materials, etc.
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1. Introduction 

Wave propagation in structures is a subject of intensive investigation. One of the possibiliti es 
of the wave propagation modelli ng is the Spectral Element Method (SEM), developed by Patera [1] 
in 1984 in the context of fluid dynamics. The main idea of the SEM is use of one high-order 
polynomial for each domain [2].  

In this study a spectral frame N –node finite element appropriate for analysis of wave 
propagation phenomena in engineering structures build from spatial frames is presented. The 
element is elaborated in linear range. Each node of the element is endowed with six engineering 
dofs. The kinematical assumptions of Timoshenko beam theory are employed. Associated with the 
formulation of the element, is the temporal integration scheme. Special emphasis is put on the 
accuracy and eff iciency of the time integration to ensure reasonable simulation times. The algorithm 
uses accelerations as the primary variables and the mass matrix of an element is integrated using 
Lobatto quadrature rule. Consequently, it can be recast in a form of the pseudo diagonal matrix and 
substantial eff iciency in computation times can be gained. 

2. Formulation 

The time integration scheme does not use the stiffness matrix. On the local element level, 
under the assumptions of classic Timoshenko beam theory, the element load vector r  and mass 
matrix M  are derived. The damping matrix C  is formulated under the hypothesis of proportional 
damping. Then, it is possible to find the element inertia force vector b  and damping force vector 
c . While transforming the above matrices and vectors to the global frame coordinates, the 
transformation of the internal nodes is omitted, leaving them in the local frame coordinates. This is 
justified by the fact the wave propagation in local frame (along element axis) is of the primary 
interest. By writing the dynamical equili brium condition, the following equation is obtained with 
respect to increment of acceleration δ &&q  

(1)  [ ] ( ) ( ) ( ) 2
1 1 1 1( ( ) )i i i

n n n n

�
t γ δ �

t β δ+ + + ++ = − − − +&& &&M C q p b c r q q ,    1/4
β

= ,     1/2γ =  

where p  is the element external load vector, n  denotes the time step, i  is the label for iteration and 	
t  is the time step. Simple iteration method is then used to obtain correction of δ &&q   

(2)  [ ] ( )1 ( ) ( ) ( )
1 1 1 1( )i i i

n n n n

δ �
t γ −

+ + + += + − − −&&q M C p b c r q . 

Obviously, if M  and C  are pseudo-diagonal the time integration scheme becomes eff icient. The 
iterative process Bł ą d! Nie moŜ na odnaleź ć  ź ródła odwołania. is terminated when equili brium 
condition  

(3)  ( 1) ( 1) ( 1) ( 1)
1 1 1 1 1( )i i i i

n n n n n
+ + + +
+ + + + += − − − →j p b c r q 0 . 

is satisfied in some sense. 
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3. Experiments and numerical simulations for  rod 

The investigations were carried out for a steel rod [3] of the length 1 m, height 8 mm and 
width 8 mm (Fig. 1). The boundary condition was assumed as pinned-pinned. The experimentall y 
determined material properties were found to be: Young’s modulus E = 195 GPa and mass density 
ρ  = 7563 kg/m3. The rod was subjected to a dynamic load applied in the half of the rod length. The 
response was recorded at the same point as the load. The measurements were made using 
piezoelectric plate transducers Noliac CMAP11. The excitation signal was chosen as sine wave of 
frequency 40 kHz modulated by the Hanning window. 

The spectral element with 101 nodes was applied for modelli ng of the rod. The time step 
was assumed as 810 s− . The minimum number of nodes for proper response modelli ng is 101 (above 
12 nodes per wavelength). The comparison with the experimental results is given in Fig. 1. It is 
noted, that both numerical simulations are in good agreement with the experimental data. 

 

 
Figure 1. Steel rod, comparison of experimental and numerical solutions 

4. Conclusions 

The study on modelli ng of wave propagation in frame elements leads to the following 
conclusions and suggestions: 

a) The integration of the equations of wave propagation can be eff iciently conducted due to 
the pseudo-diagonal mass matrix 

b) Application of GLL nodes in both natural and geometric coordinates requires 12 nodes per 
wavelength. 
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W. Beluch1, T. Burczyński1,2 and P. Orantek1

1Department for Strength of Materials and Computational Mechanics, Silesian

University of Technology, Gliwice, Poland
2Institute of Computer Modelling, Cracow University of Technology, Cracow, Poland

1. Introduction

Laminates are a group of fibre-reinforced composites made of many stacked and permanently

joined layers (plies). Laminates have great strength/weight ratio and it is possible to obtain desired

properties of laminate by manipulating the components materials, stacking sequence, fibers orienta-

tion and layer thicknesses.

The aim of the paper is to identify material constants in multi-layered, fibre-reinforced lami-

nates. Simple and hybrid (with laminas made of different materials) laminates are considered. The

hybrid laminates are in a form of interply hybrids, with plies composed of two different materials [1].

The internal layers are made of a low-strength and less expensive material while the outer layers are

made of a more expensive but better material.

Usually, laminates can be treated as orthotropic thin plates with four independent elastic con-

stants: axial Young’s modulus E1, transverse Young’s modulus E2, axial-transverse shear modulus

G12 and axial-transverse Poisson ratio ν12.

2. Formulation of the stochastic identification problem

A non-linear stochastic optimization problem is a searching for a random vector [4]:

X(γ) = [X1(γ), X2(γ), ..., Xi(γ), ..., Xn(γ)](1)

which minimizes the objective function F (γ) = F [X(γ)] and satisfies the constraints:

P [gj(X) > 0] > pj, j = 1, 2, ..., m(2)

where: (Γ, F, P ) - the probability space; Γ - the space of elementary events; F - σ-algebra of subset

of the set Γ; P - the probability defined on F.

In the present paper evolutionary algorithm (EA) is used as the optimization method [2]. The

vector X(γ) (chromosome) consists of random genes. Each gene is represented by a random variable.

It is also assumed that each gene has a n-dimensional Gaussian distribution function and that random

genes are independent random variables. Eventually, the original stochastic problem can be reduced

to the deterministic one. Random chromosome X(γ) is replaced by a deterministic chromosome

ch(x). Each gene xi is a stochastic variable represented by a mean value mi and a standard deviation

σi [3].

Identification can be treated as the minimization of the objective function F with respect to the

vector of the design variables x:

min :

[

F (x) =
N

∑

k=1

∣

∣

∣

∣

q̂k − qk

q̂k

∣

∣

∣

∣

]

(3)

where: x = (xk) - the parameters representing the identified constants; q̂k - the measured values of

state fields; qk - the values of the same state fields calculated from the solution of the direct problem;

k = 1..N , N - the number of sensor points.
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The x vector has the form: i) for simple laminates: x = (E1, E2, G12, ν12); ii) for hybrid lami-

nates: x = (E1

1
, E1

2
, G1

12
, ν1

12
, ρ1, E2

1
, E2

2
, G2

12
, ν2

12
, ρ2) (superscripts specify the material number).

Direct problems for the identification tasks are solved by means of a finite element method

software (MSC.PATRAN/NASTRAN). To reduce the number of sensor points, the modal analysis

methods are employed. In present paper the eigenfrequencies are used as the measurement data. The

numbers of plies, their thicknesses, fibres orientation and the number of layers made of each material

are assumed to be known. External layers hybrid laminates are made of material Me and the core

layers are made of material Mi. The number of layers made of each material is also known.

3. Numerical example

A rectangular simple laminate 0.5x0.2m with one of shorter sides fixed is made of the glass-

epoxy. Each ply of the symmetrical laminate has the same thickness hi=0.002m. The stacking se-

quence of the symmetrical laminate is: (0/45/90/-45/0/90/0/90)s. The plate is divided into 200 4-node

plane finite elements. The first 10 eigenfrequencies of the plate are the measurement data. It is as-

sumed that measurements are random variables with the Gaussian distribution. The measurements

were repeated 200 times to collect data. The population in EA consists of 200 chromosomes of 4

genes each. The identification results after 1000 generations are collected in Table 1.

E1 [Pa] E2 [Pa] ν12 G12 [Pa]

m σ m σ m σ m σ

Min 2.00E10 0.00E9 4.00E9 0.00E9 0.00 0.00 2.00E9 0.10E8

Max 6.00E10 0.30E9 9.00E9 0.30E9 0.50 0.10 6.00E9 0.70E8

Actual 3.86E10 0.12E9 8.28E9 0.20E9 0.26 0.02 4.14E9 0.50E8

Found 3.92E10 0.11E9 8.14E9 0.17E9 0.27 0.04 4.07E9 0.22E8

Table 1. A simple laminate - identification results.

4. Final conclusions

An identification method based on the stochastic representation of the identified parameters

has been presented. The Evolutionary Algorithm has been employed to solve the identification task

for simple and hybrid laminates. Positive identification results have been obtained for both kinds of

laminates.
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[3] P. Orantek and T. Burczyński. The identification of stochastic parameters in mechanical struc-

tures, CMM-2007 Conference Proceedings, CD-Edition, Lodz-Spala, 2007.

[4] K. Sobczyk. Stochastic Wave Propagation. PWN, Warsaw, 1984.



56 Selected Topics of Contemporary Solid Mechanics

THE LOCAL GRADIENT METHOD  

SUPPORTED BY ARTIFICIAL NEURAL NETWORK  

IN GRANULAR IDENTIFICATION PROBLEMSP . O r a n t e k 1 a n d T . B u r c z y ń s k i 1 , 2
1) Department for Strength of Materials and Computational Mechanics,  

Silesian University of Technology, Poland 

2) Cracow Univerity of Technology, Artificial Intelligence Department, Poland    

1. Introduction T h e i d e n t i f i c a t i o n p r o b l e m s b e l o n g t o i n v e r s e p r o b l e m s a n d c o n c e r n t h e d e t e r m i n a t i o n o fm e c h a n i c a l s y s t e m s b y f i n d i n g s a m e m a t e r i a l , s h a p e a n d t o p o l o g y p a r a m e t e r s a n d b o u n d a r yc o n d i t i o n s f r o m t h e k n o w l e d g e o f t h e r e s p o n s e s t o g i v e n e x c i t a t i o n s . S u c h p r o b l e m s a r em a t h e m a t i c a l l y i l l p o s e d .O n e o f t h e w e l l k n o w n o p t i m i z a t i o n m e t h o d s a r e t h e g r a d i e n t m e t h o d s : ( i ) s t e e p e s t d e s c e n tm e t h o d , ( i i ) c o n j u g a t e g r a d i e n t m e t h o d , ( i i i ) v a r i a b l e m e t r i c g r a d i e n t m e t h o d a n d e t c . T h i s m e t h o d si n t h e p r e v i o u s s t a g e s o f i n v e s t i g a t i o n w e r e u s e d .T h i s p a p e r d e s c r i b e s a n e w c o n c e p t i o n o f a p p l i c a t i o n o f t h e l o c a l g r a d i e n t m e t h o d s u p p o r t e db y a r t i f i c i a l n e u r a l n e t w o r k i n g r a n u l a r i d e n t i f i c a t i o n p r o b l e m s . T h e f o l l o w i n g s y s t e m s a r ec o n s i d e r e d a s t h e g r a n u l a r m o d e l s ( i ) i n t e r v a l n u m b e r s , ( i i ) f u z z y n u m b e r s a n d ( i i i ) r a n d o mv a r i a b l e s . T h e p r o p o s e d l o c a l m e t h o d w a s e x a m i n e d f o r t e s t i n g b e n c h 7 m a r k . N e x t , t h e a l g o r i t h mw a s a p p l i e d f o r i d e n t i f i c a t i o n p r o b l e m i n m e c h a n i c a l s t r u c t u r e s . T h e p a p e r p r e s e n t s t h e a p p l i c a t i o no f t h e a l g o r i t h m i n f i n d i n g t h e s h a p e , m a t e r i a l c o e f f i c i e n t s a n d b o u n d a r y c o n d i t i o n s o f t h e g r a n u l a rm e c h a n i c a l s t r u c t u r e s .
2. The formulation of granular identification problem C o n s i d e r a n e l a s t i c b o d y w h i c h o c c u p i e s t h e d o m a i n

Ω
b o u n d e d b y b o u n d a r y

Γ
. T h e b o d y i sr e s t r a i n e d b y g r a n u l a r b o u n d a r y c o n d i t i o n s a n d l o a d e d b y g r a n u l a r f o r c e s . T h e m a t e r i a l p a r a m e t e r sa r e a l s o a s s u m e d a s t h e g r a n u l a r n u m b e r s . T h e b o d y c a n c o n t a i n s s o m e d e f e c t s d e s c r i b e d b yg r a n u l a r p a r a m e t e r s a l s o . T h e n u m b e r , s h a p e s a n d s i z e s o f t h e d e f e c t s a r e u n k n o w n .T h e a i m o f t h e i d e n t i f i c a t i o n p r o b l e m i s t o f i n d t h e p a r a m e t e r s d e s c r i b e d t h e s e t o f d e f e c t s .T h e i d e n t i f i c a t i o n p r o b l e m i s e x p r e s s e d a s t h e m i n i m i z a t i o n o f t h e s p e c i a l m i n i m i z i n g f u n c t i o n . T h ef u n c t i o n c o n t a i n s t h e p h y s i c a l v a l u e s w h i c h c a n b e m e a s u r e d i n t h e s p e c i a l s e l e c t e d s e n s o r p o i n t s .T h e s e n s o r p o i n t s a r e l o c a t e d o n t h e s u r f a c e o f t h e b o d y . A s t h e m e a s u r e d v a l u e s m e a n s h e r e :( i ) d i s p l a c e m e n t s u n d e r s t a t i c l o a d i n g , ( i i ) d i s p l a c e m e n t s u n d e r d y n a m i c a l l o a d i n g ,( i i i ) e i g e n f r e q u e n c i e s a n d e t c .

3. The local gradient method supported by artificial neural networkT h e p r o p o s e d l o c a l o p t i m i z a t i o n m e t h o d i s a c o m b i n a t i o n o f t h e c l a s s i c a l g r a d i e n t m e t h o d a n dt h e a r t i f i c i a l n e u r a l n e t w o r k . I n t h e f i r s t s t e p o f t h e a l g o r i t h m a s e t ( c l o u d ) o f p o i n t s i n t h e f u n c t i o nd o m a i n i s g e n e r a t e d . I n t h e a i m o f r e a l i z e t h e o p t i m i z a t i o n p r o c e s s t h e n e t w o r k i s c o n s t r u c t e d .I n e a c h i t e r a t i o n o f t h e o p t i m i z a t i o n a l g o r i t h m a f e w s t e p s a r e p e r f o r m e d .I n t h e f i r s t s t e p t h e s e t o f t r a i n i n g v e c t o r s o f t h e n e t w o r k i s c r e a t e d . I n t h e f i r s t i t e r a t i o n t h e s e ti s c r e a t e d o n b a s i s o f t h e c l o u d o f p o i n t s . T h e c o o r d i n a t e s o f p o i n t s p l a y t h e r o l e o f t h e i n p u t v a l u e so f t h e n e t w o r k , t h e f i t n e s s v a l u e s i n p o i n t s p l a y t h e r o l e o f o u t p u t v a l u e o f t h e n e t w o r k .I n t h e s e c o n d s t e p t h e n e t w o r k i s t r a i n e d .I n t h e n e x t , t h i r d s t e p , t h e o p t i m i z a t i o n p r o c e s s i s c a r r i e d o u t . T h e g r a d i e n t m e t h o d o fo p t i m i z a t i o n i s u s e d . T h e n e t w o r k a s t h e f i t n e s s f u n c t i o n a p p r o x i m a t i o n i s u s e d . T h e g r a d i e n t o f t h ef i t n e s s f u n c t i o n o n t h e b a s i s o f t h e a r t i f i c i a l n e u r a l n e t w o r k i s c o m p u t e d a l s o .



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 57F o r a p o i n t , w h i c h i s a r e s u l t o f o p t i m i z a t i o n ( f o u n d i n s t e p 3 ) , t h e a c t u a l f i t n e s s f u n c t i o n i sc o m p u t e d .I n t h e l a s t s t e p t h e s t o p c o n d i t i o n i s c h e c k e d . I n t h e c a s e , i n w h i c h t h e c o n d i t i o n i s t r u e , t h ep o i n t i s t r e a t e d a s t h e r e s u l t o f t h e o p t i m i z a t i o n p r o c e s s . I f t h i s c o n d i t i o n i s f a l s e , t h i s p o i n t i s a d d e dt o t h e t r a i n i n g v e c t o r s e t a n d t h e n e x t i t e r a t i o n i s c a r r i e d o u t ( g o t o s t e p 1 ) .T h i s a p p r o a c h f o r d e t e r m i n i s t i c p r o b l e m s ( t e s t i n g b e n c h  m a r k a n d m e c h a n i c a l i d e n t i f i c a t i o np r o b l e m s ) w a s u s e d .I n t h e p r e s e n t p a p e r t h e a r t i f i c i a l n e u r a l n e t w o r k i s u s e d a s t h e c o m p u t a t i o n t o o l o f t h es e n s i t i v i t y a n a l y s i s o f t h e g r a n u l a r f i t n e s s f u n c t i o n .
4. ConclusionsA n e f f e c t i v e i n t e l l i g e n t t e c h n i q u e b a s e d o n t h e g r a d i e n t m e t h o d s , a r t i f i c i a l n e u r a l n e t w o r k sa n d g r a n u l a r a p p r o a c h h a s b e e n p r e s e n t e d . T h i s a p p r o a c h i n t h e g r a n u l a r o p t i m i z a t i o n p r o b l e m s i nm e c h a n i c a l s t r u c t u r e s c a n b e a p p l i e d . T h e f o l l o w i n g g r a n u l a r p r o b l e m s w e r e s o l v e d i n t h ei d e n t i f i c a t i o n o f t h e ( i ) d e f e c t s , ( i i ) b o u n d a r y c o n d i t i o n s a n d ( i i i ) m a t e r i a l p a r a m e t e r s .T h e r e s u l t s w e r e s a t i s f a c t o r y .I n f u t u r e t h e i n f l u e n c e o f t h e p a r a m e t e r s o n t h e s e n s i t i v i t y o f t h e a l g o r i t h m ( t h e n u m b e r o f t h et r a i n i g n v e c t o r s , n u m b e r o f t h e l a y e r s a n d n u m b e r o f t h e n e u r o n s i n t h e h i d d e n l a y e r s ) s h o u l d b et e s t e d . I n f u t u r e p r e s e n t e d a l g o r i t h m w i l l b e c o n n e c t e d w i t h t h e g r a n u l a r e v o l u t i o n a r y a l g o r i t h m . T h i si d e a f o r d e t e r m i n i s t i c p r o b l e m w a s a p p l i e d . D u e t o f u s s i o n e v o l u t i o n a r y a l g o r i t h m s w i t h t h eg r a d i e n t m e t h o d s u p p o r t e d b y a r t i f i c i a l n e u r a l n e t w o r k t h e o p t i m i z a t i o n t i m e w a s d e c r e a s e d e v e n t o5 0 % .
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1. Introduction 

A complex numerical simulation of a welding process using the finite element method [1,2] is 
presented in the paper. Results for full  coupled thermo-mechanical problem are prescribed. As the 
simulation and optimization of welding is very time and resource consuming the parallel calculation 
technique (the domain decomposition method (DDM)) and grid based evolutionary optimization are 
applied. 

The objective of the welding simulation is to study the temperature generated during the welding 
process and investigate residual stresses in the component after welding. Such results give the 
possibilit y to determine properties of materials in welding zones, stress and strain state of welded 
parts. From other side it is possible to perform optimization process looking for welding parameters 
(welding speed, welding power source etc.) or initial shape of welded sheets according to 
displacement state (welding of thin metal sheets with stiffeners – T joints). Those results are the 
base for fatigue analysis too. 

2. Welding simulation 

Welding is one of the most commonly used join process but till  now it is still  diff icult to simulate it 
in standard CAE systems based on finite element method. In most of them this requires the writing 
of specialized, additional user subroutines for specific boundary conditions (a heat source, a weld 
path, a fill er element treatment, a material behaviour etc.) what makes it diff icult and inconvenient 
in use. It causes the simulation of welding is extremely diff icult. From other side such a simulation 
gives a lot of information very important for engineers. An undesirable side-effect of welding is the 
generation of residual stresses and deformations in the component and the qualit y of the weld has a 
substantial impact on the fatigue li fe of the structure. These resultant deformations may render the 
component unsuitable for further use. Also, the residual stresses form the input for subsequent 
manufacturing or structural processes. 
Considered simulation allows to determine the cooling period from 800°C to 500°C (so-called 
cooldown rate t8/5) [2], which is used to model the strength parameters in a heat-affected zone. 
Finding the optimal value of t8/5 is one of the primary goal of simulation and optimization of the  
welding process [3]. Obtained results can be also the base for optimization process of welding 
parameters for e.g. thin metal sheets with T stiffeners (cars body, airplane panels, shipbuilding, 
frame construction) and for a fatigue analysis of welded structures. 
It should be mentioned that nearly full  set of welding parameters are considered during simulation. 
Those parameters are: moving heating source, velocity, source power, cooling temperature and 
time, shape of the source, heat input, weld flux etc. 

3. Results 

In the fig. 1. results for complex simulation for welding are presented. The results consider all  the 
simulation mentioned above. 
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a)  b)  

c) d) e)  

f) g)  h)  
Fig. 1 The complex set of results of the welding process simulation: a. the model, b.  von Mises 
stresses and temperature distribution during welding, c. fatigue analysis results, d., e. results of 
optimization of T join, f. cooldown rate t8/5 in the HAZ – the reference diagram, g. calculated t8/5, 
h. example of t8/5 after optimization of welding parameters. 
 

Using modern CAE systems connected with parallel and grid based evolutionary computing  it is 
possible to perform an advanced complex simulation of welding process and analysis of welded 
parts. It is possible to perform: a static linear analysis of welded components, a coupled termo-
mechanical simulation of welding process, fatigue analysis of the welded component, an 
optimization process of welding parameters etc. [2,3]. 
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1. Introduction  

An efficient iterative method for solution of large-scale linear equation sets with sparse 

positive definite matrices is considered. These problems appear in static analysis of finite element 

problems of structural and solid mechanics. 

Realistic design models often produce ill-conditioned large-scale problems. This fact 

essentially restricts the application area of iterative methods, especially to problems of structural 

mechanics. 

The main idea of this research is to develop an iterative method stable against ill-conditioning, 

which allows us to compete with sparse direct finite element solvers during the calculation stage of 

the analysis. This investigation continues the previous researches of author [3 – 6]. A combination 

of two powerful ideas – the aggregation multilevel preconditioning for preconditioned conjugate 

gradient method AMIS [2 - 5] and the sparse incomplete Cholesky factorization preconditioning [6] 

is the basis of the present research. 

2. Aggregation multilevel preconditioning for preconditioned conjugate gradient method. 

A lot of problems of structural mechanics are ill-conditioned; the respective models have bar 

substructures and specific finite elements (rigid links, compatible nodes and so on). This fact forces 

us to reject the multi-grid approach and to prefer to use the preconditioned conjugate gradient 

(PCG) method with aggregation multilevel preconditioning. This approach combines advantages of 

both PCG and multilevel methods and allows us to create an iterative approach stable against ill-

conditioning. The aggregation approach [2-5] has a clear mechanical interpretation, creates a coarse 

level model due to imposed local rigid links, allows us to analyze bar structures, continuous 

structures and combined ones. It also takes into account special finite elements. The application of 

element-by-element technique to creation of the coarse level stiffness matrix, a restriction-

prolongation procedure [3-5], and implementation of the sparse direct solver to keep a relatively 

large size of coarse level model (till 100 000 – 200 000 equations) [5] allows us to improve the 

prediction of slow-convergent low modes and accelerate the convergence. 

The next important issue is a correction of the interpolated solution vector. The need for it 

arises when extending the coarse level (aggregated model) solution onto the fine level (finite 

element model). In previous versions of the AMIS solver, a few steps of the inner iteration 

procedure (a preconditioned quickest descent method) were applied to damp quickly oscillating 

residuals. The symmetrical Gauss-Seidel preconditioning as well as incomplete Cholesky 

factorization by position ICCG0 one were implemented. But in some practical problems a lock of 

convergence occurs: the coarse level model leads to a fast reduction of the relative norm of residual 

vector, 
22k /err br , where b  is a load vector, to about 10

-2
, and then the convergence still slows 

down. 

In the present research we apply a sparse incomplete Cholesky factorization preconditioning 

[6] to improve the correction abilities of the inner smoothing iterations. The following results 
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demonstrate an essential improvement of robustness of AMIS_SICPS (an aggregation multilevel 

iterative solver with sparse incomplete Cholessky preconditioning during smoothing) method. 

3. Numerical example 

A large-scale design model (multi-storey building) comprises 1 956 634 equations (tab. 1) and 

has 3 load cases. The efficiency of several solvers is compared. Designations: BSD MFM is a block 

sparse direct multi-frontal method [6], ICCG0 is an incomplete Cholesky conjugate gradient by 

position solver, SICCG is a sparse incomplete Cholesky conjugate gradient by value solver [6], 

AMIS_SICPS is the approach suggested here. The convergence tolerance is 410tol �
 . A PC 

Pentium IV (RAM 2.0 GB, CPU 2.40 GHz) has been used. 

Method Computation 

time 

Memory 

storage, MB 

Number of 

iterations 

 

 
BSD MFM 2 h 20 min 7.2 GB – size of 

factored matrix 

- 

ICCG0 3 h 12 min 0.5 GB 8470/ 7944 / 7368

SICCG 27 min 25 s 1.5 GB 562 / 520 / 509 

AMIS_SICPS 13 min 20 s 1.76 GB 31 / 31 / 30 

Table 1. Comparison between methods 

An essential part of the solution time (about 40%) BSD MFM method is spent for slow 

input/output disk operations because the size of the factored matrix exceeds the core memory 

capability significantly. The serial ICCG0 method demonstrates a slow convergence due to ill-

conditioning of the design model. The SICCG method has a good stable convergence for this 

problem (the rejection parameter 9105 �
u \  and the post-rejection one 610�

 \ ). But the best 

results are demonstrated by the AMIS_SICPS method (the same values for rejection and post-

rejection parameters are used). 
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One of the fundamental problems concerning continuous casting process (CCP) is 
formation of segregation of chemical elements in a cross-section of bill et. It has significant 
influence on mechanical properties and microstructure of final products. The possibilit y of 
decrease of macrosegregation by deformation of bill et in a semi–solid state (Soft Reduction, 
SR) was presented in [1]. Parameters of SR process (time and value of strain) significantly 
influence ratio of segregation together with the parameters of continuous casting process. The 
purpose of this paper is to optimize the parameters of SR using numerical modeling. In recent 
publications, several approaches for CCP modeling are presented [2-3], however neither of 
them takes into account all  factor of SR. 

The full  numerical model of CPP processes should consists of the following 
components: 

- model of the heat transfer phenomenon and crystalli zation processes; 
- model of  thermal stresses evolution;  
- model of influence of constructive mechanism of the CCM on metal; 
- the segregation evolution model [4]; 
- model of SR process; 
- model of damage. 
In order to model crystalli zation process, the heat transfer equation was used and 

modified by the method of effective specific heat. The elasto-plastic theory of plasticity was 
used for simulation of mechanical processes.  

In present work three variants of simulation are considered: W1 – without SR and W2, 
W3 – with SR. Simulation conditions were equivalent to industrial conditions of continue 
casting (300x400mm bloom, St3S steel). SR prescribed before the end of crystalli zation 
process, for W2 SR started 1103s after beginning of CPP, and W3 – SR started 593s after 
beginning of CPP. Intensive cooling in mould follows to fast temperature decrease on the 
surface of ingot what induces beginning of solidification process. During the first steps of 
crystalli zation process, the carbon concentration decreases from 0.14% to 0.053% on the 
surface of ingot for each variant. In succeeding stages the carbon concentration increases due 
to backward diffusion phenomenon. The concentration attains maximum value when the last 
liquid fraction is crystalli zing in the ingot. Maximum carbon concentration in center line bill et 
was 0.292%, after crystalli zation process 0.278% for variant W1. The final difference 
between the surface and the center of ingot was 0.0575%. For W2 variant, deformation caused 
displacement some part of carbon to upper layer of liquid metal and decreased concentration 
of carbon after solidification in center line ingot (center – 0.185%, outside surface – 0.136% 
difference of concentration – 0.0492%). In W3 variant, deformation was prescribed 
considerably early then in variant W2 (when in ingot share liquid phase was grate). It caused 
on increase of carbon segregation as in variant W2 (center – 0.192%, surface – 0.137%, 
difference of concentration– 0.0546%). 
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Fig. 1. Distribution of strain intensity in the cross-section in continuous cast bill et, after 
finish of solidification process; a) for W1 variant; b) for W2 variant. 

 
The strain intensity in bill et during continue casting with SR is determined. The SR 

process essentiall y influences the distribution of strain intensity. Bending and straightening of 
bill et cause that maximal values of strain intensity are attained on the ingot surfaces - W1 
variant (fig. 1a). In the W2 variant strain intensity concentrates in ingot corners. (fig. 1b). The 
results presented in fig. 1 show an essential influence of SR on strain distribution. Therefore, 
a proper fracture model of bill et during SR is so important and it was developed and added to 
the model of CCP in present paper. The forecast of the brings fracture on ingot surface was  
based on the theory of fracture described in literature [5 – 6]. In this model, as a key-
parameter of fracture, the resource of plasticity ψ  is proposed: 

( ) 1
,,

<=
Tkp

i

σµε
εψ    

where: iε – strain intensity; pε – criti cal strain before fracture metal as a function of parameters 

sk σσ=  and Lode coeff icient σµ ; σ – mean stress; sσ – yield stress; T – temperature. 

The function ( )tkp ,, σµε  was determined in experimental investigations at Gleeble 

simulator. The criti cal strain was determined based on experimental tensile test and SICO test. 
For determination of empirical parameters of function ( )tkp ,, σµε  the inverse analysis was 

used. For simulation of tests the FORGE3 software was used.  
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1. Introduction 

Dealing with uncertainty is an essential part of the structural design process. Traditionall y 
uncertainties are taken into account by means of safety factors specified by appropriate design 
codes. For most of the typical problems this approach allows to obtain safe structures, however the 
actual safety level of such designs is hard to estimate. On the other hand, a progressive increase of 
computational capabiliti es and development of reliabilit y analysis methods and specialized software 
allows for more rational treatment of inherent uncertainties of material parameters, structural 
geometry and the applied loads. The contemporary “computer aided”  reliabilit y analysis provides a 
valuable tool for designers and decision makers by enabling them for more realistic estimation of 
the probabilit y of structural failure, identification of the weakest elements and evaluation of their 
influence on the safety of entire structure. 

The structural reliabilit y analysis can be performed by a number of software packages, such as 
ANSYS PDS and DesignXplorer, CalREL/FERUM/OpenSees, COSSAN, NESSUS, PERMAS-
RA/STRUREL, PHIMECA-SOFT, PROBAN, PROFES, UNIPASS, all  of them reported in the 
special issue of Structural Safety journal [1]. The structural reliabilit y analysis usuall y requires 
many evaluations of the so-called failure function, which is defined by means of selected structural 
responses. Since these responses are most often computed using the finite element (FE) method 
therefore,  a reliabilit y analysis system must interact with the FE analysis program. This is usuall y 
realized in two alternative ways: either the reliabilit y and FE codes are closely integrated (linked) or 
reliabilit y analysis code have interface enabling it to modify and read input and output data files, 
respectively, of a third-party FE analysis system or other structural analysis program.  

Although the first approach has unquestionable advantages such as easy access to FE model 
parameters or a common graphical user interface etc., it restricts application of reliabilit y analysis to 
problems supported by the integrated FE analysis code. The second solution gives possibilit y of 
performing the reliabilit y analysis for any problem, provided that the corresponding FE 
computations can be executed from the command line. This approach is often preferred and used in 
most of the systems listed above. 

The key to success in developing any large software package is a proper organization of its 
code facilit ating future modifications and allowing it to be simultaneously developed by many 
programmers. The code architecture should also facilit ate integration of new algorithms into the 
existing environment. Such a flexibilit y is offered by object oriented programming and therefore it 
was C++ that was chosen as a programming language for creating reliabilit y analysis software 
STAND (Stochastic Analysis and Design), developed in the Institute of Fundamental Technological 
Research (IFTR) of Polish Academy of Sciences. By analyzing reports in [1] it can be concluded 
that only few from the above listed programs benefit form using object oriented paradigm. 

The graphical user interface implemented in STAND is easy to use and provides the interface 
to the external computational programs by the concept of data files parsing. Parameters of, say, FE 
model can be easy identified and linked to random variables in the stochastic model by simply 
highlighting appropriate fields in a template input file. Similar approach was employed in COSSAN 
[2] and PROFES [3], for instance. Analogous method is employed for collecting the FE analysis 
results. As it was mentioned, this type of interface is suitable only for the FE programs that can be 
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run from the command line and read text input data files as well  as produce results in the text 
format. This, however, is the case for most of the commercial and research oriented FE codes. 

2. STAND environment description 

So far, these are mainly time invariant component reliabilit y problems that can be addressed 
with STAND. In addition to standard reliabilit y analysis methods like FORM, SORM, crude Monte 
Carlo, unimodal importance sampling or mean value first order method STAND offers multimodal 
adaptive importance sampling method (MAISM), developed recently in IFTR. MAISM proved to 
be very eff icient in dealing with noisy nonlinear limit state functions (LSFs), see [4].  

The basic statistical analysis is available in STAND as well . It is based on two sampling 
methods: crude Monte Carlo and a very eff icient descriptive sampling design - optimal Latin 
hypercube (OLH), see [5]. OLHs can be either created during the problem execution or, if available, 
loaded from the attached large database of pre-generated OLH designs.  

Some of reliabilit y analysis algorithms implemented in STAND take advantage of parallel 
computing, which now becomes the standard in commercial codes. Thus the tasks performed with 
STAND can be submitted on a single PC as well  as on parallel computers, which should be a 
default choice for real li fe problems involving computationall y expensive FE simulations. 

STAND has been successfull y employed in crashworthiness reliabilit y analysis of the welded 
sheet metal car components. Due to manufacturing imperfections and fatigue deterioration 
significant number of spot welds may missing in operational vehicle. This effect may significantly 
reduce strength of an important car component such as thin-walled s-rail . A great number of joints 
makes precise stochastic modeling of spot welds unreasonable. Thus, it was proposed to model the 
uncertainty of element connections by adding a random noise to LSF. However reliabilit y analysis 
problem defined in this way is very diff icult to solve. This is not only due to diff iculties with 
assessing failure probabilit y for noisy LSFs, but also due to time consuming FE analysis that is 
involved. An effective method for solving this class of problems was implemented in STAND, see 
[4]. In the considered example there were assumed 8 random variables corresponding to metal sheet 
thicknesses, the initial velocity of impacting mass and material parameters. The failure event was 
defined as insuff icient energy absorption.  

The second example demonstrates capabiliti es of STAND integration with third party FE 
analysis programs. Influence of geometrical imperfections on the buckling behavior of a cylindrical 
shell  presented in the ABAQUS example problems manual (example 1.2.6.) has been studied. In the 
original example imperfections are modeled using a linear combination of the eigenvectors of the 
linear buckling problem. For the purpose of stochastic analysis coeff icients of the linear 
combination are assumed to be random variables. Then it was possible to estimate probabilit y that 
the buckling load of the investigated cylindrical shell  is lower than an assumed value. Application 
of STAND to the modified example problem of widely used FE code clearly ill ustrates its 
integration possibiliti es. 
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 1 . I n t r o d u c t i o n
Many Finite Element Method (FEM) solvers do not accurately predict stresses, particularly 

at interfaces of the elements due to the piecewise continuous nature of the displacement field 

assumed in FEM formulation. Moreover, the well known difficulties in adaptive analysis using 

FEM (especially in 3D problems) justify attempts to develop alternative numerical methods, e.g. 

Mesh Free Methods (MFree). This paper refers to the two versions of the MFree algorithms, namely 

Radial Point Interpolation Method (RPIM) and Moving Least Squares (MLS) method. The hitherto 

existing versions of 3D MFree suffer from the drawbacks like relatively small number of numerical 

examples of quantitative analysis (e.g. lack of comparisons of the numerical solutions with the exact 

3D solutions) and lack of the fast search procedures in constructing the influence (or support) 

domains with irregular and non-convex boundaries. The aim of the present paper is to put forward 

an improved version of the Element Free Galerkin (EFG) formulation for the numerical 

approximation of the 3D boundary value problems of linear elasticity. The monomial basis 

functions from the Pascal pyramid used with the radial basis functions in RPIM and with the non-

singular weight functions in MLS method are implemented in computing the shape functions and 

their derivatives. Well known properties, advantages and disadvantages of both the formulations are 

discussed in many papers and monographs (see e.g. [2], [4]) but most of the work related to the 

development of EFG has been focused on two-dimensional applications. On the other hand, the 

numerical results in three-dimensional EFG method (very often coupled with FEM) are rarely 

presented (see e.g. [1]). In the present paper, for benchmarking purposes, three various numerical 

solutions for a linear-elastic and isotropic cube subject to an  anti-symmetrical pressure loading are 

shown and compared. First and second numerical result are obtained by RPIM and MLS methods. 

The Kronecker delta function property in RPIM allows a direct imposition of essential boundary 

conditions, but the use of non-singular weight functions in MLS approximation does not allow for a 

direct imposition of essential boundary conditions, hence EFG formulation with Lagrange 

Multipliers is implemented. Third solution is shown in the analytical form found by G. Jemielita 

[3].    2 . N u m e r i c a l a n d a n a l y t i c a l s o l u t i o n
 

Consider a 3D elastic body 3Ω⊂ ℝ . In the meshfree method used, the global interpolation 

(in RPIM) and the global approximation (in MLS) ( ) [ ( ), ( ), ( )]h h h h h T

x y zu u u= =u u x x x x
 

( )[ , , ]Tx y z= ∈Ωx  of the displacement field are calculated from the formula ( ) ( )h

I I

I

=∑u x Φ x u  

where ( )I I=
Φ Φ x

 is the diagonal matrix of the shape functions corresponding ( )N N= x
 nodes in 

the support domain of the point 
x
 and I

u
 is the vector of the displacement parameters of the node I. 

The exact analytical formula for the displacement field ( ) [ ( ), ( ), ( )]Tx y zu u u= =u u x x x x
 of the 

elastic isotropic cube a b h× ×  subject to the loading anti-symmetrical with respect to the middle 
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plane z = 0 load ( ) [ ( ), ( ), ( )]Tx y zt t t= =
t t x x x x

 applied on the top and bottom free sides can be 

written as (see [3]) 

 

(1)  ( ) ( ) ( ) ( )1

1 1 1 1 2cosh sinh sin sin
2

xu A z p z B p z x y
π

α α α  = + +    
x  

(2)  ( ) ( ) ( ) ( )2

2 1 1 1 2cosh sinh sin sin
2

yu A z p z B p z x y
π

α α α  = + +    
x  

(3)  ( ) ( ) ( ) ( ) ( )3

1 1 1 2sinh cosh sin sinzu p A z p z B p z x yα α = + 
x

 

 

where 0x yt t= = , ( ) ( ) ( ) ( ), , / 2 , , / 2 0.5 sin / sin /z zt x y h t x y h q x a y bπ π= − = . In the above three 

expressions (1), (2), (3) all coefficients depend (in a rather complicated way) on the known 

components a, b, h defining the sizes of the cube, material constants E, v (Young modulus, Poisson 

ratio) and load parameter q. The cube is simply supported on the remaining (unloaded) four vertical 

boundary planes along z and x axes or z and y axes. The material parameters used in analysis are: 
6 23.0 10 [ / ]E N m= ⋅ , 0.3v = . A uniform nodal distribution with the total number of nodes equal to 

1241 and with the 8 × 8 × 8 = 512 background mesh of hexahedron cells for integration is 

employed. The basis functions of quadratic order from the Pascal pyramid are used. The original 

search procedure guarantees that exactly 15 from among at least 20 nodes are visible from each 

integration point. Dimensionless lengths of the sides of the support domain in all x,  

y and z directions are set as equal to 3 and the 6-point Gauss integration scheme is adopted. The 

value of the load parameter 6 21.0 10 [ / ]q N m= ⋅ . The length a, width b and height h of the cube are 

equal to 0.9 [m].  

 

Fig. 1. Shear stress distributions ,xy xzσ σ through a cross section z = 0.225 [m] of the square   

block – MLS (first and third figs) and exact analytical solution (second and fourth figs).

The proposed version of the EFG formulation clearly demonstrates robustness of the 

algorithm and its ability to produce accurate and numerically reliable results. A c k n o w l e d g e m e n t .
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1. Abstract 
Triangular elements are more versatile than rectangular elements; they can be used for the 

analysis of plates having various boundary shapes. The use of triangular finite elements for the 
solution of plate bending under Kirchhoff  assumptions is considered. An investigation about the 
convergence behaviour of two KPT elements representing the nature of conformal and non-
conformal elements performed. 

The KPT elements chosen to show the influence of increase the nodal field variables and the 
interpolation function order to obtain the continuity requirement for C1 problems. The numerical 
examples performed in this work to clarify the advantage of using higher order element in terms of 
the rate of convergence compared with the lower order element. 
 
2. Introduction 

For the well  known plate bending governing equation we can apply the first step of the 
Galerkin formulation approach by minimizing the residual R. 
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The parent element will  have its own coordinate system (
ξ
,η ), to convert the upper integral forms to 

this coordinate system we write: 

(4)   ηξ .ddJacdA .=           Where Jac is the Jacobian determinant. 

 As we notice the plate bending element still  capable to represent the element field variables 
with satisfactory amount of accuracy even for the elements of non-conforming type. This element is 
one of the first elements where used for plate bending problems and it shows a good convergence 
results for three nodes nine DOF KPT element.   

Note that no complete polynomial available to represent nine degrees of freedom, the 
complete cubic polynomial will  have ten unknowns (P3). One of the choices we have is that one of 
the terms ξ 2η  or ξ η 2 is omitted. In this case we use the following polynomial for our displacement 
interpolation weighing functions. 
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To obtain the nine unknowns (ai, i=1, 2… 9) we need to define the condition of the nodal weighing 
values (Ni). 

Three nodes eighteen DOF KPT element (six degrees of freedom per node) is one of the 
conformal plate bending elements. The compatibilit y requirements for C1 problems require the 
above six field variables to be continuous at the corner nodes. Here we meet the same complexity 
that we have seen in the nine DOF triangle element, where also there are no complete polynomials 
available to represent eighteen DOF. The complete quadric polynomial (P4) has only fifteen terms. 

The following suggested polynomial is complete up to terms of fourth order and contains 
three terms of fifth order. The last three terms are chosen to force the normal derivative on each side 
to be cubic in ξ  and η , on other hand the parabolic variation of the normal slope is not uniquely 
defined by the two end nodal values and hence resulted in the non-conformity [4]. 
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3. Numerical Results 
The numerical results for the simply supported and clamped square plates where obtained for 

deferent number of elements, the plate geometry, physical properties and uniformly distributed load 
are chosen to be within the Kirchhoff assumptions. The plates are 1m x 1m x 13mm, E=200GPa and 
v=0.3 under uniformly distributed load of 0.1 MPa. The maximum deflection results of the first 
element insures the convergence as the number of elements increasing in the simply supported and 
clamped plates, this is also true for the second element. 

The figure shows that in terms of both total degrees of freedom and number of elements the 
higher order element presents better performance and convergence rate for the simply supported 
plate and for other cases. 
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Figure 1. Simply Supported Plate Results (TDOF vs Error %) 
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1. Introduction  

Machining is a complex process involving very large strains and strain-rates, which cause 
large temperature increase. Since most process variables are diff icult to measure, analytical and 
numerical modelli ng of chip formation are versatile and reliable approaches to obtain local 
information on some variables on the workpiece and the cutting tool [1].  

Recently, artificial neural networks (ANN) have been used to simulate cutting, since this 
technique is fairly robust and frequently converges to the desired solution. The main drawback of 
ANN the need of large data points for training and validation. [2] Using results obtained from 
validated numerical models to train the network, diminishes the experimental work significantly. 
Finite element analysis has played an important role in simulating and understanding the metal 
cutting process by having an insight look at what is going on during cutting, which is hard to 
achieve by experimental or analytical methods.  

The aim of this paper is to simulate cutting with a radial basis function network (RBFN). 
This is not commonly used in cutting simulation, although it has some advantages when compared 
with multil ayer perceptron (MLP) neural networks. The neural network is trained with results 
obtained from numerical model, mainly cutting forces and shear angle. This work presents briefly 
the numerical model used in the generation of data, the characteristics of the ANN approach and its 
training and validation. Results showed the abilit y of the neural network to predict accurately 
cutting parameters. 

2. Numerical model 

A plane strain A.L.E. model was developed in ABAQUS/Explicit. A thermo-mechanical 
coupled analysis was developed, with CPE4RT element type (see ABAQUS manual). These are 
plane strain, quadrilateral, linearly interpolated, and thermall y coupled elements with automatic 
hourglass control and reduced integration, for A.L.E. formulation. The workpiece material was 
modelled using the Johnson-Cook (JC) constitutive model. The physical properties and the 
constants of the JC model for the work-piece material (AISI 316L) and the properties of tool 
material (Kennametal K313) have been found in recent work in literature [3]. The tool is fixed and 
the cutting speed is applied to the workpiece. Cutting takes place in plane strain conditions and 
continuous chip formation are assumed. Details of the A.L.E. model are shown in [4]. 

3. Neural network 

Simulation of cutting processes is mostly achieved with multil ayer perceptron (MLP) neural 
networks. However, MLP networks suffer from local minima problems and long computation time. 
The radial basis function network (RBFN) is an alternative network that has been reported to be 
faster and at times more accurate, as compared to a MLP neural network [5].  

RBFN is a feed-forward network that is often used as a multidimensional interpolation 
technique. A RBFN is a local network whereas the MLP performs a global mapping. The basic 
architecture of the RBFN has three layers. The input layer composed of the vector of input 
variables. The hidden layer transforms the data from the input space by applying a non-linear 
function. Frequently, a Gaussian function is used. Finall y, the output layer that applies a linear 
combination of the hidden layer outputs.  

A common learning strategy for RBFN is the hybrid learning. However, this procedure has 
an important drawback because the radial basis centers are arbitrary selected. Here, the orthogonal 
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least square (OLS) algorithm will  be used as learning method (see, [6]). This algorithm allows 
selecting a suitable center from a large set of candidates. The learning and validation steps will  be 
performed by using a cross-validation (CV) technique. This technique allows selecting the best 
model when the amount of data is limited. The CV is a method for estimating a generalization error 
based on resampling. In CV the data set is split  into two parts. The first part is denoted as training 
set and is used to fitting the model. The second part is denoted as validation set and is used to 
measure how well  the model fits this new data, that is, to compute the prediction error. The best 
model is the one with the smallest average prediction error, computed based on all  (or some) 
different ways of data splitti ng. Different types of CV have been proposed in the literature. In this 
work, the Monte Carlo cross-validation (MCCV) proposed by [7], is used.  

4. Results 

The input variables of the model are the rake angle 1X  and the friction coeff icient, 2X . The 
output variables are the cutting force, 1Y , thrust force, 2Y  and shear angle, 3Y . The values of the 
input variables are 1 6 0 6 8X , , ,= −  and 2 0 0 5 0 1 0 4X , . , . ,..., .= . A set of 30n =  multivariate observations 
are used. From this set, a sample of 5vn =  is extracted to be used as validation subset. Then, the 
learning subset has 25ln =  observations. For each candidate model, a total of 10000B =  subsets of 

vn  are randomly extracted. The OLS method is used as learning algorithm.  
The results obtained shows that the best model is a RBFN with 4 hidden units. The total 

average mean square error using the validation subsets is 0 0011MSE .= . The average mean square 
error for each predicted variable is: 1 0 0026MSE(Y ) .= , 2 0 0006MSE(Y ) .=  and 3 0 0002MSE(Y ) .= .  
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1. Introduction 

         Contact stresses are forces acting between contacting bodies or between the body and a 
foundation. They are identified as normal pressure and tangential traction. A potential contact area 
between two bodies can be divided into the following states: separation (non-contact), sticking and 
slipping. In the most cases the contact stresses, the size of the contact region, the distribution of 
contact zones of slip and adhesion cannot be predicted a priori.  

 There has been littl e progress toward general models for contact phenomena. The reason for 
this lies in the significant complexity of the phenomenon. Descriptions applied in classical 
mechanics are very simple and they do not include present experimental facts. The purpose of this 
contribution is to review general and simpli fied forms of constitutive laws of normal traction and 
friction, and to review computational methods used in calculations of the normal pressure and 
friction [5]. They are described in the framework of continuum mechanics, FEM and other methods.  

2. The normal traction 

Mechanics considers two models of mechanical interactions i.e. forces and analytical relations 
describing restrictions of deformations, i.e. geometrical and kinematical constraints. Unilateral 
contact constraints are as follows: two contacting bodies cannot penetrate each other, cannot pull  on 
each other and are either separated or pressed on each other (so-called Signorini conditions). To 
reduce the computational effort for contact pressure computation, in some problems, contact 
stresses are formulated directly from kinematical considerations. The contact conditions are 
frequently modeled by nonlinear springs (and viscous dampers) which connect solids (e.g. Winkler-
type contact laws). Such model may, however, correspond to severely ill -conditioned system of 
motion equations since very stiff  springs must then be used to simulate no-slip and no-clearance gap 
conditions. Other methods are following: stiffness approach, flexibilit y approach, normal 
compliance, normal damped response, bond or gap elements, interfaces materials, etc. 

3. The tangential traction 

The tangential components of the contact traction (shear traction) are governed by friction 
laws. Friction forces depend on motions of the bodies, and they are not known in advance. For 
vanishing sliding velocity (case of sticking), the tangential traction is a resting force governed by 
the equation of equili brium. The law of Amontons and Coulomb is commonly taken as the friction 
law in the case of slipping.  

4. Development of ideas and modeling of fr iction 

It should be noticed that many identicall y significant reasons have an influence on friction. 
We take into account the following parameters: normal pressure, sliding velocity, surface 
temperature, time of contact, surface roughness, presence of wear debris, extreme environments. 
There are materials and ranges of the contact parameters, especiall y for their extreme values, whose 
constitutive relations for friction should be considered as various nonlinear functions with respect to 
the parameters. Friction plays a crucial role for many mechanical systems. In special applications, 
more sophisticated models are desirable to accurately model the contact phenomena, e.g. in 
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vibrating systems, in materials processing,  in rubbers and polymers, in geomechanics, in 
bioengineering, in li ving systems. 

The genesis of friction is not clearly known. Mechanical and atomistic theories of the origins 
of friction are used at present, and friction modeling is based on observations from macro- to micro-
scale. In the subject literature, there are phenomenological, micromechanical, atomic-level and 
multi -scale friction models. In [2,3,4] a famil y of non-classical friction laws have been proposed. 
These friction laws include anisotropy and heterogeneity effects. Anisotropy means that there are 
distinguished  directions of sliding. Heterogeneity means that there are distinguished points at the 
contact surface. Kinematics of sliding can initiate microstructural and frictional changes in the 
surface and near-surface material (self-organization and structural adaptation). As in continuum 
mechanics the central topic for the friction constitutive models are conditions of material 
objectivity, the Second Law of Thermodynamics and conditions of symmetry. 

5. Predictions of contact stresses 

Different approaches can be applied to calculations of contact stresses and to satisfaction of 
kinematic contact constraints on displacements of the contacting bodies. Since both forces and 
displacements in the contact area are unknown, additional relations are needed to describe them. 
Powerful formulations of problems with constraints on certain solution variables (e.g. unilateral and 
contact problems) can be obtained by utili zation of the classical variational formulations and the 
following techniques:  Lagrange multipliers, penalty function, perturbated Lagrangian method, 
augmented Lagrangian method [1]. They are so called active strategies. These methods are designed 
to fulfill  the constraint equations in normal direction to the contact area. For the tangential part we 
need constitutive equations. Most standard finite element codes use two active strategies i.e. the 
Lagrange multipliers and the penalty method [1]. 

6. Adhesion and impacts mechanics 

Adhesion is the phenomenon that occurs when a normal tensile force must be done to separate 
two surfaces from contact (after being compressed together). The adhesive normal force depends on 
the initiall y normal pressure and a coeff icient of adhesion (the law of Rabinowicz and Frémond). 
Impacts occur if the solids come into contact among each other or against the foundation. Short-
time impacts, one can describe using an impulse model for impacts. The colli ding solids change 
their velocities discontinuously (the law of Newton and Poisson). Wave theory is appropriate for the 
description of colli sions against flexible structures.  
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1. Introduction

In many practical industrial applications it is very important to predict the form of wear shape, 

contact stresses. Usually, the contact shape evolution is simulated numerically by integrating the 

wear rate expressed in terms of relative slip velocity and contact pressure. A steady state is then 

predicted by the incremental integration procedure with account for contact shape and pressure 

variation. However, much more effective procedure can be developed by postulating minimization 

of the contact response functional. It was shown in the previous our papers [1-2] that the total wear 

dissipation power at the contact interface provides the steady wear regimes by applying the 

stationary conditions. In the later case the stationary of the functional gives the contact stress 

distribution and the rate of the rigid body movement.  

In the work by Páczelt and Mróz [1-2] the optimal shapes generated by wear process were 

analyzed by postulating minimization of the wear dissipation power. It was shown that the contact 

shape evolution tends to a steady state satisfying the minimum principle of the wear dissipation rate.

The specific modified Archard wear rule is assumed for wear rate in normal direction on 

contact surface. Very important, that in general contact conditions the vector of wear rate is not 

normal to the contact surface and has tangential component. A fundamental assumption is now 

introduced, namely, at the steady state the wear rate vector is collinear with the rigid body wear 

velocity of  body which has rigid body like displacement. It is demonstrated that the wear dissipation 

power at the contact surface is minimal in the steady state of the wear process and in many cases 

corresponds to the uniform wear rate. In the normal direction the Signorini contact conditions are 

valid. The Coulomb dry friction models are investigated. The temperature effects and heat 

generated at the frictional interface in our investigation is considered. 

It is assumed that the displacements and deformations are small, the material of the contacting 

bodies are elastic. The discretization of the contacting bodies was performed by the displacement 

based on p-version of finite elements [2] assuring fast convergence of the numerical process and 

accurate specification of geometry for shape optimization.

2. Contact optimizations problems

Without the restriction of generality, let us consider the contact problem of two elastic bodies 

)2,1(, =α
α

B with the usual boundary and loading conditions. The boundary portion ( )α

cS  will be 

called the potential zone of contact. In this part of the bodies the shape may be modified. In the 

normal direction the Signorini contact conditions are valid. The Coulomb dry friction models are 

investigated. In the analysis of wear problem, usually the elastic portion of relative tangent velocity 

is much smaller than the rigid body motion induced velocity, thus the effect of elastic component of 

tangent relative velocity can be neglected in the wear analysis. The temperature effects and heat 

generated at the frictional interface in our investigation is considered [3]. The contact conditions are 

checked at the Lobatto integration points of the contact elements during the solution process.  

Assume the isotropic wear rule in the form [1] 

2,1,
~

)()()( ===== ivpvppw iiiiiiii a

r

b

ni

a

r

b

ni

ab

ni

ab

nii βµβµβτβ
ττ

uu ���   



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 75

The material parameters iii ba ,,β  specify the wear rates of two contacting bodies and 

τ
µββ u�== r

b

ii vi ,
~

 is the relative velocity between two bodies, µ  is the coefficient of friction. 

In general contact conditions the vector of wear rate is not normal to the contact surface and has 

tangential components. This vector specifies the shape transformation and tangential motion of the 

worn material. To analyze this transformation, let us define first the contact stress of interaction of 

bodies 1B  and 2B , thus 
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where µ is the friction coefficient specifying the shear stress in sliding direction and dµ  is the 

friction coefficient associated with transverse wear velocity. The unit vectors cnee ,, 21 ττ
 constitute 

the local reference triad on cS . Here cn  is the unit normal to the contact surface of body 1B , 1τ
e  is 

the tangent unit vector coaxial with the sliding velocity and 2τ
e  is the transverse tangent unit vector.  

A fundamental assumption is now introduced, namely, at the steady state the wear rate vector 

is collinear with the rigid body wear velocity of 1B , so that
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where q is the control parameter , usually .0≥q  Assume that the contact pressure )(xnp  and the 

friction induced shear stress =nτ )(xnpµ  satisfy the global equilibrium conditions for the body 
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and satisfying the stationary condition of the Lagrange functional, the contact pressure distribution 

has the next form 
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where χ  is the angle between cn  and Re . The given non-linear equations can be solved by 

applying Newton-Raphson technique. Minimization of this functional with equilibrium constraints 

for body 1B  at q=1 gives results for steady state wear process of arbitrary shape of contact surface 

Some specific examples will be presented. It is shown that the thermal distortion effects 

essentially the optimal contact shape associated with the steady state 

3. References 

[1] I. Páczelt and Z. Mróz (2005). On optimal contact shapes generated by wear, Int. J. Numer. 

Meth. Engng. 63, 1310-1347. 

[2] B. Szabó and I. Babuska (1991). Finite element analysis, Wiley-Intersience, New York.

[3] P. Ireman, A. Klarbring and N. Strömberg (2002). Finite element algorithms for thermoelastic 

wear problems, European Journal of Mechanics A/Solids 21, 423-440.

[4]  I.G. Goryacheva and M.H. Dobuchin (1988). Contact problems in tribology (in Russian), 

Mashinostroenie, Moscow. 

[5] P. Wriggers and C. Miehe (1994). Contact constraints within thermomechanical analysis -a 

finite element model. Comput. Methods Appl. Mech. Engng 113, 301-319.



76 Selected Topics of Contemporary Solid Mechanics

PHYSICAL AND NUMERICAL SIMULATION OF FORGING OF Cu-Cr ALLOY 

 

 

V. Pidvysotskyy
1
, R. Kuziak

1
 and M. Pietrzyk

2
 

1
 Institute for Metallurgy, Gliwice, Poland 

2
 Akademia Górniczo-Hutnicza, Kraków, Poland 

 

 

1. Introduction 

Development of the hot forging technology for copper alloys, which are characterized by high 

mechanical properties, is a goal of research in several laboratories. Repeatability of properties is the 

advantage of these alloys. Cu-Cr alloys are characterized by particularly high exploitation 

properties for a variety of applications combined with dependence of electrical conductivity on 

applied heat treatment. Various methods of thermomechanical processes are possible for this alloy 

and quite different properties are obtained depending on the parameters of this process. Thus, the 

technology design for Cu-Cr forgings has to combine obtaining required shape with control of 

microstructure and properties. The technology design is usually supported by physical and 

numerical simulations. This work is focused on application of both kinds of simulations. 

2. Rheological model 

Accuracy of numerical simulations depends on the correctness of description of boundary 

conditions and material properties. The latter problem is considered in this work. Although the 

rheological models are well explored for various steels, there is still lack of models for copper 

alloys. Thus, the prime objective of this work is performing uniaxial compression tests for the Cu-

Cr alloy at temperatures 500-1000
o
C and strain rates 0.1-100 s

-1
, application of the inverse analysis 

[1] to the interpretation of results of those tests and development of the rheological model for the 

applicable for the investigated range of parameters. Three states of the alloy, yielding different 

mechanical response during deformation, were considered. A) samples after super saturation 

annealing at 1000
o
C; B,C) samples after hot extrusion, followed by different preheating processes: 

B) heating to the test temperature, maintaining for 120 s and deformation; C) heating to 950
o
C,  

maintaining for 300 s, cooling to the test temperature, maintaining for 60 s and deformation. Inverse 

analysis yielded the flow stress independent of the influence of such disturbances as friction or 

deformation heating for all investigated cases. Analysis of results showed [2] that oscillations in the 

material response occur for low Zener-Hollomon parameters for samples B and C.  

Microstructure of the samples was investigated prior to deformation and after each test. 

Correlation between flow stress and microstructure was determined, see selected results in Fig. 1. 

Investigation of the deformed samples has shown that their structure depends strongly on the initial 

state of the material. Under the same deformation conditions, as extruded samples heated to the test 

temperature were subject to dynamic recrystallization (DRX) during deformation. Their structure 

was fully recrystallized with finer grains while lowering deformation temperature and increasing 

strain rate. In the other specimens, the DRX was not easily initiated during deformation below 

900
o
C and their microstructure was partly recrystallized. The solute drag effect of Cr atoms exerted 

on the recrystallization nuclei boundaries is a possible reason of different behaviour of the samples. 

Chromium effect on the stacking fault energy is an alternative reason. In the extruded samples all 

chromium precipitated out of the solution. The precipitates were relatively large and they did not 

affect the recrystallization process substantially. Thus, the super-saturated samples exhibit the 

greatest effect of Cr on the recrystallization. Samples reheated to 950
o
C prior the deformation show 

the intermediate effect, and the effect of Cr is almost negligible in the extruded samples.  Flow 

stress models accounting for the microstructure were determined using inverse analysis. 
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3. Modelling industrial forging process 

FE code with the developed flow stress model was used for simulation and analysis of the 

industrial forging with following parameters: stock diameter 60 mm, mass of the forging 1.2 kg and 

die 2000 kg, initial temperature 900°C, die energy 70 kJ, die displacement 850 mm, die velocity 5 

m/s. View of the die and the preform is shown in Fig. 2. Various variants of the process were 

considered. Selected results for the material after extrusion (variant B) only are discussed below. 

One example showing how simulation allows to eliminate faults is presented. 

0 0.2 0.4 0.6 0.8 1

strain

20

40

60

80

100

120

s
tr

e
s
s
, 
M

P
a

A

B

C

strain rate 1 s-1

800oC

900oC

 

Figure 1. Flow stress for different initial 

state of the samples. 

 
Figure 2. View of the die and the preform. 

Simulation of the one stage closed die forging has shown that fault occurs at the surface. 

Therefore, upsetting is performed first and is followed by the forging. Three reductions in upsetting 

(10, 15 and 20 mm) are considered. Forging after upsetting with 10 mm reduction resulted in fault 

of the product (Figure 3a). Under filling of the die was obtained when 20 mm reduction was applied 

in upsetting (Figure 3c). Proper forging was obtained for 15 mm reduction in upsetting (Figure 3b). 

a)  b)  c)   

Figure 3. Die filling for various reductions in upsetting: a), 10 mm, b) 15 mm, c) 20 mm. 

4. Conclusions 

Rheological model of the CuCr alloy accounting for the state of microstructure was 

developed. Various variants of the industrial forging were simulated and the capability of the model 

to support technology is shown. 15 mm reduction in upsetting before forging is selected in the 

considered case as giving the best quality of the forging. 
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1. Introduction 

Failures caused by fatigue in welded structures result in substantial costs each year all  over 
the world. The premature fracture is often attributed to existence of residual stresses, which have 
their source in welding technology. Application of concentrated source of heat, high temperature 
gradients, phase and volume changes during the process make this problem diff icult to analyze. 
Additional changes of material constants and yield stress values lead to a nonlinear problem, which 
should be analyzed as coupled [1, 2]. Also experimental assessment of residual strains or stresses in 
welds is rather limited due to high cost of investigations. The above observation influenced the 
development of various numerical methods and codes focused on weld simulation. This problem 
attracts many researchers since seventies of the past century. The first successful trials can be found 
in papers [3-6]. The extensive review of numerical modelli ng and simulation of welding process is 
presented in [7]. 

Nowadays there are several codes based on the Finite Element approach oriented to weld 
simulation, as for example: SYSWELD®, MSC Marc/Mentat®. It is also possible to use the 
universal FE code ANSYS®, in which the authors perform the simulations. Below the results of 
welding simulation of two plates are presented. The thickness of plates was chosen in such a way 
that the weld can be made in a single pass. Further calculation will  be preformed for a thick-walled 
cylindrical chamber, where the welding process becomes more complex – needs more passes, 
preheating before welding and heat treatment after welding. 

2. Numerical modelli ng of welds 

Welding is one of the most common methods of joining elements made of low carbon or alloy 
steels. This method involves many different phenomena and results in complex stress and strain 
state in structures. Appearance of high temperature gradient in the process, phase and volume 
changes in joined materials and simultaneous changes of material constants are the main source of 
residual strains and stresses. Additional complication arises from the movement of the heat source 
along the weld path during the manufacturing process. This causes that the thermal problem should 
be regarded as a transient one. Finall y, the analysis is performed in two basic steps. The thermal 
analysis is the first one. Locall y applied heat source causes thermal dilatation resulting from thermal 
expansion. This is supplemented by the volume changes due to phase transformations. All  these 
phenomena result in deformation, which is usuall y permanent due to rapid reduction of the yield 
stress with temperature increase. The thermal analysis is followed by the mechanical calculation 
made on the base of the temperature distribution. The whole analysis is nonlinear and is performed 
in several steps. 

3. Results of exemplary numerical simulation 

The problem of welding of thin plates is usuall y analysed as two dimensional [8, 9]. In the 
present paper the whole structure was modeled as three dimensional and the weld was made in one 
pass. At the beginning of the process the full  geometry was defined and then the procedure of 
element annihilation was utili zed. Next the sub-volumes on the weld path were animated with the 
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velocity corresponding to the velocity of welding. The exemplary results of such approach are 
shown in Figure 1. Here the distribution of temperature and residual strains at the end of the 
welding process are presented. As it can be seen, the residual strains are located in vicinity of the 
heat-affected zone, which confirms the earlier observations [8, 9]. 
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Figure 1 Distr ibution of temperature and residual strains in two plate welding process 

The preliminary investigations show, that the standard finite element code ANSYS enables the 
simulation of welding process, and it has been decided to use it in modelli ng of welds in more 
complex, thick-walled structures. 
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1. Background 

Surrounding environment strongly influences the durabilit y of concrete structures. A first 
symptom of deterioration of concrete structure is an increase of the permeabilit y of its cover layer. 
Increase of permeabilit y causes deeper and faster ingress of water and aggressive agents which 
accelerates the deterioration of deeper layers of concrete. Thus, the evaluation of permeabilit y of 
concrete cover plays significant role in prediction of its qualit y.  

Description of number of different field tests of permeabilit y can be found in literature [1,2,5]. 
Most of them and few other specific techniques [3,4] can be used in laboratory. In general, there is a 
possibilit y to test permeabilit y with liquid or gas but in case of the high-performance concrete, 
liquid tests are practically not possible. Such concrete is almost completely water-resistant and gas 
methods are preferred. 

2. Aims and method  

The paper deals with modeling transient flow of compressive gas in porous materials. 
Mathematical model describing the phenomenon including viscous interaction and Klinkenberg 
effect was formulated. Simulations by Finite Element Method in COMSOL environment assuming 
different boundary and initial conditions are shown and results are analyzed.  

3. Results and discussion 

A number of simulations within model describing transient phenomenon of compressible fluid 
flow in porous media were performed assuming that initiall y in the gas reservoir: 

a. The pressure is significantly lower (technical vacuum) than in the pore space of tested 
material (suction), 

b. The pressure is few times higher (overpressure) than in the pore space of tested 
material (pumping).  

Such conditions correspond to the main groups of presently used practical methods in 
laboratory and field permeabilit y testing.  

Since laboratory tests are made on samples with sealed lateral surface then the fluid flows 
along the axis of the sample and the corresponding model of flow is one dimensional (1D). In turn 
most field tests relay on configurations for which gas flows both in axial and radial directions and 
then the two dimensional model (2D) is appropriate. The results shown in this paper refer to 
transient flow of compressible gas in concrete for both cases.  

The simulations show that the influence of Klinkenberg coeff icient on pressure distribution in 
the porous material is essentiall y greater in case (a) than in case (b). The same undergoes for the 
time dependence of pressure in the reservoir. The facts can be justified by a physical argument that 
the longer mean free path (more rarefied gas) the stronger slippage effect must appear.  

Taking into account that the most convenient for measurement is observation of pressure 
changes versus time in the gas reservoir Figure 1 presents distributions of changes in reservoir 
pressure for 1D and 2D cases. In both simulations the same material constants and geometry were 
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assumed. The initial pressure in reservoir was equal fife times the pressure in the pore space of 
tested material. 

1,E+05

2,E+05

3,E+05

4,E+05

5,E+05

0 500 1000 1500 2000 2500 3000 3500 4000

Time, t [s]

P
re

ss
ur

e,
 p

 [
P

a]

1D

2D

 
Figure 1. Distributions of pressure changes in reservoir for one and two dimensional  

simulation of compressible fluid flow in porous media 

4. Final remarks 

The paper presents simulations of one and two dimension transient flow of compressive gas in 
porous material. Material constants, initial pressures in pore space of tested material and reservoirs 
as well  as the geometrical conditions of simulated problems are assumed in the way corresponding 
to practice in laboratory and field tests of concrete permeabilit y. The obtained results show great 
importance of testing conditions for time dependence of pressure in reservoir and pressure 
distribution in the porous material. A particular sensitivity to testing conditions shows the 
Klinkenberg effect. Currently experimental works are made to verify the results obtained from 
simulations. 
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The numerical method for prediction of fatigue li fe of structure is presented. The finite 
element modeling and damage parameter calculation are based on algoritm described originall y in 
[1]. 

As an example the optimization of double – disk rotor shaft system, presented if Figure 1, 
based on sensitivity analysis followed by the fatigue li fe estimation of optimized shaft is 
considered. The objective of optimization is to avoid resonance, which can cause excessive stresses 
leading to prematural fatigue cracks. Sensitivities of eigenvalues with respect to design variables are 
calculated by the Direct Differentiation Method (DDM) [2,3]. The optimization is performed with 
the objective to move natural frequencies as far as possible from resonance frequency. Next the 
shaft system is dynamicall y loaded. Fluctuation of stress established from FEM analysis by 
numerical code FEAP [4] are stored, cycles are counted by rainflow method and next fatigue li fe 
estimation is performed. Design parameters are diameters of selected shaft parts.  

 

 
Damage accumulation hypothesis is used in order to take into account all  components of 

dynamic load [5]. An accumulated damage caused by all  cycles in block can be calculated. 
The idea of the equivalent amplitude stress described in [6] is used, in order to calculate the 

number of cycles to failure of the analyzed structure loaded by arbitrary non-symmetric load with 
any stress ratio . 

Fatigue durabilit y may be expressed by number of cycles to expected failure N or hours of 
safety work of the structure [7]. Design li fe and probabilit y based fatigue factors are calculated  as 
so called Factor of Strength (FOS). It shows how much the component is over or under strength in 
terms of Finite Element Analysis (FEA) stresses. 

The FOS is the ratio of the strength of material to the working stress. The FOS value is 
calculated using the Goodman mean stress correction. Referring to Figure 2, which shows the 
Goodman line in coordinates (Sa, Sm), the FOS is given by 

 

OA

OB
FOS =          (1) 

 
Figure 1. Double – disk rotor shaft system before and after optimization. 
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Effects of unloading on fatigue li fe is also calculated [8]. The simpli fied reliabilit y analysis 

makes use of fuzzy set approach to the basic fatigue data such as material data, load parameters etc. 
[8]. 

 

 
Figure 2. Factor of Strength based on Goodman line. Sa - stress amplitude, Sm - mean stress, Sy - 
yield stress, Su - ultimate tensile strength, Kf - stress concentration factor. 

Short summary  

•  Present work deals with optimization performed on the basis of exact sensitivity. 
•  Optimization with objective to avoid resonance allows to eliminate undesirable vibration, 

noise and considerable increase fatigue li fe. 
•  Equivalent amplitude stress is very effective tool in fatigue analysis in engineering cases, 

when fatigue data are provided only for stress ratio R = -1, but also in dynamic fatigue 
analysis where rainflow algorithm is used. 
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1. Introduction 

The coupled field analysis of piezoelectric materials requires solution of continuum 

mechanics and continnum electrodynamics equations [1,3]. Practically, the process of solving the 

boundary – value problems is realized using the numerical methods. The most popular are: the finite 

element method (FEM) and the boundary element method (BEM). The FEM requires the whole 

region discretization; in the BEM, in many cases, only the boundary is discretized. Hence, in these 

both methods the mesh of finite and boundary elements is required. Recently, there can be noticed a 

development of the meshless methods, which do not need the time-consuming mesh generation 

process. One of the meshless methods is the indirect Trefftz collocation method [1,4,6,7].  

In the Trefftz method, the solution of the boundary-value problem is approximated by the 

series of the T-complete functions [4,7]. These functions satisfy the system of the governing 

equations, i.e. the homogenous system of the elliptic differential equations of the linear 

piezoelectricity. The piezoelectric materials are modelled as: homogenous, anisotropic linear–

elastic and linear – dielectric [3]. Even for the transversal isotropic ceramic piezoelectric material, 

the form of the partial differential operator makes the determination of the T-complete functions 

quite complicated. The quite similar problem exists, when the fundamental solution is being 

determined. The Stroh formalism is a powerful and elegant analytic technique for anisotropic 

elasticity, which is expanded to the linear piezoelectricity in this case. The Stroh formalism allows 

to obtain both the fundamental solution and the T-complete functions [3,5]. 

2. The Stroh formalism and the T-complete functions 

Since piezoelectric materials are anisotropic, the determination of the fundamental solutions 

and the T-complete functions are rather complicated, even for the transversal isotropic model of the 

material. In the Stroh formalism, it is assumed, that the field of the generalized displacements (the 

mechanical displacements and the electric potential) has a form of product of the unknown complex 

vector and the analytic complex function [3]. Then, the formalism requires the solution of the 

special eigenvalue problem with respect to the material constants of the piezoelectric material. The 

general solution, which is the base of the T-complete functions set, can be expressed by using the 

eigenvalues, eigenvectors (of the special eigenvalue problem) and arbitrary complex vector and 

arbitrary analytic complex function. The orientation of the polarization direction is also taken into 

account using this formalism. The eigenvalues and eigenvectors, related to these constants, are 

specially transformed according to the polarization direction. 

3. The collocation technique 

When the set of the T-complete functions is determined, the solution of the boundary-value 

problem can be approximated by the superposition of these functions [1,4,7]. The superposition of 

the T-complete functions satisfies the governing equations, but does not satisfy the mechanical and 

electric boundary conditions. This problem leads to the minimization problem of the boundary 

residuals [1]. The unknowns are the coefficients of the superposition of the T-complete functions, 
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which describe the wanted mechanical and electric fields. The collocation method assumes that the 

residuals vanish at the boundary points. The resulting system of algebraic equations is usually 

solved by using the least square method [1,6].  

4. Least square method and regularization technique 

The indirect Trefftz collocation approach usually requires the solution of the overdetermined 

system of equations, which determines the unknown coefficients of the superposition of the T-

complete functions [1,6]. The matrix of the system of equations is usually nearly singular and ill-

conditioned [4]. For a system of equations with these properties, a singular value decomposition 

(SVD) solver is one of the most popular solution.  The SVD allows to regularize the solution with 

the minimal norm [2].  In numerical computations, the nearly singular and  the ill-conditioned 

matrix has no rank exactly equal to the mathematical rank. The numerical rank is smaller than the 

mathematical rank, because of small nonzero singular values. When the matrix has very small 

nonzero singular values, then a norm of the solution is very large. To remove this effect, the least 

singular values must be neglected, so the new solution is called the truncated singular value 

decomposition solution [2]. The truncation number is a regularization parameter in this method. In 

the present work the L – curve method is used for to determine the optimal truncation number. 

5. Numerical examples 

The indirect Trefftz collocation method program for plane boundary – value problem of linear 

piezoelectricity is developed. Results for some simple boundary – value problems are compared to 

analytical and BEM solutions. The numerical examples demonstrate a good agreement of the 

Trefftz method solutions with the exact and BEM solutions. 

6. Conclusions 

The point-collocation technique has the simplest algorithm among the others Trefftz methods 

and is therefore the most computationally – efficient approach [4]. This is also truly meshless 

boundary method and no integration is carried out in this technique. The Trefftz method uses 

regular functions, this is an important advantage when the indirect Trefftz method is compared with 

other boundary methods [7]. The necessity of regularization is some kind of drawback, but the SVD 

method ensures accurate and stable results. 
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1. Introduction 

Machining is a complex process involving very large strains and strain-rates, which cause large 
temperature increase. Improvement of tool performance and qualit y surface requires good 
understanding of the process. Since most process variables are diff icult to measure, analytical and 
numerical modelli ng of chip formation are versatile and reliable approaches to obtain information 
on some local variables of the workpiece and the cutting tool [1,2]. Finite element analysis has 
provided an insight look at what is going on during cutting, which is diff icult to achieve by 
experimental or analytical methods. Eulerian, Lagrangian and Arbitrary Lagrangian-Eulerian 
(A.L.E.) techniques have been used to simulate orthogonal cutting. [3,4]. In Lagrangian analysis, 
the computational grid deforms with the material whereas in Eulerian analysis it is fixed in space. 
The Lagrangian calculation embeds a computational mesh in the material domain and solves for the 
position of the mesh at discrete points in time. Two distinct methods, the implicit and explicit time 
integration techniques, could be used to implement these analyses. A.L.E. is a relatively new 
modelli ng technique in machining, including a combination of the Lagrangian and Eulerian 
approaches without having their drawbacks. It was firstly introduced to model the cutting process 
by the end of the last decade. This approach became popular due to its implementation in 
commercial finite element codes. Explicit dynamic A.L.E. formulation is very eff icient for 
simulating highly non-linear problems involving large localized strains. 

The residual stress field in a machined surface is one of the most important factors influencing 
the surface qualit y. In fact, residual stress distribution can affect the workpiece material behaviour 
during service loading (fatigue, fracture, stress corrosion) [5]. Residual stresses are produced by 
mechanical and thermal phenomena associated with the process of chip formation. The nature of 
residual stresses depends not only on machining parameters such as cutting speed, feed rate, depth 
of cut, but also on the tool geometry and the lubrication conditions. 

In this work, orthogonal cutting is modelled with ALE approach (ABAQUS/Explicit code) and 
Lagrangian approach (DEFORM-2DTM code). The aim of this paper is predicting residual stresses 
after orthogonal cutting, comparing general and specific codes. The study is focused on AISI 316L 
a diff icult-to-machine material, because of high strain hardening effects and low thermal 
conductivity [6]. Advantages and drawbacks of both codes are analyzed. 

2. Numerical models 

A plane strain A.L.E. model was developed in ABAQUS/Explicit. A thermo-mechanical 
coupled analysis was developed, with CPE4RT element type (see ABAQUS manual). These are 
plane strain, quadrilateral, linearly interpolated, and thermall y coupled elements with automatic 
hourglass control and reduced integration, for A.L.E. formulation. In DEFORM-2DTM, the 
workpiece was initiall y meshed with 10000 isoparametric quadrilateral elements. The tool was 
modeled as rigid and meshed with 6000 elements.  

For both models, the cutting velocity is 120 m/min and the feed used was 0.1 mm. The 
clearance angle, rake angle and the edge radius are 10º, 0º and 0.02, respectively. Analysis was 
carried out in two steps. In the first step, cutting was modelled at constant cutting speed and steady 
state conditions were reached. In the second step, the workpiece was unloaded and cooled. The 
residual stress distribution was obtained in a section of the workpiece corresponding to stationary 
conditions during cutting. The workpiece material was modelled using the Johnson-Cook (JC) 
constitutive model [7]. 
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3. Results 

Fields of residual stress in direction x (the direction of cutting speed) after unload and cooling 
obtained with DEFORM-2D, is shown in figure 1(a). Residual stress is tensile in machined surface, 
the level is around 900 MPa. Distribution of residual stress in depth into workpiece obtained with 
ABAQUS/Explicit is shown in figure 1 (b). The level of tensile residual stress in machined surface 
is higher with this code.  
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Figure 1. (a) Fields of residual stress (circumferential) obtained with DEFORM-2D. Circumferential stress obtained in 
depth in workpiece with ABAQUS/Explicit.  
 

In Lagrangian formulation using DEFORM-2DTM, the mesh should be very fine around the tool 
tip, this fact increases the computational cost of the simulation. In the ALE model a specific mesh 
should be defined for a given tool geometry, being necessary to make some iterations to obtain the 
initial geometry of the chip able to deform to the final shape of the chip. Changes in tool geometry 
imply the development of a new initial geometry for the chip. 
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1. Abstract 

Meshless methods utili zed in numerical solution of boundary problems have recently been 
widely investigated by many authors. The explicit connectivity between nodes does not exist for 
such methods. Therefore due to computational efforts in remeshing steps for FEM, the meshless 
methods seem to be an attractive alternative for adaptive process in computational mechanics. The 
Natural Element Method (NEM) proposed by Traversoni (1994), Brown and Sambridge (1995) [1] 
is treated as a meshless method. The shape functions for the NEM are constructed with help of the 
Voronoi diagram, which describes  so called natural neighbours for each node Pi placed in the 
domain Ω. There are two main kinds of approximation for the NEM, the “non-sibsonian”  with the 
Laplace coordinate [2] built  on basis of the first order Voronoi diagram (1), and approximation with 
the Sibson functions [3] constructed with the help of locall y created the second order Voronoi 
diagram (2). 
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Fig 1)  a) The Voronoi diagram (first order, and locall y second order), 
         b) Delaunay triangles and support domain for selected node. 

For both approximations the support domain of the shape function for the node Pi is the union 
of all  the circumcircles about that node. In this work the Delaunay tessellation dual to the Voronoi 
diagram is utili zed. The global stiffness matrix is obtained by summing over each Delaunay triangle 
instead the triangularized Voronoi region as in [4]. For each Delaunay triangle the proper stabili zed 
numerical integration [5] is applied, i.e. 1 or 2-points Gauss quadrature along each edge of the 
triangle. For such an integration only values of the shape function are required, not the derivatives 
as usual. The error in energy norm (3) (or norm) of the solution is calculated by the local projection 
of the solution values over the Delaunay triangles. 

 (3) ( )∑=−=
k

k
h

k
h BwhereErr xuuuu   

uh is the NEM solution in Ω and Bk – bili near shape functions for 3-node triangle. 
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In the adaptive procedure the new size of the Delaunay element is calculated from 

 (4) 
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and new nodes are placed.  Firstly at the edges of the Delaunay triangle and then if required in 
its interior. 

For the proposed routine of the adaptive process with NEM the results (the energy norm) for 
the 2D linear elasticity problem (plane stress problem) (fig.2) and for the assumed permissible 
energy error level η=1% are presented in tab.1. The “ real”  energy  (|| uR || = 3.48077 ) was 
calculated for the uniformly divided domain to 400 elements (8-node finite elements) in AnSys 
system. The initial and the ultimate nodes location for adaptive process are shown in fig. (2).  

 x
x p(y) 

p(y)= y (1-y) / 6 

E=1     ν=0.3 

 

Fig 2) The test  problem. The initial and the final set of nodes 

Nodes || u h || Err  Err  / || u h ||  [%] Err  / || uR ||  [%] 

9 4.9287 2.8049  E 00 56.91 80.58 

25 3.8187 6.7136  E-01 17.58 19.29 

81 3.5844 2.0144  E-01 5.62 5.79 

224 3.5184 6.9518  E-02 1,98 2.00 

444 3.5045 3.7097  E-02 1.06 1.07 

636 3.5001 2.7658  E-02 0.79 0.79 

Table.1. Result for unity square test problem. 
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1. Introduction 

The thermomechanical processes belong to coupled problems in which interaction between 

mechanical and thermal field is considered. It is very convenient for identification, because 

measuring both quantities: displacements and temperatures simultaneously is more effective than 

measuring only one with the use the same numbers of sensor points [2]. 

The identification problem can be formulated as the minimization of some objective 

functional (fitness function) which depends on measured and computed state fields such as 

displacements, strains or temperature. In order to obtain the unique solution of the identification 

problem one should find the global minimum of the objective functional. 

In the present paper the parameters of thermomechanical systems are modelled by random 

variables with a Gaussian probability density function. The applications of evolutionary 

computation to such problems require some modifications of the algorithm. Genes should be 

modelled by random numbers and the potential solutions of the optimization problem are 

represented by stochastic individuals in the form of random vectors. Modified evolutionary 

operators of mutation, crossover and selection are proposed. 

2. Stochastic identification problem 

The aim of the stochastic identification is to find a random vector ( )JX : 

(1)  1 2( ) [ ( ), ( ), ... , ( ), ... , ( )]i nX X X XJ J J J J X  

which minimizes an objective function ( ) [ ( )]F FJ J X  subjected to m constrains 

[ ( ) 0] , 1, 2,...,j jP g p j mt t  X  

where: (*, F, P) is a probability space, * is a space of elementary events, F is V-algebra of 

subset of the set *, P is the probability defined on F. 

In order to solve the identification problem an evolutionary algorithm (EA) is used. Each 

individual is a multidirectional vector consisting of random variables (genes) with the Gaussian 

density probability function. Each gene is represented by the two moments: (i) the mean value im  

and (ii) standard deviation iV . 

The evaluation of the fitness function can be done by solving the stochastic boundary-value 

problem, for instance: stochastic boundary element method SBEM [1] or the stochastic finite 

element method SFEM [3]. 

The original stochastic problem can be also reduced to the series of the deterministic one. 

In this work for each individual several direct problems are solved on the basis of input random 

variables. The moments of the displacement and temperature fields are evaluated on the basis of the 

200 deterministic tasks. An fitness function is expressed by minimization of the following 

functional: 
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where: ix - the measured quantity (temperature or displacement), � ix  - quantity computed for 

the structure with the parameters generated by the evolutionary algorithm, jw  – is appropriate 

weight. Direct problems of thermoelasticity for the identification task are solved by means of the 

finite element method (FEM) [5]. 

3. Numerical example 

In this example thermal boundary conditions are identified. It is assumed that identified 

ambient temperature T f  and heat convection coefficient D  are random variables. The structure 

under thermomechanical loading presented in Figure 1a is considered. One surface of the box is 

supported, whereas on the opposite load P is applied. On the supported surface of the structure the 

temperature T is applied. The third type thermal boundary condition (convection) is specified on the 

internal surface (identified random variables T f and D ). The stochastic fitness function is evaluated 

on the basis of measured displacements and temperatures in boundary sensor points, which are 

random variables with the Gaussian distribution. Table in Figure 1b contains limitations of the 

design variables, actual values of parameters and obtained results. 

                  
Figure 1.    a) Geometry of the structure.  b) The results of the stochastic identification 

4. Conclusions 

An effective intelligent technique based on the stochastic evolutionary algorithm has been 

presented. This approach can be applied in the optimization and the identification of systems that 

are in the random conditions. The obtained results demonstrate good accuracy comparing to exact 

solution. Numerical computations of thermoelasticity problems using finite element usually is time 

consuming, especially with more complicated models. 
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1. Introduction 

Algorithms of continuum mechanics usuall y use two descriptions of motion: the Lagrangian 
and Eulerian one [1]. In a pure Lagrangian formulation each individual node of the computational 
mesh is permanently connected to the same material points during motion. There are no convective 
effects and the material derivative reduces to a simple time derivative. Such formulation allows an 
easy tracking of free surfaces and interfaces between different materials, and treatment of materials 
with history-dependent constitutive relations. The formulation, however, is restricted to a certain 
deformation range because the element mesh may be severely distorted or entangled due to the fact 
that elements deform with the material. Thus, the FE-analysis usuall y looses accuracy, size of the 
time increment has to be significantly reduced or simply terminates due to convergence problems. 
A remeshing may not be even eff icient. In a pure Eulerian formulation, the computational mesh is 
fixed spatiall y and the continuum moves with respect to the grid (elements retain their original 
shape). The convective effects appear because of the relative motion between the deforming 
material and computational grid, which makes the analysis computationall y expensive. The 
formulation leads to diff iculties when free surface conditions, prescribed boundary conditions or 
deformation history dependent material properties are considered as the element mesh is not 
connected to the material. In order to combine the advantages of both formulations and to minimize 
their limitations, an Arbitrary Lagrangian-Eulerian formulation (ALE, in short) has been developed 
[1], where state variables are a function of the referential coordinates (not connected to material 
points). In the ALE method, the mesh is neither connected to the material nor fixed to the spatial 
coordinate system (nodal displacements are uncoupled from material displacements) but it can be 
prescribed in an arbitrary manner. As a result, a mesh velocity has to be computed in order to 
compute the mesh. Grid points on the surface move with the mesh velocity, but these points must 
remain on the free surface. Since the mesh is not connected to the material, a remap of state 
variables has to be performed. The freedom in the mesh movement helps to handle greater 
distortions than would be allowed by a Lagrangian method with more resolution than that afforded 
by an Eulerian approach.  

In our paper, a so-called uncoupled ALE-method was used [2], [3], where the deformation 
process was split  into a pure Lagrangian and a pure Eulerian phase combined with a smoothing 
approach. This approach [2], [3] has some advantages with respect to the full  coupled ALE-
approach [1], where both nodal point and material values are calculated by solving a global 
assembled set of equations. The uncoupled approach simpli fies this problem since the Lagrangian 
approach can be used and the stiffness matrix does not contain any convective terms. Thus, it is not 
necessary to describe the mesh velocity in a set of equations. 

2. FE-analysis 

Our dynamic FE-analysis was carried out with a non-local hypoplastic constitutive model, 
which is able to describe the essential properties of granular bodies during shear localization in a 
wide range of pressures and densities [4], [5]. Due to the presence of a characteristic length of 
micro-structure (by application of non-local terms), the model can simulate the formation of shear 
zones with a certain thickness and related size effects. It includes barotropy (dependence on 
pressure level), pycnotropy (dependence on density), dilatancy and contractancy and material 
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softening during shearing of a dense material. This law describes the evolution of effective stress 
tensor with the evolution of rate of deformation tensor by isotropic linear and non-linear tensorial 
functions. In contrast to elasto-plastic models, a decomposition of deformation components into 
elastic and plastic parts, the formulation of a yield surface, plastic potential, flow rule and hardening 
rule is not needed. A characteristic length was taken into account in hypoplasticity by means of a 
non-local theory. It is enough to treat non-locall y the local modulus of deformation rate to obtain 
mesh-independent FE-results [4], [5]. The constitutive relationship requires totall y 9 material 
constants.  

The calculations of shear localization were carried out for 2 different dynamic problems using 
an explicit FE-formulation: plane strain compression and confined granular flow in silos. First, the 
calculations were carried out for a plane strain compression test. The following parameters were 
varied: loading velocity, initial void ratio, characteristic length of micro-structure and specimen 
size. Attention was paid to a deterministic dynamic size effect and thickness of a shear zone inside 
the deformed granular specimen. Some comparative analysed were also carried out using a pure 
Lagrangian approach.  

The results show that inertial forces influence the shear zone formation. The calculations with 
a slow loading velocity were compared with corresponding quasi-static laboratory tests performed 
at Karlsruhe University [6]. A satisfactory agreement was achieved between numerical and 
experimental results. 

Second, the FE-studies were performed for granular silo flow in a bin and hopper with a 
controlled or free outlet velocity [7]. Both, the initial void ratio and wall  roughness were varied. 
The wall  roughness was described by different Coulomb wall  friction. The FE-results were 
compared with corresponding laboratory tests [8], [9]. A good agreement with respect to the shape 
of propagating internal shear zones inside the flowing solid  was obtained between experiments and 
calculations. An uncoupled ALE-approach enabled us to avoid large mesh distortions during flow at 
the silo outlet. 
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The penetration of segmented projectiles has become an area of considerable interest in 
penetration mechanics due to its speculated enhanced penetration eff iciency. A segmented projectile 
is a cylindrical rod where the main material is separated by spacers, which are usuall y made of 
another material.  

According to above restrictions, in the model of the subcalibre projectile with segmented 
penetrator (constructed by Milit ary Institute of Armament Technology), was applied penetrator rod 
composed of the two tungsten alloy pieces connected by screwed steel muff  (fig.1). The main 
destination of this solution is increasing the defeat possibiliti es of the composite (steel-ceramic) 
armour of the modern combat tanks. 

 
Fig.1. Subcalibre projectile with segmented penetrator 

 
 Composite armour (fig.2) is a type of vehicle armour consisting of layers of different material 
such as metals, plastics, ceramics or air. Most composite armour is lighter than their all -metal 
equivalent, but instead occupies a larger volume for the same resistance to penetration. It is possible 
to design composite armour stronger, lighter and less voluminous than traditional armour, but the 
cost is often prohibitively high, restricting its use to especiall y vulnerable parts of a vehicle. 

 
Fig.2. The cross-section of the typical composite armour.: 1 — front thin-walled plate, 2 — main 
steel plate, 3-ceramic elements, 4 — light alloy box, 5 — laminate layer, 6 — inertial steel plate. 
 
 In theoretical assumptions front segment of the penetrator, witch hit the composite armour, is 
consumed during stationary hydrodynamic penetration process. The destination of the connecting 
muff  is elimination of the shock wave propagated in front of the penetrator; which is transmitted to 
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the rear of the rod during hit. This wave, by the generation of the plastic deformations, has negative 
influence to the strength of the penetrator. In this way is possible that the structurall y undisturbed 
rear segment could perforate the ceramic element and inertial layers of the composite armour.   
 
 Using a mathematical-physical model and computer code, a series calculation tests were 
performed concerning the problem of modeling of tungsten monolith and segmented rods 
penetrating steel targets. The computer simulations have been showed for two variants W2 – W3 
(see table 1).  
 

 
Variants 
number 

Type of penetrator Steel target thickness 

W2 monolith 50 cm 

W3 
Two-segmented with 
steel connection muff  

50 cm 

Table 1. Configuration of the successive variants 
 

In this paper, we present the computer modeling results of a steel armour plate’s penetration 
by subcalibre projectiles with a monolith and segmented penetrators (tungsten alloy) accelerated to 
the velocity 1550 m/s.  We used the most recent version of the free point’s method. The results were 
compared to relevant experimental results. It is show that using this method we have obtained good 
consistency of the theoretical and experimental results 
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Nitride semiconductors (GaN, AlN and InN) have been extensively studied due to its superb
optoelectronic properties. Blue light-emitting devices or ultra-high frequency transistors compose
only two of the wide range of technical applications. Nitrides are grown on various substrates with
large misfits what may lead to a hight density of defects or a strong composition fluctuations at the
atomic scale. In particular, an active area for a blue LED or blue lasers are made of a multiple
GaN/InGaN/GaN quantum wells (QW) and presence of the indium rich clusters in a QW area is
reported, see Fig. 1. From this point of view, the knowledge about the cluster formation mechanism,
its evolution and their role on the optical properties of the nitride based heterostructures is crucial.
To this end, a quantitative high resolution transmission microscopy (HRTEM) is coupled with a
stress induced diffusion in a finite element method (FEM). 

Fig. 1. HRTEM image of the MOCVD InGaN/GaN heterostructure. Black frame denotes
evaluation area for a lattice distortion.
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On the basis of the real indium clusters in InGaN/GaN QW a computer simulation has been
performed for the stress induced diffusion process. Taking into account the geometry, position and
composition of  indium clusters as a starting configuration for FE initial-boundary problem we
calculated subsequent configurations of indium cluster tending to the normalization of stresses. The
elastic energy stored in HRTEM sample and its evolution in time has been analyzed. In particular,
different position of the clusters towards the samples free surface (TEM sample) were analyzed to
find the most preferable configuration taking into account elastic energy of the sample, see Fig. 2. 

Fig. 2. FEM modeling of stress induced diffusion in a InGaN/GaN QW. Initial and final
configuration.
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The multiscale FEM is a numerical method based on the theory of homogenization, with the
specific principle that real material properties have to be replaced by effective ones obtained by the
examination of a RVE [6]. The terminology ”macro” relates to the examined body, while ”micro”
relates to the RVE describing the material structure thereby the macroquantities are defined using
the concept of the volume average and the coupling of the scales requires Hill ’s macrohomogeneity
condition to besatisfied. Transformation of the latter condition leadsto thedefinition of theboundary
conditions at microscale and in that way to the closed formulation of the boundary value problem
related to this level. The contribution examines materials with periodic and random microstructure,
explaining three examples in detail .

The first example simulates the behavior of microporous nonlinear material. Here, a tension test of
a plate is considered at macroscale, while asquare RVE with an elli ptical pore is chosen to describe
the material properties. Given a random microstructure, the RVE is assumed to have adifferent ori-
entation in each Gauss’ point. The material investigation is ill ustrated by threegroups of tests with
different lengths of the semi-major axis of the pore. Each time, elli pticity is changed in an interval
[0, 1] where the lower limit corresponds to pores with zero thicknessand the upper limit to circular
ones. The results show that in the moment when pores appear, even if their thicknesscan be ne-
glected, the material parameters decrease at once; furthermore, with pore growth, Young’s and bulk
modulusundergoamonotonousdecreasewhilePoisson’s ratio increases. Calculationsalso show that
voidswith elongated shapehave amoresignificant influenceonmaterial weakeningthan voidswhose
shape is close to the circular one.

The second example looks at modeling solution-precipitation creep, which is a diffusional process
occurring in polycrystals if pressure and temperature are in thespecific range [3, 4, 5]. For this prob-
lem, firstly a continuum-mechanical model is proposed where the deformation is decomposed into
an elastic and an inelastic part and the total power is written as a superposition of total elastic power
and dissipation. The elastic energy is chosen in the standard form, dependent on the Helmholtz free
energy, while thedissipated energy is formulated particularly for theprocessof solution-precipitation
creep. It depends on the normal velocity of the crystal boundary due to precipitation or solution
of material and onthe velocity of material transport within the crystal interfaces. One of the main
properties of this model is that the difference between the normal component of the Eshelby stress
tensor and its smooth approximation becomes the driving forceof the process. Such behavior is al-
ready endorsed by the experiments showing that under homogeneous pressure acting on one side of
a rectangular crystal, solution-precipitation creep occurs only in edge zones of the sample. Another
advantage of the proposed model is that in contrast to other procedures, continuity of stressin triple
points is not required. Preliminary results for the behavior of polycrystals are obtained using the
Taylor model and show that solution-precipitation creep leads to the elongation of the crystal shape.
FEM-based methods are used for more realistic simulations and to estimate the change in effective
material parameters over time. Here the most important simulations are those concerning materials
with completely random structure and materials with regular structure consisting of hexagonal crys-
tals.

Themotivation behind developing themodel for theRVE of cancellousbone, which is the last exam-
plepresented in thiscontribution, is to investigate theprocessof osteoporosis, whosemain indicators



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 99

are the decrease and partial disappearance of the solid phase [1, 2]. The important feature of the
model is that the presence of the fluid phase necessitates dynamic interrogation and analysis in the
complex domain. According to the geometry of the microstructure it is assumed that the RVE has a
cubic form and that it consists of the solid frame and of viscous bloodmarrow filli ng the core of the
frame. The effective elasticity tensor and the parameters of materials with different microstructure
are calculated as the final results at microscale. Comparison of the real parts of material parameters
with the experimental results shows goodagreement. The calculations at macrolevel are ill ustrated
by simulating the ultrasonic test where the attenuation coefficient is calculated as a final result, using
the ratio of amplitudes of particle oscill ations. The obtained numerical values are much smaller than
the experimental ones so that an improvement of themodel of theRVE isenvisaged. Two main ideas
for overcoming the problem consist of assuming a new geometry of the solid phase of the RVE, and
introducing wavescattering onthe interfaceof thephases.

From the previous overview it can be seen that, althoughlimited by the requirements concerning the
sizeof the RVE, the multiscale FEM can still be applied to modeling composite materials with very
diverse microstructures. The examples presented here confirm in particular that the method can be
applied efficiently in modeling nonlinear materials with a regular structure and a random structure,
which mostly exceeds the abiliti es of analytical solutions and other numerical methods.
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Beachtungvon Stabilit äts Problemen, Habilit ationsshrift, Universität Stuttgart.



100 Selected Topics of Contemporary Solid Mechanics

MECHANO-CHEMISTRY AT DIFFERENT LENGTH SCALES

M. Danielewski 

 Interdisciplinary Centre for Materials Modeling, Faculty of Materials Science and Ceramics 

AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland 

Abstract

Following Darken [1], Brenner [2] and Öttinger’s [3] theories we recently postulated that the 

volume velocity defines the local material velocity at nonequilibrium [4]. It allowed fixing the 

unique frame of reference for all internal transport processes, thermodynamics in general. This 

frame of reference allows the use of the Navier-Lamé equation of mechanics of solids. Proposed 

modifications of Navier-Lamé and energy conservation equations are self-consistent with the 

literature for solid-phase continua dating back to the classical experiments of Kirkendall and their 

interpretation by Darken. No basic changes are required in the foundations of linear irreversible 

thermodynamics except recognizing the need to add volume density to the usual list of extensive 

physical properties undergoing transport in every continuum.  

We define the volume density and using the Euler’s and Lagrange theorems derive: the volume 

continuity equation, the equation of motion and energy conservation equations. We present the 

equivalence of presented and Darken methods when Darken restriction are introduced and the 

consistency of the Newton laws with thermodynamics. The method fulfills the following 

conditions: 

1. The local acceleration of the mixture depends on its mass, not on its internal energy. 

2. The local centre of mass position is not be affected by any diffusion process (mass 

diffusion, heat transport, internal friction etc.).

3. The volume velocity (�, i.e., the material velocity) is a unique internal frame of reference 

for all processes: diffusion, deformation, viscosity, heat transport etc. 

4. The nonbalanced diffusion fluxes affect the local volume velocity. 

The following equations govern the transport in compressible multicomponent mixtures. The 

volume continuity equation: 

1

div 0
r

i i i

i

c υ
=

� �
Ω =� �

� �
� , 

where ( )1,..., ; ,i rN N T pΩ  denotes the partial molar volume. The mass conservation law:

( )div 0i
i i

c
c

t
υ

∂
+ =

∂
;

the equation of motion: 

( )
1

D
Div grad grad

D

r
e p ch ext

i i

i

c V
t

υ

υ
ρ σ σ µ ρ

=
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where ch

iµ  is the chemical potential. The mechanical and thermal energy conservation equations: 

*
*
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*

1

D
: Grad div grad

D

r
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q i i i

i

Ts
J c

t
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ρ σ υ υ µ
=

= − −� . 

where *

iµ  is the mechano-chemical potential. The last terms in above equations describe the fact 

that diffusion (entropy production) does not affect internal energy of the mixture. Namely, that 

entropy is produced at the expense of mechanical energy of the mixture.  

 The drift velocity is the unique frame of reference for the diffusion and the volume 

continuity equation allows defining it quantitatively: 

1 1 1

div div div 0
r r r

drift d drift d

i i i i i i i i

i i i

c c Jυ υ υ υ
= = =

� � � � � �
Ω = + Ω = + Ω =� � � � � �

� � � � � �
� � � . 

The local momentum density depends on the diffusion of mass as well as on all other transport 

processes. The momentum due to the diffusion can be locally compensated by the Darken velocity. 

In such a case the overall volume velocity in the momentum balance is: trσ
υ υ υ= +  and complete 

the condition, that the local acceleration of the body depends on its mass, not on its internal energy 

and that the local centre of mass position is not affected by diffusion. 

 The method is applied to investigate the Planck-Kleinert Crystal hypothesis [
5
]. Crystal is 

the ideal cubic fcc crystal formed by Planck particles. In this type of quasi-continuum the energy, 

momentum and mass transport are described by the presented above classical balance equations and 

volume continuity equation. It will be shown that transverse wave can be interpreted as the 

electromagnetic wave and its velocity equals the velocity of light. The quasi-stationary collective 

movement of mass in the crystal is equivalent to the particle (body) and such an approach enables 

derivation of the Schrödinger equation. The interstitial Planck particles (defects) create a 

deformation that is equivalent to the gravity field and the computed value of G is within the 

accuracy of experimental data. The model predicts four different force fields in the crystal lattice. 

 The consequence of the equation of internal energy conservation is the existence of waves 

involving temperature but not the mechanical potential variations. They are analogous to “the 

second sound” described by Landau and Lifschitz [6]. 
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We consider a heat conductor for which the heat transfer model [2, 6] with the semi-empirical

temperature is used. In real-life problems material coefficients and parameters used in mathematical

modelling can be just vague. For instance at 15 K for NaF crystals, where the first and second sound

waves have been observed, known measurements of material parameters (cf. [4] and the literature

cited there) show large volatilities of observed quantities. Hence to model this one can go to an

extended model in which some material coefficients and data are fuzzy. In this paper we assume

them in the form of ordered fuzzy numbers appearing in the new model introduced by the second

author (W.K.) with two coworkers in 2002 in [7, 9, 10, 11, 12]. Our aim is to investigate waves

described by the hyperbolic model of heat conduction [1, 3] to give solutions of the coupled system

of fuzzy differential equations. Some defuzzyfications operators [7, 9] are proposed in order to get

crisp numerical results.

Fuzzy numbers as a particular case of fuzzy sets were introduced by Zadeh in 1965 [14]. They

have entered the applications area such as control theory or economy. In most applications the so

called (L, R)-numbers with two shape functions L and R, proposed by Dubois and Prade in 1978 as a

restricted class of membership functions, are commonly used together with triangular and trapezoidal

fuzzy numbers [5]. Arithmetic operations on fuzzy numbers have been developed with both the

Zadeh’s extension principle [15, 16] and the α-cut with interval arithmetic methods [5].

The concept of convex fuzzy numbers has been introduced by Nguyen [13] in order to improve

calculation and implementation properties of fuzzy numbers. However, the results of multipl oper-

ations on the convex fuzzy numbers are leading to the large growth of the fuzziness, and depend

on the order of operations since the distributive law, which involves the interaction of addition and

multiplication, does not hold there.

Recently introduced and developed main concepts of the space of ordered fuzzy numbers (OFN)

by the second author and his coworkers solved several drawbacks of both (L, R) as well as the con-

vex fuzzy numbers. In this approach the concept of membership functions has been weakened by

requiring a mere membership relation.

By an ordered fuzzy number A we mean an ordered pair (f, g) of functions such that f, g :
[0, 1] → R are continuous. The new model of fuzzy numbers has a lot of useful mathematical

properties, in the particular the arithmetic of ordered fuzzy numbers is similar to that known for

real numbers. Moreover, we are getting rid of the main problem in a classical fuzzy numbers - the

unbounded increase of inaccuracies with next calculations.

Now, we apply the concept to the heat conduction problem mentioned above. Following [2, 6]

a scalar internal state variable β is introduced. For β a kinetic equation is proposed. Then the heat

flux q is given in terms of gradients of the absolute temperature θ and β. Taking gradients of the both
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sides of the kinetic equation one obtains an evolution equation for g = ∇β

g,t = γθ,x −γg .(1)

Throughout this present paper we restrict ourselves to the simplest case where β itself does not appear

explicitely in that equation, i.e., we postulate a linear kinetic equation.

In the previous paper [4] we assumed that θ is small enough so the heat capacity cv and the

conductivity κ have been regared as constants (measured at some reference temperature θ0). In the

present paper we assume that they are ordered fuzzy numbers.

In the previous paper we have discussed the case of fuzzy ordinary differential equations (FODE)

[8]. Now the governing system becomes a system of fuzzy partial differenatial equations (FPDE) for

which numerical calculations are performed. The results are discussed from the point of view of their

physical applicablity. Some defuzzyfication operators [9] are proposed, which map fuzzy numbers

into reals in order to give an appropriate physical interpetation for the results obtained.
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1. Introduction 

The application of IR thermography to detect flaws in the subsurface layer of the tested 

material needs a thermal stimulation of its surface. One of the most common thermal stimulation 

method used in the nondestructive material testing is the pulsed IR thermography. It is based on 

monitoring of the temperature distribution on the material surface during its self-cooling after 

stimulation. The surface temperature distribution is disturbed by the flaws inside the tested material. 

This disturbance as an indicator of flaw presence can be used. Thus, it is necessary to know the time 

dependence distribution of the temperature on the surface of the sound material. This dependence is 

known when the surface of the tested material is uniformly heated by an impulse with infinitesimal 

duration [1, 2]. In this paper the layer of the examined material is approximated by a semi-infinite 

body and the self-cooling process of semi-infinite uniform body after stimulation by a rectangular 

impulse with a finite duration is considered. The criterion of long time regime approximation is 

formulated and verified experimentally. 

2. Time dependence of temperature field on semi-infinite body surface heated uniformly by 

the heat impulse of constant strength with a finite duration 

 When the surface of a tested material is heated uniformly, we can limit the analysis to the 

one-dimensional differential heat conduction equation. Then we have: 

(1)  
2

2

T T w

t z c
D

U
w w

 �
w w

 

where D  is the thermal diffusivity of the material, c  is the specific heat, U  is the material density, 

w  is the volume density of the heat impulse power absorbed, t  and z  are coordinates time and 

distance, respectively. Then the initial boundary conditions are as follows: 

(2)  � � � �00 0 0
T

T ,z T , t ,
z

w
  

w
 and � � 0T t, Tf  . 

The solution of the differential equation of heat conduction for the initial boundary conditions as 

above is as follows: 

(3)  � � � �2
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T t
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Thus, it has been shown that when the surface of the tested material was heated uniformly by the 

heat impulse with the finite duration timeW  and the time of the surface self-cooling t W� , then: 

(4)  � � 1
T t

t
' �  
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 Deflection from the form of Eq. (4) indicates a presence of flaws in the tested material, 

because defects change thermal diffusion process. On logarithmic scales the graph of the function 

given by Eq. (4) is a straight line with slope 
1

2
� . 

3. Experiments, results and discussion 

Experiment was performed on the specimen containing a simulated delamination. The 

specimen was made of two austenitic steel plates. In one of them (3.6 mm thick) the flat bottom 

hole has been drilled. The second plate was 2 mm thick and it has been stuck to the previous one. It 

allowed us to obtain the simulated delamination located at the depth of 1 mm. The surface of the 

specimen was heated uniformly by a conventional IR lamp of 500 W during 3 seconds. 

A temperature distribution on the surface during its self cooling process was measured by IR 

camera (ThermaCam 595) with a frame rate 50 Hz. 

 

Fig. 1. a) The time evolution of the average temperature for the surface zones over defect and over 

sound material; b) Logarithmic time evolution of the surface temperature after the end of uniform 

heating for the surface zones. 

In Fig. 1b the diagram � � 00ln T ,t Tª º�¬ ¼  vs. � �ln t W�  for the sound and delamination zone is 

presented. The term � �0T ,t  is average surface temperature of two investigated zones and 0T  = 

21.7 
°
C is the temperature of the tested surface before heating. It is seen that the slope of the graph 

line corresponding to the sound zone is nearly 
1

2
� . This confirms correctness of the derived 

formula (4) and of the taken assumption. A deflection from the 
1

2
�  slope, as the indicator of a 

presence of flaws under a tested area of the material surface can be used. 

It has been shown that monitoring of temperature field on the material surface after its uniform 

thermal stimulation by a heat impulse of a finite duration makes possible to detect flaws under 

tested surface. 
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1. General 

In this research, the lubricity behavior of Ti3SiC2 was investigated by using a pin-
on-disc a sliding wear test with a AISI 52100 steel. In the pin-on-disc test, samples show 
the low friction coeff icient (µ), especiall y in low loads. Microscopic observations show a 
lubricating layer on samples surfaces that the result of decreasing of µ due to the 
lubricating behavior. In a high load, samples shows increase in µ ( ≈  200N) and wear rate 
in 80 N loads, approximately. The results showed that Ti3SiC2 has a lubricity behavior in 
low loads (< 80 N) and can be used as a solid lubricant. Then lubricity behavior of this 
compound was then evaluated in comparison with graphite and MoS2 solid lubricant. 
Likewise lubricity mechanisms are layer structure in compounds, and constituted 
permanent and lubricant oxide layer on surface of samples. 
 
2. Introduction 

The ternary compound, nanolaminated Ti3SiC2 is known that has many of the best 
properties of both metals and ceramics, such This unique combination of properties 
makes Ti3SiC2 a li kely candidate for structural appli cations at elevated temperatures [6, 
7], such as turbine blades and stators, heavy duty electric contacts, bearings, etc [4].  

A number of useful publications have been written on the use of solid lubricants 
for space applications. Realistically, the most likely candidates are in the following 
categories: - Soft metal films: especiall y Pb, but also Ag and Au, - Lamellar solids: e.g., 
MoS2 and WS2, and - Polymers: such as PTFE films and glass fiber reinforced 
composites. Many other candidates could also be considered, but these are the primary 
choices [3]. Solid lubricants are useful for conditions when conventional lubricants are 
inadequate [2]. The friction coeff icients of solid lubricant materials are of about 0.06 to 
0.15 depending upon humidity and sliding conditions [1]. However, currently, reports on 
the tribological behavior of Ti3SiC2 are limited, especiall y lubricity and wear rate in high 
load. In the present paper evaluate the tribology behavior (lubricity and wear) of Ti3SiC2 
ternary compound against 52100 steel pin in low and high loads, then compared with 
graphite and MoS2 solid lubricants. The unit cell  of Ti3SiC2 that compose a nanolayered 
structure, and graphite and MoS2 solid lubricants, as shown in Fig. 1.  

 
3. Experimental procedure 

The contracted phases of the Ti3SiC2 were characterized employing XRD-Phili ps 
X'pert-MPD and Microstructure observation by SEM-XL30. The macro-hardness was 
evaluated by a Vickers diamond indenter at load 50 N using the following formula in Eq. 
1. The wear rate (wear coeff icient in mm3/Nm) was calculated under opposite frame: 

∆
m/ 

( ρ .F.L). Then compared with graphite and MoS2 slid lubricants. 
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4. Results and discussion 
according to XRD analysis, (Fig. 1), As can be seen in the SEM represented at 

Fig. 3, the product was not uniform, some regions rich in the ternary Ti3SiC2 phase, and 
some being a two-phase mixture of TiC and few amount and Ti–Al binary phases was 
detected. The results of friction test are listed in Table 1 in various loads, likewise in 
sliding distance curves, in the pin-on-disc test (Fig 2). It was found that the material 
undergoes a criticall y transition stage where the friction coeff icient ( � ), increases linearly 
of 0.06 to 0.35 in 200 N load. A change in wear mechanism is initial observed at high 
load, especiall y in load over 200 N, that increase (COF and wear rate). The final result 
show that a low wear rate in 80N load (< 10 -6 ) and low COF in low load (< 200N ) (Fig. 
2). Therefore proposed this compound can use as solid lubricant in load lower than 80 N. 
 
Table. (1). Friction coeff icient and wear rate for Ti3SiC2 sample in various normal load.  

Load (N) 10 40 80 120 160 200 240 280 
COF (µ) 0.06-

0.08 
0.06-
0.1 

0.06-0.1 0.06-
0.12 

0.06-
0.12 

0.06-
0.12 

0.3-
0.4 

0.35-
0.39 

WR× 105 (mm3/Nm) 2 6 12.2 20.3 21.3 25.6 198 182 

 
In table (2) had come friction coeff icient of for Ti3SiC2 sample in comparison 

MoS2 and graphite solid lubricant. The result shows that nanolayered Ti3SiC2 has 
lubricity behavior in higher loads without humid environment, also can use in higher 
temperature in comparison MoS2 in low load, because of don’ t decompose.  

 
Table. (1). Friction coeff icient and wear rate for Ti3SiC2 sample in various normal load.  

Load (N) 
  COF (µ) 

10 40 80 120 160 200 240 280 

Ti3SiC2 0.06-0.08 0.06-0.1 0.06-0.1 0.06-0.12 0.06-0.12 0.06-0.12 0.3-0.4 0.35-0.39 
Graphite 0.24 0.16 0.05-0.12 Failure     

MoS2 0.05-0.15 0.05-0.15 0.05-0.15 0.05-0.15 0.05-0.15 0.05-0.15 0.05-0.15 0.05-0.15 

 
5. Conclusion  
In this work, the tribology behavior of Ti3SiC2/steel friction pairs was investigated. This 
compound showed low COF ≈  0.06-0.12 in low load (<200N) and a critically behavior in 
200 N load, which that change wear mechanism of tribochemical to abrasion. Likewise 
ill ustrated low wear rate ≈  < 10 -6 in load lower than 80 N. lubricity mechanisms in low 
load was composed permanent oxide layer (tribochemical mechanism) and layered 
structure, but in high load has abrasion mechanism and plastic deformation. Therefore 
nanolaminated Ti3SiC2 can be used as a solid lubricant in low load, and high temperature 
due to constituted a passive layer in high loads. In comparison if that MoS2 has lubricity 
behaviour in high loads but in high temperature decomposed. Also in comparison 
graphite has lubricity behavior without a humid environment.  
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1. Introduction 

The paper proposes a method for the lubricants wear degrees diagnosis, based on 
determination of the rheological properties, speciall y about the reducing of the viscosity values 
during the time. The experimental stand used for measuring the rheological parameters of the 
lubricants is a cone and plate viscometer, which offers absolute viscosity determination with precise 
shear rate and shear stress information. 
 In order to estimate the wear degree of the used oils, a theoretical relation is proposed [1], 
which establish the variation of the viscosity versus the equivalent distance covered by the motor 
vehicle: 
 Kde−= 0ηη           (1) 

The two parameter characteristics are the initial viscosity η0 for the fresh oil  and the wear 
intensity coeff icient K. These values are determined using the regression analysis method. 

2. Experimental procedure 

Experimental investigations were undertaken with the aim to check the assumed theoretical 
method. They were carried out at the ambient temperature of 20 0C, for three types of oils,  which  
lubricate motor vehicles with different wear degrees: 

– ELF EXCELLIUM LDX 5W-40 from a Diesel motor vehicle with 130000 km way; 
– ELF PERFORMANCE EXPERTY 10W-40 from an essence motor vehicle with 38000 

km way; 
– ELF COMPETITION ST 10W-40 from an essence motor vehicle with 80000 km way. 
For each type of oil , the mean li fe time recommended by the producers is 10000 km, [2]. 

During this period, a few samples of lubricants have been collected, corresponding at different wear 
degrees: for fresh oil  (at 0 km) and for used oil  (approx. at 3000 km, 7000 km and 10000 km). 

3. Results 

Two typical rheograms, obtained with the Brookfield cone and plate viscometer, for two 
tested oils, are presented in Figure 1, a and b. In these figures, four curves are presented, 
corresponding for different wear degrees of the tested oils. It can observe that the viscosity 
decreases with equivalent distance of the motor vehicle, and clearly depends of the oil  type.  

The experimental data have been numerical analyzed using the regression analysis method, 
in order to obtain the mean values of the viscosity, for fresh and used oils (see Table 1). The same 
table presents the values of the correlation coeff icient, which is an indicator of the correlation level 
between the theoretical Newtonian model and the experimental data.   

In order  to obtain the main values of the initial viscosity η0 for the fresh oil  and the wear 
intensity coeff icient K (see Eq. 2), the data from Table 1 are numericall y treated and the results are 
presented in Table 2.  
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a. ELF EXCELLIUM LDX 5W-40 oil  b. ELF PERFORMANCE EXPERTY 10W-40 oil  

Figure 1. Experimental rheogram for tested oils  
 

Type of oil  Wear  degree Equivalent 
distance, km 

Viscosity, 
Pa.s 

Corre lation 
coeff icient 

ELF EXCELLIUM LDX 5W-40 

Fresh oil  0 0.186 0.963 

Used oil  
2920 0.167 0.982 
7090 0.086 0.991 
9930 0.099 0.994 

ELF PERFORMANCE EXPERTY 10W-40 

Fresh oil  0 0.253 0.957 

Used oil  
3160 0.189 0.978 
6900 0.122 0.989 
10240 0.092 0.995 

ELF COMPETITION ST 10W-40 

Fresh oil  0 0.229 0.968 

Used oil  
2850 0.164 0.975 
7100 0.118 0.988 
9870 0.068 0.990 

 
Table 1. Regression parameters for tested oils 

 

Type of oil  Initial viscosity,  
Pa.s 

Wear  intensity 
coeff icient, km-1 

Corre lation 
coeff icient 

ELF EXCELLIUM LDX 5W-40 0.188 -5107.793⋅  0.811 

ELF PERFORMANCE EXPERTY 10W-40 0.254 -510092.10 ⋅  0.996 

ELF COMPETITION ST 10W-40 0.234 -510582.11 ⋅  0.964 
  

Table 2. Main values of the initial viscosity and wear intensity coeff icient 

4. Conclusions 

Analyzing the experimental results obtained with this rheological method, it can be observed 
an important tendency of viscosity decreasing during the working time. Using the determination of 
the two characteristic parameters, the initial viscosity η0 for the fresh oil  and the wear intensity 
coeff icient K, a new criteria for the wear degree of the oils is obtained. 
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 Toupin’s version of Saint-Venant’s principle in linear elasticity is generalized to the case of 
linear magnetoelasticity. That is, it is shown that, for a straight prismatic bar made a linear 
magnetoelastic material end loaded by a self-equili brated system at one end only, the internal energy 
stored in the portion of the bar which is beyond a distance s from the loaded end decreases 
exponentially with the distance s.  

Mathematical versions of Saint-Venant’s principle in linear elasticity due to Sternberg, 
Knowles, Zanaboni, Robinson and Toupin have been discussed by Gurtin [1] in his monograph. 
Later developments of the principle for Laplace’s equation, isotropic, anisotropic, and composite 
plane elasticity, three-dimensional problems, nonlinear problems, and time-dependent problems are 
summarized in the review articles by Horgan and Knowles [2] and by Horgan [3]. In this paper we 
prove an analogue of Toupin’s version of Saint-Venant’s principle for linear magnetoelasticity. For 
a linear elastic homogeneous prismatic body of arbitrary length and cross-section loaded on one end 
only by an arbitrary system o self-equili brated forces, Toupin [4] showed that the elastic energy U(s) 
stored in the part of the body which is beyond a distance s from the loaded end satisfies the 
inequality  
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The characteristic decay length )(lsc  depends upon the maximum and the minimum elastic 

moduli  of the material  and the smallest nonzero characteristic frequency of free vibration of a slice 
of the cylinder of length l. Inequaliti es similar to (1) have been obtained by Batra [5] for linear 
elastic piezoelectric prismatic bodies and by Borrelli  & Patria [6] for a semi-infinite magnetoelastic 
cylinder on the asymptotic behaviour of the Dirichlet integral of the magnetic field and of the elastic 
energy. 
Here we consider a linear theory of magnetoelasticity (for infinitesimal strain) in which only the 
ponderomotive force remains non-linear in presence of a magnetic field . We assume that the elastic 
body is homogeneous, isotropic and electrically conducting [7], [8], [9], [10].  

Let the finite spatial region occupied by the magnetoelastic body be V, the boundary surface 
of V be S. the unit outward normal of S be in , and S be partitioned as 
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Physically, ΤSSu ,  are, respectively, parts of the boundary S on which mechanical displacements 

and tractions are prescribed. ES  is the part of S which is in contact with electrode, hence the 

tangential electric field vanishes on it, and BS   the parts of S on which the magnetic induction is 
prescribed. The governing equations and boundary conditions for static magnetoelasticity in 
rectangular Cartesian coordinates in SI units are: 
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where iu  is the mechanical displacement, ijt  the mechanical stress tensor, ijT  the Maxwell  stress 

tensor, ijε  the strain tensor, kE  the electric field vector, kD  the electric displacement vector, kH  

the magnetic field vector, kj  the current vector, kB  the magnetic induction vector, σµε ,,  the 

electromagnetic material constants, ij klc  the elastic moduli , ij kε  the permutation tensor, ijδ  the unit 

tensor, k∂  the spatial derivative, iu~  and jt~  are the prescribed boundary mechanical displacement 

and traction vectors. 
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1. Introduction  

The problem of ultrasonic wave interaction with continuous inhomogeneity of material 
is of great importance for theory and applications. Such materials are commonly present in 
li ving systems, nature, building engineering and industry. They are often strongly micro 
inhomogeneous, form multicomponent systems and processes of their growth, production or 
destruction often lead to their macro inhomogeneity. The techniques of experimental 
investigation of such materials, widely developed in recent years, are ultrasonic methods. 
They allow non-destructive determination of materials coeff icients and parameters, evaluation 
of their state and proceeding processes. However, there is a lack of papers devoted to 
description and analysis of interaction of ultrasonic waves with continuous inhomogeneity of 
the material, and existing monographs (e.g. [1], [2]) consider this problem in simple 
acoustical systems characterized only by the wave number. 

The aim of this paper is to present the new method of description and analysis of one 
dimensional problems of ultrasonic wave interaction with continuous inhomogeneity of 
materials characterized by dependence of the wave number and the impedance of a medium 
on the spatial coordinate.  

2. Formulation of the problem 

We consider one dimensional problem of plane harmonic wave propagation of 
frequency ω in an arbitrary material with inhomogeneity of acoustical properties that are 
locall y characterized by the impedance z and the wave number k. These parameters, in 
general, are complex functions of spatial coordinate x and wave frequency ω (Fig. 1).  

 

 

Fig.1. Exemplary distribution of local impedance in material 
 with continuous inhomogeneity of acoustical properties. 

Due to interaction with material inhomogeneity each wave propagating in such material 
generates the coupled backward wave. Therefore, the acoustical field in inhomogeneous 
material is defined by amplitudes T and R of the forward and backward waves, respectively. 

 x   x  

T 

R 

 Z, k Z(x) 
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3. Solution of the problem 

Equations describing the acoustical field in inhomogeneous material have been obtained 
considering such medium as a system of homogeneous infinitesimal layers with stepwise 
changeable acoustical properties approximating functions k(z) and Z(x). In this case wave 
interaction with continuous inhomogeneity can be considered as multiple reflections and 
transitions of wave through the boundaries of infinitesimal layers and the acoustical field in 
the material, characterized by amplitudes T and R, as the superposition of waves propagating 
in each direction. The obtained equations have the form 

)2( RT
dx

dI
ikR

dx

dR +=+   , )2( TR
dx

dI
ikT

dx

dT +=−    

where 2/)/ln( o ZZI =  and oZ  is constant. From these equations results that only 

inhomogeneity of medium impedance induce the backward wave. 

3. Analysis of exemplary problem 

To ill ustrate the wave interaction with continuous inhomogeneity of the material the 
special case of inhomogeneous material has been considered. It is composed of two 
homogeneous halfspaces separated by a layer of inhomogeneous material of thickness L 
(Fig.3).  

 

 
Fig.2. The exemplary medium with continuous inhomogeneity of impedance. 

We assume that wave number k is constant in the whole system and impedance of the medium 
is continuous and changes only within the layer according to the expression 

./)/ln(,)/()exp( o1
/

o1oo LZZZZZxZZ Lx === αα   

In this case the system of equations becomes li near, and due to continuity of impedance, a 
wave propagating in such medium is reflected only by impedance inhomogeneity in the layer. 
It enables the analysis of influence of this inhomogeneity on acoustical characteristics of 
reflected and transmitted waves. 
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1. Introduction 

The paper presents the tribological aspects of the solid-fluid interaction, in order to obtain a new  
evaluation method for the lubricant durabilit y. Its purpose is the development of a fast diagnoses method 
for the liquid lubricants, with minimal investments and a high precision level, easy to use, [1]. 

The principal result of this project is a new, eff icient, performed and ecological methodology, 
for the evaluation and quantification of the wear degree and lubricants durabilit y. In addition, it is 
important that a new complex device must be obtained for diagnosis of lubricants oils “ li fe reserve”. 
The project assures a modern laboratory and creates new premise for  developing new approach 
directions for the lubricants durabilit y problems, [2]. 

2. Experimental procedure 

The test programme, using a TIMKEN equipment, had in view the influence of the lubricant 
state of degradation, considering the tribological behavior of the friction couple during the working 
time. Thus, six parallelepiped samples and twelve cylindrical samples were used. Each one of the 
parallelepiped samples has two active plane surfaces, made of OLC45-heat-treatable steel, and the 
final mechanical working process of the active surfaces was rough grinding. The cylindrical 
samples were made also of OLC45-heat-treatable steel and the final mechanical working process 
was finish grinding.  

The length of the linear contact obtained in this way (cylinder/plane) is 12,7 mm and it 
corresponds to the parallepipedic sample width. All  the tests were carried out in the presence of two 
lubricants, 15W40 oil  and LHP 46 oil , in fresh and used state. The cylinder-plane friction couple 
was immersed in a tank fill ed with this lubricant; also, during all  tests, the oil  temperature was kept 
to a constant value (T = 400 C) and the same relative velocity (v = 3,83 m/s) was used. Tests were 
carried out using three values of the normal load Fn (30 N, 40 N and 50 N) and,  during the tests, the 
wear trace (width and depth) were measured. Finall y, pictures of the damage area were obtained 
with NEOPHOT 21 metallographic microscope. 

3. Results 

The results of the experiments are presented in Table 1; Figures 1 and 2 show the 
microscopicall y pictures. 
 
Proof  
No. 

Load 
[N] 

Lubricant 
State of the 
lubricant 

Width of the wear 
trace [mm] 

Depth of the wear 
trace [mm] 

1 

50 
15W40 

fresh 1,230 0,015 
2 used 1,512 0,023 
3 

LHP 46 
fresh 1,230 0,015 

4 used 1,688 0,025 
5 

40 15W40 
fresh 1,045 0,012 

6 used 1,132 0,018 
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Proof  
No. 

Load 
[N] 

Lubricant 
State of the 
lubricant 

Width of the wear 
trace [mm] 

Depth of the wear 
trace [mm] 

7 
LHP 46 

fresh 1,008 0,011 
8 used 1,383 0,018 
9 

30 
15W40 

fresh 0,832 0,008 
10 used 1,014 0,012 
11 

LHP 46 
fresh 0,895 0,007 

12 used 0,998 0,014 
 

Table 1. Experimental results. 
          

   
 

a. Fresh lubricant    b. Used lubricant 
Figure 1. Wear trace for 15W40 oil  

 

   
 

a. Fresh lubricant    b. Used lubricant 
Figure 2. Wear trace for LHP 46 oil  

4. Conclusions 

The tribological method proposed is able to diagnose the state of degradation of the 
lubricants, with high precision and accuracy. As a signalized conclusion - the wear degree of the 
friction couples which utili zes used lubricants is more important than the sames  which utili zes 
fresh lubricants. 
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1. Introduction 
 
          Rectangular thin elastic plates are often used as structural components closing or covering 
parallelepiped cavities fill ed with compressible fluid (gas) and subjected to dynamic loads. Such 
mechanical systems are applicable in the glass-skin technology of tall  buildings, as outside skin 
plates of supersonic air crafts, as covers of different tanks in chemical industry, etc. In [1] the 
method of Bubnov-Galerkin together with the method of the crossed strips of G. Warburton is used 
and it is elaborated in the form of an easy scheme for application to the dynamic problem about the 
stationary vibrations of a special fluid-structure interaction system. It consists of a thin elastic plate, 
inserted into a rectangular orifice of an arbitrary wall  of a parallelepiped tank, fill ed with an 
acoustic fluid.  

 

Figure 1. The geometry of the gas-structure interaction system under consideration 

2. Formulation of the problem 

         Thin linearly elastic rectangular plate EFGH with sizes a and b and surface S is inserted into 
an orifice of the absolutely rigid wall  ABCD of a rectangular parallelepiped tank, all  its other walls 
are absolutely rigid (Figure 1). The tank volume is fill ed with gas with given sound velocity and 
mass density.  The mass density per unit area of the plate, the flexural rigidity, the thickness,  
Young’s modulus of elasticity and Poisson’s ratio of the elastic plate material are given. Two 
rectangular co-ordinate systems DXYZ and Hxyz are used (see Figure 1). The problem about the 
stationary forced vibrations of the gas and the elastic plate under the action of a source, being 
situated in the gas tank, is under consideration. Let the source have a range of sizes which are small  
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in comparison with the lengths of the excited waves: then it is possible to be accepted as a point 
source. It is supposed that the productivity and the frequency of the source are given and are not 
influenced by the earlier excited waves. The problem is considered in a linear approximation 
without giving an account of the dissipating forces. Then the velocity potential function of the gas 
motion and the function, describing the middle surface vibrations of the plate, satisfy corresponding 
partial differential equations with boundary conditions which describe the way of supporting of the 
elastic plate as well  as some compatibilit y condition [1].       
 
3. Analytical solution 
 
         The point source is presented by the Dirac delta function. The velocity potential function of 
the gas motion and the function, describing the middle surface vibrations of the elastic plate, are 
separated into space-dependent modes and time-dependent terms, where the trial functions as well  
as the wave numbers or the dispersion equations are chosen correspondingly to the supporting 
conditions along the four plate edges [1]. After satisfying the compatibilit y condition and using the 
Bubnov-Galerkin method, some infinite system of nonhomogeneous algebraic equations about the 
unknown coeff icients is obtained. Taking the determinant of the homogeneous system equal to zero, 
the equation about the determination of the natural frequencies of the considered gas-structure 
interaction system is obtained.  
 
4. Numerical calculations 
 
        The theoretical solution is very complicated - that is why an approximate solution is made at 
based on ignoring diff raction by the elastic plate waves. The approximate solution can be used 
when the frequencies of the source are not close to the resonance frequencies of the gas-structure 
interaction system and when the cavity is fill ed with air.  
          Some numerical examples are made and they are represented graphicall y. If the frequency of 
the source tends to zero, very strong increase of the amplitudes appears except at the resonance 
points. The approximate formula cannot be used if there is a heavy liquid in the rectangular tank.  

5. Conclusions 

         In this paper a closed rigid rectangular parallelepiped tank is fill ed with gas as a part of one of 
its walls is a thin linearly elastic rectangular plate. The problem about the stationary forced 
vibrations of the gas and the elastic plate under the action of a source, being situated in the gas tank, 
is under consideration. A combination of the use of the method of the crossed strips of G. 
Warburton and the method of Bubnov-Galerkin is made to investigate the dynamic behavior of this 
gas-structure interaction system in the cases of arbitrary supporting conditions of the plate. Some 
numerical examples are given which demonstrate the necessity of taking into account which part of 
the spectrum of the natural frequencies of the elastic plate the forced frequency is located in. 
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COUPLED DYNAMICS THERMO VISCOELASTIC PROBLEM

S. A. Lychev
Samara StateUniversity, Dept.of ContinuumMechanics,Samara, Russia

In thepresentstudyaclosedsolutionof coupleddynamicsthermoviscoelasticproblemfor finite
bodyis obtained.Thesolutionis of theform of spectralexpansionto thebiorthogonaleigenfunction
systemof non-self-adjoineddifferentialpencil,generatedby theinitial–boundaryvalueproblemun-
der consideration.The representationof spectralexpansionis obtainedby specialnon-symmetrical
integral transformation[1,2].

Considerthe coupledequationsof viscoelasticmotion andheatconductionin cylindrical co-
ordinatesystem(r, ϕ, z):
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whereinf = (−Xr,−Xϕ,−Xz,−ω) is prescribedvector-function,definedby volumetricforceand
heatsourcesintensity, E is identityoperator, L1, . . .L3 arethefollowing differentialoperators:

L1 =







µ(∇2− 1

r
2 )+(K+ µ

3
) ∂

∂r

(

∂

∂r
+ 1

r

)

K+µ/3

r

∂

∂ϕ

(

∂

∂r
− 1

r

)

− 2µ

r
2

∂

∂ϕ
(K+ µ

3
) ∂

2

∂r∂z

2µ

r
2

∂

∂ϕ
+ K+µ/3

r

∂

∂ϕ

(

∂

∂r
+ 1

r

)

µ(∇2− 1

r
2 )+

K+µ/3

r
2

∂
2

∂ϕ
2

K+µ/3

r

∂
2

∂ϕ∂z

(K + µ

3
) ∂

∂z

(

∂

∂r
+ 1

r

)

K+µ/3

r

∂
2

∂z∂ϕ
µ∇2+(K+ µ

3
) ∂

2

∂z
2






,

L′

1
= µ′







∇2− 1

r
2 + 1

3

∂

∂r

(

∂

∂r
+ 1

r

)

1

3r

∂

∂ϕ

(

∂

∂r
− 1

r

)

− 2

r
2

∂

∂ϕ

1

3

∂
2

∂r∂z

2

r
2

∂

∂ϕ
+ 1

3r

∂

∂ϕ

(

∂

∂r
+ 1

r

)

∇2− 1

r
2 + 1

3r
2

∂
2

∂ϕ
2

1

3r

∂
2

∂ϕ∂z

1

3

∂

∂z

(

∂

∂r
+ 1

r

)

1

3r

∂
2

∂z∂ϕ
∇2+ 1

3

∂
2

∂z
2






,

L2 =
(

∂

∂r

1

r

∂

∂ϕ

∂

∂z

)T

, L3 =
(

∂

∂r
+ 1

r

1

r

∂

∂ϕ

∂

∂z

)

, ∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+

∂2

∂z2
,

K, µ aretheelasticmodulus;γ, η arethethermomechanicalconstants;κ is thethermalconductivity
coefficient,ρ is thedensity, µ′ is theviscositymodulus.

TheboundaryconditionsD arearbitraryon lateralareaandhavesomerestrictionsonendfaces
(to admittheseparationof variables,see[3]):
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valuesaredefinedby initial distributionsof temperature,displacementsandvelocities.
The obtainedsolutionsof problem(1), (2) are of the form of spectralexpansionsbasedon

completebiorthogonalsetsof eigenfunctions(andperforceassociatedfunctions),correspondingto
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HereA∗

i
areconjugateto Ai differentialoperators,definedin thedomainD∗, thatdefinedby

boundaryoperatorB∗:
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Thecoefficientsof expansionsreferredto astransformsonecanobtainby applyingdirect inte-
gral transformationto (1), resultingin the reductioninitial boundaryvalueproblemto thesequence
of initial problemsfor ODEsin imagespace[1,2]. It enableusto representthesolutionof (1), (2) as
follows:
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by solvingthecoupledsetof boundaryeigenvalueproblems:
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In equation(3)Qν is thenormalizingmatrixandνi (i = 1, . . . ,∞) aretheelementsof pencildiscrete
spectrum.Theconstructiblerepresentationof normalizingmatrixQν andtheexactmethodfor eval-
uationof correspondingquadraturesaredescribedin [4, 5]. Note,thatbiorthogonalrelations[3] here
arein theform
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It is importantto note,that, unlike well-known transformationtechnique(Laplacetransform,
etc.),thatusesnumericalapproachfor inversion,proposedmethodadmitto obtainsolutionin closed
analyticalform andto develop effective algorithmic realizationof computersimulation. It usabil-
ity for the analysisof the non-stationary, high frequency loadingson several particularexamplesis
elucidated[1–4].
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PRIMARY EVALUATION OF THE WEAR BEHAVIOR OF THE COMBUSTION 
SYNTHESIZED TiC-NiAl COMPOSITE AS MECHANICAL SEAL RINGS   

 
 

M. B. Rahaei  
Materials and Energy Research Center, Tehran, Iran 

 
 

1. General 

In this research, the wear behavior of combustion synthesized TiC-NiAl composite was 
evaluated in comparison sintered SiC specimens as relevant materials for use in pumps (Hard Face 
Part of Mechanical Seals), because of low cost and simplicity of combustion synthesis process. 
Therefore wear behavior of samples was determined by pin on disk test against a 52100 steel pin 
under dry condition as well as in aqueous environment of a pump.  

2. Introduction  

SiC belongs to this group of materials and is well known for its high hardness, the relatively 
high strength, a high melting point and a good corrosion resistance [2, 3]. The most reliable and 
economic way to control fluid leakage from industrial equipment such as centrifugal pumps, 
agitators, automotive engines, compressors, turbines and mixers is to isolate the rotating shaft and 
its housing with a mechanical seal [4, 5]. In compared to the sintering methods for fabrication of 
seals, combustion synthesis is a simple, low cost and energy conservative process [1]. In seal ring 
for pumps, lubrication and wear resistance properties are important factors [6, 7]. Also as TiC-NiAl 
has good properties such as wear resistance and low density [8], therefore combustion synthesized 
TiC-NiAl was evaluate in comparison sintering SiC in wear test and durability test for use as seal 
rings in pumps. 

3. Experimental procedure 

The combustion synthesized TiC-NiAl composite and sintering SiC was prepared. The outer 
diameter and the inner diameter of the samples were 3.2 and 2.5 mm, respectively. Fig. 1 is shown 
seal ring sample of sintered SiC and combustion synthesized TiC-NiAl.  

 

            

  

Figure 1. Sintering SiC and combustion synthesized TiC-NiAl seal ring samples. 
 
The constituted phases of the samples were characterized employing X-ray diffraction (XRD-

Philips X'pert-MPD) and microstructure was observed using by Scanning Electron Microscopy 
(SEM-XL30). Macro hardness and micro hardness of specimens measured by criterion RA and 
Vickers respectively.  

For evaluated lubricity and wear behavior, wear test was conducted on an oscillating pin on 
disk tester for combustion synthesized TiC-NiAl and sintering SiC samples, in contrast to AISI 
52100 steel pin according to AISI M. Gee 32 [7, 9, 10]. weight loss and friction coefficient of 
samples were measured under 20, 240, and 280 N loads in pin on disk wear test in 1000 m sliding 
distance with 0.07 m/s linear velocity. Furthermore weight losses of samples were measured in 
durability test in pump. 

TiC-NiAl SiC 
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4. Results and discussion 

Hardness and density samples are shown in table 1. Result of hardness and density almost 
were similar to result of other researches [1, 8]. Likewise, in figure 4 has been come friction 
coeff icient of TiC-NiAl in 200 N loads, which has low friction coeff icient similar to SiC in wear 
test. Table 2 shows the coeff icient of friction of SiC and TiC-NiAl in various loads in wear test. 
Coeff icient of friction of TiC-NiAl samples change in various loads and are low, especially in low 
loads similar to working condition that is suitable for use in pump as seal ring. 

Figure 5, (a) shows the weight loss curve of both SiC and TiC-NiAl in 240 N loads during 
sliding distance (every 100 m) in (pin on disk) wear test. Also figure 5, (b) shows friction 
coeff icient curve of samples in 200 N loads during sliding distance. Due to weight loss and friction 
coeff icient in TiC-NiAl sample is low and almost similar to SiC seal ring during sliding distance in 
wear test, So TiC-NiAl was proper to evaluate in durabilit y test in pump. 

 

  

Figure 5. a. Weight loss, b. friction coeff icient of both TiC-NiAl and SiC samples in wear test.  

Table 3 shows the weight loss of samples in wear test via 240 N loads in 1000 m distance and 
durabilit y test for 30 days continuous work in pump in aqueous conditions at 0.5 MPa pressure.  

 

Seal ring samples  Weight loss after pin on disk test  weight loss after durabilit y test in pump 

SiC 1.7 × 10-3  gr 0.0855 gr 

TiC-NiAl 2.1× 10-3 gr 0.0896 gr 

Table 3. Weight Loss in samples in wear test and testing for durabilit y in pump. 

The result shows that weight loss of TiC-NiAl is low in wear test and durabilit y test in pump 
similar to SiC. Therefore TiC-NiAl is proper for use in a pump as mechanical seal ring.  

5. Conclusions 

Experimental results showed that combustion synthesized TiC-NiAl has friction coeff icient 
and weight loss close to sintered SiC in wear test and durabilit y test in pump. Also hardness result 
showed that TiC-NiAl has high hardness and low density li ke SiC for use in pump. Therefore 
primary evaluation showed that TiC-NiAl composite has acceptable primary condition for use in as 
mechanical seal rings in aqueous environment.  
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DESCRIPTION OF CAPILLAR Y POTENTIAL CURVES OF POROUS MATERIALS

M. Cieszko, M. Kempiński
Instituteof EnvironmentalMechanicsandAppliedComputerScience, Bydgoszcz,Poland

1. Intr oduction

Thecapillarypotential curvedeterminetherelationshipbetweenthevolumeandpressureof the
mercuryintrudingagainstthecapillary forcesinto poresof a sampleof porousmaterial. Suchrela-
tionshipis thedirectresultof measurementsconductedwith ahelpof themercuryporosimeterandis
a basefor thestandardmethodof determinationof theporesizedistribution. Thesedistributionsare
importantcharacteristicsof microscopicstructureof theporespaceof porousmaterials.They enable
oneto determinethebasicmacroscopicparametersof suchmaterials(e.g. thevolumeporosity, per-
meabilityor theinternalsurface)whichplay importantrole in many physicalandchemicalprocesses
occurringin permeableporousmaterials(e.g. filtration, transportof mass,momentumandenergy,
wavepropagationor chemicalreactions).

The aim of this paperis to formulatethe descriptionof capillary potentialcurves ofporous
materialsbasedonmicroscopicandmacroscopicmodelof themercuryintrusioninto porousmaterial.
In themicroscopicdescriptionthechainmodelof porespacearchitecturehasbeenused,whereasthe
macroscopicdescriptionhasbeenbasedon thediffusionmodelof theintrusionprocess.

The analysisof influenceof parameterscharacterizingporesizedistribution on the capillary
potentialcurve wasperformedfor bothmicroscopicandmacroscopicmodelsthe intrusionprocess.
The influenceof the capillary diffusion coefficient on the form of this curve wasillustrated. These
modelshavebeenusedto identify theporesizedistributionof selectednaturalandmodelmaterials.

2. Micr oscopicmodelof mercury intrusion in a porouslayer

In themicroscopicdescriptionof porespaceof porousmaterialtheporesaremodeledascylin-
dricalpipes(links) with randomdistributionof theirdiameterD andlengths, describedby thedensity
of probabilityψ(D,s). In this case,theporespacestructureof porousmediumis determinedby two
independentfactors: theporesizedistribution andtheway of their connection,calledherethearchi-
tectureof theporespace,[1]. Consequently, even for thesameporediameterdistribution, thepore
spacestructuremaybedifferent.Regardingtheporearchitecture,onecandistinguishthreekindsof
modelsof theporesspacestructure:thecapillary, chainandnetwork models.In thecapillarymodel,
the links of the samediametersarejoined in seriesandform long capillariesof the constantdiam-
eter, crossingthewholematerial. Thediametersof differentcapillarieshave randomvalues.In the
chainmodelthelinks arerandomlycombinedin series,creatingthecapillariesof step-wisechanging
cross-section.In thenetwork model,therandomlyconnectedlinks form a spatialnet. Thecapillary
andchainmodelsare the limiting modelsof the network modeldescribingthe curves ofcapillary
potential.

Theexpressiondescribingthecapillarypotentialcurvesfor porousmaterialswith thecapillary
porearchitecturetakestheform

VL(p)

Vo

=
∫

∞

D
∗

ϑ(D)dD ,(1)

whereD∗ = 4σcos(θ)/p, is thecritical diameterof link in which themenisciis in equilibrium at a
givenpressure,ϑ(D) = D2ψ̄(D)/D2 describesthevolumetricdistributionof porediameters,whereas
ψ̄(D) is theporediametersdistributionandD̄ standsfor its meanvalue.
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For thechainmodelof porespacearchitecturewehave

VL(p)

Vo

=
[

2β(1 − exp(−
1

ηβ
)) −

1

η
exp(−

1

ηβ
)
]

∫

∞

D
∗

ϑ(D)dD ,(2)

where

β =
D̄N/D̄

(1 − η)N
, η =

∫

∞

D
∗

ψ̄(D)d(D),(3)

whereasN = L/a anda is themeanvalueof porelength.

3. Macroscopicmodelof mercury intrusion in a poroussample

Theotherpossibilityof descriptionof mercuryintrusioninto a porouslayergivesthediffusive
modelof capillary transportin porousmedia.In suchmodelthequasistaticprocessof inviscid fluid
intrusioncousedby progressive increaseof pressureis consideredat themacroscopiclevel like non-
stationaryprocessof diffusion. For thesimplestcaseequationdescribingfluid distribution in porous
materialtakestheform, [2],

∂ρ

∂p
− div(C(ρ)grad(ρ)) = 0 ,(4)

whereC(ρ) standfor coefficientof capillarydiffusionof inviscidfluid in porousmaterial.
Solutionof equation(4) for fluid intrusioninto porouslayer (at constantC) andfor boundary

conditionobtainedfrom themicroscopicmodelis givenby expression,[4],

ρ(x, p) = ρ[1 −
4

π

∞

∑

m=0

1

2m+ 1
exp(−

(2m+ 1)2π2

L2
Cp)sin(

(2m+ 1)πx

L
)α].(5)

In this casethecapillarypotentialcurve takestheform

VL(p)

Vo

= [1 − 8
∞

∑

m=0

1

(2m+ 1)2π2
exp(−

(2m+ 1)2π2

L2
Cp)]

∫

∞

D
∗

ϑ(D)dD.(6)

The derived expressions(1), (2) and(6) have beenusedin the analysisof influenceof pore
sizedistribution andcapillary coefficient of diffusion on the capillary potentialcurve. Both types
of modelswereappliedto interpretationof suchcurvesobtainedby mercuryintrusion methodfor
samplesof modelandnaturalmaterials.
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[4] Z.M. Jarzȩbski,Difusionin MaterialsandAlloys, (in Polish),SlaskPublishers,1987.

[5] A.E. Scheideger, ThePhysicsof Flow ThroughPorousMedia, Univ. Press,Toronto1957.



124 Selected Topics of Contemporary Solid Mechanics

VISCOUS  INCOMPRESSIBLE  FLOW  IN  POROUS  MEDIA  
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1. General 

Our aim is to extend the Darcy law to a range of higher speeds of flow, and to derive   
a number of properties of such a flow.  First,  we note that the laminar flows occur for the large 
values of Reynolds number. Next, it is shown that  viscosity scaling for small  capill aries in a porous 
medium is not related to the Reynolds number, and the Darcy law, applicable not only to the 
stokesian seepage, is obtained using the Navier–Stokes equations for the steady case. Finall y, a non-
homogeneous porous medium, consisting of two different porous components is selected to show 
that for such a composite so called the Dykhne hypotheses are satisfied and a square root formula 
for   the effective permeabilit y is obtained.  

2. The laminar  flow 

Consider  steady flow in a pipe of arbitrary cross-section, the same along the whole length of 
the pipe. Let  v denote the velocity, p – pressure, η - viscosity.  Moreover, let  t  denote the time and 
x – the position. We take the axis of the pipe as the x3  axis. The fluid velocity is along the x3  axis, 

and is a function of x 1  and x 2  only. We have 0/ =∂∂ tvi , v1=v 2 =0 and v ≡3 v.  Hence, the left-hand 

side of the Navier-Stokes equation vanishes.  If η  is constant then 0// 21 =∂∂=∂∂ xpxp  and  












∂
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∂
∂
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In general, fluid flow in a pipe crosses the threshold from laminar to turbulent flow when Reynolds 
number  R  reaches about 2000,  R=ρud /η;  ρ – the fluid density, u – the mean velocity over the 
pipe cross-section, and d – its mean diameter. For the water ( ρ =1 g/cm 3 , η  =0.01 g/cm s) flowing 
in a pipe with the diameter d =1mm we reach such value of  R  with the mean velocity  u=2m/s.  
Laminar flow has actuall y been observed even to Reynolds number R 00050≈ , what gives 
u=50m/s. The velocity of  blood in aorta (in pulsatile regime) is of the order  u=4 m/s. 

3. Scaling in laminar  flow 

Let the cross-section of a pipe be an equilateral triangle of side a. We put 21, xyxx ==  and 

3xz = . The solution of the equation  (∗)  is 

dz

dp

a

H
v

η
1

3

2−=      where    













−










−= 2

2

3
2

3
xyayH .       Hence       

dz

dp
aQ

η
1

320

3 4=  

and  Q  denotes the discharge, it is the volume of fluid passing each second through the pipe. 
Next, we divide each side of cross-section into two equal parts, introduce into the parallel 

rigid walls  with infinitesimal thickness, and obtain four smaller pipes similar to the original one.  
After n such divisions Q t =Q/2 n2  and Q t  vanishes as number of divisions  n  goes to infinity.  To 

conserve the total discharge we should reduce the viscosity of fluid by factor 2ε , where  n2/1=ε .  
In realit y, instead of  η   it is the pressure gradient which scaled . 
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4. Homogenisation of stationary laminar  flow in porous composite 

Consider stationary laminar flow in a porous medium of dimension L with periodic structure 
(elementary cell  with dimension l ) and introduce the fraction ε = l / L. According to an asymptotic 
development metod we put for the pressure p ε  and  velocity  v ε  the expansions    

...),(),(),( )2(2)1()0( +++= yxpyxpyxpp εεε  ,...),(),(),( )2(2)1()0( +++= yxvyxvyxvv εεε    

where     y=x / ε ,  substitute to the laminar flow equation (* ), and compare terms at the same power 
of  ε.. Term with ε 1− provides  0/ 3

)0( =∂∂ yp  what means )()0()0( xpp = . To satisfy equation with 

power  0ε , we put      ( )xpyp ∂∂−= /)( )0()0( ξ        and    ( )xpyv ∂∂−= /)( )0()0( χ   where  χ  satisfies  

3
2

2

2

2
1

2

1
yyy ∂

∂+−=
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∂
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After averaging the velocity over the elementary cell  we get the Darcy law 
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derived not from the Stokes  but from the Navier–Stokes equation for the steady laminar flow.  

5. Stationary flow in two-dimensional two-component porous composite 

The solid part of the system contains two overlapping domains of distinctly different 
permeabiliti es, K1  and K 2 . In geology, the low permeabilit y medium corresponds to block matrix 
with primary porosity, surrounded by fractures, and the high permeabilit y continuum corresponds to 
rock fractures (secondary porosity). In biology we observe, for example, pores of different size in 
plant tissues or in animal bones, cortical and trabecular. If such systems are planar and the 
following Dykhne assumptions are satisfied: (i) considered fields are 2-dimensional, (ii ) the flow is 
stationary and has the potential, (iii ) statistical symmetry and isotropy of the composite is assured, 
then the square root formula for the effective property holds.  

Define vector f as 2-dimensional gradient of pressure field,  αα xpf ∂−∂= /  where α = 1,2. 

The Darcy law has the form   αα fKv =   where  K  is a permeabilit y.  On the another hand, curl of  

f  as of the potential vector, vanishes, it is   02,11,2 =− ff    and the assumption that the flow is 

incompressible gives   0, =ααv  or   02,21,1 =+ ff .  Thus the conditions of Dykhne  are satisfied and  

21KKK eff = .  This is the formula for effective permeabilit y if the domains with permeabiliti es K1  

and K 2  are statisticall y equivalent.  It gives the effective values also in the case when the Hagen-
Poiseuill e flow and Darcy flow are mixed together.   
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MATRIX PADÉ BOUNDS ON EFFECTIVE TRANSPORT COEFFICIENTS

OF ANISOTROPIC TWO-PHASE MEDIA

S. Tokarzewski 1, J. Gilewicz 2

1Institute of Fundamental Technological Research, Warsaw, Poland
2Centre de Physique Théorique, CNRS, Luminy Case 907, 13288 Marseille Cedex 09, France

The prediction of macroscopic coefficients Υ of two-phase composites, if properties γ1 and γ2

and microstructures of their constituents are known, is one of the most important problems of
mechanics of inhomogeneous media. Due to the difficulty of calculating of effective material
constants Υ exactly, there has been much of interest in obtaining bounds on Υ.

It is well known that effective transport coefficients Υ of two-phase composites such as
thermal and electrical conductivities, dielectric constants, magnetic permeabilities and diffusion
coefficients have a matrix Stieltjes function representation f(z)

(1) f(z) =
(Υ − I)

z
=

∫

1

0

dγ(u)

1 + zu
, z ∈ C\(−∞,−1), dγ(u) ≥ 0, f(−1) ≤ I,

where I and z = γ1

γ2

−1 denote the unit matrix and the isotropic non-dimensional charakteristic

of constituents. We assume that we know matrix coefficients f
(k)

j
up to pj order in matrix Taylor

expansions at zj, z = zj ∈ C\(−∞,−1), j = 1 . . . N , i.e.

(2) f
(k)

j
, j = 1, . . . , N, k = 1, . . . , pj,

where

(3) f(zj) = f
(0)

j
,

∂f(zj)

∂z

∣

∣

∣

∣

z=zj

= f
(1)

j
, · · · ,

∂(pj)f(zj)

∂z(pj)

∣

∣

∣

∣

z=zj

= f
(pj)

j
.

We seek the matrix function Fn+2(z; α, β) estimating f(z) in the form a sum of simple matrix
fractions given by:

(4) Fn+2(z; α, β) =
∑

K

k=1

A
1

2

k
(α, β)(I + zBk(α, β))−1

A
1

2

k
(α, β) + α

1

2 (I + zβ)−1α
1

2 ,

where

(5) K = E((n + 1)/2) and if n even B
n/2(α, β) > 0 or if n odd B

n/2(α, β) = 0.

Here Ak(α, β), α, Bk(α, β), β are two-dimensional matrices satisfying matrices inequalities

(6) Ak(α, β) > 0, α > 0, B
k
(α, β) > 0, β > 0,

while n denotes the number of independent input data given by (3). The coefficients Ak(α, β)
and Bk(α, β) are determined by the assumption that Fn+2(z; α, β) (matrix multipoint Padé
approximant) and f(z) (matrix Stieltjes function) have matrix Taylor expansions coinciding up
to pj order at zj, j = 1, . . . , N . The main results of this paper present the following matrix
relations. By φn+1(z0), n = 1, 2, ..., we denote the matrix bounds on f(z0).

For n = 0

(7) φ1(z0) =
{

α
1

2 (I + z0β)−1α
1

2 ; α = (I − β), 0 ≤ β ≤ I) , (0 ≤ α ≤ I, β = 0)
}

.
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For n = 1, 2, 3...

(8) φn+1(z0) = {Fn+2(z0, α, β); α = αn(β)} ,

where

(9) αn(β) =

{

αAn
(β), 0 ≤ β ≤ β

(n)

1
,

αFn+2
(β), β

(n)

1
≤ β ≤ β

(n)

2
,

if n is odd

or

(10) αn(β) =

{

αFn+2
(β), 0 ≤ β ≤ β

(n)

1
,

αAn
(β), β

(n)

1
≤ β ≤ β

(n)

2
,

if n is even.

Here β
(n)

1
, β

(n)

2
, ..., β

(n)

n are roots of the equation

(11) αFn+2
(β) − αAn

(β) = 0, n = 1, 2, 3, .0 = β
(n)

0
< β

(n)

1
< β

(n)

2
< ... < β(n)

n
< β

(n)

n+1
= I.

The matrix functions appearing in (9) and (10)

α = αAn
(β) and α = αFn+2

(β)

satisfy the matrix relations

(12) An(α, β) = 0 and Fn+2(−1, α, β) = I,

respectively. Coefficients An(α, β) are determined by the system of equations

(13) f(z) − Fn+2(z, α, β) = O((z − zj)
pj), j = 1, 2, ..., N, n =

∑

N

j=1

pj.

The matrix Padé bounds φn(z0),n = 0, 1, 2, ...determined by relations (7)-(13) are new. For the
scalar case they coincide with the relevant ones reported in literature [1, 2]. Zero order bounds
φ1(z0) on f(z0) determined by (7) are calculated and depicted in Fig. 1.

Fig. 1: Matric Padé bounds φ1(z0) on admissible values of a matrix Stieltjes function f(z0),
z0 = 1 − i representing the effective anisotropic transport coefficient Υ of two-phase medium.
The bounds φ1(z0) are calculated from one information only, i.e. f(−1) ≤ I.

As an example of applications the effective conductivity of a rectangular array of cylinders
is solved by means of matrix Padé bounds. Results are presented in a number of tables and
graphs.

Acknowledgment This work was supported by the Ministry of Science and Higher Edu-
cation (Poland) through the Grant Nr 4 T07A 053 28.

[1] G.W. Milton, The Theory of Composite, Cambridge Monographs on Applied and Compu-
tational Mathematics, Cambridge University Press, 2002.

[2] S. Tokarzewski, Multipoint continued fraction approach to the bounds on effective transport
coefficients of two-phase media. IFTR Reports, 4: 3–171, 2005.



128 Selected Topics of Contemporary Solid Mechanics

DETERMINATION OF MOISTURE DEPENDANCE OF MATERIAL COEFFICIENTS 
FOR MACARONI DOUGH 

 
 

G. Musielak1 and B. 
Ś

wit2  
1 Pozna

ń
 University of Technology, Pozna

ń
, Poland 

2 Sulzer Chemtech, Wysogotowo, Poland 
 
 

1. Introduction 

One of the most popular human food – macaroni is produced of dough by forming and drying. 
The drying is the most important and the most diff icult part of macaroni production. It influences 
sensorial, physico-mechanical and even feeding features of product. During drying the material 
shrinks and this could cause permanent deformations and even fracturing of macaroni. Up to now 
there are only few publications devoted to the mechanical behaviour of macaroni dough during 
drying e.g. [1-3].  

During drying of macaroni dough its moisture content (dry basis) change form about 0.28-
0.32 to 0.1-0.12. In that range the material is initiall y visco-elastic and finall y brittle-elastic. The 
material coeff icients of the material change in that range almost thousandfoldly. The aim of the 
work is to determine moisture dependence of some material constants of macaroni dough, in 
particular Young modulus, viscous equivalent of Young modulus and strength of the material. It is 
assumed that the material is Maxwell  visco-elastic one. 

2. Experiments 

The experiments consisted of three parts: samples preparation, extension test and final drying. 
Examined material was dough appropriated to popular macaroni production [4]. Because there are 
no norms devoted to the extension of dough, the samples shape was similar to the normalized shape 
of samples made of plastic. The dough was carefull y mixed. Then the samples were shaped with the 
use of prepared matrix. Next they were slowly dried to demanded moisture content and isolated 
during 24h to ensure uniform moisture content inside material. The samples were put to extension 
test with the 1 N/s load rate. After disruption of sample a small  part of sample from the disruption 
region was weighed. Next the piece of sample was dried to dry mass and weighed once again to 
establish moisture content (dry basis) of the sample during extension test. 

4. Results 

Because it is assumed that the material is Maxwell  visco-elastic one, the strain of the material 
ε  is the sum of elastic strain )(eε  and viscous one )(vε  

)()( ve εεε +=  

These two strains obey Hook and Newton models 

E
e σε =)(                 

Γ
= σε

dt

d v)(

 

The Young modulus E  and its viscous equivalent Γ  were estimated using above equations. Strength 
of the material is taken directly from the test (the maximal stress during test).  
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Figure 1. Young modulus versus moisture content (dry basis). 

As exemplary result the Young modulus versus moisture content (dry basis) is shown on the 
figure 1. We obtained that the material parameter highly depends on moisture content and change 
its value from about 0.00003 GPa for 0.35 kg/kg moisture content to about 0.05 GPa for 0.18 kg/kg 
moisture content. The other two examined material parameters also highly depend on moisture 
content.   
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1. Formulation 

Structures and environmental monitoring are important factors of proper work of intelli gent 
structures and they have a strong effect on their safety. Traditionall y, the structure’s state was 
registered by human observers or remote measurement devices connected directly to event 
recorders. Modern telecommunication technology enables application of wireless sensor networks 
[1] for monitoring, making possible extremely increase spatial density and temporal frequency of 
observations. Such sensors are both measurement devices and a communication network nodes 
broadcasting their own signal and retransmitting signals obtained from neighbors. Thus, they 
constitute a self-organizing P2P network that collects measurements and transmits them to 
managing or analytic centre.  

2. Measurement conditions constraints  

Design of a monitoring system for a structure requires adequate selection of sensor’s 
locations. Since usuall y the number of sensors is fixed, equal n, their locations must be optimall y 
selected to obtain the best observation result for such limited resources. Depending on a concrete 
task, system designers use different optimalit y criteria for the sensors’  locations [2]. For instance, 
they can be uniform distribution of sensors over the structure, non-overlapping information 
criterion, highest sensitivity criterion, minimal correlation of measurements criterion, etc. These 
criteria usuall y take into account properties of a mechanical phenomenon measured and usabilit y of 
the received data for a certain engineering task, e.g. structure control. However, in modern wireless 
sensors networks more criteria, mainly following from wireless communication conditions must be 
taken into account [3]. Such criteria are usuall y independent of structural optimalit y criteria, what 
force the monitoring system designers to use multiple criteria optimization [4] to select best 
locations for sensors at structural elements or in the environment.  

The purpose of this paper is to propose a procedure that can optimall y design wireless sensor 
networks for widespread structures monitoring in uncertain environmental conditions.  

3. Topologies and communication conditions constraints  

Optimal deployment of wireless sensors should first of all  ensure the best communication 
eff iciency possible as well  as appropriate wear and failure resistance. The basic type of wireless 
sensor networks has a homogenous structure. Due to the requirements of a monitored structure, a 
network with (privileged) supernodes and (auxili ary) communication nodes, or a combination of 
both, can be applied. 

The main criteria to be taken into account with the application of wireless technology are the 
criteria that have an effect on the li fespan of a sensor network such as the criterion of the minimum 
power consumption for data transmission, distance minimization to the node collecting data from 
the paths, optimal data transmission path criterion, load minimization measured, for example, by the 
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mean traff ic value carried by the node (the necessity to use network resources evenly). The optimal 
deployment of nodes should also take into consideration the requirement of alternative path 
availabilit y in case of a failure  (each node has to have more than just one neighbor), the 
requirement of avoiding communication obstacles and also cost-effectiveness, to this extent limiting 
the number of sensors, and so on.  
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Depending on the applied topology, these criteria have varied significance. For example, in 

a supernode network it is possible to invalidate the criterion of the even use of resources since the 
most loaded nodes can be replaced by supernodes, or the application of communication nodes can 
significantly mitigate the criterion for avoiding terrain obstacles, etc. 

4. Cr iteria of optimali ty  

The paper proposes a phased-in approach (in three stages) to problem formulation for 
optimization of the deployment of nodes of wireless sensor network for widespread structures 
monitoring. As the result of the first level of calculation a space of available solutions due to the 
qualit y of measurements criterion (mechanical) depending on the required measurement objective 
emerges. The second stage of the optimization effects in the establishment of the number of 
measure nodes with the criteria of the installation costs and replacement of each of the nodes in case 
of its failure taken into consideration. The third stage of the analysis is to optimize the deployment 
of sensors with a defined number of nodes with the maximum li fe-span of the network criterion 
taken into consideration, i.e. with the aim of the minimization of the distance of routes and avoiding 
the necessity of overloading of individual nodes.   

The purpose of the performed analysis is to determine the acceptable locations of  nodes of 
the wireless sensor network and then to decide on the preferred locations of nodes from the set of 
non-dominated solutions.  
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1. Abstract 

This study was based on production of TiC-NiAl by combustion synthesis method. TiC-NiAl 
composite was fabricated by reaction of Ti + Al + Ni + C →  TiC-NiAl assistant heated coil on top 
surface of green body along with a medium 100 MPa pressure to obtain a bulk sample. The 
constituted phases were characterized by XRD and microstructure observation has been done with 
SEM. The density of the synthesized bulk samples was measured according to the Archimedes 
method. Micro and macro hardness, and fracture toughness of samples were measured by a vickers 
diamond indenter. Isostatic Pressing along with thermal reaction like to a thermomechanical process 
result in bulk TiC-NiAl composite.  
 
2. Introduction  

In recent years, many methods, such as sintering [4], hot pressing [5], hot isostatic pressing 
[6], spark plasma sintering (SPS) and solid-state reaction [7], have been developed to produce TiC-
NiAl composite in bulk form sample. Combustion synthesis in powder metallurgy processes has 
been in attention, because it offers advantages as economics and process simplicity. Also the very 
high reaction rates and elimination of the need for high temperature furnaces used in conventional 
material fabrication due to the self generation of heat required for the process. Considering their low 
density and their high wear resistance and refractoriness, compounds of the system Al–Ni–Ti–C can 
be used to produce high temperature wear resistance components. This paper describes studies of 
combustion synthesis of bulk TiC-NiAl via SHS in its wave propagation mode, with pseudo hot 
isostatic pressing. 

 
3. Experimental procedure 

A homogeneous powder blend includes Ti, Al, Ni and C within the molecular ratio 1:1:1:1 in 
a low energy ball milling. The dried reactants were cold pressed into square pellets by a press at 30 
MPa. For the SHS wave propagation experiments, a slightly compacted Ti–C-Ni-Al blend was 
inserted into a vertically placed stainless steel cylinder. A heated coil at one end ignited the pellets 
and self-sustained from this heated end to the full sample due to the highly exothermic reaction. The 
compact was immediately pressed just after wave passed, the products was in hot and soft condition 
too (delay time ≈ 5 s). The pressure (100 MPa) was kept for 10 s. Figure 1 is a schematic of the 
SHS/PHIP setup.  

 

  
Figure 1. The schematic illustration of the SHS/PHIP setup. 
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The dense products were then sectioned with cutter and grinded for microstructure and 
mechanical analysis. The constituted phases of the synthesized TiC-NiAl samples were 
characterized employing X-ray diff raction (XRD-Phili ps X'pert-MPD) and microstructure 
observation by scanning electron microscopy (SEM-XL3). Micro-hardness of dense samples was 
measured under 5 N loads, with vickers diamond indenter. The macro-hardness was evaluated by a 
Vickers diamond indenter at loads of 50 N. The fracture toughness was calculated using the 
following formula in equation 2. The density of the synthesized bulk samples was measured by 
using water, according Archimedes test method [3]. 

 
4. Results and discussion 

For obtained a highly homogeneous starting mixture used a tumbler mill  (low energy mill ) 
with election a low time, because prevent mechanical alloying within milli ng [7].  

The SHS reaction of the system Al–Ni–Ti–C was followed by powder reaction sample. TiC-
NiAl composite was fabricated by combustion reaction of Ti + Al + Ni + C →  TiC-NiAl. Figure 2 
gives an overview of the recorded diff raction patterns as the reaction proceeds, which that compose 
TiC and NiAl phases.  

With attention to high exothermic reaction ( ≈ -183 Kj/mole)of Ti and C, composed TiC, and 
then done reaction Al and Ni, because of lower exothermic reaction(≈ -118 Kj/mole) [1, 2]. 
Likewise NiAl has role of bonding phases. SEM observation is shown in figure 3. Product is 
composed of small , round TiC particles embedded in continues matrix of NiAl which TiC phases 
adhering by assistant NiAl intermetalics to compose a continues structure. Also exist slightly pore 
in sample similar to HIP process [4]. This result was similar to other researcher which fabricated 
this compound by hot isostatic pressing and spark plasma sintering [4, 7, 9].  

Mechanical properties tests are put into table 1. These mechanical properties is almost similar 
to result of other researchers that produce by other process like sintering [4, 10-12].  

compound Relative 
density (%) 

density Micro hardness 
(HV.5 ) 

Macro hardness 
(GPa) 

Fracture toughness 
(MPa

√
m) 

TiC-NiAl 97.6 5.174 1077  9.95  7-10 

Table 1. The mechanical properties of TiC-NiAl sample. 

5. Conclusions 

The SHS reaction of the quaternary system Al–Ni–Ti–C has been started with the synthesis of 
Ti and C to compose TiC, and then followed by melting and reaction of Al and Ni. The final 
product is composed of small , round TiC particles embedded in a continuous matrix of NiAl. 
Results show excellent properties of TiC-NiAl, >95% dense samples with density ≈  5.17 gr/cm3, 
micro hardness ≈  1077 Hv.5, macro hardness ≈  9.95 GPa and fracture toughness ≈  8.5 MPa

√
m. 

Furthermore primary evaluation has been shown by combustion synthesis can produce TiC-NiAl 
composite in bulk shape that has suitable mechanical properties in comparison with sintering 
samples.  
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1. Abstract 

The main aim in this study is based on replacement possibility of combustion synthesis 
procedure with conventionally sintering method for fabrication some of the mechanical seal rings 
and cutting tools, because of simplicity and economic of this procedure. As TiC-NiAl composite 
has excellent wear resistant, it was chosen as a relevant material for mechanical seals and cutting 
tools. Therefore microstructure and their mechanical property of combustion synthesized TiC-NiAl 
composite such as hardness and fracture toughness was compared with those of usual compounds of 
cutting tools and mechanical seal rings, like silicon carbide, alumina and tungsten carbide-cobalt 
that be produced by sintering method. The primary evaluation of mechanical properties shows that 
TiC-NiAl has acceptable hardness and fracture toughness in comparison SiC, Al2O3 and WC-Co. 
Therefore by combustion synthesis method can produce some of materials with mechanical 
properties similar to the mechanical seal rings and cutting tools. 

 
2. Introduction  

Cutting tools are made from very hard materials and have been applied in wide variety of 
turnery industries and machining operations. For cutting tools, these sintering materials usually 
include tungsten carbide and alumina. Cutting materials for extreme requirements (for example, 
interrupted cuts or machining of high strength materials) can consequently not be made from one 
single material, but may be realized by composite materials. This tools produce by hot press and hot 
isostatic pressing of carbide mixture (cemented carbide) [1, 2]. 

Mechanical seals are machine elements specially designed to prevent fluid leakage from 
pressurized chambers in fluid (gas or liquid) transport systems at high temperature or to avoid hot 
lubricant outflow in general equipment moving parts. Many different materials and combinations of 
them have been successfully tested and are routinely used today in the industry. In an engineering 
sense, the term generally refers to a class of materials that are characterized by their high hardness, 
high stiffness, low thermal expansion, and good wear resistance. For mechanical seals, these 
include silicon carbide, tungsten carbide and alumina. Other materials such as silicon nitride are 
used in special applications. These tools can be synthesized by sintering method [3, 4]. 

The self-propagating high-temperature synthesis procedure has low energy consumption and 
has large potentials for industrial applications due to the high productivity and the very simple 
equipment involved [5]. Due to excellent wear behavior of TiC-NiAl [6], in this paper mechanical 
properties of combustion synthesized TiC-NiAl in comparison with sintering alumina, silicon 
carbide and cemented carbide samples was evaluated for use in cutting tools and high temperature 
mechanical seals.  

 
3. Experimental procedure 

The dense samples were sectioned with wire cut and grinded for microstructure observation 
and mechanical property analysis. The constituted phases of the synthesized TiC-NiAl samples, 
alumina, silicon carbide and cemented carbide were characterized employing X-ray diffraction 
(XRD-Philips X'pert-MPD) and microstructure observation by scanning electron microscopy 
(SEM-S360 and SEM-XL3) equipped with EDS Analyzer. Micro-hardness of dense samples was 
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measured under 5 N load, with Vickers diamond indenter. Macro-hardness was evaluated by a 
Vickers diamond indenter at loads of 50 N.  

The fracture toughness was measured by the Vickers indentation method. Indentation test was 
conducted on polished samples with a load between 200 N to 300 N that held for 15 s.  

The density of the synthesized bulk samples was measured by using water, according 
Archimedes test method [2].  

 
4. Results and discussion 

Fig. 1 gives an overview of the recorded diff raction patterns of the sintering SiC. As it can be 
seen in Fig. 1, XRD pattern shows that SiC phase is in SiC seal ring sample.  

Furthermore SEM observations as seen in Fig. 5, shows continuous structure for sintering 
SiC, alumina, cemented carbide and combustion synthesized TiC-NiAl. Moreover low pore density 
and relatively same sizes were in samples too. 

Mechanical properties tests of samples are put into table. 1. As it is shown TiC-NiAl 
composite has high hardness and fracture toughness in acceptable limited in sintering samples of 
cutting tools and mechanical seal rings.  

 

compound Relative 
density 

density Micro hardness 
(HV.5 ) 

Macro hardness 
(Gpa) 

Fracture thoughness 
(MPa√m) 

SiC ~ 95.6 3.06 2443 21.6 2-3.5 

Al2O3  ~ 95 3.675 1010 12.02 3-4.5 

WC-Co  ~ 98.6 13 1436 13.36 9-14 

TiC-NiAl ~ 97.6 5.174 1077 9.95 7-10 

Table 1. Mechanical properties of samples. 

5. Conclusions 
TiC-NiAl composite has high hardness and fracture toughness in acceptable limitation in 

comparison sintering cutting tools and mechanical seal ring samples. Therefore primary evaluation 
shown by combustion synthesis can produce composite compound with excellent mechanical 
properties like mechanical seal and cutting tools. Also TiC-NiAl has good primary condition for use 
in mechanical seal and cutting tools. 
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1. General 

The discrete (sometimes referred to asdistinct) element method (DEM) introduced by Cundall  
and Strack [1] started with its first application to simulate the dynamic behaviour of granular 
material. Contrary to the methods based on the continuum approach, DEM is based on the 
Langrangian approach, meaning that particles of granular material are treated as contacting bodies, 
while dynamical parameters (position, velocity, orientation, etc.) of each body are tracked during 
the simulation. 

Generall y, the DEM concept permits numerical simulation of a wide variety of problems 
ranging in different scales. It comprises fundamental ideas of molecular and multi -body dynamics. 
On the other hand, DEM may be considered as one of the numerical methods describing the 
behaviour of continuum in terms of a finite number of discrete parameters. Recently, the DEM has 
become a powerful tool for solving many scientific and engineering problems. 

2. Concept and methodology 

The granular material considered in this paper presents a space fill ed with deformable bodies, 
termed here as discrete elements. The simple and most popular particle shapes in three-dimensions 
are the sphere and the elli psoid.  When moving, the particles as contacting bodies impact and 
deform each other.   

Individual bodies change their position due to free rigid body motion or interactions with the 
neighbouring bodies or walls. The translation and rotation of each body in time t are described by 
the second Newton’s law and expressed in terms of resulting forces acting at the centre of gravity. 
The most popular inter-particle contact model of frictional visco-elastic body considers a 
combination of elasticity, damping and friction force effects. 

3. Computational aspects  

Computational aspects of DEM involve [2-3] basicall y problem formulation, contact 
searching, computation of forces and time integration of equations of motion. Problem formulation 
involves a specific technique to set up the initial and boundary conditions. The explicit time 
integration technique prevails in the DEM computations.  

The main disadvantages of the DEM technique, in comparison with the well -known numerical 
methods based on continuum approach, are related to computational capabiliti es limited by a huge 
number of particles and a relatively small  time step used in time integration, therefore, much 
attention is also paid to software implementation. Improvement of computational eff iciency by 
using parallel implementation is a realistic alternative. 

4. Application to granular  materials  

Several application examples of DEM to dry non-cohesive granular material problems are 
considered and selected modelli ng results are presented. Simulation of filli ng and unsteady/steady 
discharge processes in three-dimensional hoppers of different geometry is ill ustrated in details [4]. 
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The microscopic parameters of granular material composed of spherical particles are analysed in 
terms of their contribution to macroscopic parameters, such as time-dependent evolution of the 
system kinetic energy, porosity fields, discharge rates as well  as wall  and material stresses. 

Along with spherical particles, the multi -sphere (MS) approximation approach [5] of the 3D 
axi-symmetric elli psoidal particle is also ill ustrated. Performance of the MS approach is examined 
by solving a pili ng problem. The deviation of a multi -sphere shape from elli psoid at the particle 
level is evaluated.  

5. Modelli ng of solids  

DEM is also extensively applied to the simulation of solids, mainly concerning dynamic 
deformation behaviour and fracture problems. Development of the continuum consistent lattice-type 
DE model for 2D solids is considered. The proposed DEM approach assumes that deformation 
behaviour of solid is described by translational motion of particles, while inter-particle forces are 
expressed in terms of axial forces of the axiall y deformed connection element. 

The FEM technique was applied to the development of the DEM model. By applying a 
standard constant strain triangle finite element it was shown that Cartesian elastic inter-particle 
forces may be expressed in terms of stiffness matrices of the triangles incorporated. The developed 
combined DEM/BEM approach is based on the analogy between the structural and continuum 
variables in a triangle. The resultant normal elastic force presents the sum of individual edge forces 
of adjacent

 
triangles. Additionall y, each of the edge forces is composed of two components 

involving influences of the axial and shear stiffness. For isotropic solid, two stiffness parameters 
may be directly extracted from the stiffness matrix of the triangle.  

The suggested approach is independent on the Poisson’s ratio and the shape of the triangle 
lattice. From the physical point of view, conventional mutual interaction of particles is modified by 
the collaborative interaction of the local particle assembly. Consequently, modification of the 
algorithm and the DEM code is required. Multi -fracture with randomly distributed tensile strength 
properties of the material is considered for ill ustration.  
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1. Introduction 

Sustainabilit y of the built -up environment requires making best use of historical and 
monumental constructions of the architectural heritage and of many bridges of transport systems 
made of masonry and designed according to empirical rules. The conservation and restoration of 
these masonry structures has to be supported by an exhaustive structural assessment. An awareness 
of the limitations of the conservative approximations commonly made in structural analysis, 
generall y providing underestimations of the load-bearing capacity of these structures, has stimulated 
grat interest in new approaches to the mechanical modelli ng of masonry structures. 

Compared to conventional steel and reinforced concrete constructions, where the structure can 
be clearly identified, masonry constructions are very complex structural systems obtained from an 
assemblage of different components li ke walls, vaults and pill ars, requiring highly staticall y 
indeterminate structural models.   Moreover, masonry is a heterogeneous material consisting of 
units, such as bricks, blocks, ashlars, adobes, irregular stones etc. assembled with mortar or dry 
joints according to different patterns. As a consequence a great variety of masonry materials can be 
found ranging from periodic brick masonry  to dry stone rubble masonry.  

The mechanical response of this two-phase composite material observed in experiments is 
rather complex, depending on the unit and joint material, the masonry pattern and the applied loads. 
Moreover, experiments on units and masonry assemblages show uncertainty on the material 
characteristics. This behaviour can be attributed to the quasi-brittle behaviour of the components 
and the interfaces. Elastic, damage/crack and stress induced anisotropy, including different response 
to tensile versus compressive stress, hysteretic response to cycli c loads and fracture are the main 
observed phenomena, having a strong effect on the stress redistribution in structural components 
(walls and vaults) and on dynamic response to seismic actions. As a consequence modelli ng of 
deformation and damage of masonry material and structures aimed at prediction of the behaviour of 
masonry structures under ultimate loads, base settlements and seismic events remains a challenge. 

2. Constitutive models for  damaging br ick/block masonry 

As usual in modelli ng material, different approaches to the analysis of masonry structures 
such as pill ars, walls and vaults, can be pursued in order to simulate the main features of the 
mechanical response.  In any case, the structural model has to encompass several constitutive 
ingredients such as elasticity, plasticity, unilateral contact, friction-damage, localization and size 
effects, fracture and time dependent response. In discrete approaches the constituents are modelled 
individuall y and the actual assemblage of brick/block masonry is considered in detail . Although 
these models may be useful in interpreting experimental results and in the calibration of material 
parameters, they lead to excessive computational effort even for simple structures, thereby making 
continuous models more appealing for applications to large scale structures.  

Apart from the case of the so-called no-tension material proposed by Heyman to formulate a 
theory for the limit analysis of masonry structures, the complexity of the masonry material makes 
the formulation of purely phenomenological models a rather diff icult task,  with the exception of the 
case of rubble or disordered masonry.  On the other hand, mesomechanical approaches based on the 
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homogenization of a periodic cell , a representative element of brickwork, are suitable for regular 
brick/block masonry, frequently found in ancient and historical constructions, where the units are 
joined by horizontal and vertical mortar beds to obtain a periodic structure.  This latter approach is 
interesting because it may allow consideration of different characteristic lengths in the structural 
system (materials, unit cell , structure). 

The evaluation of the load carrying capacity of eccentricall y compressed pill ars, commonly 
based on the simpli fying assumption of homogeneous material, is analyzed considering a periodic 
discrete model of the stack of units.  In this class of problems, defined at the scale of masonry units, 
the mismatch of the material parameters may significantly affect the inelastic mechanisms at the 
lateral free edges of the pill ar and at the head mortar joints and the overall  strength. Theoretical 
evaluations of the load carrying capacity are compared to experimental results and  open issues are 
discussed. Application to the assessment of masonry bridges are presented and discussed. 

Modelli ng the in-plane and out-of-plane response of perforated masonry walls is a criti cal 
issue in the evaluation of the seismic vulnerabilit y of masonry buildings.  This problem is analyzed 
considering constitutive models at different detail s of description of the masonry pattern and of the 
inelastic frictional-damage mechanisms.  Starting from the simpli fied assumption of a layered 
continuum with horizontal criti cal planes, where damage mechanisms are attained, the analysis 
encompasses more elaborate constitutive models based on the homogenization of periodic masonry 
cell , including micropolar and higher order constitutive equations, whose characteristic lengths are 
related to the unit size and to the bond pattern.  Simulations of experiments on perforated masonry 
walls are presented. The consequences of assuming different constitutive models including 
friction/plastic and damage ingredients are analyzed in terms of structural response and 
computational implementation and comparisons with results provided by simple models (elastic-no-
tensile-resistant for instance) are drawn.   

6. References 

 
[1] Cavicchi A., Gambarotta L., Lower bound limit analysis of masonry bridges including arch-

fill  interaction, Engineering Structures, 29, 3002-3014, 2007. 
[2] Cavicchi A., Gambarotta L., Two-dimensional Finite Element Upper Bound Limit Analysis of 

Masonry Bridges, Computers and Structures, 84, 2316-2328, 2006. 
[3] Brencich A., Corradi C., Gambarotta L., Eccentricall y loaded brickwork: theoretical and 

experimental results, Engineering Structures, 2008. 
[4] Brencich A., Gambarotta L., Mechanical response of solid clay brickwork under eccentric 

loading. Part I: Unreinforced Masonry, Materials and Structures, 38, 257-266, 2005. 
[5] Brencich A., Gambarotta L., Mechanical response of solid clay brickwork under eccentric 

loading. Part II : CFRP Reinforced Masonry, Materials and Structures, 38, 267-273, 2005. 
[6] Gambarotta L., Friction-Damage Coupled Models for Brittle Materials, Engineering Fracture 

Mechanics, 71, 829-836, 2004. 
[7] Gambarotta L. and S. Lagomarsino, Damage models for the seismic response of brick 

masonry shear walls. Part I: the mortar joint model and its applications, Earthquake 
Engineering & Structural Dynamics, 26, 423-439, 1997. 

[8] Gambarotta L. and S. Lagomarsino, Damage models for the seismic response of brick 
masonry shear walls. Part II  the continuum model and its applications, Earthquake 
Engineering & Structural Dynamics, 26, 441-462, 1997. 

 



140 Selected Topics of Contemporary Solid Mechanics

LONG-TERM MICRODAMAGING OF COMPOSITES WITH TRANSVERSALL Y-
ISOTROPIC COMPONENTS FOR LIMITED FUNCTION OF DURABILITY 

 
 

L. Nazarenko1, L. Khoroshun2, W.H. Müller1 and R. Will e1 
1 LKM TU Berlin, Berlin, Germany 

2 S.P. Timoshenko Institute of Mechanics of NAS of Ukraine, Kiev, Ukraine 
 

1. Introduction 

 One of the important problems of mechanics of composites is the investigation of stresses 
under elevated loads. Such a loading is associated with the accumulation of damage which finall y 
leads to the fracture of the material. A survey of theoretical papers dealing with microcracked 
elastic materials is presented in [1]. A study of materials weakened by periodicall y or randomly 
distributed microcracks was performed in [2] by using homogenization methods. In [3] a stochastic 
model of short-term microdamages of the material was proposed and then applied to the case of 
anisotropic composites [4]. In the present paper a stochastic model is developed for investigation of 
long-term microdamages of discrete-fibers composites with transversall y-isotropic components.  

2. Mechanical model. General relation 

 We consider a representative volume V  of a composite. Under homogeneous loading the 
stresses and strains appearing in the representative volume will  form statisticall y homogeneous 
random fields satisfying the ergodicity condition and we can replace the operation of averaging over 
the representative volume by the operation of averaging over an ensemble of realizations. Then the 

macroscopic stresses ijσ  and strains klε  of such a material will  be related by Hooke's law: 

(1)  klijklij ελσ *= ,  )3,2,1,,,( =lkji . 

 Here, *
ijklλ  is the tensor of effective elastic constants, which can be determined by the 

method of conditional moments [5]. The effective elastic moduli  of the composite are functions 
depending on the elastic moduli  of the components ]1[

ijklλ , ]2[
ijklλ , the volume contents of the inclusions 

1c , the porosity of the components 1p , 2p , and the shape of the inclusions s 

(2)  ( )sppcmnprmnprijklijkl ,,,,, 211
]2[]1[** λλλλ = ,  21 sss = ,  )3,2,1,,,( =rpnm ,   

where 1s , 2s  are semi-axes of spheroids. Knowing the effective elastic moduli  and the 

macrostresses or macrostrains of such a composite it is possible to calculate stresses r
ijσ  averaged 

over the skeletons of components using the relations obtained in [5]. As a the fracture criterion we 
consider generelized Huber-von Mises criterion for a transversall y-isotropic material 
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where ra1 , ra2 , ra3  are dimensionless constants, 
'r

ijσ  is the deviator of the stresses averaged over an 

undamaged part of the material of the r -th component, and rk  is the limiting value of the material 

strength, which is a random function of coordinates. If the invariant rJσ  does not achieve its limiting 

value rk  in some microvolume, then according to the long-term failure criterion, failure will  occur 

after some time r
kτ ,which depends on how close rJσ  is to rk .This dependence can be represented by 
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(4)  )( , r
rr

k kJσϕτ = . 

 The one-point distribution function ( )rkF  of the ultimate strength rk  in a microvolume of 
the undamaged part of the material can be approximated by a Weibull  distribution function:  

(5)  ( ) ( )( )
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rk0  is the minimum value of the ultimate microstrength of the material of the r -th component, rm  

and rα  are constants determined by fitting experimental microstrength scatter curves. If the stresses 
r
ijσ  are known, then the distribution function ( )rkF  determines the relative content of the des-

troyed microvolumes in the undamaged part of the material of the r -th component. If the destroyed 
microvolumes are modeled by pores, it is possible to write down the balance porosity equation  

(6)  ( ) ( )rrrr kFppp 00 1−+= , 

where rp0 denotes the initial porosity of the material of the r -th component. If the stresses or 

strains act for some time t , then, according to (4), microvolumes with the following values of rk  

will  fail  in this time r
kτ , which can be represent by a fractional power law 

(7)  )( , r
rr

k kJt σϕτ =≥ ,  ( ) ( )( ) rn
rr

rr
rrr

r kJJkkJ γτϕ σσσ −−= 0, )( ,  )1,( <≤≤ rr
r

rr kJk γγ σ , 

where r0τ , rn  and rγ  are determined by fitting experimental long-term strength curves. 

 Transforming (7) we arrive at the inequalit y 

(8)  )( r
r

r tJk ψσ≤ ,   ( ) ( )rr n
rr

n
rr ttt

11
11)( γψ ++= ,   ( )rr tt 0τ= . 

 In this case the function )]([ r
r tJF ψσ  defines the relative fraction of destroyed 

microvolumes in the part of the material which is undamaged prior to loading at the time rt .Then 
for given macrostresses or macrodeformations, the equation of balance of destroyed microvolumes 
or porosity under long-term damage can be represented by 

(9)  )]([)1( 00 r
r

rrr tJFppp ψσ−+= . 

 On the basis of the above approach we investigate the stress-strain state of transversall y-
isotropic composite material under matrix microdamages. 
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1. Introduction

Solutions for crack-tip fields are very important in understanding the mechanisms of crack
initiation and propagation in elastic-plastic and creeping materials. The stressfield in the vicinity of
the crack tip in power-law materials (power-law hardening materials, power-law creeping materials)
iswidely discussed in literature. Thestress singularity for a crack in ahomogeneouspower-hardening
material with hardening exponent n was first studied by Hutchinson [1], Rice and Rosengren [2]. In
[1] the problem of plastic stress singularity is reduced to a nonlinear eigenvalue problem and the
shooting method is used to solve the homogeneous differential equation obtained in the analysis. It
should benoted that for sometimemulti -termasymptoticsolutionswith thewell -knownHRR-field as
theleading order term of the asymptotic expansionaroused considerableinterest of many researchers.
Nowadays the whole eigenspectrum and orders of stress singularity at the crack tip for a power-law
medium are of prevaili ng interest. Thepresent study offers a techniquedeveloped in theperturbation
theory for analysisof nonlinear eigenvalueproblemsarising from fracture mechanics.

2. Mode I crack. Basic equations

Let usconsider eigenspectra and orders of singularity of thestressfield near a modeI crack tip
in a power-law material. The power-law constitutiverelations εij = (3/2)Bσn−1

e sij, where εij is the
strain, sij is the stressdeviator, σe is the Mises equivalent stress, B, n are material constants, for the
plane strain condition are described by εrr = −εθθ = 3Bσn−1

e (σrr − σθθ) /4, εrθ = 3Bσn−1
e σrθ/2,

where the equivalent stressisexpressed byσ2
e = 3 (σrr − σθθ)

2 /4 + 3σ2
rθ.

In analyzing the asymptotic behaviour of the stressfield near the crack tip the Airy stresspo-
tential can be presented in the following form F (r, θ) = rλ+1f(θ). Using the constitutive equations
and the compatibilit y equation onefinds

f 2

e f IV
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e
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where f 2
e = [(1 −λ2)f + f ′′]

2
+ 4λ2f ′2, C1 = 4λ [(λ − 1)n + 1] , C2 = (λ − 1)n [(λ − 1)n + 2] .

The fourth order nonlinear ordinary differential equation (1) with the boundary conditions
f(θ = ±π) = 0, f ′(θ = ±π) = 0 defines a nonlinear eigenvalue problem in which the constant
λ is the eigenvalue and f(θ) is the corresponding eigenfunction. The direct integration of the differ-
ential equation (1) is generally realized by theRunge-Kuttamethodin conjunctionwith theshooting
method. Obviously, the eigenvalue λ and the initial value f ′′(θ = −π) are coupled with each other
in general, and they have to besearched simultaneously. Only in somespecial cases one can assigna
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certain λ aprior throughadditional physical presumptions. Now thewhole eigenspectrum and orders
of stress singularity at the crack tip are of interest. The whole eigenspectrum stipulates the possible
stressdistributions in the neighbourhood of the crack tip. The purpose of this study is to obtain the
whole eigenspectrum for thestressfield near amode I crack in apower-law material.

3. The perturbation theory approach

The underlying idea of the method is to consider the expansion representing the eigenvalue
λ of the nonlinear eigenvalue problem formulated for an arbitrary exponent n to be a sum of the
eigenvalue λ0 corresponding to the ”undisturbed” linear problem (n = 1) and a small parameter ε
which quantitatively describes the nearnessof the eigenvalues: λ = λ0 + ε. The exponent n and the
stressfunction f(θ) can be presented as formal series with respect to ε : n = 1 + εn1 + ε2n2 + ... ,
f(θ) = f0(θ)+εf1(θ)+ε2f2(θ)+ ... , wheref0(θ) denotesthesolution of thelinear problem (n = 1).
Introducing the asymptotic expansionsfor λ, n andf(θ) into (1) andcollecting termsof equal power
in ε, the set of linear differential equations is obtained. Thus, the boundary value problems for the
nonhomogeneous fourth order linear differential equations with respect to fi(θ) are formulated. It is
known that if theboundary valueproblem for thehomogeneousdifferential equation has anontrivial
solution then there can exist no solution of the corresponding nonhomogeneousdifferential equation
unlessthesolvabilit y condition is realized.

Analysis of the solvabilit y condition for the boundary value problems obtained results in the
three-term asymptotic expansions of the exponent n : n = 1 − 2ε/(λ0 − 1) + ε2n2 + O(ε3), where

for λ0 6 −
3

2
and for λ0 >

3

2
n2 = −

λ5
0 − 2λ4

0 − 7λ3
0 + 11λ2

0 + 4λ0 − 5 − (λ2
0 − 1)sgn(λ0)

(λ0 + 1)(λ0 − 1)4
.

For λ0 = 1/2 corresponding to the classical HRR-problem the followingclosed form solution

nk = −
(−1)k

(λ0 − 1)k+1
, n = 1 −

1

λ0 − 1

∞
∑

k=1

(

−
ε

λ0 − 1

)k

= −
λ

λ − 1
, λ =

n

n + 1
(2)

is found. Hence, thewell -known formula(2) connectingthehardeningexponent n andthe eigenvalue
λ for theHRR-problem isderived.

4. Conclusions

Using the perturbation methodthe whole set of eigenvalues for a mode I crack tip in a power-
law material isdetermined. The three-term asymptotic expansion for the exponent n allowing to find
the eigenvalueviaλ = λ0 + ε for thenonlinear eigenvalueproblem isobtained.

The relative error of the three-term asymptotic expansion for a crack in thepower-law material
with n = 2 to the exact HRR-solution is 2%. The results obtained for λ0 = −1/2 were compared
with those foundfor the same problem by the Runge-Kutta method in conjunction with the shoot-
ing method. The comparison of the eigenvalues for n = 2 calculated by the three-term asymptotic
expansion and by the numerical scheme λ = −0.9801 and λ = −1.000 shows the goodagreement.
The eigenvalues for n = 3 given by the four-term asymptotic expansion for λ0 = −1/2 and by the
Runge-Kuttamethodareλ = −0.7716 andλ = −0.7755. Consequently, aquitesatisfactory solution
is obtained by taking the asymptotic expansionachieved.
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1. Introduction 
 

Recent discoverys of unique properties of bulk nanostructural materials (BNM) (unusual 
mechanisms of deformation, anomalies of conductivity, magnetic and optical properties) have given 
an impact to new scientific direction related to nanotechnology. At present time, two general 
approaches to the development of BNM are considered. The first approach, the so-called «bottom-
up approach», involves compaction of the nano-size powders (ultra disperse powders can be 
obtained by gas condensation in the inertial atmosphere or by plasma-chemical method, aerosol and 
chemical synthesis, and also by grinding of powders in a spherical mill , etc.). The second method is 
the intensive plastic deformation leading to the grain refining that provides a unique mechanical 
behavior of bulk nanostructural materials. Physical properties of BNM are defined by the length and 
intensity of the grain boundaries, which for the grain sizes of about 10-100 nm contain 10-50% of 
atoms of the material. Hence, the transition to bulk nanocrystlalli ne state is characterized by 
pronounced scaling effects the increasingly growing role of grain boundary defects is the crucial for 
the explanation of unique properties of BNM. 

An effective method for studying material properties under transition to nanocrystalli ne state 
is the analysis of energy absorption mechanisms, which by analogy with phase transitions can lead 
to qualitative changes in materials with fine-grain structure related to the specific interaction 
between the grain boundary defects. This work is concerned with investigation of the energy 
absorption process in coarse grain and fine grain titanium under plastic loading. It has been found 
that BNM exhibit energy dissipation anomaly, which can be treated as a result of specific structural 
evolution in this material. 
 
2. Material and experimental conditions 
 

The samples of titanium Grade 2 in submicrocrystalli ne state were manufactured by the 
method of intensive plastic deformation [1] and had the grain size of about 150 nanometers. The 
mechanical properties of titanium Grade 2 in polycrystalli ne and submicrocrystalli ne state are 
presented in Table 1. The quasistatic tension was carried out using Zwick 100 testing machine. The 
temperature field was recorded with the infra-red camera CEDIP Jade III . Sensitivity of the camera 
is higher than 25 mK at 300°K, a spectral range is 3-5 microns, and the maximal size of the frame is 
320x240 points.  

Type of treatment tensile strength,σ в , 
(MPA) 

yield stress, σ 0.2,  (MPа ) 
ultimate 

elongation, (δ,%) 

Initial coarse grain state (grain size 25 � m) 440 370 38 

IPD + hot rolli ng (grain size 0.3 � m) 1090 ± 20 980 ± 20 13 ± 1 
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3. Experimental results 
 

Figure 2 presents the results of experiments. The nanotitanium shows high increasing of 
mechanical properties. The yield stress increases in 2.6 times. The deformation process of 
nanotitanium is characterized by long softening and long elastic part. The initial stage of 
nanotitamiun deformation is accompanied by pronounced termo-elastistic effect. This fact proves 
that the deformation is “pure” elastic and material defects don’ t initiate and move. The second part 
of temperature-time curve is more sharp. This fact allows us to conclude that defect evolution under 
plastic deformation of nanotitamiun is more intensive then in coarse grain titanium. But, relative 
energy storage rate in nanotitanium is higher than in coarse grain specimen. The deformation 
localization in nanotitanuim is more pronounced then in coarse grain one. A fracture of 
nanotitanium has brittle character and emergence at 15 percent of elongation. The final elongation 
of coarse grain titanium was 25 percent. 
 

 
a)                                                                           b) 

Fig. 1. The stress-strain curve (a) for coarse grain and nanotitanium. Temperature evolution (b) 
during the experiments for coarse grain and nanotitanium 

 
The peculiarities of defect evolution can be investigated by calculation of energy balance in 

materials under deformation process. The procedure of energy balance estimation was presented in 
[2]. The specimen necking and strain rate fluctuation don’ t allow us to exactly calculate the energy 
expended for specimen deformation. The curve can be analyzed on hardening part only. The 
conclusion can be formulated as follow. The nanotitanium storages more energy that coarse grain 
one. The evolutions of energy storage in both titanium are similar. 
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Abstract:  

Concrete materials are widely used in structures as buildings, nuclear power stations, 
shelters, bridges... These structures have to be optimized regarding extreme conditions as blast or 
impact loadings. Consequently, the knowledge and understanding of the tensile behaviour of 
concretes at high strain rates need to be improved. 

When concrete is subjected to high strain rates in tension (beyond s-1), its tensile strength 
increases significantly. Phenomenon of spalli ng has been applied for approximately one decade to 
characterise the dynamic strength of concrete materials [1, 2, 3].  During such test, a cylindrical 
specimen of concrete is placed at the end of a Hopkinson bar, Fig. 1.  A compressive pulse is 
generated by impact of a striker at the opposite end.  A large part of this pulse is transmitted to the 
specimen and the other small  part is reflected into the Hopkinson bar.  When the transmitted pulse 
(negative) reaches the free end of the specimen, it is reflected as a tension pulse (positive).  
Superposition of both waves induces a tensile loading at a specific distance in the specimen that 
leads to its failure. 

    Striker               Hopkinson bar           Specimen 

 

 

 

Fig.1 Principle of a modified experimental arrangement used for estimation of dynamic strength in 

tension 

In this work, spalli ng tests are performed to investigate the tensile behaviour of a micro-
concrete (maximum aggregate size: 5 mm) in the range of 10 s-1 to 100 s-1. A specific methodology 
was applied to process experimental data.  First, a laser displacement gage was used to measure the 
axial velocity on the rear face of the specimen, Fig.1.  An example of the record is shown in Fig. 2.  
The spalli ng strength is deduced from Eq. (1) in which ρ  and C0 are respectively the density and the 
speed wave of the concrete and ∆V corresponds to the difference between the maximum and the 
rebound velocities.  This equation was checked by numerical simulation of the tests in which an 
arbitrary failure criterion was used. 

(1)                                      
VCspall ∆= 02

1 ρσ
 

The transmitted pulse is reconstructed using incident and reflected pulses recorded from gages 
located on the Hopkinson bar, [1]. This pulse is implemented in a numerical simulation that 
involves the specimen alone assuming a purely elastic behaviour of the concrete. This calculation 
allows deducing the state of stress and strain rate before failure. Because failure is signalled by an 
increase of the mass velocity on the rear specimen face, Fig. 2, the failure time is also obtained. 
Thus, the strain rate at failure is also extracted from the numerical analysis. Finall y, several tests 

 Laser 
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performed with dry and wet specimens are compared with data available in the literature. 
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Fig.2. Velocity on the rear face measured by laser gage during test 

Several Edge-On Impact (EOI) tests have been also performed to characterise the multiple 
fragmentation of dry and wet concrete tiles.  This setup allows studying damage mechanisms in 
brittle materials li ke ceramics [4], rocks [5], and ultra-high strength concrete [6], under impact 
loadings.  Post-mortem observations were performed after infilt ration with a coloured hyperfluid 
resin.  The cracking pattern is compared to those revealed in spalled specimens. 

An anisotropic damage model was developed based on a micromechanical description of 
dynamic fragmentation process [7, 6].  In this work, this model is used to simulate the damage 
process of concrete specimens during spalli ng tests and EOI tests.  The model allows explaining the 
increase of strength with loading rate. Moreover, different experimental data li ke velocity measured 
on rear face of specimens by the laser and the damage patterns are crosschecked with data obtained 
from the numerical simulations.  Finall y, the modelli ng is used to highlight the possible roles played 
by microstructure on the dynamic response of concrete materials under such high loading rates. 
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DIRECT NUMERICAL COMPUTATION OF THE EFFECTIVE MATERIAL PROPERTIES
OF THE MATERIAL WITH RANDOM DISTRIB UTION OF THE MICR OCRACKS
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1. Intr oduction

In the paperdirect numericalcomputationof the effective materialpropertiesof the material
with randomdistribution of the frictionlessmicrocracksis presented.To this enda new numerical
method,threelevel finite elementmethodis introduced.Usingit problemswith very fine discretiza-
tion canbesolvedin real time. This allows computinga largepopulationof effective materialprop-
ertiesof materialswith randomdistribution of microcracks. Its statisticalquantitiesthendescribe
probabilisticdistributionof effectivematerialproperties.

2. Thr eelevel finite elementmethod

Macrolevel Mesolevel Micro level

Figure1. Threelevel discretization.

Themethodis describedwithin thecontext of a linearproblemalthoughit worksequallyfine
for nonlinearproblemswhich aresolved by iterationof linear subproblems.Figure1 shows three
discretizationlevels. Themacrolevel is thesizeof thespecimenof thematerialunderconsideration
andthemicro level is thesizewherethematerialbecomeshomogeneous.Betweenthemis a meso
level whichhasalreadycomplex structurebut is toosmallfor arepresentativevolume.After standard
FEM discretizationthe micro level degreesof freedomare statically condensedto the mesolevel
degreesof freedomwhich are further condensedto the macro level. Thus at the micro level the
basisfunctionsarestandardfinite elementfunctions,at themesolevel thebasisfunctionsarelinear
combinationsof themicro level basisfunctionsandat themacrolevel thebasisfunctionsarelinear
combinationsof themesolevel basisfunctions.

Efficiency η of thethreelevel FEM is estimatedby theratio of thenumberof thefloatingpoint
operationsof the linearsolver of thestandardFEM andthreelevel FEM. For example,we consider
a planeproblemwhich hasp2 micro cells. We groupm2 micro cells into onemesocell andM2

mesocells into onemacrocell which is just themacrostructure.Thenp = Mm. Themicro cell is
discretizedinto µ2 quadrilateralbilinearelements.It turnsoutthatfor theoptimalnumberof themeso
cellsM = (1 − 1/2µ)2/3(6 − 1/µ)p1/3 theefficiency ratio is of orderη = O(p2/3) for largevalues
of p. For example,for p = 64 the threelevel FEM is 16 timesmoreefficient asthestandardFEM.
Generalizationto multilevel FEM is possible.However, we notethaton a singleprocessorcomputer
theoptimalnumberof levelsis three.
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3. Numerical example

Although a real problemwith randomdistribution of heterogeneitiessuchasin Figure1 and
with randomdistribution of microcrackscanbeconsidered,we restrictourselvesto theplanestress
problemfor homogeneousisotropicmaterial(µ/E = 2/5) with randomdistribution of frictionless
microcracks,seeFigure2, asthisenablescomparisonwith adilutedistributionmodel[1]. Thelength
of theindividual microcracksis a = 1/64. Individual microcracksareonly in x andy directionsbut
they canbecombinedinto morecomplex patterns.At theright abarchartof thetalliesof theeffective
materialparametersbetweentheir minimal andmaximal valuesfor populationof 4000distributions
of themicrocracksis shown. In particular, thenormalizedeffectiveYoungmodulusE1 variesbetween
0.857 and0.902 with themean0.881 andstandarddeviation0.0061.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

100

200

300

400
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Figure 2. Left: a squaredomainwith randomdistribution of 640cracksalignedwith thesidesof thesquare.
Right: abarchartof talliesof materialparametersE1(red),E2(green),µ(blue)andν12(black).

Comparisonwith the dilute distribution model is shown in Figure 3. Now all micro cracks
arealignedwith the y axis. Denotingby f = Na2 the crackdensityparameter, N is the number
of microcracks,themodelpredictsthat for theprescribedunit tensilemacrostressin x directionthe
normalizedeffective Youngandshearmoduli areĒ1 = (1 + 2πf)−1 andµ̄ = (1 + 2πfµ/E)−1. It
canbeseenthatthedilute distribution modelis valid up to f = 0.04. For theprescribedmacrostrain
thematchis evenbetter. Thecomparisonvalidatesourapproachandopensthewayto approachmany
otherinterestingproblemswith microcracks.
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Figure 3. Computed(dottedline) effective moduli and moduli predictedby the dilute model(solid line).
Lower/uppercurve: normalizedYoung/shearmodulus,prescribedmacrostress/macrostrainat right/left.
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1. Introduction 

In formulating the fracture criteria an effort is usuall y made to refer to the physical 
phenomena associated with the damage processes of the material in front of the crack tip. The 
complexity of the damage mechanisms involved makes it necessary to introduce some assumptions 
that take into account the most important features of the damage process and make the analysis 
viable. There are many approaches based on the li near elastic fracture mechanics (LEFM). Some of 
them use the stress or strain energy calculated at a finite distance from the notch tip. In the case of 
the S-criterion [1] the strain energy density factor is assumed as a fracture criterion and calculated at 
a point located at a certain constant radius Cr r=  from the crack tip being independent of the 
geometry and loading conditions. A strain energy density parameter is also the basis in formulation 
of the T-criterion [2], but, opposite to the S-criterion, this parameter consists of two energy 
components: distortional, DT , and dilatation, VT , ones. The T-criterion postulates that the crack 

propagates along the direction determined by the maximum of total energy density, which is also 
the maximum of the dilatational strain-energy density evaluated on the locus of constant distortional 
strain energy density what corresponds to Mises elastic-plastic boundary. This criterion uses the 
variable radius of the elastic-plastic boundary but in the case of brittle materials it tends to S-
criterion since the size of plastic zone is then very small  and the boundary can be assume as a circle 
with a constant radius. However, in the vicinity of the crack tip other damage processes may exist, 
e.g. microcracks, especiall y, in the case of brittle materials. They may be accompanied by a small  
plastic region [3]. Then the LEFM solutions used in T- and S-criterions are not full y correct because 
the stress or strain energy are calculated at some finite distance from the crack tip. In many cases 
this distance appears to be too small  for the LEFM to be used properly to formulate some fracture 
criteria because it is not located on the boundary of the damage zone. 

2. The formulation of the new criterion 

Let’s assume the strain energy density components, DT  and VT , and a condition 

V D prmax
/T T θ→ , cf. [2], to determine the plane of the fracture. This condition means that the 

fracture appears in the direction where the ratio between the dilatation, VT  (corresponding to the 

decohesion mechanism of the fracture process), and distortional, DT  (corresponding to the plastic 

deformations) components of the strain energy density achieves its maximum value. It means that 
the crack will  propagate in direction where the dissipation energy is the smallest corresponding to 
decohesion. Now, we can assume that the angle of the crack fracture, prθ , will  follow the minimum 

value the distortional component of the strain energy density, DT , calculated on the locus 

( ) C
V V, const.T r Tθ = = , cf. [4], associated with the maximum fracture toughness, Cσ : 

(1)  ( )C cV
pr V V D V pr

min
D max

at const. ( , ) ,
T

T T T r T
T

θ θ θ→ = = → →  

where 
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T-term is the second (constant) term of the series representations of the local stress and 
displacement, while 0f =  for the plane stress and f ν=  for the plane strain. The criti cal value 
which determines the crack initiation assumes the radius of the decohesion zone along the fracture 
direction to be derived from Eq. (2) as: 

(3)  
pr

cr I II crcos sin
2 2

r r K K Kθ θ

θ θ
=

≥ → − ≥ , 

where crr  corresponds to an uniaxial test.  

3. The results 
In Table 1 the angles of crack propagation prθ for various inclinations of the main crack, α , in the 

uniaxial tension test and various relations between the loading and maximum fracture toughness are 
shown. It is interesting to point out the difference between the angles of the crack propagation for 
the same α  and different loading values. It results from the effect of the T-term included into the 
solution that simultaneously introduces a correction of the contour r, cf. Eq. 2, on which the 
components of the stress tensor are calculated. In the case of a singular solution when T = 0 the 
relationship / Cσ σ  appears to be unimportant for the fracture direction because the components of 

the stress tensor are always proportional. Accounting for the T-term causes, however, that any 
change of the ratio / Cσ σ  affects the resulting angle of the crack propagation and, the stress tensor 

components are not proportional any more. There is also important to point out that the assumption 
that the radius defining the decohesion zone is a constant value causes the relationship / Cσ σ  to be 

meaningless. 
 

 α [ ° ] 
/ Cσ σ  15 30 45 60 80 

Singular  solut. -85.7 -72.7 -59.6 -45.1 -19.3 
0.1 -86.7 -73.7 -59.6 -43.1 -15.5 
0.2 -87.7 -74.7 -59.6 -40.6 -13.5 
0.4 -89.7 -76.7 -59.6 -37.6 -11.5 
0.6 -91.2 -78.7 -59.6 -35.6 -11.0 
0.8 -92.7 -80.2 -59.6 -34.1 -10.5 
1 -93.7 -81.2 -59.6 -33.1 -10.0 

Table 1. The angle of the crack propagation based on the MK  – criterion. 
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In the paper an energy based method of fatigue li fe calculation under non-proportional 
random bending with torsion loading is presented and experimentally verified. The method 
identifies strain energy density parameter in the criti cal fracture plane through integration of the 
chosen fragments of power history according to the distinguished ranges of stresses. Round 
specimens made of steel 10HNAP (S355J2G1W) included in the standard PN-EN 10155 of 1997 
were tested. The material is a low-alloy of higher resistance to atmospheric corrosion structural 
steel. The tests performed in the high cycle fatigue regime (HCF) under variable-amplitude and 
pseudo-random combined bending and torsion loading, were held at Opole University of 
Technology [1]. The tests were carried out under narrow-band loading with the dominating 
frequency 20 Hz and 28.8 Hz the coeff icient of irregularity I = 1 and 0.99. The equivalent 
instantaneous power, peq(t), understood as a scalar product of instantaneous values of suitable 
components of the stress tensor σ ij(t) and the strain rate tensor )t(ijε& , is calculated according to the 

following relation [2] 

 (1)  )t()t()t(p ijijeq ε•σ= &  

where i, j = 1, 2, 3. 
Eq. (1) is integrated in the time interval tk+1 – tk for each distinguished stress range σij(tk+1) - σij(tk), 
and increment of the strain energy density is calculated  

 (2)  [ ] dt)t()t(dt)t(pE
1k

k

1k

k

t

t
ijijeq

t

t
k)1k(eq ∫∫

++

εσ==∆ −+ &  

The procedure of calculation of strain energy density for one stress range includes observation of 
changes of stress history and integration of suitable fragments of instantaneous power histories (Fig. 
1). Energy changes, determined in the moments corresponding to the distinguished ranges in the 
stress history, correspond to work of external forces on suitable displacements. They are identified 
with elastic energy temporaril y accumulated in the material. In the assumed algorithm of 
calculations there is a possibilit y of precise distinction of work under both compression and tension 
[2].  

 

 

 
 

 

Fig 1. Exemplary histories of stress and power with distinguished of stress σ(t), where the power 
history p(t) is integrated. 
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Calculated fatigue lives obtained from evaluation according to the strain energy density criterion 
from Eq. (2). Fig. 2 presents comparison of calculated and experimental fatigue lives for 10 
combinations of variable-amplitudes and 13 combinations of bending and torsion pseudo-random 
loading. 
 
(a) 

 

(b) 

 

Fig 2. Comparison of fatigue lives obtained from calculations Tcal and experimental Texp for: (a) 
variable-amplitudes loading, (b) pseudo-random loading. 

The greatest part of compared results for variable-amplitudes loading is included in the scatter band 
of the factor 2 and for pseudo-random loading is included in the scatter band of the factor 3. The 
test results for pseudo-random loading exceeding the scatter band of coeff icient 3 occurred at the 
safe side.    
After averaging of li fe and taking the confidence intervals into account, all  the test results were 
included into the scatter band equal to 3 (1/3). 
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 L. Sosnovskiy1, S. Sherbakov2 

  1 S&P Group TRIBOFATIGUE Ltd., Gomel, Belarus 
  2 Department of Mechanics and Mathematics, Belarusian State University, Minsk, Belarus 

 
Variety of practicall y important systems such as toothings, wheel/ rail  etc. work in conditions 

of complex stress-strain state conditioned by local contact and general non-contact volume deforma-
tion. Such mechanical systems are called active systems [1] and for them special analysis of surface 
and subsurface deformation and damage is needed. 

Generall y the analysis of interaction and damage of elements of active systems is based on 
statistical model of deformable rigid body with dangerous volume that contains the criteria for limi-
tation of dangerous volumes and the general procedure of their calculation [1]. 

Definition of forms and sizes of dangerous volumes requires the knowledge of function of 
distribution of fatigue limits for corresponding element of a system and the stress state in consi-
dered areas of interacting bodies. Dangerous volumes are finite three-dimensional areas where the 
stresses exceeding the minimum values of fatigue limit ( min1−σ ) distribution are present (figure 1). 
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Figure 1. Scheme of formation of dangerous volume for pure bending of a shaft (a)  

and console bending of a thick plate (b). 
 

Active system differs from a bent shaft because all  six independent components stress tensor 
are usuall y nonzero. Generall y the limiting state according to the criterion of contact fatigue (forma-
tion of microcracks) in some point of an active system may be reached by several various tensor 
components. Thus fatigue limit for an active system is defined for every independent tensor compo-

nent as an extreme value of its distribution under the action of limiting load lim∗F . For a homogene-

ous isotropic deformable rigid body limiting normal and tangential stresses lim)(*
nσ  and lim)(*

τσ  and 

also limiting main stress lim)(*
1σ  and limiting intensity of stresses lim)(*

intσ  are defined in the following 

way [2]: 

(1) 
( )( )dVFii

idV
n ,max lim

,

lim)(*
∗σ=σ , i=x,y,z, ( )( )dVFij

jidV
,max lim

,,

lim)(*
∗τ σ=σ , i,j =x,y,z, ji ≠ , 

( )( )dVF
dV

,max lim1
lim)(*

1 ∗σ=σ , ( )( )dVF
dV

,max limint
lim)(*

int ∗σ=σ ,  

where dV - elementary volume of the loaded body. 
Limiting stresses lim)*(±σ ij , i, j = x, y, z, lim)*(±σ i , i = 1, 2, 3, lim)(*

intσ are defined similarly for the 

general case of rigid body. 
Then the conditions for limitation of dangerous volumes are 

(2) ( ) { }kkijij VdVdVV ⊂σ≥σ= ,/ lim)(* ,    i, j = x, y, z,    
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(3) { }kii VdVdVV ⊂σ≥σ= ,/ lim)(*
1)( , i = 1, 2, 3, { }kVdVdVV ⊂σ≥σ= ,/ lim)(*

intintint
, ij

ji
T VV

,
U=   

where Vk - working volume of a deformable rigid body. 
Corresponding measures of damage are 

(4) kijij VV /=ω , kTT VV /=ω .  

Since dangerous volumes may have arbitrary and complex form and their analytical definition 
is diff icult then they are calculated using Monte-Carlo method. 

Figure 5 shows the example of calculation of dangerous volumes for the case of non-
conforming elli ptical Hertzian contact for the following initial data: 0

lim)( 3.0 pn =σ ∗ , 

0
lim)( 09.0 p=σ ∗

τ  (p0 is the maximum contact pressure in the center of contact), fri ction coefficient  

f = 0,05, ratio between smaller b and bigger a semi-axes of contact ellipse b/a = 0.813 [2]. It is visi-
ble from the given fi gures that the greatest by size are V(zz), V(xz) and V(yz) dangerous volumes cor-

respond to the greatest stresses )(n
zzσ , )(n

xzσ  and )(n

yzσ  . 

 

 

 
Figure 2. Union of dangerous volumes and its sections 

 
Since dangerous volumes are the measures of damage of deformable bodies then while analyz-

ing fi gure 2 it is possible to specify concrete areas where the origin and development of both sur-
face and internal cracks is possible. It is obvious, that occurrence of irreversible damages (primary 
cracks) have higher probabilit y where corresponding dangerous volumes intersect. 
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1. General introduction 

At the early stage on developing the analysis of inclusion problems, the bonding condition 
between the inclusion and the matrix is always considered perfectly bonded. However in the most real 
situation, the inclusion interfaces are not perfectly bonded at all especially as the temperature of the 
composite is in relatively higher level. This study provides the interfacial thermal stress analysis for 
the problems of an elliptical inclusion embedded in an anisotropic plane with imperfect interface. The 
thermal load we consider here is that the inclusion is subjected to a uniform temperature change. The 
analytical results which give the distributions of interfacial stresses are derived base on Stroh 
formalism [1] in conjunction with the techniques of using mapping functions. As to the imperfect 
interface, a spring-type model with vanishing thickness is applied such that we consider the 
interfacial tractions are continuous and the displacement jumps across the interface layer are in 
proportion to the traction components in their respective direction [2]. The non-negative interfacial 
parameter hj, n, t or z, which is the ratio of the interfacial stress and the interfacial displacement jump 
in the normal, tangential or anti-plane direction, varies from zero to infinite value. The limiting value 
of interfacial parameters, i.e. hj=0 or hj=f, imply a particular case which represents a completely 
debonded interface or a perfectly bonded interface, respectively. Therefore, our results can be applied 
to the most problems of all possible kinds of interfaces. Among the derivations of this study, due to 
the fact that the interfacial displacement jumps proportionally relate to the corresponding interfacial 
stresses, only using analytical continuation could lead to an unsolvable situation with expanding the 
solution on the inclusion domain into a complex Fourier series. To overcome this awkward situation, 
an idea of semi-inverse manipulation is introduced by virtue of applying the exact expression for a 
Fourier series, which is the multiplication of two different Fourier series [3]. According to the 
obtained distribution curves for the interfacial thermal stresses of an elliptical inclusion problem with 
an imperfect interface, the results of this research indicate that the extreme values and distributions of 
the interfacial stresses strongly depend on the values of interfacial parameters. 

2. Basic formulations 

In a coordinate system xi, i=1, 2, 3, the temperature, displacement vector u = [u1, u2, u3]
T and 

stress function vector I = [I1, I2, I3]
T on an anisotropic plane can be expressed as follows [1]  

(1)                   )}({Re2 WzgT c  

(2)                   )}()(Re{2 WD zgz cAfu � 

(3)                  )}()(Re{2 WDI zgz dBf �  

where A and B are Stroh matrices, c and d are heat eigenvectors, and g(zW) and f(zD) are arbitrary 
functions of their arguments. According to the assumptions for a spring-type model for an imperfect 
interface, the interfacial conditions at the elliptical interface are given by 
(4)                  ,0),( 0  TV ani  

(5)                  .,,, );),((),( *
00 ztnjiuauha iijij  � TTV  
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where the notation 12 )()( �   denotes for the function value jump across the interface layer and 

 represents the displacements in direction i associated with the eigenstrain. The subscript indices 
“1” and “2” stand for the associate quantities on the matrix and the inclusion domains, respectively. 
The values of the three non-negative interfacial parameters h

*
iu

n, ht, hz, in Eq. (5) can represent the 
bonding condition at the interface. By using Eqs. (1)a(3) Eqs. (4) and (5) lead to a set of simultaneous 
equations in terms of f1(zD) and f2(zD) pertaining to the exact solutions on the domains of  matrix and 
inclusion, respectively. After mapping the elliptical interface into a unit circle and then expanding 
f2(zD) into a Laurent series, the exact forms are successfully solved by virtue of introducing a 
semi-inverse approach  in conjunction with the analytical continuation method. 

3. Numerical results 

        The results of this research are presented by the interfacial shear stress curve for an orthotropic 
inclusion problem. Consider a temperature change of 100qC on the inclusion and the half  length of the 
axes a=1.5, b=1 and that the material properties of the composite system are as 

GPaE  10)( 11  , GPaEGPaE  5)( , 5)( 1312   , , ,3~1; ,4.0)( 1 jijiij z  Q  , GPaG  1)( 112  

  , , , , GPaG  2)( 113  GPaG  1)( 123  C)/1(1070)( 6
111 qu 

�D C)/1(1050)( 6
122 qu 

�D

C)/1(1050)( 6
133 qu 

�D , , CmWk q / 1)( 111 CmWk q / 0)( 122 , , CmWk q / 0)( 112

GPaE  17)( 21  , GPaEGPaE  5)( , 7)( 2322   , , ,3~1; ,3.0)( 2 jijiij z  Q  GPaG  3)( 212  , 

  , , , , GPaG  2)( 213  GPaG  1)( 223  C)/1(1070)( 6
211 qu 

�D C)/1(1050)( 6
222 qu 

�D

C)/1(1060)( 6
233 qu 

�D , , CmWk q / 1)( 211 CmWk q / 0)( 222 , , CmWk q / 0)( 212

Figure 1 shows the comparison of the interfacial shear stress distribution curves for two different 
cases: the perfectly bonded interface and the frictional sliding interface. It is obvious that the 
interfacial shear stress distribution can change evidently and the extreme value of shear stress notably 
magnifies as the interface changes from perfectly bonded to frictional sliding. 
 

 
 
 
 
 
 
 
 
 
 
      

 
 
 

Fig. 1. The distribution curves of the interfacial shear stress along the elliptical interface. 
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1. Introduction 

The fibre reinforced concrete is commonly used for industrial floors. The determination of its 
strength and ductilit y is of a major importance for the design of floors. This paper deals with 
simulations of a fracture process in concrete including steel fibres with our novel discrete lattice 
model [1], [2]. Concrete is described at a meso-scale as a four-phase material composed of 
aggregate, cement matrix, interfacial zones and steel fibres. The elements are stochasticall y 
distributed in the form of a lattice mesh using a Delaunay's construction scheme. The calculations 
are carried out for concrete specimens including steel fibres subject to uniaxial extension and three 
point bending.  

2. Discrete latt ice model 

Our lattice model [1], [2] differs from classical lattice beam models [3] composed of beams 
connected by non-flexible nodes in that it consists of rods with flexible nodes subject to 
longitudinal deformabilit y and rigid body rotation. Thus, shearing, bending and torsion are 
represented by a change of the angle between rod elements connected by angular springs. This 
quasi-static model is of a kinematic type. The calculations of element displacements are carried out 
on the basis of the consideration of successive geometrical changes of rods due to translation, 
rotation and normal and bending deformation. Thus, the global stiffness matrix is not built  and the 
calculation method had a purely explicit character. Owing to that, the computation time is 
significantly reduced. In addition, torsion in three-dimensional simulations is included. Each rod 
element is removed from the lattice if the local criti cal tensile strain is exceeded. The lattice 
elements possess a longitudinal stiffness kl (controls the changes of the element length), bending 
stiffness kb (controls the changes of the angle between elements) and torsional stiffness kt (controls 
the changes of the torsional angle between elements). The quasi-brittle material is discretized in the 
form of a 3D tetrahedral grid or a 2D triangular grid including lines. The distribution of elements is 
assumed to be completely random using a Delaunay's construction scheme. First, a tetrahedral grid 
of nodes is created in the material with the side dimensions g. Then each node is randomly 
displaced by a 3D vector of the magnitude s. Then each edge in the Delaunay mesh connecting 
those nodes forms a lattice rod. The model needs 2 parameters to randomly distribute elements in 
the lattice. The material heterogeneity is implemented by projecting it on the lattice and 
corresponding properties are assigned to relevant lattice elements with steel fibres distributed in the 
whole specimen. The material parameters have been determined empiricall y to match the 
experimental results at the macro-scale with the numerical ones on the basis of a uniaxial tension 
and compression test [2]. 

 

3. Numerical results 

Figure 1 presents results with plane concrete specimens composed of 200000 rod elements 
subject to uniaxial extension (Fig.1A) and three-point bending (Fig.1B). The average rod length was 
g=1 mm (the rod length changed between 0.3 mm and 2 mm). One assumed following material 
parameters for the cement matrix, aggregate and bond: kb/kl =0.6 (with kl=20), local εmin=0.2% 
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(cement matrix), kb/k =0.6 (with kl=60), local εmin=0.133% (aggregate), kb/kl =0.6 (with kl=14), local 
εmin=0.05% (bond) and kb/kl=1 (with kl=160), local εmin=3% (steel fibres). The aggregate density 
was assumed to be 25%. The mean aggregate diameter was d50=3.5 mm (the aggregate diameter 
changed between 2 mm and 16 mm). Five simulations were performed. The steel fibres content was 
0%, 2% and 5% respectively (with respect to the total amount of rods). The moduli  of elasticity 
were: 60 GPa (aggregate), 20 GPa (matrix), 14 GPa (bond) and 160 GPa (fibres), respectively. The 
interface had, thus, the lowest strength. 
 
A) 

  
 
                                                           a)                                                     b) 
 
B) 

  
                                    a)                                                                      b) 
 

Figure 1: Notched concrete specimens with a different steel fibre amount subject to uniaxial 
extension (A) (a) vertical normal stress versus vertical normal strain, b) crack propagation) and 

three-point bending (B) (vertical force versus vertical displacement, b) crack propagation)  
 
The results show that the presence of fibres increases both the strength and ductilit y of concrete 
elements due to a longer propagation way of cracks. 
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1. Introduction 

The sulfate corrosion of concrete is a process in which a series of chemical reactions between 
migrated sulfate ions and active concrete particles lead to the degradation of concrete structure [1]. 
The product of this reaction, a strongly expansive crystal – ettringite, exerts a pressure on the 
surrounding concrete walls, which leads to propagation of pre-existing microcracks. The ettringite 
may crystalli ze in two type of reactions: through-solution reaction and topochemical reaction. 
Despite long lasting discussion in specialized literature there’s still  no agreement between 
researchers which type of reaction leads to expansive ettringite creation. In this paper a 
micromechanical model is proposed of sulfate attack in concrete element with and without external 
load. The model involves coupled processes of nonsteady diffusion of sulfate ions (second Fick’s 
law), expansion of ettringite inclusions calculated from micromechanical solutions and 
microcracking induced by this expansion. The difference between expansions calculated from the 
model assuming a topochemical reaction and the one with a through-solution reaction of the 
ettringite crystalli zation will  be presented. The obtained solutions will  be compared with the 
experimental data in order to find out which type of reaction leads to harmful ettringite 
crystalli zation.  

2. Expansion of ett r ingite crystal 

The crystalli zing ettringite exerts pressure on the surrounding concrete walls. Depending on the 
form of the ettringite crystalli zing reaction, the pressure will  be calculated from chemical 
thermodynamics (through-solution reaction) Equation (1), or from micromechanics (topochemical 
reaction) Equation (2).  
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where R is the universal gas constant, T is the temperature, sv  is the stoichiometric coeff icient of 
ettringite, ec  and 0ec  are actual and “ in referred state” concentrations of ettringite, respectively, E is 

the Young’s modulus, v is the Poisson’s ratio, **
kkε  is the inclusion eigenstrain calculated using the 

equivalent inclusion method. When the external stress is applied, the stress caused crack 
propagation is calculated from 

(3) ( ) ( )****0****020
kkmnkkmnSkkijijmnijmnSijijij εεελδεεεµσσ −++−+=+ , 

where ijσ  is the stress field generated by the ettringite, 0
ijσ  is the external stress, Sij kl is the 

Eshelby’s tensor. 
   
3. Damage induced by ett r ingite formation 

 
Assuming that the growing spherical ettringite crystal generates a penny-shaped microcrack, the 
stress intensity factor at the crack perimeter was derived as [2]  

(4) ( )22
raa

a
IK

p
−−=

π
,  

where p is the pressure calculated from Equation (1) or (2) or (3) depending on type of reaction and 
on the applied external stress. Once the sulfate concentration was known from the solution of 
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second Fick’s law [2] and the microcrack radius from the Griff ith criterion ICI KK = , it was possible 

to determine Walsh-Budiansky-O’Connell  crack density parameter ω (ω=N<a3> ; N-number of 
cracks per unit volume, a-crack radius) and, thus, the effective diffusivity and stiffness from the 
self-consistent model and percolation theory. The microscale model was then volume averaged to 
arrive at the macroscopic constitutive stress-strain relation. 

4. Application 

The proposed model was implemented numerically to compute the expansion of a slender mortar 
prism (ASTM C490) specimen immersed in sodium sulfate solution of concentration 0.352 mol/l . 
Calculations were carried out for ettringite formation in through-solution (Fig. 1) and topochemical 
(Fig 2) reaction and when specimen was under external compressive load. The axial strain due to 
plane diffusion in x, y directions in the region with low-to-moderate microcracking is:  
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and for heavily damaged region: 

(6)  ∗∗= εftyxε I)~,~,~(  for cωω >       

where If is volume density of ettringite inclusions and 0
33σ  is the external load. The problem was 

solved numerically using FEM program coded for the present case.  

 
Fig. 1. Expansion of mortar specimen (through-solution 
reaction). Solid lines - predictions of the present model, 
circles - test data [3] 

Fig. 2. Expansion of mortar specimen (topochemical reactio
Solid lines - predictions of the present model, circles - 
data[3] 

5. Conclusions 

A micromechanical model has been proposed for the progressive damage in hardened concrete 
induced by the external sulfate attack. Expansions induced by two different types of ettringite 
formation have been studied. For the model with topochemcal reaction of ettringite formation (Fig. 
2) a good agreement with experiment data has been obtained. This supports the view of a number of 
researchers that expansive ettringite crystalli zes in a topochemical reaction. The influence of 
external load on microcracking, diffusion and axial expansion have also been considered.  
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1. Introduction 

The behaviour of concrete is very complex due to its heterogeneity, anisotropy, non-linearity 
and localisation of deformation in the form of cracks (failure mode I) and shear zones (failure mode 
II). An understanding of the mechanism of the formation of strain localisation is very important, 
since it acts as a precursor to the ultimate fracture and failure. Classical FE-simulations with 
material with softening are not able to model localisation properly. The obtained results suffer from 
the mesh sensitivity. The reason is that differential equations of motion change their type and the 
boundary value problem is ill-posed. To capture properly strain localisation within continuum 
mechanics, a characteristic length of the microstructure has to be included. It restores a well-
posedness of a boundary value problem and enables one to obtain an objective numerical solution. 
In addition, a deterministic size effect can be captured. 

The aim of the paper is to show results of realistic FE-simulations of concrete elements under 
mixed mode conditions (simultaneous occurrence of the failure mode I and II) [1]. To describe 
strain localization in concrete, three constitutive models defined within continuum mechanics were 
enriched by a characteristic length of micro-structure using a non-local theory. Alternatively, FE-
simulations of strain localiztaion were also performed using cohesive elements.  
2. Constitutive models 

First, an elasto-plastic model with isotropic hardening and softening was assumed. In a 
compression regime, a linear Drucker-Prager criterion with a non-associated flow rule was used. In 
a tensile regime, a Rankine criterion wit an associated flow rule was adopted. Second, a strain 
formulation of the damage model was used with a single scalar damage parameter. Different 
definitions of the equivalent strain measure were tested. Alternatively, a multi-fixed orthogonal 
smeared crack model was assumed. In this approach the crack was created, when the maximum 
tensile stress exceeded the material tensile strength. The orientation of the crack was described by 
its primary inclination at the formation time, i.e. the crack did not rotate during loading. To define 
softening of the material in a normal direction under tension, a Hordijk curve was assumed. After 
cracking, the shear modulus was reduced by a shear retention factor. All constitutive laws were 
enriched in a softening regime by a characteristic length of micro-structure by means of a non-local 
theory to capture properly strain localisation [2].  

As an alternative, a discrete approach using cohesive elements was adopted [3]. These 
elements were defined at the interface between standard elements to nucleate cracks and propagate 
them following the deformation process. They governed the separation of crack flanks in 
accordance with irreversible cohesive laws. A simple class of mixed-mode cohesive laws was used 
accounting for tension-shear coupling obtained by introduction of an effective opening 
displacement (including both the normal opening displacement and sliding displacement).  
3. Benchmark problems for concrete elements 

Two benchmark problems with curved cracks under mixed mode conditions were carefully 
analysed. First, a double-edge notched concrete specimen under various different loading paths of 
combined shear and tension was analysed [4]. The dimensions of the largest specimen and 
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boundary conditions are presented in Fig.1. The loading was prescribed by rigid steel frames glued 
to concrete. In one of the loading paths [4], first a shear force Ps was applied until it reached a 
specified value, while the horizontal edges were free. At the second stage, the shear force remained 
constant and the vertical tensile displacement was prescribed. Two curved cracks with an 
inclination depending of the value of the shear force (for small value of Ps – almost horizontal, for 
large value of Ps – highly curved) were obtained. 

 

 
 

Fig. 1. Test [4]: geometry and FE-results within elasto-plasticity with non-local softening 

Next, the single-edge notched (SEN) concrete beam under four-point shear loading (anti-
symmetric loading) was analysed [5]. The dimensions and boundary conditions are shown in Fig. 2. 
A curved crack starting from the lower-right part of the notch towards a point to the right of the 
lower right support was obtained both in the experiment and FE-calculations. 

 

  

Fig. 2. Test [5]: geometry and FE-results within elasto-plasticity with non-local softening 
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1. Intr oduction

A numberof recentpapershavestudiedtheevolution in timeof theshapeof thefront of planar
crackspropagating in brittle materialswith heterogeneousfractureproperties. The ultimate goal
of suchstudiesis to get a betterunderstandingof the pathof propagation of cracksin composite
materialsandgeologicalfaults.Favier etal. [1] consideredfor instancethecaseof a tensileslit-crack
propagatingin fatiguein aninfinite bodywith spatiallyvaryingParisconstant.

Theaim of thepresentwork is to lay thegroundsfor anextensionof Favier et al.’s [1] work to
asystemof twocoplanarparallel slit-cracks. Theaimof thisextensionwill beto studytheevolution
in time of theshapeof thefrontsof thecracksduringtheir coalescence.

2. Presentationof the problem

aa

b b
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δ1(z)

δ2(z)

δ1̄(z)δ2̄(z)

σ∞
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σ∞

yy
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Figure1. A systemof two coplanarparallelslit-crackswith slightly perturbedcrackfronts

Thegeometryof theproblemis representedin Figure1. Thetwoslit-crackslie in theplaneOxz.
Theunperturbedfronts1 and2 of thefirst crackarelocatedatx = a andx = b respectively, andthe
fronts 1̄ and2̄ of thesymmetriccrackatx = −a andx = −b. All frontsareslightly perturbedwithin
theplaneOxz; the local perpendiculardistancebetweentheunperturbedandperturbedpositionsof
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the front α (α = 1, 2, 1̄, 2̄) is denotedδα(z). The cracksare loadedthroughsomeuniform tensile
stressσ∞

yy
exertedat infinity.

Thediscussionof crackpropagationof coursedemandsdetailedknowledgeof thedistribution
of the(modeI) stressintensityfactorsKα(z) alongtheperturbedcrackfronts.ThevariationsδKα(z)
of theKα(z) aregiven,to first orderin theperturbation,by thefollowing formula(Rice[2]):

δKα(z) = Cα(z)δα(z) + PV
∫
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In thisexpressionthefunctionsCα dependonboththeunperturbedgeometryandtheloading,but the
functionsfα andgαβ, which aretied to Bueckner-Rice’s fundamentalweight functions,dependonly
on theunperturbedgeometry, thatis on theratiok ≡ a/b.

Althoughthework of Rice[2] doesestablishtheexistenceof thefunctionsfα, gαβ, it doesnot
provide their actualvaluesfor thespecificgeometryconsidered,whichareof courserequiredfor the
discussionof crackpropagation. The presentpaperis thereforedevotedto the calculationof these
functions.

3. Method of analysis

Themethodof calculationof the functionsfα, gαβ is similar to that alreadyusedby Leblond
et al. [3] in the caseof a singleslit-crack. Another formula of Rice [2] provides the variation of
the functionsfα, gαβ arising from an arbitrary perturbationof the fronts. This equationis applied
to specialperturbationspreservingtheshapeandrelative dimensionsof thecrackswhile modifying
their sizeandorientation.Sincefor suchperturbations,theunperturbedandperturbedgeometriesare
identicalup to a changeof scalecombinedwith a rotation,thevariationsof thefunctionsfα, gαβ are
tiedto thesefunctionsthemselves.Rice’sformulathenyieldsasystemof nonlinearintegrodifferential
equationson thefunctionsfα, gαβ, which aretransformedvia Fourier transformin thedirectionz of
thecrackfrontsinto nonlinearordinarydifferentialequationsontheFouriertransformsf̄α, ḡαβ. These
differentialequationsaresolvednumericallyonceandfor all for all valuesof theparameterk.

The casea → 0 or equivalently k → 0 is of specialinterestfor the future studyof the coa-
lescenceof thecracks.Taking this limit is a non-trivial taskbecauseit raisesa problemof singular
perturbationin Fourier’s space,implying the presenceof a boundarylayer for small valuesof the
wavenumber(large valuesof the wavelength).This problemis solved throughmatchedasymptotic
expansions.Theoutputconsistsof a systemof two nonlineardifferentialequationson thesolefunc-
tions f̄1, ḡ11̄, which is againsolvednumerically.

It is thuspossibleto obtainthe functionsfα, gαβ, at leastnumerically, for both finite andin-
finitesimalvaluesof theparameterk, andthis openstheway to thestudyof theevolution in time of
theshapeof thefrontsduringthepropagationof thecracks,includingtheir coalescence.
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1. Introduction 

Perforated membranes are often used in various engineering applications. As an example, they 

can serve for microfiltering purposes in micro-electromechanical systems (MEMS). The 

investigated square-form membrane is very thin and is made from silicon-nitride (SiN), a brittle 

ceramic material showing very good material properties concerning load-capacity, high temperature 

and chemical stability. The membrane is produced from a wafer by wet etching technology. Its 

simplified mechanical model can be seen in Figure 1.  
 

 
 

Figure 1: Simplified model of the structure 

 

The performance of the filter highly depends on the perforation rate. In order to obtain better 

filtration the perforation rate should be as high as possible [1] which diminishes the strength, and 

consequently, the load capacity of the microfilter. Adequate methods should be used in the design 

to estimate the critical pressure. In microfiltration the side-length of plates are some order greater 

than the thickness, therefore classical thin plate theories can not be applied effectively to perform 

strength analysis. A challenging mechanical problem is the treatment of the very large deflection of 

the membrane due to even small pressure. Exact solution for this problem is not known. 

Van Rijn et al. [2] worked out an analytical approximation for the maximum deflection and 

maximum load by combining a fixed-edge beam problem with a simply-supported thin plate. 

Unfortunately, their estimates do not fit well to the results of experiments. We show a simple 

method to predict the critical pressure semi-analytically from the normal stress at the middle point 

of the plate using stress coefficients obtained from finite element calculation. 

2. Analysis 

Because of the simple geometry analytical estimates based on the von Kármán plate theory 

using Ritz-method can be given for the deflection and the normal stress at the middle point of the 

fully closed membrane [3] as follows: 
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Although displacement could be determined relative good with Ritz’ method, it is not suitable to 

predict the maximum normal stress, which is proportional to the critical pressure. Some thousands 

of linear thin shell elements were used to mesh the membrane and a nonlinear finite element 

procedure using total Lagrange description was performed to calculate the stress distribution in the 

membrane. It was proved that maximum normal stress is proportional to the normal stress in the 

middle point, so that 

(3)  1max 0C Kσ σσ σ= , 

where where Cσ  and Kσ  are constant factors. Material properties were measured by experiments. 

3. Results and discussion 

In order to show the applicability of our method a physically realized structure was analyzed 

and compared with experimental results (Fig. 2). 
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Figure 2  Measured and calculated load-capacity 

 

The theoretical prediction of load capacity of perforated thin membranes requires numerical 

simulations in order to find appropriate mathematical relation between the maximum principal 

stress and the normal stress risen in the midpoint of the membrane. Once this relationship has been 

established, the load capacity can be estimated from measured or simulated mechanical response of 

an unperforated membrane. 
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Abstract 
Among many constitutive relations implemented so far in a number of commercial computer codes, the most 
advanced are those that include strain hardening and also strain rate and temperature sensitivities of flow stress. 
Almost all  of them are based on the concept of the Mechanical Equation of State (MES). One of such modern 
constitutive relations that have been proposed by Rusinek and Klepaczko (RK), [1], include an extended flexibilit y 
in an accurate approximation of materials behavior over wide range of plastic strain, strain rates and temperatures. 
The RK constitutive relation has only eight fundamental constants and the meaning of each constant is analyzed in 
detail  in this paper. The main goal of this contribution is to demonstrate some recent applications of the RK 
constitutive relation in solving a wide variety of complex dynamic boundary value problems, for example  
perforation and many others, using the Finite Element (FE) method.  
 
1. Introduction 
 

Metals and alloys used in engineering fields show different mechanical behavior depending on the strain rate 
and temperature which they are subjected to. The implementation of advanced structural materials in the 
automotive, aeronautical, metalworking and other industries created the need to introduce more advanced 
constitutive relations for engineering applications. Thus, the constants required to define the material behavior must 
be easil y identifiable, but at the same time the material response under complex stress states must be correctly 
predicted. For example, in the case of high strength steels as Weldox, DH-36 or TRIP, that are widely used in civil , 
naval and automotive industries, the thermal coupling in form of adiabatic heating cannot be neglected, especiall y at 
high strain rates and large deformations, Fig. 1. The adiabatic increase of temperature leads to thermal softening and 
plastic instabiliti es as precursors of failure. 
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Fig. 1. Comparison between experimental results [2] and RK model; a- Temperature sensitivity, b- Strain rate sensitivity  

 
   It can be concluded that a sophisticated constitutive relation must cover large strains, 0.10 p ≤ε≤ , a wide range 

of strain rates, 14
p

14 s10s10 −−− ≤ε≤ & , and an adequate range of absolute temperatures, mT5.0TK200 ≤≤ , where mT  is 

the melting temperature. However, to cover such ranges of the variables ( )T,, pp εε &  using experimental techniques is 

not an easy task. Thus, many experimental results in the form ( )T,,f pp εε=σ & , where σ  is the true stress in 

tension/compression, are frequently different for the same material. Therefore, the first step is evaluation of material 
constants which define adequate constitutive relation is an analysis of the mean experimental data.  
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2. Constitutive relation with strain rate and temperature dependence of strain hardening 
 

An advantage to predict the material behavior when subjected to high temperature and high strain rate is an 
assumption of strain hardening exponent n in general form )T,(fnn p0 ε= & , where f  is the weigh function. The rate and 

temperature sensiti ve strain hardening was introduced into constitutive modeling for the first time in an open 
publication by Rusinek and Klepaczko in 2001, [1]. It was assumed in addition that the flow stress has two 
components called the internal and the effective stress. This concept due to Seeger is based on the theory of 
dislocations. The internal stress component accounts for the multiplication and storage of the immobile dislocations 
producing strain hardening. The total stress is therefore the sum of these two components, the internal stress µσ   and 

the effective stress *σ   respectively 

                                      [ ])T,()T,(
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Where )T(E is the temperature-dependent Young’s modulus, 0E  is the Young’s modulus at K0T = . The effective 

stress component is related to the evolution of the mobile dislocation density leading to rate and temperature 
sensiti vity of flow stress. Within the framework of the MES the RK constitutive relation, [1], is given by                             
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Where )T,(B pε& is the modulus of plasticity, )T,(n pε&  is the rate and temperature dependent strain hardening exponent, 
*
0σ  is the threshold of the effective stress at T = 0 K, D1 and Tm are respectively the material constant and the 

melting temperature. Typical value for the strain rate upper limit is 17
max s10 −≈ε& . Because the set of those 

constitutive equations is assumed to be applied also within a wide range of temperatures, assumed temperature 
values vary in the range 2/TTK50 m≤≤ . Two limits in Eq.(2) are imposed: if <*> < 0 then <*> = 0, also if n < 0 
then n = 0.  The two stress components are corrected for the temperature-dependent rigidity of the crystalli ne lattice 
via the temperature variations of Young’s modulus E(T) as reported originall y by Klepaczko, [3]. Moreover, a stress 
correction for the adiabatic increase of temperature is described using the equation of energy balance. Theory of J2 
plasticity for isotropic behavior combined with the implicit integration scheme for finite element simulation is the 
base for a wide range of applications, as shown in Fig.2. An original implicit algorithm developed by Zaera and 
Fernández-Sáez, and reported in [4],  is used to solve incrementall y the set of RK constitutive equations defined 
above. With this algorithm many dynamic problems can be simulated by finite element codes. The material 
constants of the RK constitutive relation are identified so far for more than twenty materials, mostly steels used in 
the aeronautical and automotive industries.  
  

Plastic instabilit y during perforation process: 
Petalli ng 

 

 

 

 
Fig. 2. Numerical simulation of perforation process using RK model to describe behavior of DH-36 steel 
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1. Introduction 

Machine and constructions elements often undergo multiaxial sequential cycle loading. Though 
fatigue li fe of materials has been studied for a long time and enough of experimental data has been 
accumulated, problem of multiaxial irregular loading low-cycle fatigue is still  actual. Many 
attempts to describe fatigue damage process were made, which resulted in many developed models 
of damage accumulation. The most wide-spread is the conception of linear damage accumulation, 
offered by Miner. This approach is easy to use but it does not give adequate estimation of li fe in 
many cases. It is studied influence of sequential loading effects on the titanium alloys B

Т
9 and 

BT1-0 fatigue damage and under tension-compression, torsion and 90° out-of-phase non-
proportional loading. 

2. Extend 

The test results on low-cycle fatigue of titanium alloy В Т
9 and technicall y pure titan В Т

1-0 
under biaxial loading are given. It is also determined that damage accumulation process for full y 
reversed pure torsional fatigue experiment is described in the best way by linear damage 
accumulation rule and has a nonlinear character for tension - compression. The paper shows that a 
deviation from linear damage accumulation law for tension - compression of both materials under 
«low - high» sequence loading is bigger in comparison with «high - low» sequence loading. It is 
obtained that a damage accumulation under «non-proportional - proportional» sequence loading is 
more intensive in comparison with «proportional – non-proportional» sequence loading. 

Earlier in the paper [1] the criterion for multiaxial regular cycle loading was proposed. This 
criterion is based on the non-proportional strain parameter [2]. Analyzing calculation data one can 
see that during the appli cation of the criterion [1] and the linear damage accumulation hypothesis 
the best correlation of the predicted and test data is obtained for alternating torsion. As a result, one 
can come to a conclusion about the linearity of damage accumulation process for a given loading 
type. The combined application of this criterion and damage curve approach by Manson and 
Halford [3] showed the high level of predicted and test data correlation for all  the loading 
programmes except the alternating torsion. So the following modification of the Manson and 
Halford approach is proposed: 
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determines the dominating type of the strain state. 

3. Conclusion 

Suggested method for metal alloys fatigue li fe estimation under irregular multiaxial low-cycle 
loading is based on damage curve approach. 
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Application boundaries of the proposed method for different deformation path have been 
analyzed. It is shown that the suggested method can be successfull y used for fatigue li fe estimation 
of materials with different sensitivity to non-proportionalit y loading. 
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SIMULATIONSOF CRACK GROWTH IN PIEZOELECTRIC STRUCTURES WITH
MODERN, AUTOMATIC AND EFFICIENT FINITE ELEMENT SOFTWARE

Ł. Jański, M. Kuna and M. Scherzer
Instituteof MechanicsandFluid Dynamics, TU BergakademieFreiberg, Germany

1. Motivation

Sensors and actuators are nowadays standard components of many modern adaptive mecha-
nical systems. The role of these components implies frequently the application of piezoelectric and
ferroelectric materials by their construction. The implementation of these sensors and actuators into
mechanical systems leads to common problems associated with mechanical loading e.g.: providing
of a satisfactory strength, durabilit y and fracture resistance. Electromechanical sensors and actua-
tors, however, are loaded not only mechanically but also electrically. This means also the case when
the external force has a purely mechanical character and their internal response is electromechani-
cal. Such behaviour can be observed due to the electromechanical coupling property of piezoelectric
and ferroelectric materials. To assure asatisfactory fracture resistanceof sensors and actuators, the
knowledgeof electrical as well as mechanical fields in thevicinity of cracks isnecessary. This infor-
mation makes the evaluation of the cracks behaviour under electromechanical static or cyclic loads
possible. Electrical and mechanical fields in the vicinity of cracks can be obtained with classical so-
lution strategy of complex functions theory. This strategy, however, can be in general used only for
infinitedomains. On theother hand, real engineeringtasksalwaysrefer to finitedomainswith special
electromechanical boundary conditions. Thefinite element methodisusually used to obtain electrical
andmechanical fields in thevicinity of cracks for real problems. Variousvariantsof thismethod have
already been tested for stationary cracks in homogeneous piezoelectric structures [1]. There are still
many open questionsconcerningfatigue crack growth under electromechanical alternatingloads. The
present work should give at least some answers to these questions. To reach this aim, a special finite
element tool is developed for modelli ng of a crack growth in piezoelectric structures and simulations
of the crack growth are realised. The structure of this tool, shortly described in the following part of
thisabstract, iscrucial for the effectivity of thesimulations.

2. FE-program structure

The developed finite element tool is composed of four modules. The piezoelectric boundary
value problem is solved with the finite element method in an adaptive manner in the main module.
The finite element discretisation of the piezoelectric boundary value problem leads to an indefinite
formulation. TheBramble-Pasciak preconditioner [2] isused to avoid complicationsarisingfrom this
fact. The preconditioned linear system of equations is solved with the conjugate gradient method.
Because high gradients of the stressand the dielectric displacement associated with a crack tip are
expected in the solution, an automatic, adaptive algorithm for the finite element mesh density opti-
misation is implemented. Information associated with the edge hierarchy established in the adaptive
processisused for the construction of avery efficient hierarchic preconditioner.

Fracture parameters, e.g. mechanical and electrical intensity factors, are calculated in the sec-
ond module. The implementation necessity of the crack tip finite elements in each adaptive step is
avoided with the application of the interaction integral technique [3]. The asymptotic solution [4] is
chosen as the auxili ary field in the interaction integral technique and also utili sed by the construction
of the Irwin’smatrix [5].
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Fracture criteria are evaluated and thedecision undertaken whether the crack propagates or not
in thethird module. If thedecisionispositive, theparameters such asthelength andtheorientation of
an incremental crack advance are calculated. At this juncture, classical fracture criteria of the linear
piezoelectric fracture mechanics e.g. based on the circumferential stressor the mechanical energy
release rate can beused in thefirst approximation.

SFB 393 - TU Chemnitz

Figure 1. Finite element mesh arounda crack with akink.

The crack propagationisautomatically realised in thefinite element mesh in thefourth module.
On one hand the length and the orientation of the incremental crack advanceobtained in the former
module arephysically determined, ontheother the crack propagationcan beonly realised alongfinite
element edges which depend strictly on a meshing strategy. Consequently, new finite element nodes
andedgesmust be constructed to let the crack grow. In Figure1, an exampleof afinite element mesh
arounda crack with akink which automatically propagated from the crack is presented.

3. Simulation results

Mechanical and electrical intensity factors are calculated for configurations, e.g. kinked crack,
Griffith’s crack, for which analytical solutions are know and appropriate factors compared to prove
the efficiency of the first and the second module. Kinks are automatically generated for various
orientations to test the fourth module. Crack propagation simulations are carried to check the third
module and thewholefinite element software. The resultsare analysed and discussed.
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It is the intention of this paper to calculate the distribution of thermal stresses in a periodic 
two-layer space containing an interface absolutely rigid circular inclusion under a verticall y uniform 
heat flow (see Fig. 1). The corresponding problem involving thermal stresses induced by an 
interface crack was analyzed in [1]. 

 

 
 
Fig. 1. An interface rigid sheet-like inclusion in a two-layered periodic space with heat flow. 

An approximate analysis is carried out within the framework of linear stationary 
thermoelasticity with microlocal parameters [2]. The advantage of this approach is a relatively 
simple form of the governing equations appearing similar to the thermoelasticity for transverse 
isotropy, which makes it possible to construct the appropriate potentials and establish an analogy 
between the thermal crack problems and their mechanical counterparts.  

A two-staged method for obtaining the solution is used. The steady-state temperature field is 
first determined taking into account the thermal resistance of the inclusion. Next,  the associated 
induced thermal stresses perturbed problem is solved by using the potential method, developed in 
[3], and by reducing to one in the classical potential theory. A complete solution in elementary 
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functions is given due to the results achieved in [4]. Exact expressions for the thermoelastic field at 
the plane of inclusion surface are explicitl y derived . It is observed [5] that the thermal stress fields 
near the inclusion front at the inclusion surfaces have the typical (nonoscill ating) inverse square 
root singularities. From the standpoint of classical fracture mechanics the results obtained suggest 
that failure of the material surrounding the inclusion border is described by two mechanisms: Mode 
II  (shear) and separation of the material from the inclusion.  
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1. General 

The analysis of concrete elements is complex due to their stiffness degradation during cyclic 
loading caused by strain localization in the form of cracks and shear zones. The determination of 
the width and spacing of strain localization is crucial to evaluate the material strength at peak and in 
the post-peak regime. 

The aim of the present paper is to show the capability of two different coupled elasto-plastic- 
damage continuum models to describe strain localization and stiffness degradation in concrete 
elements subject cyclic loading during bending, uniaxial compression and extension. First, a 
coupled elasto-plastic-damage model based on the idea by Pamin and de Borst [1] was used [2]. 
Second, a coupled elasto-plastic-damage model using the formulation proposed by Carol et al. [3] 
and Hansen and Willam [4] was taken into account. 

To describe properly strain localization, to preserve the well-posedness of the boundary value 
problem, to obtain FE-results free from spurious discretization sensitivity and to capture a 
deterministic size effect, a integral-type non-local theory was used as a regularization technique in a 
softening regime [5]. It was achieved by weighted spatial averaging over a neighborhood of each 
material point of a suitable state variable. Thus, the stress at a certain material point depended not 
only on the state variable at that point but also on the distribution of the state variable in a finite 
neighborhood of the point considered. 

2. Coupled models for concrete 

The first coupled model [1], [2] combines non-local damage with hardening plasticity and 
assumes that total strains are equal to strains in a undamaged skeleton. Plastic flow can occur only 
in a undamaged specimen, thus an elasto-plastic model is defined in terms of effective stresses. As a 
consequence, the damage degradation does not affect plasticity.  

In the second coupled model [3], [4], plasticity and damage are connected by two loading 
functions describing the behaviour of concrete in compression and tension. The model assumes that 
the damage approach simulates the behaviour of concrete under tension while plasticity describes 
the concrete behaviour under compression. According to this assumption, a failure envelope is 
created by combining a Drucker Prager formulation in compression with a damage formulation 
based on a conjugate force tensor and pseudo-log damage rate in tension. Both models require only 
few material parameters. Except of the Young modulus and Poison’s ratio, the following parameters 
need to be defined: initial value of strain when damage starts, two parameters describing the 
damage growth and ratio between the compression and tensile strength to define the equivalent 
strain measure (when using a modified von Mises definition) in the first model, and the internal 
friction angle, dilatancy angle, softening function in compression and fracture energy with its elastic 
part to describe the resistant function in tension in the second model. 

3. FE-simulations 

The mesh-independent FE-results for concrete beams under cyclic loading were compared with 
corresponding laboratory tests [6], [7]. They show that the both models were able to proper describe 
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the behaviour of concrete under cyclic loading. Fig.1 shows a comparison with experiments on 
concrete beams under bending subjected to cyclic loading [6] using the first coupled elasto-plastic–
damage model. The numerical result fits the experimental data quite well . 

However, both models have also some disadvantages. In the fist model is hard to properly define 
all  parameters to control both plasticity and damage at the same time. In addition, there is no clear 
distinction between elastic, plastic and damage strains. In turn, the second model is not able to 
reproduce plastic strains in compression during cycling loading. So it implies a necessity to improve 
the models to couple damage and plasticity more realisticall y in one formulation. 
 

 

Fig. 1: Calculated load-displacement curves for a coupled elasto-plastic-damage model with non 
local softening during cycling loading compared with experimental data [6] 
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1. General 

Identification of damage material parameters is one of the most important and most 
contentious aspects of the continuum damage mechanics. The incorrect identification may leads to 
wrong results, even if a good model is applied. 

In this communication, the Lemaitre’s isotropic damage model [1], regarding the concept of 
the damage variable proposed by Kachanov in 1958 [2], is concerned. In the literature different 
methods of damage material parameters identification for assumed model are applied. The 
identifications are based on different foundations and use results of different experiments: the 
uniaxial tensile tests or the uniaxial reversed cyclic tests. In their approaches authors calibrate both 
S and s damage coeff icients or assume s calibrating only S. Each of them is applied for different 
material type, and very seldom researchers tried to conduct these identifications for one material 
and compare the results with experiment to give the answer which of them is the most suitable. 

The authors of this paper have applied all  presented identification methods for calibration the 
damage coeff icients for the Al2017 aluminum. Then the results have been compared with the real 
experiment by numerical modeling, using the elasto-viscoplastic Chaboche [3] model with damage.  

2. Damage model formulation 

The isotropic damage is expressed by the scalar parameter D, which is the surface density of 
the discontinuities in the material. Its evolution, according to Lemaitre [1], is defined by equation: 
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where s and S are the damage material parameters, p& is the accumulated plastic strain rate and Y is 
the damage strain energy release rate, given by: 
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where ν is the Poisson’s ratio, E is the Young’s modulus of undamaged material, σeq is the Huber-
Misses equivalent stress and σH is the hydrostatic stress. 

3. Methods of the material parameters identification 

The first presented method of the material parameters identification for isotropic damage is 
proposed by Mashayekhi and Ziaei-Rad [4]. This identification is conducted on the basis of the 
uniaxial reversed cyclic test and based on the foundation that the damage exponent s is arbitrary 
assumed. When the damage exponent s is known at the beginning, the damage strength parameter S 
can be calibrate directly from the equation: 
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where σ is the stress and εpl is the inelastic strain, both in uniaxial loading conditions.  
 The second method is proposed by Daudonnet [5]. It is conducted on the basis of the same 
experimental tests, but does not introduce the material parameter assumptions, both s and S 
parameters are calibrate (the last square method approximation): 
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 The last method is proposed by Ambroziak [6]. This identification does not need to conduct 
the reversed cyclic tests, it is based on the simple uniaxial tensile test with the constant strain rate 
but has two disadvantages. The first is, similar to Mashayekhi and Ziaei-Rad approach: the 
assumption of the damage exponent s at the beginning, the second is the assumption that rupture of 
the specimen is specified while the damage parameter D = 1 (performing the tensile test instead of 
the reversed cyclic does not allow to identify D). The damage strength parameter S, in this method, 
is calibrate from the equation: 
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4. Identification and validation of material parameters for  Al2017 aluminum 

The best method to certify, which identification is the most suitable, is to conduct all  of them 
for one material type and compare the results with the real experiment. The authors decided to 
choose Al2017 aluminum, the selected results are presented in Table 1. For the methods 
comparison, the numerical simulation of the uniaxial tensile tests with the constant strain rate, has 
been applied. The detail  results and final conclusions will  be presented during the conference. 

Method Exponent s [-]  Strength parameter S [MPa] 

Mashayekhi and Ziaei-Rad s = -1 (assumed) S = 2,67 

Daudonnet s = -0,88 S = 2,92 

Ambroziak s = 1 (assumed) S = 0,23 

Table 1. Results of the damage material parameters identification 
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EXTENSION OF ISOTROPIC MULL INSMODELS TO
ANISOTROPIC STRESS-SOFTENING MODELS
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1. Abstract

The Mulli ns effect in rubber-like materials is inherently anisotropic. For example, in Pawel-
ski [1] homogeneous plain strain compression experiment, after loading from a virgin state and un-
loading, the block is rotated by90 degrees and compressed; it was foundthat the non-virgin material
behaves almost like avirgin one, which indicates that stress softening in the first direction has hardly
any influenceonstress softeningin thedirection orthogonal to thefirst. Thisanisotropicbehaviour can
also be foundin other experiments [2] [3]. However, most modelsdeveloped in thepast, for Mulli ns
effect, are isotropic. Nevertheless, recently, Shariff [ 4] developed a constitutive equation that char-
acterizes anisotropic stress softening. Shariff’ s [4] theory compares well with several anisotropic
experimental data and is consistent with expected behaviour. In this paper, based on Shariff’ s [4]
theory, we proposed a model that can easily extend some well known isotropic models [5] [6] to
describe incompressible anisotropic behaviour of Mulli ns phenomenon; hence indicating the gener-
ality of the proposed model. The quasi-static constitutive equation is purely phenomenological and
doesnot take account theunderlying physical structureof thematerial; henceit can be applied to any
incompressible material exhibiting anisotropic stress softening induced by strain. We treat the virgin
undeformed material as isotropic and are not concerned with hysteresis, residual strain and, thermal
and viscoelastic effects.

Weuse aprincipal axestechniqueto facilit ateour anisotropic modelli ng. Thistypeof technique
is also used by Shariff [ 7] to derive anovel constitutive equation for an incompressible transversely
isotropic hyperelastic solid. In the proposed model, a set of damage parameters which depend on
the history of the principal-direction line elements is proposed. Together with this, we introduce a
general concept of damage function to facilit ate the analysis of anisotropic stress softening. The ef-
fect of shearing onstress softening materials is described via shear-history parameters; they are the
maximum and minimum values of the cosine of the angle between two principal-direction line ele-
ments throughout thehistory of thedeformation. Thedamage andshear-history parametersare intro-
duced into the constitutive equation viasymmetric, second order, damage andshear-history structural
tensors, respectively. The damage tensor is positive definite. The ”free” energy is expressed as a
function of principal stretches and invariants of the dyadic products of the principal directions of the
right stretch tensor and the two structural tensors. In thiscommunication, weonly consider a classof
free energy functions that is asubset of a wider classof f ree energy functions proposed in this paper.
Energy dissipation is shown via theClausius-Duhem inequality.

The generality of the proposed damage function allows us to easily extend some existing well
known isotropic models to model anisotropic behaviour of Mulli ns effect. In order to demonstrate
the capabiliti es of the proposed theory, results are given for several types of homogeneous deforma-
tions. For some of these deformations, we show that the non-virgin stressfree configurations have
certain typesof anisotropywhich are consistent with previousconjectures [8]. We also show that our
theoretical results comparewell , qualitatively and quantitatively, with published experimental data.
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1. Introduction 

One of the most important aims of micromechanical modeling is the determination of 

effective material properties of bodies containing microcracks [1, 2]. There are several theoretical 

approaches to analyze these problems. In the non-interacting method, it is assumed that the 

microcracks are isolated in the initial undamaged material. In the self-consistent method, the 

microcracks are embedded in the effective medium. The influence of interactions is simulated by 

reducing stiffness of the surrounding material. In the differential method, similar to the self-

consistent method, one isolated crack is considered in the effective material. The interactions are 

taken into account through an incremental increase of crack densities and the effective modulus of 

the matrix is recalculated at each iteration. The interactions cause softening and effective moduli are 

lower than predicted by the non-interacting method. These theoretical methods usually give 

accurate results for low crack densities. 

 More general cases can be considered using numerical methods. Renaud et. al. [3] applied 

the indirect boundary element method (BEM) – the displacement discontinuity method to compute 

effective moduli of brittle materials weakened by microcracks. Structures with microcracks of 

different size, location and orientation were investigated. The structures were subjected to tensile 

and compressive loadings. In the last case an iterative algorithm was used to analyze cracks in 

contact with friction. The numerical results were compared with theoretical approximations. For 

microcracks in finite bodies good agreement with the differential method was obtained. Contact 

with friction decreases the effect of randomly distributed cracks on effective compliance. Huang et. 

al. [4] used the boundary element method and the unit cell method to calculate effective properties 

of solids with randomly distributed and parallel microcracks. In the BEM the modified fundamental 

solutions were used. The method does not require integration along the crack surfaces. Traction free 

cracks were considered. The results agree well with the differential method for low crack densities 

and with the generalized self-consistent method for high crack densities. Zhan et. al. [5] applied a 

series expansions of complex potentials and the superposition technique. The governing equations 

were solved numerically using the boundary collocation procedure. The effective Young moduli 

were calculated for randomly distributed and parallel cracks. The results were compared with 

various micromechanical models and experimental results. For randomly oriented cracks the results 

agree with differential method and for parallel cracks the moduli are below non-interacting solution 

and above the differential results. 

 The effective moduli were also determined experimentally by Carvalho and Labuz [6]. 

Artificially cracked aluminum plates with randomly distributed slots were subjected to tension. The 

experimental results agree well with the non-interacting approximation even for high density of 

cracks, where interactions are expected to occur. The authors found that the number of slots should 

be about 20 to guarantee the randomness of distribution. 

 Structures with high density of cracks have small Young moduli, however there is no direct 

quantitative correlation between the stiffness and damage [1]. Local positions of microcracks have 

strong influence on stress intensity factors while the effective modulus, which is a volume average 

quantity, is insensitive to such distributions. 
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2. The boundary element method for static and dynamic crack problems 

 In the present work microcracks in two-dimensional, linear-elastic, isotropic and 

homogenous solids will be analyzed using the dual boundary element method (DBEM) [7]. In this 

approach only boundaries of the body and crack surfaces are divided into boundary elements. The 

variations of boundary coordinates, displacements and tractions are interpolated using shape 

functions and nodal values. In the DBEM the relations between boundary displacements and 

tractions are expressed by the displacement and traction boundary integral equations. The 

displacement equation is applied for boundary nodes and both equations for nodes on crack 

surfaces. For dynamic problems, additionally the time of analysis is divided into time steps [8]. In 

this method boundary displacements and tractions are computed directly. For crack problems stress 

intensity factors (SIF) can be calculated very accurately using crack opening displacements or path 

independent integrals. 

3. Numerical computations of effective elastic properties of solids with microcracks 

 The DBEM is very efficient method for analysis of effective properties of solids with 

multiple microcracks. It is very easy to generate solids with randomly distributed microcracks 

because in this approach only crack surfaces are discretized. 

 The method will be used to compute effective Young modulus and Poisson ratio for 

randomly distributed and parallel microcracks in bodies subjected to static loadings. The influence 

of crack density on effective properties of cracked materials will be investigated. The numerical 

results will be compared with available theoretical and experimental results. Additionally, stress 

intensity factors will be analyzed for various structures. The influence of microcracks densities on 

velocities of waves will be investigated for cracked bodies subjected to dynamic loadings. 

4. Conclusions 

 Computations of effective material properties of damaged structures require analysis of 

many structures having different configurations of defects. The boundary element method is very 

efficient for such problems because modification of defects is simpler than in methods, which need 

discretization of the whole domain of the body. Contrary to analytical methods, solids with high 

density of cracks, curved and intersecting cracks can be considered. 
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1. Introduction

The investigation of inelastic deformation and failure of composites is associated with the

necessity to develop mechanical models for the correct description of the behaviour of damaged

heterogeneous materials in elements of structure. Besides, there is a need to improve the procedures

of strength analysis in order to take into account actual loading conditions and the evolution and

character of the collective interaction in a system of defects which determines the instant of

macrofailure, when the damage accumulation becomes unstable. Without understanding the

regularities and mechanisms of damage accumulation, without evaluating its stability and

determining the conditions of localization begining, the macrofracture of composites will remain

latent and poorly predictable phenomenon of internal structure evolution of the material.

2. Regularities of damage evolution in granular composites

         

Figure 1. Uniaxial compression stress-strain diagrams under different lateral pressure CV  (a).

Dilatation under uniaxial compression with different stiffness of the loading system R  (b).

Stable stress-strain states corresponding to the instant of macrofailure are marked by arrows

The two-level-phenomenological structural model for granular composite was developed with

the aim to study the character of collective multi-particle interaction in the defect ensemble, the

general laws and the change in failure mechanisms and scale levels of damage evolution under

combined triaxial quasistatic loading. A partial or complete loss of load-carrying capacity by

structure elements is connected with violation of strength conditions and, as consequence, with

jump-like changes of deformational characteristics. The model allowed us to describe the inelastic

deformation accompanied by inclination and coarsening of defects as a multistage process of

damage accumulation and to determine the instant of composite macrofailure as a result of loss of
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stability of this process. In the course of computational experiments, we found and analyzed such

regularities of mechanical behaviour of granular composites as the strains corresponding to the

instant of macrofailure and the character of damage evolution in relation to the stiffness of the loa-

ding system, the effect of lateral pressure on strain-softening (Fig. 1, a), the dilatation under unia-

xial compression (Fig. 1, b), the unequal resistance of heterogeneous bodies, and the self-supported

accumulation of defects. A nonlocal critical dimensional lengths constant for damaged solids is

found to exist, which does not depend on the type of stress-strain state and quasistatic proportional

and nonproportional loading modes. The constant determines the instant of transition from the stage

of accumulation of disperse damage to a localized failure and to the strain-softening. The new

nonlocal criterion allow one to determine a unique quantitative relation between the connection of

damaged domains and the regularities in the behaviour of isotropic and anisotropic media.

3. Micro- and macrofailure of fibre-reinforced composites

         

Figure 2. Effect of 'quantum' damage evolution under hydrostatic displacement-controlled

compression ***
332211 H� H H , 033 !H

*  (a) and macrofailure of glass-epoxi plastic

with fibre void fraction 40.v f   under antiplane shear 013 !H
*  (b)

The structural stochasticity of unidirectional composites is caused by randomness of the

shape, relative arrangement and orientation of fibres and the scatter of fibre diameters. Computatio-

nal experiments in transverse shear and tension, uniform tension in the reinforcement direction, and

antiplane shear showed that the effective elastic moduli, which were determined for the representa-

tive volume element of composites with account of multiparticle interaction in the system of rein-

forcement elements, did not depend on the symmetry and asymmetry aspects of the distribution

laws. But the asymmetry aspect was influenced significantly by the fractional structure of the mate-

rials, as well as by the character of multiparticle interaction at distances from half to two averaged

fibre diameters. These length scales predetermined the character of strain and stress inhomogenei-

ties in undamaged composites and significantly influenced the damage evolution scenario at the

initial stage of quasistatic loading. The effect of 'quantum' damage evolution under hydrostatic com-

pression (Fig. 2, a), which not depends on the type of statistical distribution law of fibre diameters,

was found out and investigated. Qualitative coincidence of macrofailure in computational experi-

ments (Fig. 2, b) with results of mechanical tests in antipain shear of glass-epoxi plastics is shown.
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Abstract 

The structures like concrete or bricks wall  are often subjected of unique loadings. For 
example the blast wave as well  as impact belongs to this type of loadings. The paper presents only 
the first class of structural external forces, that comes from an explosion of the material as TNT. To 
describe properly the pressure wave propagation in the air, produced by detonation, which acts on 
the structure, it is necessary to simulate the explosion and the waves’  motion. In the numerical 
simulation of the explosion process, we accept the Jones-Wilkens-Lee (or JWL) equation of state 
for TNT and typical equation of state for air [1]. The data of TNT and the air are in Tab. 1. Using 
these values of material parameters and ALE description of deformations guarantee the proper 
solution of explosion simulation and finall y the distribution of pressure loading on structure. There 
are many analytical functions in literature [1], which describe the influence of time and distance 
from the ignition on the pressure distribution. The numerical simulation results [2] are compared 
with analytical functions of the blast to validate the accepted models. The results of the pressure 
distribution change depends on time after explosion and the distance from the ignition point are 
presented in Fig. 1.  
The interaction of the fluid (air) 
with both walls is performed 
using sub-modeling. There are 
two kinds of models for both 
cases, the global and local. The 
global model consists the cubic 
explosive material, surrounded 
air and the structure wall . The 
local models include only 
structural parts (the concrete 
and masonry walls). Sub-
modeling technique is  accepted 
if the coupling exist in one way 
between the global to local 
models, but not in opposite. It is 
suff icient assumption for blast 
simulation. The idea of global and local models is presented in Fig. 2. When modeling 1/8 part of 
the space three planes of symmetry are assumed. The global model is extended up to 5 meters from 
the model center. It is possible to obtain the positive and negative overpressure phase on the surface 
of the structure like in experiments [1, 2]. The first kind of structure under consideration is concrete 
wall  and the second is periodic composite masonry wall  created of mortar and bricks. Both form the 
local models. Cumulative Fracture Criterion (CFC) introduced in [3, 4] and discussed before [5, 6] 
is used and has been added to Abaqus/Explicit environment by VUMAT procedure. This criterion 
in integral form is as following: 
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Tab.1 EOS parameters 
AIR 

R=287(J/(kgK)), 
ρ=1.293(kg/m3), 
pA=101325(Pa), 

Em0=0.193e6(J/kg), TZ=0(K), 
T0=288.4(K), 

cv=1003.5(J/(kg K)) 
TNT 

A=3.73e11(Pa), 
Β=3.74e9(Pa), R1=4.15(-), 

R2=0.9(-), Em0=(J/kg), ω =0.35(-), ν
d=6930(m/s), 

ρ0=1630(kg/m3) 
 

Fig. 1 The positive and negative 
overpressure (above or below 

atmospheric pressure) 
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1. Introduction 

Cyclic deformation, fatigue crack initiation and fatigue crack growth, as the basic fatigue 

properties of materials, have been widely studied by many researchers and many achievements have 

been reached=�?. In fact, nearly 90% of total fatigue of most materials is at the stage of cyclic 

deformation and crack initiation, so trying to clarify cyclic deformation behaviour of materials is of 

much importance not only in theory research, but also in engineering application
[2]

. Up to date, most 

research works in literature about this are on the cyclic deformation behaviour of annealed materials. 

Recently, the cyclic deformation behaviour of materials with prestrained history has also been 

studied because of its industrial application background. However, some aspects about it are not 

very clear yet, further system study is necessary. The present work is mainly about the cyclic 

deformation behaviour of low-carbon steel prestrained, the mechanical properties, the dislocation 

structures as well as the relationship between them are emphasized in this paper. In addition, the 

tensile deformation behaviour of low-carbon steel prestrained in fatigue is studied. 

2. Experimental Procedure 

The material used in this investigation was Q235 hot-rolled steel plate with chemical 

compositions of (in wt%): 0.14C, 0.17Si, 0.40Mn, 0.012P, 0.006S.For the mechanical tests, two 

angle value (namely 3=0º and 3=45º, 3 is the angle between the loading direction and the rolling 

direction) were chosen in each case. The dimensions for the specimens are shown in Fig.1. 

 

Fig.1 Dimensions of specimens (mm) 

Tension-fatigueÖFor the preloading in tension, tests were performed until strain amount 

reached these value: 2%, 5%, 10%Èthe subsequent fatigue tests were performed under three 

different constant plastic strain amplitudes: 0.6h10
-3

,  1.5h10
-3

,  2.5h10
-3

. All the fatigue tests were 

conducted until the specimens were saturated. Fatigue-tensionÖThe preloading in fatigue as well as the 

subsequent fatigue of the tension-fatigue testsÈthe subsequent tension tests were conducted until 

the specimens were rupture.   

3. Result and Discussion 

Tension-fatigue: In the tests, the cyclic softening phenomenon happened at both case. In 

general, at both cases, a higher tension prestraining amount leads to a higher axial stress at the 

beginning of cyclic deformation under same applied plastic strain amplitude. The axial stress of 

all specimens in present study remains constant during the major part of cyclic deformation, 

which means stress saturation. With the amplitude increasing, the saturate stress of higher tension 

prestraining amount is lower than that of lower tension prestraining amount. 
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In � � 45qcase, the axial stress at the beginning of reloading and the saturation stress at the 

end of fatigue tests is a little higher than that of � � 0qcase under the lower tension prestraining 

amount and the same applied reloading plastic strain amplitude. However, the tendency of cyclic 

softening curves is independent of the amplitude of strain path change under the higher tension 

prestraining amount, i.e. �  value. �
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Fig.3 Cyclic softening curve of specimen with different tension prestraining amounts at 

various plastic strain amplitude � � � 0q �
pl
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Fig.4 Cyclic softening curve of specimen with different tension prestraining amounts at various 

plastic strain amplitude � � � 45° 

Fatigue-tension: For both case (� =0º and � =45º), the yield phenomenon graduate away with 

the applied plastic strain amplitude increasing. A higher fatigue prestraining leads to a higher 

tensile strength � yield strength and a lower elongation ratio at tensile tests. In � =45º case, the 

stress level is a little higher than that of � =0º case at tensile tests. However, the tendency of 

tensile curves is independent of the strain path. 

4. Conclusion 

(1) In the subsequent cyclic deformation, with the cyclic number increasing, the dislocation 

structure formed in preloading is resolved gradually, at the end of fatigue tests, for most specimens, 

the dislocation structures are almost the same as that of specimens as if the tension preloading did 

not happen. 

(2) Tensile deformation behaviour of Q235 steel with fatigue prestraining at two amplitudes of 

strain path change was studied. It was found that for both case (� =0º and � =45º), the yield 

phenomenon graduated away with the applied plastic strain amplitude increasing. A higher fatigue 

prestraining leads to a higher tensile strength � yield strength and a lower elongation ratio at tensile 

tests. In � =45º case, the stress level is a little higher than that of � =0º case at tensile tests. 
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1. An overview  

This paper reports application of Neuro- fuzzy inference system (NFIS), self organizing feature 
map- neural networks - (SOM) and rough set theory (RST), on detection of contact state in a block 
system.  In this manner, on a simple system, evolutions of contact states, by parallelization of 
Discontinuous Deformation Analysis (DDA) method, have been investigated.  So, a comparison 
between NFIS and RST results has been presented.  The results show applicabilit y of the proposed 
methods, by different accuracy, on detection of contact's distribution.  Other benefit of our method 
is how one can insert the role of approximate analysis in the most consuming time part of the 
discrete mechanics analysis, contact detection. 

2. The proposed algorithms 

This part of paper, proposes three different flowcharts, which comprises the varying combinations 
of DDA, NFIS, SOM and RST, upon the information granulation theory and balancing between the 
successive granules (1, 2).  Information granules are collections of entities that are arranged due to 
their similarity, functional adjacency, or indiscernibilit y relation.  The process of forming 
information granules (2) is referred to as IG.  There are many approaches to construction of IG, for 
example SOM, Fuzzy C-Means (FCM), and RST.  The granulation level depends on the 
requirements of the project.  The smaller IGs come from more detailed processing.  On the other 
hand, because of complex innate feature of information in real world and to deal with vagueness, 
adopting of fuzzy and rough analysis or the combination form of them is necessary.  In this study, 
the main aim is to develop a hierarchical extraction of IGs using three main steps: 

1-Random selection of initial crisp granules: this step can be set as “Close World”  
Assumption .But in many applications, the assumption of complete information is not feasible 
(CWA), and only cannot be used.  In such cases, an Open World Assumption (OWA), where 
information not known by an agent is assumed to be unknown, is often accepted. 

2- Fuzzy granulation of initial granules: sub fuzzy granules inside precise granules and 
extraction of if-then rules. 

3- The close-open iteration: this process is a guideline to balancing of crisp and sub fuzzy 
granules by some random selection of initial granules or other optimal structures and increment of 
supporting rules, graduall y. 

3. Results 

The Contact State (C.S) in 2-D on   block system has four components:" no contact: 0; V-V: 1; V-E: 
2; E-E: 3", where numbers are the attributed codes .All  of training and checking data set were 100 
and 50, respectively, which were revealed from DDA.  Inputs for any block were vertexes positions 
and area (total inputs: 18).  The extraction of rules by NFIS and RST, under eliciting of best granules 
(rules and clusters) get an acceptable approximation of the distribution of contact's state (so, resulted from 
SOM), can deployed  

in the core of contact detection part of DDA or other discrete element methods (so in some lattice mechanics 
based methods). 
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1-Contact state detection by NFIS 

 
 

 
 

2-SOM-NFIS based on two forms: random and regular neuoron growth (SONFIS) 
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1. Mechanical properties of weathered broken rock 

The degree of geological disintegration, i.e. by chemical weathering or by the intensity and 
the orientation of micro-cracks, has a significant influence on the granular hardness and as a 
consequence on the resistance to compaction and shearing, which leads to phenomena such as 
rockfill creep and collapse. It is experimentally evident that the mechanical properties of weathered 
broken rock are different for dry and wet states of the material [1]. Furthermore for rockfills with 
coarse-grained and uniform particles under stress the forces at the contact areas are much higher 
than in a well graded granular material. Thus grain abrasion and grain crushing caused by the 
plastification of contact zones and the progressive development of micro-cracks are usually more 
pronounced in rockfills. When water penetrates the micro-cracks, the disintegration of the granular 
hardness of the grain ensemble can be accelerated. Grain abrasion and grain crushing change the 
grain size distribution and consequently the value of the limit void ratios of the material.   

Recently the essential mechanical properties of coarse-grained weathered broken rock were 
modeled within the framework of hypoplasticity by extending the model for unweathered stable 
grains and simple grain skeletons with a granular hardness depending on the degree of weathering 
and the moisture content [2]. In particular the granular hardness is defined as the pressure at which 
the isotropic compression curve in a semi-logarithmic representation shows the point of inflection 
(Figure 1.a). It was found by experiments that the point of inflection is related to the state where 
grain crushing becomes dominant. For the wet material the granular hardness is lower (Figure 1.b). 
The constitutive equation for the evolution of the stress is based on nonlinear tensor-valued 
functions depending on the current void ratio, the stress, granular hardness and the rate of 
deformation. The model also includes inelastic material properties, a pressure and density 
dependent stiffness and peak friction angle, strain softening and critical states. Creep and stress 
relaxation during the time-dependent process of degradation of the granular hardness are taken into 
account with an additional term added to the constitutive relation [3]. As the hypoplastic concept 
does not need to distinguish between elastic and plastic deformation the calibration of the 
constitutive constants is rather easy.  It is demonstrated that for weathered broken granite the model 
captures the essential mechanical properties within a wide range of pressures and densities both for 
dry and wet states. 

2. Shear band analysis for plane strain element compression 

While for unweathered granular materials modeled with hypoplasticity shear banding has already 
been extensively investigated in earlier publications [4], the results obtained for a weathered broken 
rock [2] will be discussed in the present paper. Based on the general bifurcation theory the 
possibility of a spontaneous formation of a shear band in plane strain biaxial compression under a 
constant lateral stress is studied for the dry state and the water saturated state of weathered granite.  
Figure 1.c shows the evolution of the stress ratio and the volume strain under a homogeneous and 
drained element deformation starting from an initial isotropic stress state.  It is obvious that for the 
dry material the incremental stiffness at the beginning of compression and also the maximum stress 
ratio is higher than for the water saturated material. Densification is more pronounced for the 
saturated material and dilatancy can only be observed for the dry material after the peak. The 
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bifurcation analysis show that the first possibility of a shear band (marked with a dot) may appear 
before the peak. States above the first bifurcation point (dotted curves) again fulfill the bifurcation 
criterion. It can clearly be seen that the smallest stress ratio and shear band inclination for a possible 
shear band bifurcation is a little higher for the dry state of the material.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. (a) Compression curve; (b) reduction of the granular hardness for the wet material; 

(c) Plane strain compression under constant lateral stress T11 = -0.8 MPa: stress ratio T22/T11  

against the vertical strain F
22 

, volume strain FV  against the compression strain F
22 

. 

(solid curves: dry state; dashed curves: saturated state; +  = shear band inclination) 

 

(c) 

 

 (a) 

(b) 
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1. General 

During the installation of open-ended piles two mechanisms of penetration can occur 
depending on the ground conditions, load type and the dimensions of the pipe: 1) The soil enters 
continuously into the pipe, 2) a soil plug develop, which impedes subsequent entry of soil. From the 
practical point of view, soil plugging have the positive effect of increasing the bearing capacity of 
the pipe towards that of a closed-ended pile. At the same time, the driving resistance can become 
considerably larger than that expected for unplugged conditions.  
 

At the present, the calculation of the driving resistance and bearing capacity of open-ended 
piles are based on empirical assumptions and does not consider the effect of soil plugging properly. 
The common procedure for geotechnical design consists in assuming plugged conditions for 
driveability analysis and unplugged conditions for the determination of bearing capacity. 
Obviously, this approach is conservative and may lead to heavier driving equipment and too long 
piles and thus, may result in uneconomical design. Methods which apply empirical reduction factors 
to the equivalent capacity of a closed-ended pile are questionable and unsafe, as ground conditions, 
pile dimensions and load conditions of the pile cannot be rationally accounted for.  
 

In this contribution a model is proposed for both the prediction of soil plugging during driving 
and the evaluation of the bearing capacity depending on plugging conditions. The model is 
validated using experimental data from the literature. The application of the proposed approach is 
shown exemplarily by means of a case study. 
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AGE-DEPTH CORRELATION, GRAIN GROWTH AND DISLOCATION ENERGY

EVOLUTION, FOR THREE ICE CORES
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Two previous theoretical analyses of data from the GRIP, Vostock and Byrd ice cores, pre-

senting age-depth correlations, grain growth and dislocation energy evolution, are re-examined. It is

found that the age-depth correlations are inconsistent with the idealised flow with unchanging history

adopted, but that good correlations can be obtained by relaxing those restrictions. A modified grain

growth relation is proposed consistent with the distinct growth profiles of the Vostock and the other

two cores, which can be solved simultaneously with the given dislocation density evolution equation.

These are solved for all three cores with the given parameters, and the depth profiles of grain diameter

and dislocation density at the present time determined with the new age-depth correlation and with

that shown empirically in the papers. The varying flow history influences the age-depth correlation,

and hence the depth profiles, which is important both for the interpretation of core data, and for the

determination of constitutive variables at each depth at the present time.
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1. Introduction  

Dynamic effects can occur in granular bodies during confined flow in silos. Strong vibrations 
are accompanied by a booming sound, sometimes called silo music or by repeated shocks called silo 
quake. In dry cohesionless granular silo fills, only silo music has been observed. In cohesive silo 
fills, silo music and silo quake can take place. These strong dynamic effects have been recorded in 
various conditions, e.g., in large full scale silos, small experimental models, during mass, funnel or 
expanded flow, and during controlled or free outlet. The strong dynamic effects create noise 
pollution that disturbs the neighborhood (e.g. local population residing close to industrial plants) or 
can cause hearing damage of plant workers. They may cause earthquake type movements which 
endanger surrounding structures and contribute to fatigue of joints and connections. In the most 
extreme cases, rapid vibrations can cause silo failures. In spite of many experimental studies, the 
phenomenon of the silo music is still not well understood. 

On the basis of experiments, several sources of extensive dynamic effects in silos have been 
proposed which include: slip-stick behavior between stored solids and silo walls, grain collisions 
and a frozen disorder of the bulk solid, insufficient flow ability of the silo fill, energy release by the 
fall of the bulk solid from the region of mass flow into the region of channel flow, propagating 
longitudinal stress waves due to a resonant interaction between the granular material and the silo 
structure which were induced at the outlet, alternating flow patterns during flow, non-linear change 
of the wall friction with flow velocity, acceleration and deceleration of the granular material at the 
transition between bin and hopper, internal slip-stick and solid dilation during flow.  

The aim of these investigations is development of the mechanism of the phenomenon of the 
silo music understood as pronounced vibrations connected with loud sound [1]. The study is limited 
to dry cohesionless sand during gravitational outflow from a cylindrical model silo.  

2. Silo model tests 

First, silo experiments with dry cohesionless sand during gravitational outflow were 
performed in a cylindrical perspex model silo. Wall accelerations and acoustic signals were 
recorded and the evolution of mode shapes for different levels of the granular material in a silo were 
determined. In addition, both pressures along the wall and inside the material above the outlet were 
registered. The Perspex silo model had a height of 2.00 m, an outside diameter of 0.2 m and a 
thickness of the wall of 40 mm. A symmetric outlet with a diameter of 0.08 m in the flat bottom 
induced a discharging process due to gravity. The silo was fixed at the bottom (it was supported by 
a steel rigid frame structure) and free at the top. As a filling substance, initially medium dense dry 
sand with rough grains was used. The silo was excited by modal hammer, linear motor actuator and 
flowing sand during emptying (when the silo music was created). In the case of an empty silo, 9 
mode shapes were identified. Three lowest modes were bending ones and for higher modes - 
ovalling ones (i.e. the radial displacements dominated the shape of the modes). In turn, for the silo 
containing sand up to 1.90 m, only 3 bending modes were identified since the inertia of the filling 
was very large and the energy transmitted to the structure through the modal hammer and actuator 
was not sufficient to excite higher modes. During silo discharge, in the case of the sound signal, the 
dominant frequency was about 100 Hz and it corresponded to the 1st ovalling silo mode shape. For 
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the radial acceleration signal, the dominant frequency was also about 100 Hz. The dominant 
frequency of the vertical signal was found to be 50 Hz (it corresponded to the 2nd bending mode). 

3. Theoretical model 

It is proposed that there are some similarities between the origin of the sound in the silo and 
the music of bells. The mode shapes of the silo are very similar to the modes of bells. In bells, the 
clapper striking the shell  causes that bell  walls undergo radial vibrations that are associated with 
vertical ones. In the case of the silo, the role of the clapper is taken on by radial forces generated by 
the silo fill  hitting the hopper at the outlet. The dominant frequency of the sound signal during flow 
equals to 100 Hz and it corresponds to the 1st ovalli ng silo mode shape which is very similar to the 
first bell  mode.  

To qualitatively explain the presence of pulsations of radial stresses during silo flow at the 
hopper due to the change of the shearing direction, simple plane strain FE-simulations have been 
conducted. The behavior of the granular body subjected to the varying shearing force along silo 
walls at the outlet was approximately described by a cyclic quasi-static direct shearing along wall  
under a constant normal stiffness (CNS) condition (which simulates the surrounding material) [2]. 
The FE-calculations were carried out with a micropolar isotropic hypoplastic constitutive model  
which describes the evolution of effective stresses and couple stresses depending on the current 
void ratio, stress and couple stress state, rate of deformation and rate of curvature and a mean grain 
diameter by isotropic linear and non-linear tensorial functions. The obtained numerical results were 
qualitatively the same as those obtained in the experiment with different cohesionless sand [3].  

4. Conclusions 

The silo music phenomenon in tall  narrow silos containing granular fill s occurs during 
gravitational outflow in the form of strong vibrations of the structure connected with a loud 
booming sound. The silo music requires a dynamic interaction between the silo structure and 
moving granular fill  (i.e. frequency accordance). It is produced mainly by the change of the 
shearing direction in the silo fill  at the outlet. Vibrations of silo walls and moving granular body 
cause air oscill ations with frequencies audible by human beings.  

The dominant frequency of the oscill ating sand is 50 Hz. The exciting force transmitted 
mainly through sand has both vertical and radial components. The dominant frequency of the sound 
signal during flow equals to 100 Hz and it corresponds to the 1st ovalli ng silo mode shape. 

The silo music is not generated by the slip-stick phenomenon understood as the variable 
friction between the smooth wall  and granular material subjected to constant normal force.  

The silo music can be significantly reduced avoiding the change of the shearing direction at 
the silo outlet or a decrease of a pulsating material column by additional inserts. 
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1. Introduction  

The static and dynamic behaviour of sandpiles has attracted much attention. Simple 
experiments with prismatic and conical piles of granular materials indicate, contrary to intuition that 
the maximum vertical normal stress does not always appear directly beneath the pile vertex but at a 
certain distance from the apex. It was found later that the occurrence of the stress dip at the heap 
centre strongly depends on the method of pile construction [1]. In the case of the raining procedure 
by means of a sieve located above the heap, the pressure maximum occurs at the centre of the 
sandpile. However, when a funnel procedure (centric flow out of a hopper) is used, a pressure peak 
is obtained away from the centre, where a significant pressure dip appears. The pressure dip is 
usually more pronounced in conical heaps than in prismatic ones. 

In the present paper, the stress distribution under sandpiles is studied with the FEM and 
micro-hypoplasticity without imposing any additional condition [2]. The analyses were performed 
with a micro-polar hypoplastic model which is suitable to investigate the phenomenon of the 
granular heap construction since it takes into account the effect of the direction of deformation rate. 
The calculations were carried out with prismatic and conical heaps composed mainly of an initially 
dense cohesionless sand.  

2. Micro-polar hypoplastic model 

Granular materials consist of grains in contact and surrounding voids. Thus, their 
micromechanical behaviour is inherently discontinuous, heterogeneous and non-linear. Despite their 
discrete nature, the mechanical behaviour of granular materials can be reasonably described by the 
principles of continuum mechanics. Non-polar hypoplastic constitutive models have been developed 
at Karlsruhe University, where the stress rate tensor is assured to depend on the stress tensor, strain rate 
tensor and the void ratio via isotropic non-linear tensorial functions based on the representation 
theorem. The constitutive models were formulated by a heuristic process considering the essential 
mechanical properties of granular materials undergoing homogeneous deformation. A striking feature 
of hypoplasticity is that the constitutive equation is incrementally nonlinear in deformation rate. The 
hypoplastic models are capable of describing some salient properties of granular materials, e.g. non-
linear stress-strain relationship, dilatant and contractant volumetric change, stress level dependence, 
density dependence and strain softening. A further feature of hypoplastic models is the inclusion of the 
critical states, i.e. states in which a grain aggregate can deform continuously at constant stress and 
volume (void ratio). In contrast to elasto-plastic models, a decomposition of deformation into elastic 
and plastic parts, the formulation of a yield surface, plastic potential, flow rule and hardening rule are 
not needed. The hypoplastic models were initially proposed for cohesionless soil. The hallmarks of 
these models are their simple formulation and procedure for determining material parameters with 
standard laboratory experiments. The material parameters can be related to the granulometric 
properties of granular materials, such as grain size distribution curve, shape, angularity and hardness 
of grains. A further advantage lies in the fact that one single set of material parameters is valid for a 
wide range of pressures and densities. Hypoplastic constitutive models without a characteristic 
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length cannot describe the scale effects associated with shear bands such as thickness and spacing 
of shear bands. A characteristic length can be introduced into hypoplasticity by means of the micro-
polar, non-local and second-gradient theory. In this paper, a micro-polar theory is adopted [3], [4]. 
A micro-polar model makes use of rotations and couple stresses, which have clear physical meaning 
for granular materials.  

3. FE-results 

The analyses were carried out for a plane strain case and an axi-symmetric case. In the calculations, 
the symmetry axis was assumed. The pile was discretized with 200 triangular elements. The heap 
inclination to the bottom was assumed to be α =30o, which was equal to the criti cal internal friction 
angle of sand. The size of elements was not larger than 5×d50, which was suff icient to obtain mesh-
independent numerical results. 

The construction of the heap was simulated in 10 stages using two different methods, viz. the 
raining procedure and the funnel procedure. The sandpile was subject only to gravitational load in 
the vertical direction. The effect of the following parameters was investigated: a) construction 
method, b) mean grain diameter, c) base roughness, d) heap inclination and d) initial void ratio of 
sand. 

4. Conclusions 

A micro-polar hypoplastic constitutive model was used to study the stress distribution der the 
sandpile. The vertical stress distribution was dependent on the method of the heap construction, The 
stress increases monotonicall y up to the apex of the sandpile for the raining procedure. In turn, the 
stress showed a maximum beyond the heap mid-point for the funnel procedure. The stress 
distribution did not depend upon the initial void ratio, mean grain diameter, heap inclination and 
base roughness. The results were similar for prismatic and conical sandpiles.  

The FE-results confirm the experimental results by Vanel et al. [1] and numerical results by 
Al Hattamleh et al. [5]. However, in contrast to the numerical results by Hattamleh et al. [5], no any 
additional condition (as orientation of initial slip lines) was imposed. The non-uniform distribution 
of the vertical normal stress beneath the sandpile during a funnel procedure was a natural numerical 
outcome.  
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1. Introduction 

The intention of this paper is to compare the calculation of shear localization in granular 
material by a discrete (DEM [1, 2]) and a continuum approach on the basis of the FEM and a micro-
polar hypoplastic law [3].  

The discrete element method [1, 2] treats a granular material as a system of particles which 
may be (or not) in many contacts. In this study, we used a so-called soft sphere approach with 
particles virtuall y overlapping when a contact occurs (Fig.1a). The contact force between two 
particles is decomposed into its normal and tangential part. The normal part takes into account an 
expression for the repulsive force. The tangential force involves dissipation due to different 
mechanisms of friction, i.e. from static friction through sliding to rolli ng friction. If all  forces acting 
on a selected particle are known, the problem is reduced to the integration of the Newton’s 
equations of motion for both translational and rotational degrees of freedom. To simulate grain 
roughness, the model takes into account a contact moment [2]. 

The DEM-calculations were carried out in co-operation with University of Grenoble, where 
the first author took part in the implementation of the Yade-Open DEM software [2]. 
 

 
a) b) 

 
Figure 1: DEM: a) interaction between spherical discrete elements (un – overlap, shown bigger for 

clarity); b) elastic interaction between normal and shear springs (kn, ks - spring stiffness) [1] 
 

In turn, the micro-polar constitutive law takes into account the effect of density, pressure, 
direction of deformation rate, mean grain size and grain roughness on the material behaviour [2]. 
Due to the presence of a characteristic length in the form of a mean grain diameter, the law can 
describe the formation of shear zones: their thickness and spacing, and the related size effect. 

The comparative calculations of shear localization in granular bodies between DEM and FEM 
were performed for shearing in a direct shear tester [3], [4]. This tester is very popular in soil  
mechanics, used to determine important properties of granular and cohesive materials such as: 
drained strength envelope, angle of internal friction, wall  friction angle and cohesion. 

2. Discrete model DEM  

The DEM method uses an explicit numerical scheme in which the interaction of particles is 
monitored ‘contact by contact’  with states of equili brium. The resultant forces on any sphere are 
determined exclusively by its interaction with the spheres with which it is in contact. It is possible 
to follow a non-linear interaction of a large number of particles without excessive memory 
requirements or the need for an iterative procedure. The interaction force vector F

r
 between two 
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spheres may be decomposed into a normal and a shear vector n
iF
r

 and ∆ sF
r

respectively, which may 

be classicall y linked to relative displacements through normal and tangential stiffness, kn and ks 

(Fig.1b). The normal contact force between two particles is governed by the normal contact overlap 
(Fig.1a), and the tangential contact force is related to the tangential displacement: 
 

(1) n
iF
r

=knun
inr ,                  ∆ sF

r
=–ks∆ur s, 

 

where un is the relative normal displacement between two elements, inr  is the normal contact vector 

and ∆ur s denotes the incremental tangential displacement. The shear force sF
r

is obtained by 
summing the ∆ sF

r
- increments. The elastic moment ML is created by the rolli ng part in a local set of 

axes L as (kr - rolli ng stiffness): 
 

(2) LM
r

=kr Θ
r
L, 

 

where 
Θ

r
L is the angular vector of the rolli ng part. The tangential contact displacement depends on 

both the translations and rotations of contacting particles. A Mohr-Coulomb friction law determines 
the maximum value of the tangential contact force and the maximum tensile strength that a cohesive 
link can sustain [1]. 

Fig.2 shows the force distribution between spherical elements during a direct shear test under 
vertical pressure of 100 kPa. The granular specimen 20×100 mm2 included 10000 spherical 
elements with an average radius of 2 mm (the inter-particle friction coeff icient was 0.5).  

 

              
 

a) b) 
 
Fig. 2: DEM-results of direct shearing: a) ratio between shear and normal force versus normalized 

horizontal displacement, b) force distribution between spherical elements during shearing 
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1. General 

Empirical observations showed that the earthquake events can be linked with dynamics of 
triggered slips at the top layer of the Earth crust on a wide range of spatial and temporal scales. 
These phenomena are characterized by the interaction of different mechanisms related to crack 
nucleation and propagation along numerous faults with pronounced friction properties of fault 
interfaces. The threshold character of earthquake events occurs due the complexity of phenomena 
that have the features of self-organized criti calit y in the defect ensembles of different scales and can 
be analyzed under laboratory tests for damage-failure transitions in rocks. Statistical mechanics of 
mesodefects and statisticall y based phenomenology allowed the consideration of dynamics of slip-
block systems in the presence of noise for the interpretation of scaling laws in seismicity – the 
Gutenberg-Richter, Omori, Bath laws and the links of scaling laws in seismicity with new type of 
criti cal phenomena – structural-scaling transition.  
The explanation of the self-criti calit y nature of seismic events (pre-shocks, main-shocks and 
aftershocks) is related to the self-similarity of scenario of damage-failure transition due to the 
subjection to dynamics of mesodefect collective modes. It was shown that the evolution of 
characteristic types of collective modes (triggering waves and dissipative blow-up structures) reflect 
different scenario of the spinodal decomposition for qualitative different metastabilit y of 
thermodynamic potential under transition of criti cal value of structural-scaling parameter. Since the 
problem concerning the representative volume for the study of scaling laws related to the 
earthquakes is one of the key questions the laboratory compression tests for the rocks combined 
with the analysis of acoustic emission data were performed. 
The laboratory compression tests for gypsum and carnallit e blocks combined with the acoustic 
emission data recording was realized and the correspondence of acoustic emission sequences to the 
Gutenberg and Omori laws was found. 

2. Experimental conditions 

Experimental study of scaling laws under damage-failure transition in salt rocks 
(Verchnekamskoe potash deposit) and gypsum rocks (the Novomoskovsk deposit) was carried in 
laboratory conditions. The cube specimens had characteristic sizes about 60 mm. The acoustic 
sequences in loaded salt rocks (silvinite, carnallit e) and gypsum rocks were recorded under quasi-
static uni-axial compression tests for relaxation and creep at room temperature using 
electromechanical testing machine Zwick 250. Vallen Amsy 5 system was used for the registration 
of acoustic emission signals using high-frequency VS2MP (350-2000 кГц) and low-frequency 
AE104A (50-400 KHz) gauges.  

Sequences of acoustic events (АE) in laboratory test were identified as the sequences of 
seismic events under earthquakes. The magnitude was determined as amplitude of AE signal 
divided by its duration. 
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3. Experimental results 

 
The correspondence of acoustic events in the laboratory test to the scaling laws under 

earthquakes was found according to the Gutenberg - Richter law for all  investigated rocks in the 
frequency range 50-2000 kHz. Fig. 1.a represents the distribution of AE magnitudes under carnallit e 
relaxation. The exponent value for different thresholds of recording equals 1.2. Fig.1.b reflects the 
data for AE amplitudes that is linear. Similar distributions were obtained for creep conditions. 

The AE sequences during rock relaxation were considered as aftershock events. The 
distribution of AE obeys Omori law with exponent equals one. 

 

 
a)                                                                              b) 

Fig.1. Gutenberg - Richter's law at 50-400 к Hz spectral range under relaxation of carnallit e. The 
curves correspond to different thresholds of recording (a). AE amplitude distribution for different 
thresholds of recording (b) 
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PARAMETRIC STUDY OF GRADIENT-ENHANCED CAM-CLAY MODEL

A. Stankiewicz , J. Pamin
Cracow University of Technology, Cracow, Poland

1. General

In thepaper theproblemof instabilit y andlocalization phenomenain two-phasegranular medium
(including the limiting cases of drained and undrained conditions) is considered. In the analysis the
modified Cam-clay plasticity model in agradient-enhanced versionisused in order to avoid thespuri-
ousdiscretizationsensitivity of finite element solutions. Themain goal of the research isaparameter
study of numerical solutionsfor selected problems. Thesensitivity of thenumerical resultsto thegra-
dient influenceparameter, to various drainage conditions, preconsolidation pressure and initial void
ratio is focused on. The calculationsareperformed using thedevelopment version of theFEAPfinite
element package.

2. Material model

Theyield function for thegradient-dependent modified Cam-clay model iswritten as [2]:

f(σ, Λ,∇2Λ) = q2 + M2p [p − pc + g∇2Λ],(1)

where σ is the effective stresstensor, Λ is the plastic multiplier, q is the equivalent deviatoric stress
defined as q =

√
3J2, M is a function of the internal friction angleφ: M = 6 sinφ

3−sin φ
, p is the effective

pressure acting onthesoil skeleton, pc is the current preconsolidation pressure. Finally, g isapositive
gradient influencefactor and theLaplacian∇2Λ represents thenonlocal character of themodel.

The attention is focused on fully saturated soil . The problem variables are the solid displace-
ment vector u and the water pore pressure pf . Such a two-phase medium, with the assumption of
incompressibilit y of solid grains, isgoverned by the following two equations [3, 4]:

LTσt + ρ̂g = 0,(2)

∇
Tu̇ + ∇

Tvd + n
ṗf

Kf

= 0.(3)

In eq. (2) L is thedifferential operator matrix, σt = σ−Πpf is thetotal stress, Π = [1, 1, 1, 0, 0, 0]T ,
ρ̂ = (1−n)ρs +nρf is thesaturated density of thesolid-fluid mixture, n is theporosity, ρs - density of
thesolid phase, ρf - density of thefluid phase, g - gravitation vector. In eq. (3) vd is theDarcy’sfluid
flow velocity given by vd = −k∇

pf

γf

, where k is the permeabilit y matrix, γf is the specific weight

andKf is thefluid bulk modulus. Porosity n and void ratio e are related by: n = e/(1 + e).
The details of the formulation of the gradient model can be foundin [2], including a discussion of
other possiblevariants of the gradient-enhancement of the model. Thefinite element formulation for
thegradient-enhanced two-phasematerial can be foundin [1].

3. Numerical results

The aim of the paper is to analyse the sensitivity of the results to some material model param-
eters. In particular, different values of preconsolidation pressure pc, gradient scaling factor g, initial
void ratio e0 or permeabilit y coefficient k are taken into account.
The following example allows us to investigate the influence of the gradient scaling factor on the
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Figure 1. Equivalent plastic strain distribution for gradient scaling factor g = 0.025 kN2/m2

Figure 2. Equivalent plastic strain distribution for gradient scaling factor g = 0.05 kN2/m2

results obtained in a biaxial compression test. The sizeof the specimen is 1m × 2m. The model is
discretized with 20× 40 finite elements. The following material data are adopted: Poisson’s ratio
ν = 0.2, swelli ng index κ = 0.013, initial void ratio e0 = 1.0, initial overconsolidation measure
pc0 = 1.0 MPa, compression index λ = 0.032, inclination of the criti cal state line M = 1.1. Two
values of gradient constant g are considered: g = 0.025 kN2/m2 and g = 0.05 kN2/m2. Drained state
is here assumed.
Thediagram of the load-deformationrelation(not included) showsthat thesolutionfor a larger value
of g is a bit more ductile. In Figs 1- 2 the distribution of the equivalent plastic strain at various
stages of numerical calculations is presented for the two values of g. We can observe that the shear
bands evolve during the loading process. The width of the localization zone is different for the two
considered cases and determined by the value of g. Finally, as the criti cal state is approached, the
band width increases in both cases. This seems to be an unphysical outcome of the adopted form of
regularization. To overcome this problem, the gradient factor g would must be made a(decreasing)
function of aplastic strain measure(which physically meansareduction of non-locality asthe criti cal
state is approached). This option is now verified and the results will be presented at the conference
together with the influenceof theother mentioned material model parameters.

[1] A. Stankiewicz and J. Pamin. Finite element analysis of fluid influence on instabiliti es in two-
phase cam-clay plasticity model. Computer Assisted Mechanics and Engineering Sciences,
13(4):669–682, 2006.

[2] A. Stankiewicz and J. Pamin. Gradient-enhanced Cam-clay model for strain localization in soil .
Foundationsof Civil andEnvironmental Engineering, 7:293–318, 2006.

[3] A. Truty. On certain classof mixed and stabili zed mixed finite element formulations for single
andtwo-phasegeomaterials. Technical Report Monograph 48, Cracow University of Technology,
Cracow, 2002.

[4] O.C. Zienkiewicz, A.H.C. Chan, M. Pastor, B.A. Schrefler, and T. Shiomi. Computational Ge-
omechanics. JohnWiley & Sons, Chichester, 2000.
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Granular materials possess some fascinating properties such as strong nonlinearity, dilatancy 
and pressure dependence. The mechanical behaviour of granular materials is usuall y modeled by 
plasticity theory. Recently, hypoplastic constitutive models have emerged as an attractive 
alternative to the prevaili ng plasticity theory for granular materials. Compared to plasticity 
hypoplastic models have some distinct advantages, e.g. simple formulation and easy calibration. 
Some recent developments in hypoplastic models include the criti cal state and internal state 
variables.  

The criti cal state is characterized by simultaneously vanishing stress rate and volume change. 
Most hypoplastic models contain four parameters, which are to be calibrated based on triaxial tests. 
Usuall y, the parameters are identified for criti cal state in triaxial compression. The behaviour for 
triaxial extension remains untouched. The model proposed by Wu and Bauer (1994) shows 
excessive contraction (volume reduction). In the present paper, this model is updated by including a 
new term into the constitutive model. In the updated model, criti cal state can be reached for all  
stress paths other than hydrostatic stress. Some well  known failure surfaces, e.g. Matsuoka/Nakai 
and Lade, can be integrated into this model. The model performance is compared to some 
laboratory tests. Figure 1 shows the numerical simulation of triaxial compression and extension 
tests (with different dilatancy angles). 

 
 

stress-strain curve(triaxial test)
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Figure 1. Numerical simulation of triaxial tests (with different dilatancy angles) 

(a)stress ratio vs. axial strain; (b)volumetric strain vs. axial strain 
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INCREMENTAL PLASTIC RESPONSE AND FLOW RULE POSTULATE UNDER 
GENERAL THREE-DIMENSIONAL CONDITIONS 
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1. Introduction 

In this contribution we examine the flow rule postulate, a pill ar assumption in the framework 
of the theory of plasticity that regards the direction of plastic strain increment as being independent 
of loading direction. Recent discrete element method and analytical calculations have pointed out 
that under three-dimensional (3D) stress conditions the direction of plastic strain increment does 
depend on the loading direction (Kishino, 2003, Darve and Nicot, 2005). These findings, which 
have not received much attention, question the validity of flow rule premise. In this respect, classic 
elastoplastic models based on this postulate will  necessaril y have shortcomings, especiall y in ‘ true’  
triaxial conditions. Through extensive numerical simulations using a particle flow model we verify 
that the incremental plastic strain response not only depends on the loading direction but also on 
stress history. 

2. Methodology 

Firstly, we analyze the incremental behaviour of a cubic assembly of polydispersed spherical 
particles subject to a series of 3D spherical stress probes (� σ x, � σ y, � σ z) with constant Euclidian 
norm of 0.1 kPa, see Figure 1a. Prior to the stress probing stage, the specimen was consolidated to 
100 kPa, and then sheared along the triaxial extension stress path until  the final state, corresponding 
to a mean stress (p) equal to 100 kPa and deviatoric stress (q) equal to 60 kPa, was achieved.  

The plastic strain response under other stress state conditions reached from different stress 
histories (Figure 2a) prior to probe tests was subsequently investigated. One series of tests 
comprised of paths moving along the hydrostatic axis to p = 100 kPa, then radiating at various 
angles in the π -plane at constant value q = 60 kPa. Hence working within a sextant of the π -plane, 
various radial paths can be obtained starting from triaxial compression (TC) to triaxial extension 
(TE) passing through various Lode angles. Another series of tests refer to the classical conventional 
triaxial compression (CTC) and conventional triaxial extension (CTE) tests. In the former, the 
confining pressure is maintained constant with increasing axial stresses, whereas in the latter, the 
confining pressure is increased with constant axial stress. 

3. Results 

A typical strain envelope response generated from the stress probe introduced above is 
ill ustrated in Figures 1b-c. The outer (yellow) surface represents the ‘ total’  strain incremental 
response, whereas the inner (orange) surface represents the elastic strain response. The (blue) dots 
inside are the increments of plastic strains. Differently from what the postulate of plastic flow rule 
assumes, the increments of plastic strain points do not fall  on a single line. In fact, these increments 
turn out to be a function of both stress increment (probe) direction and stress state. As such, they 
plot as a series of points which clearly define an oval shaped envelope. Another intriguing fact is 
that all  points fall  on a plane very close to π -plane and perpendicular to the Rendulic plane (Figure 
1c). Should the plane of plastic strain response coincide with π -plane in the incremental strain 
space, this would imply null  plastic incremental volume change, that is, no dilatancy. 
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Figure 1. Spherical stress probe (a) Isometric view; (b) Total, elastic, and plastic strain envelope 
responses; (c) Rendulic plane view. Note: max(

� ε
) = 1.24x10-6. 

 
The results from the series of probe tests under distinct loading histories given in Figure 2a 

are presented in Figures 2b-c. We found that the incremental plastic strain envelope is symmetric 
about the direction of the stress path prior to probe only in the TC, TE, CTC and CTE cases. For 
stress paths along Lode angles equal to 20º and 40º, there is a pronounced deviation of the plastic 
envelope with respect to the direction of previous stress history. This deviation is dictated by the 
proximity of the stress probes to the failure surface. As such, along the axisymmetric stress 
branches, the plastic strain response envelope is bound to be symmetrical about the radial or 
previous stress path direction as long as the failure envelope is symmetric or no inherent or induced 
anisotropy exists. 

 

Figure 2. Stress histories prior to stress probe tests (a) Isometric view; (b) Plastic strain envelopes 
for different stress histories (b) Rendulic plane view.  

3. Conclusion 

Through discrete element analysis, we showed that plastic strain incremental response is a 
function of stress probing (loading) direction, as opposed to what the flow rule postulate presumes. 
For axisymmetric loading cases, the plastic strain envelope was found to be symmetrical about the 
direction of the stress path prior to probe. For ‘ true’  triaxial stress paths a deviation apparently 
dictated by the proximity of the stress probes to the failure surface was noticed. Intriguingly, for a 
given spherical stress probe, all  plastic response points fell  on a unique plane, presumably 
associated with the zero eigenvector of the tangent constitutive matrix describing the stress 
increment/plastic strain increment map under plastic flow conditions. 
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Discontinuous Deformation Analysis (DDA) originall y proposed by Shi [1] is a 
two-dimensional numerical model for the statics and dynamics of discontinuous block system. DDA 
method is regarded as an alternative to the distinct element method (DEM) for the analysis of jointed 
rock masses. As one of the members of discrete numerical method famili es, DDA method is similar to 
DEM in the aspects of model-establishment for pre-processing and description of discrete blocks’  
contact. However, DDA method more closely parallels with FEM in solution techniques: (1) DDA 
method employs the displacement model similar to that of FEM, using one order polynomial or 
higher polynomial approximations; (2) it establishes the global equili brium equation by minimizing 
the total potential energy; and (3) it uses the penalty functional method to force block elements to 
meet the restraint conditions of no-penetration and no-tension at the block contact interfaces.  

With many pepople contributing to its developement and applications, the original 2-D DDA 
has been well  developed in terms of both theory and computer coding, e.g. [2]. In recent years, DDA 
has been also extended to three-dimensional. However, only some preliminary work on this subject 
has been published. Using complete one order polynomial approximations, Shi [3] presented some 
basic formular of 3-D DDA. Jiang and Yeung [4] developed a model of point-to-face contact as a part 
of the contact theory for 3-D DDA. Because one order polynomial displacement functions are 
assumed, so the stresses and strains within a block element in the model are constant. The 
approximations preclude the application of this algorithm to the problems with significant stress 
variations within the block.  

In this paper, a numerical model that coupled 3-D DDA with finite element method is 
developed. The displacement field and the stress field are solved by proper internal discretization of 
deformable blocks using finite element meshes. The contacts between the deformable blocks are 
modelli ng by DDA algorithm. By minimizing the total potential energy, the global equili brium 
equations of the coupling method are established. The stiffness matrix, the initial stress matrix, the 
loading matrix, the inertia matrix, displacement resistance matrix, the contact matrix and friction 
force matrix are derived and added to the global equations. The coupling model can not only describe 
the deformabilit y of generall y shaped polyhedral blocks but also solve such movement forms as 
sliding and opening along block boundaries, having the advantages of both DEM and FEM. 

This coupling model has also been implemented into a DDA-FEM computer program. The 
program can divided the distinct blocks into tetrahedral elements automaticall y and the users can also 
adjust the mesh density to satisfy demand. The problem of interaction of the concrete foundation and 
the elastic base is analyzed to ill ustrate the application of the proposed method. As shown in Figure 1, 
the calculational model is consist of two blocks. The material constants for the concrete foundation 
are: Young’s modulus E=300MPa, Poisson’s ratio v=0.17 and density ρ =2800kg/m3. The material 
constants for the elastic base are: Young’s modulus E=2MPa, Poisson’s ratio v=0.25 and density 
ρ =2000kg/m3.The properties for contact interface between the concrete foundation and the base are: 

friction angle 030=ϕ , cohesion C=1KPa, tensile strength T=5KPa. The bottom boundary and four 
side boundaries of the base are fixed in their respective normal directions. Besides the self-weight 
loading, a uniformly distributed loading q=100KPa is acted on the top boundary of the concrete 
foundation. Figure 2 shows the settlement deformation of the elastic base (the displacements are 
magnified to 10 times), and Figure 3 shows the normal contact forces distribution on the interface 
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between the concrete foundation and the base. Obviously, the normal contact forces ar concentrated 
at the corner of the interface.  

In conclusion, the coupling method which incorporates a finite element mesh into the distinct 
blocks is a significant development in DDA. It not only overcomes the diff iculties of using a simple 
constant strain concept to represent deformations of geometricall y complex blocks, but also provides 
a platform for developing algorithms for progressive failure of rockmass structures. 

Fig.1. Interaction of the concrete foundation and the elastic base 
 

 

Fig.2. Settlement deformation of the base        Fig.3. Normal contact forces distribution 
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The aim of this presentation is to study the pre-failure behaviour of granular soils, both dry 
and water saturated in undrained conditions. The starting point to the analysis is extensive set of 
experimental data obtained from triaxial compression tests, performed in a modern apparatus that 
enables measurement of lateral strains. The experiments were performed for various initial states of 
samples, i.e. loose or dense and contractive or dilative, and for various loading paths. The results of 
experiments are presented in the form of stress-strain curves or the effective stress paths in the case 
of saturated soils, tested in undrained conditions. The experiments have confirmed that there exists, 
in the effective stress space, the object designated as the instabilit y line which has interesting 
properties. For example, in the case of initiall y dilative dry soils or saturated, but tested in drained 
conditions, the sample first compacts when sheared and after approaching the instabilit y line the 
process of dilation begins. The behaviour of initiall y contractive samples is different as the shearing 
causes only compaction, so the instabilit y line cannot be detected during such experiments. More 
interesting behaviour can be seen during the undrained tests, because the instabilit y line corresponds 
to the maximum shear stress that can be supported by initiall y contractive soil . After reaching this 
line by the effective stress paths, the shearing stress rapidly decreases and the sample liquefies, i.e. 
it behaves macroscopicall y as a liquid. This process is accompanied by the increase of pore pressure  
and reduction of the mean effective stress. The undrained behaviour of initiall y dilative samples is 
similar before the effective stress paths approaches the instabilit y line, and then becomes different 
as the pore pressure begins to decrease and subsequently the mean effective stress begins to 
increase. As a result of this behaviour, the dilative samples can support higher shear stresses, and 
eventuall y may fail  if the effective stress path reaches the Coulomb-Mohr surface. 

The important aspect of the analysis presented is the distinction between the initiall y 
contractive and dilative states of granular soils, which is different from traditional classification on 
the initiall y loose and dense samples. The combination of two following parameters decides 
whether this initial state is dilative or contractive, namely: e = void ratio and p’  = mean effective 
stress. These parameters define the point in the space log p’  – e, where is also defined the object 
designated as instabilit y line. The contractive soils correspond to the points lying above the 
instabilit y line, and the dilative to those below. At present, the only method of determination of the 
instabilit y line is based on many experiments, which unfortunately cannot be performed easil y in a 
standard geotechnical laboratory. We show such results obtained for the model “Skarpa” sand.  

 The second part of presentation deals with theoretical description of the experimental results 
obtained. The first attempts dealt with application of some elasto-plastic and hypoplastic models of 
soils, but the results were not promising. Therefore, it was decided to apply the most 
straightforward approach, that is based on empirical description of the soil  behaviour for some 
simple stress paths, and then on generalization of the obtained equations for arbitrary stress paths. 
Obviously, the basic constitutive equations should be formulated in the incremental form, as the soil  
behaviour is path dependent. For the triaxial configuration considered, the following shape of these 
equations is proposed: 

NdqMdpd v += 'ε , 

QdqPdpd q += 'ε , 

where: p’  = mean effective stress; q = stress deviator; vε  = volumetric strain; qε  = deviatoric strain; 
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M, N, P and Q = some functions depending on the effective stress invariants, and perhaps on some 
other variables. 

The functions M, N, P and Q appearing in these equations were determined experimentall y for 
some simple stress paths, as isotropic loading and pure shearing at constant mean effective stress. 
The shape of these functions is different for loading and unloading, and in some cases different for 
initiall y contractive and dilative soils. These processes have been defined separately for the 
spherical and deviatoric parts of the stress and strain tensors, and this definition is different from 
that widely applied in elasto-plastic modeling of materials, not to mention hypoplasticity. The 
important problem of loading and unloading is also discussed in this presentation.  

The functions M, N, P and Q were determined for dry soils or saturated but in free draining 
conditions. The empirical model was verified using the data for the stress paths, in drained 
conditions, different from those used in the calibration of the model. We have also used the data 
obtained from undrained tests in order to verify the model. The comparison of the model predictions 
with experimental data seems to be quite good.  

The approach presented is an alternative to commonly applied elasto-plastic models of soils, 
which are often distant from the behaviour of real materials. We have been trying to find the way to 
describe the real behaviour of granular soils, which could be useful in practical applications, and 
which is consistent with the experimentall y observed behaviour of these materials.  
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1. Introduction

High tool wear can be one of the main problems in rock cutting works [3]. Changes of tool
geometry due to wear lead to difficulties in the tool penetration reducing thus cutting performance.
Practical observations show that Different wear mechanisms can occur in rock cutting. Abrasive
wear is one of the most important mechanisms in cutting of hard rocks especially in the presenceof
quartzite. Scraping of therock surfaceleadsto hightemperatures, which softensthetool tip, resulting
in increasingwear of adhesive character. Different wear mechanismscan act in parallel.

Themain motivation of the research work presented in thispaper isdevelopment of thenumer-
ical model increasing possibiliti es to predict abrasive and adhesive wear of rock cutting tools under
different processconditions.

2. Numerical model of rock cutt ing with wear evaluation

In the approach adopted the wear is evaluated based onthe simulation of rock cutting process.
Evaluation of wear requires determination of forces of cutting as well as temperature distribution.
Thismeans necessity to analyse rock cuttingas a thermo-mechanical process.

A numerical model of thetool-rock system allowing usto simulate aprocessof rock cutting has
been developed within the framework of the discrete element method(DEM) [2]. In this model the
tool is considered rigid and a rock material is represented as a collection of rigid spherical (in 3D) or
cylindrical (in 2D) particles interacting amongthemselves with contact forces. The cohesive elastic
perfectly brittlemodel is assumed for the contact interaction.

The translational and rotational motion of rigid spherical or cylindrical elements (particles) is
governed by thestandard equationsof rigid body dynamics. For the i-th element wehave

miüi = Fi , Iiω̇i = Mi ,(1)

whereu is the element centroid displacement in afixed (inertial) coordinateframeX, ω – the angular
velocity, m – the element mass, I – the moment of inertia, F – the resultant force, and M – the
resultant moment about the central axes.

Thermal phenomenaduring rock cutting (heat absorptionand conduction) are described by the
heat balance equation, which for asingleparticle can bewritten in the following form:

micṪi = Qi ,(2)

where: mi – particlemass, c – specific heat, Ti – particle temperature, Qi – heat flux.
Thermo-mechanical coupled problem defined by Eqs. (1) and (2) is solved using thestaggered

solution scheme. The two problems are coupled by heat generation process – heat generated by
friction is evaluated in the solution of mechanical problem and passed to the solution of thermal
problem.

The tool-rock interaction is modelled assumingCoulomb friction model extended onfrictional
heat generation and wear accumulation onthe tool surface. Wear is considered using the classical
formulaof Archard [1]:

ẇ = k
pnvT

H
,(3)
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where ẇ is the wear rate, pn – the contact pressure, vT – the slip velocity, H – the hardnessof worn
surface andk is a dimensionlesswear parameter. The influenceof temperature on wear is accounted
for by taking the hardnessas a function of temperature H = H(T ). The tool shape can be modified
according to the accumulated wear obtained by integration of Eq. (3).

Values of wear constants k for different combinations of materials can be determined in labo-
ratory tests. Wear is a relatively slow processand it can be observed after many work cycles. In the
numerical algorithm developed wear isaccelerated usingscaled wear constants.

3. Numerical results

Simulation of rock cutting with one pick of a roadheader has been analysed using a model
shown in Fig. 1a. Material sampleisrepresented byan assembly of randomly compacted 92000 discs
of radii 1–1.5 mm. Model parameters for sandstone have been determined for the discrete element
model [2]. Thermomechanical analysis with wear evaluation has been carried out. Results of the
analysis are shown in Figs. 1b-c. Failure of rock during cutting is shown in Fig. 1b. Temperature
distributionin thetool androck is shown in Fig. 1c, thehighest temperature isobserved in the contact
zones, where the frictional heat is generated. The same areahas maximum wear amounts as it is
shown in Fig. 1d.

a) b)

c) d)

Figure 1. Simulation of rock cutting bya pick of a road header: a) numerical model, b) failure mode, c) map
of temperature, d) accumulated wear on the tool surface
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1. Introduction  

One of the most important properties of the behaviour of many engineering materials is a size 
effect phenomenon, i.e. experimental results vary with the size of the specimen [1]. Thus, the results 
from laboratory tests which are scaled versions of the actual structures cannot be directly transferred 
to them. Two main size effects can be defined: deterministic (energetic) and statistical. The first one 
is caused by strain localization which cannot be appropriately scaled during laboratory tests. Thus, 
the specimen strength increases with increasing ratio lc/L (lc – characteristic length of microstructure 
influencing both the thickness and spacing of strain localization, L – specimen size). This feature is 
strongly influenced by the pressure level in granular bodies; i.e. shear resistance and dilatancy 
decrease with increasing pressure. A statistical effect (called also a stochastic effect) is caused by 
the spatial variability/randomness of local material strength. According to the Weibull’s theory 
(Weibull 1951), this effect is caused by weak spots whose amount usually grows with increasing 
specimen size. Thus, the specimen strength diminishes with increasing specimen size. Up to now, 
the size effects are still not taken into account in the specifications of most of design codes for 
engineering structures. The understanding of the physical mechanism of a size effects is of a major 
importance for civil engineers who are forced to extrapolate experimental outcomes at the 
laboratory scale to results which can be used in real situations. Since large specimens or structures 
are far beyond the range of testing in laboratories, their design has to rely on a realistic 
extrapolation of testing results with small specimens or structures. 

2. Size effects in granular bodies 

The size effects in granular bodies were investigated with plane strain footings on sand. To 
describe a mechanical behaviour of a cohesionless granular material during a monotonous 
deformation path, a micro-polar hypoplastic constitutive model was used. Non-polar hypoplastic 
constitutive models formulated at the Karlsruhe University describe the evolution of the effective stress 
tensor depending on the current void ratio, stress state and rate of deformation by isotropic non-linear 
tensorial functions obtained according to the representation theorem. The constitutive models were 
formulated by a heuristic process considering the essential mechanical properties of granular materials 
undergoing homogeneous deformation. A striking feature of hypoplasticity is that the constitutive 
equation is incrementally linear in deformation rate. The hypoplastic models are capable of describing 
a number of significant properties of granular materials: non-linear stress-strain relationship, dilatant 
and contractant volumetric change, stress level dependence, density dependence and material 
softening. A further feature of hypoplastic models is the inclusion of critical states, i.e. states in which a 
grain aggregate can deform continuously be deformed at constant stress and a constant volume. In 
contrast to elasto-plastic models, a decomposition of deformation components into elastic and plastic 
parts, the formulation of a yield surface, plastic potential, flow rule and hardening rule are not needed. 
The hallmark of these models are their simple formulation and procedure for determining material 
parameters with standard laboratory experiments. A further advantage lies in the fact that one single 
set of material parameters is valid for a wide range of pressures and densities. Hypoplastic 
constitutive models without a characteristic length can describe only realistically the onset of shear 
localization, but not its formation. A characteristic length can be introduced into hypoplasticity by 
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means of a micro-polar, non-local and second-gradient theory. In this paper, a micro-polar theory 
was adopted [2]. A micro-polar model makes use of rotations and couple stresses which have clear 
physical meaning for granular materials. The rotations can be observed during shearing and but 
remain negligible during homogeneous deformation The presence of the couple stresses gives rise 
to a non-symmetry of the stress tensor and a presence of a characteristic length.  

In the paper, a deterministic (energetic) and statistical size effect were carefull y analysed [2], 
[3]. The deterministic calculations were carried out with an uniform distribution of the initial void 
ratio for 3 different footing’s widths. The numeri0cal results with respect to the load-displacement 
curve and strain locali ztaion were compared with corresponding laboratory tests at Tokyo 
University [5]. Various properties of granular bodies may be considered as random. In the present 
work, only the initial void ratio was of primary interest. To investigate a statistical size effect, the 
distribution of the initial void ratio was assumed to be spatiall y correlated. In order to reduce the 
number of realizations without loosing the accuracy of the calculations, a Latin hypercube method 
was applied. Initiall y, truncated Gaussian random fields were generated in a granular specimen 
using a conditional rejection method [3] for a weakly and strongly correlated random fields and a 
large and low standard deviation. 

3. Size effects in br itt le materials 

The size effects were investigated in concrete elements subject to uniaxial tension or bending. 
The analysis was carried out with a finite element method based on an elasto-plastic crack model 
with non-local softening [6]. A linear Drucker-Prager criterion with an isotropic hardening and 
softening and a non-associated flow rule was defined in a compressive regime, and a Rankine 
criterion with an isotropic softening and an associated flow rule was adopted in a tensile regime. To 
ensure the mesh-independence, to capture properly localized zones and to investigate a 
deterministic size effect, both criterions were enhanced in a softening regime by a characteristic 
length of micro-structure with the aid of a non-local theory [6]. The deterministic calculations were 
carried out with different specimen sizes. They were confronted with corresponding experimental 
results (e.g. [7]). In the statistical calculations, the tensile strength of concrete was assumed to be 
random (spatiall y correlated). In order to reduce the number of realizations without loosing the 
accuracy of the calculations, a Latin hypercube method was again applied. 
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1. Introduction 

Most of the common methods for experimental determination of the damping parameters use 
the proportional damping assumption. The equations of motion for free vibration of a viscously 
damped linear discrete system with N degrees of freedom can be written as 

0KyyCyM =++ )()()( ttt &&& , (1) 
 
where M , C and K  are NxN mass, damping and stiffness matrices, respectively, and y(t) is the Nx1 
vector of the generalized co-ordinates.  

A typical procedure can be described to determination of damping by used modal method [1]:  
1. Measure a set of transfer functions )(ωijH  at a set of grid points on the structure.  

2. Obtain the natural frequencies ω
k by a pole-fitting method.  

3. Evaluate the modal half-power bandwidth kω∆  from the frequency response functions, then the 
Q-factor kkkQ ωω ∆= /  and the modal damping factor kk Q2/1=ξ .  
4. Determine the modal amplitude factors ak to obtain the mode shapes, kz .  
5. Finall y, reconstruct some transfer functions to verify the accuracy of the evaluated parameters.  

Such a procedure does not provide reliable information about the nature or spatial distribution 
of the damping, though the reconstructed transfer functions may match the measured ones well .  

Methods to attempt to obtain the viscous damping matrix from the experimental 
measurements can be divided into two basic categories: (a) damping identification from modal 
testing and analysis [2], and (b) direct damping identification from the forced response 
measurements [3]. All  these methods are based on the assumption that the damping mechanism of 
the structure is viscous, and their eff iciency when the damping mechanism is not viscous is largely 
unexplored. In a soil  damping depends on a strain values, and is proportional for a small  strain and 
non-proportional for a large strain (see Fig. 1). 

 

 
Fig. 1. Damping in a soil  

2. Damping calculation by wavelet transformation 

As a consequence of the windowing applied by the Gaussian function in the Morlet wavelet, 
the bandwidth of the resulting wavelet instantaneous spectra are larger than their Fourier equivalent. 
This gives the appearance of a larger value of effective damping in the signal, the extent of which 
depends on the scale analyzed. Consider the Morlet wavelet expression the half-power bandwidth 
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can be used to provide a simple measure of the bandwidth of wavelet spectra [4,5]. Assuming 
symmetry of the spectral peak, the HPBW is then defined as the difference between these two 
frequencies: Br = f2 - f1, with the frequency corresponding to the spectral peak taken as the natural 
frequency of the system. Due to the multi -resolution nature of wavelets, wavelet spectra broaden 
toward the higher frequencies, but for a narrowbanded spectrum, the assumption of symmetry can 
be retained. Therefore, the scale at which this half-power bandwidth is evaluated should be the scale 
defining the ridge of the transform, at which the signal energy is focused. Damping coeff icient in 
HPBW method is defined as: 

100
21

⋅
+

=ξ
ff

Br .        (2) 
\ 

a)  b) 

 c)  d) 

 
Fig. 2. Damping calculation by HPBW method: a) acceleration in time in horizontal direction, 

b) Fourier transformation, c), d) wavelet map with Morlet wavelets function,  
 
3. Example of damping calculation by wavelet transformation 

We consider a problem of damping calculation base on the measurement date of the 
Szombierki mine crump. Fig. 2a shows the measurement data in time. Damping according to eq. (2) 
are shown in table 1. 
Table 1.  
f[Hz] 1.7 2.2 2.7 3.0 3.2 ξ
[%] 27.7 9.8 11.2 9.1 8.6 
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1. Introduction

Wall stresses are very important parameter in processes run in silos and tanks. DEM method 

appeared to be a very useful numerical tool in simulation of granular materials [1]. The paper 

presents the comparison of measured wall stresses exerted by 20,400 pea grains with DEM 

simulation in the model of silo by the DEMMAT code [2]. Two sensors of 55 mm in diameter were 

placed on the lateral wall and wall stresses were registered. 

2. Filling process

Figure 1 shows the initial state of the experiment before filling the model. The 

measurements were registered by two sensors – one placed 5.5 cm above the bottom and the second 

placed 11.5 cm above the bottom. 

  a)

Filling 

 b)
Figure 1. Initial state, a) filling the model, b) after filling. 

3. Experimental measurements of wall stresses.

Figure 2 presents the registered wall stresses in the model by sensor 1 and sensor 2.  

a) b)

Figure.2 Experimental measurements of wall stresses during filling, storage, discharge by, a) sensor 1, b) sensor 2. 

Figure 3 presents the comparison of experimental results of wall stresses with the numerical 

model for the filling state. 
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4. Wall stresses. Filling state.

                        
Figure 3. Comparison of the measured wall stresses with DEM for, a) sensor 1, b) sensor 2. Filling state. 

DEM simulation of wall stresses in filling state is presented in Figure 4.  

                     
Figure 4. DEM simulation of wall stresses in the model. 

5. Wall stresses. Discharge state.

 Comparison of the experimental results registered by two sensors during the discharge state 

with DEM simulation is presented in Figure 5. 

Figure 5. Discharge state of the grains. DEM simulation compared with the experiments. 

                                      
Figure 6. Wall stresses by DEM simulation. 

6. Conclusions

The numerical model of DEM gave a good fit to the experimental results. Numerical model 

does not exceed the confidence bounds that means that the numerical model predicts the values of 

wall stresses in a proper way.  
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1. Abstract

We have shown in a series of recent papers that the classical theory of thermo-elasticity can be

extended to the nano-scale by supplementing the equations of thermo-elasticity for the bulk material

with the generalised Young-Laplace equations of surface elasticity. This talk will describe how this

has been done in order to capture the often unusual thermo-mechanical and physical properties of

nano-structured particulate and porous materials.

It will begin with a description of the generalised Young-Laplace equations for surface elas-

ticity. We will then describe how the classical Eshelby formalism can be generalised to nano-

inhomogeneities; unlike its classical counterpart the Eshelby tensor now depends on the size of the

nano-inhomogeneity and the location of the material point in it. We will demonstrate its application

on the calculation of the stress concentration factor of a spherical nano-void. We will next derive

the Eshelby tensor for nano-particles consisting of a core surrounded by multiple outer shells. These

multi-shell particles are used as novel functional materials as well as stiffeners/toughners in con-

ventional composites and nano-composites. In these nano-heterogeneous particles, the mismatch of

thermal expansion coefficients and lattice constants between neighbouring shells induces stress/strain

fields in the core and shells, which in turn affect the physical/mechanical properties of the particles

themselves and/or of the composites containing them. We will apply this solution to obtain the strain

fields in quantum dots (QDs) with multi-shell structures and in alloyed QDs induced by the mismatch

in the lattice constants of the atomic species.

The next part of the talk will address the generalisation of the micro-mechanical framework for

determining the effective elastic properties and effective coefficients of thermal expansion of hetero-

geneous solids containing nano-inhomogeneities. We will use this generalised framework to calculate

the effective elastic constants of nano-porous/cellular materials. It will be shown, in particular that

these can be made to exceed those of the parent materials provided the pore surface elastic para-

meters satisfy certain conditions. These stiff nano-porous materials herald a radical breakthrough in

sandwich-type construction. We will also use the generalised framework to study the thermo-elastic

properties of heterogeneous materials containing spherical particles or cylindrical fibres. The inter-

face between the matrix and second phase inhomogeneity is imperfect with either the displacement or

the stress experiencing a jump across it. We will relate the effective coefficient of thermal expansion

(CTE) to the effective elastic moduli and thereby generalise Levin’s formula, and reveal two con-

nections among the effective elastic moduli, thereby generalising Hill’s connections. In contrast to

the classical results, the effective CTE in the presence of an imperfect interface will be shown to be

strongly dependent on the size of the inhomogeneity, besides the interface elastic and thermo-elastic

properties.

The talk will end with the introduction of scaling laws governing the properties of nano-structured

materials. The underlying cause of the size-dependence of these properties at the nano-scale is the

competition between surface and bulk energies. These laws provide a yardstick for checking the ac-

curacy of experimentally measured or numerically computed properties of nano-structured materials
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over a broad size range and can thus help replace repeated and exhaustive testing by one or a few

tests.
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Dislocations and interfacial structures formed by different chemical components of crystal lattice re-

sult the residual stresses and coupled physical fields. The fieds are crucial for understanding the con-

ditions in which the semiconductor devices grow up and work. The question is: why, in some cases,

the growth results the flat layers while in others the channels, clusters, quantum dots, nanowires and

other geometric objects nucleate. Such complex technological problems of crystal growth compose a

new challenge for computer modelling.

In the present paper, the atomistic model with dislocations and interfacial layers of crystal

lattice is embedded in a 3D finite element mesh. Thanks to such a multiscale approach the tensor

fields (residual stresses, electric fields, concentration gradients of chemical and electronic elements)

sharing the model of crystal lattice can be considered both in the FE and molecular methods. The

advantages of such approach is shown in examples.

In the first example, we consider the GaN/AlN Quantum Dots (QDs) nucleated at the edge of

threading dislocations (TDs), see Fig. 1. This phenomenon was observed first by Rouviere et al. [1].

It was caused by the fact that TDs induce local tension in certain regions of crystal lattice. This, in

turn, gives the preferable geometric condition for nucleation of QDs.

Concerning the FE part, as an example, we consider the interdiffusion induced by the residual

stresses and chemical potential force in semiconductor layers. The constitutive equations are based

on the transport of chemical components induced by the gradient of residual stresses [GPa/nm] and

chemical potentials [2.3].
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Figure 1. Atomistic model of GaN quantum dot formed on the border of edge dislocation pierceing AlN layer.
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Concerning the atomistic part, a 3D atomic model of a system of QDs situated on the edges

of threading dislocations is considered. The resultant chemical segregation obtained from our FE

simulation is next reconstructed at the atomic scale.

In the next example, the residual stresses, piezoelectric field and optoelectronic properties of

QDs are considered by using the nonlinear FE method. As the input data we assume the geometry of

the observed hexagonal pyramid-shape QDs [1]. Our finite element constitutive equations are based

on the nonlinear anisotropic hyperelasticity [5] where the interaction with electric field is incorpo-

rated. The composition and pressure dependence of the elastic constants of AlGaN alloys have been

determined from ab-initio calculations.

At the first step the piezoelectric FE problem for QDs situated at the edge of TDs is solved.

The different piezoelectric coefficients and spontaneous polarization are used for the QD and the host

matrix. Finally, using the such derived electrostatic potential and stress distribution, the optical matrix

elements of the QDs are calculated within the framework of k·p perturbation theory. The influence of

dislocation on the properties of QDs are discussed [6].
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1. Intr oduction 

Nanoindentation tests are used as a means to determine the mechanical properties of small 
sized materials from the measured force-depth curves, specifically to extract the elastoplastic 
properties of thin film deposited on the substrate. For this purpose, the quantities of the thin film 
must be decoupled from those of the substrate, and it is important to understand how the substrate 
influences the entire indentation process. We have carried out extensive finite element (FE) 
simulations on this indentation problem and found a new phenomenon. The measured hardness 
overshot the substrate hardness in a certain combination of the elastoplastic properties of the film 
and the substrate materials. 

2. Computational method 

The specimen, consisting of a semi-infinite substrate with a thin film deposited on it, is 
indented by a sharp conical indenter, as shown in Fig. 1. The thickness of the film is denoted by d, 
and half apex angle of the conical indenter, T��T�� ����R�. We assume that those two materials are 
homogeneous and their uniaxial stress-strain (V�-H�) relations obey a power-law form: 

(1)     ,/for                    and          /for          EYREYE n tHH VdHH V  
where E and Y are Young’s modulus and yield strength, respectively, and n is the work-hardening 

exponent with nYEYR )/( . 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Schematic of conical indentation on film/substrate specimen. 
 

When the specimen is of a homogeneous bulk, i.e., both the film and substrate materials are 
identical, the relation between the force P and the indentation depth h is described by a quadratic 
law: P = Ch2. Here the loading curvature C is a constant during the indentation, which is determined 
by the material properties and the indentation angle T. When the specimen is made of two layers 
(Fig. 1), however, C no longer remains constant, and varies as a function of depth h, namely C(h). 
The modified loading curvature C(h) is then defined by the following relation and satisfies latter 
two conditions: 

.1     when  )(  and  ,0  when )(          ,)(          )2( 2 ²²ooo dhChCdhChChPhC sf  
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Here, subscripts f and s mean that the specimen is made of bulk film  material and of bulk substrate 
material, respectively. Indentation hardness H is given by the definition: 

2
0  5.24     ,          )3( hAAAPH    , 

where A and A0 represent true projected contact area and nominal contact area, respectively. In this 
study A0 is used in place of A to calculate the hardness. This means that both pile-up and sink-in 
effects of the indented material are ignored. 

3. Combination of material properties and calculated results 

We have carried out elastoplastic axisymmetric FE calculations with ANSYS, for the material 
properties and their combinations, shown in Table 1, where Q means Poisson’s ratio of the material.  

Table 1. Material properties used in the analysis. 

                Film                       Substrate               

  E (GPa)  Q  Y (GPa)  n     E (GPa)  Q    Y (GPa)  n 

 A  410  0.25  4.0  0.0      0.675 

 B  410  0.25  4.0  0.2  470  0.25  7.0  0.0   0.838 

 C  410  0.25  2.0 0.5      0.931 

 D  410  0.25  2.5  0.5      1.008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Relative hardness sHH as a function of relative indentation depth dh .  

 
Calculated results are shown in Fig. 2 for the four cases shown in Table 1. In the cases of A and B, 
the relative hardness H/Hs remains almost constant at their own hardness of film Hf, in a relatively 
small depth range (h/d < 0.2). It then monotonically increases with increasing depth, and finally 
converges to Hs (H/Hs� 1). The behavior is very different in cases C and D, where sf HH | . In 

these two cases, starting from Hf, the hardness is observed to overshoot both values of Hf and Hs 
with increasing depth before converging to Hs. Then, a question arises: why has this overshoot 
phenomenon not been observed or reported previously? We can think of the following two reasons: 
(1) The combination of material properties of C or D has not been tried in hardness tests yet, or (2) 
the overshoot quantity is no greater than 10 % of the hardness (Hs), and therefore, easy to be 
overlooked. 
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ATOMIC-CONTINUUM EQUIVAL ENCE: ATOMIC STRAI N TENSOR 
 

R. Pyrz1 and B. Bochenek2 
1 Aalborg University, Aalborg, Denmark 

2 Cracow University of Technology, Cracow, Poland 
 
 

1. Introduction  

The most frequently used form for the stress at atomic level is based upon the Clausius virial 
theorem, which determines the stress field applied to the surface of a fixed volume containing 
interacting particles (atoms). The virial stress includes the mass and velocity of atoms, which 
describes the fact that mass transfer causes mechanical stress to be applied on the surfaces external 
to an atomic system, as well as it includes pair-wise interatomic forces and atomic positions. It has 
been shown that the virial stress cannot be directly related to the classical Cauchy stress and several 
modifications have been proposed [1, 2]. It is essential to recognize that the stress at the location of 
an atom depends on the details of the interatomic interactions and the positions of interacting 
neighbours. Hence, the atomic stress is a non-local function of the state of the matter at all points in 
some vicinity of the reference atom, in contrast to the local stress field used in classical continuum 
theories. 

It seems that the relationship between local displacements of atoms and the strain tensor is not 
as ambiguous as the concept of atomic stress. Position of atoms is readily available from almost all 
molecular simulation algorithms and the atom displacement can be easily assessed. Strain measure 
is a relative quantity and one need two configurations, the reference and the present, in order to 
define the local atomic strain. The atomic strain should provide detailed local information about 
kinematics of the atom in relation to its neighbours and the true test of the atomic strain concept is 
how well it approximates total strain of the simulation cell by summing local atomic strains over all 
atoms present in the system. In the best case this sum should be equal or very close to the total 
strain calculated from boundary conditions of the simulation cell. The atomic strain tensor was 
calculated in [3] to better understand changes in local structure. However, it has not been 
determined whether or not the sum of local atomic strains corresponds to the total deformation of 
the simulation cell when loaded by external forces.  

In this work we describe an atomic strain measure related to the transformation matrix 
between two deformation states. This measure is further modified in order to take into account 
nonaffine deformations taking place in molecular disordered systems. Localized areas of nonaffine 
deformations indicate non-elastic response which evolves during loading [4].  

2. Atomic strain measure and analysis 

The atomic strain will be defined in terms of Voronoi tessellation. The atoms are assumed to 
be in their equilibrium positions, and thermal vibrations are averaged. The Voronoi polyhedron 
around central atom is composed of a set of sub-polyhedrons (interaction cells) whose number is 
determined by a number of neighbours to the central atom. During motion, the Voronoi polyhedron 
associated with the atom changes its shape. The interaction cell is defined for each pair consisted of 
a central atom and its neighbors. It is a part of Voronoi polyhedron that contains points situated 
closer to this pair of points than to any other. It is build of two sub-polyhedrons (parts of 
polyhedron surrounding a central point and a neighboring point) having common face. This is a 
unique region for which it can be assumed that it is influenced only by these points. 

The atomic strain is defined through the deformation gradient that is calculated by minimizing 
the sum of squared separation distances between neighbouring atoms and subsequently weighted by 
corresponding polyhedra [5]. 
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As an example, molecular modeling and strain calculations has been performed on CNT-
polypropylene nanocomposite. At first, the system is constructed and subject to energy 
minimization using Polak-Ribiere conjugate gradient method. Molecular dynamics simulation is 
performed next using NTP ensemble in order to obtain an equilibrium state, which simultaneously 
serves as a reference state. The nanocomposite has been subject to uniaxial tension along the 
nanotube axis and the analysis has been performed for nine deformation steps with equilibration 
runs after each step. The total atomic strain of the system resembles very closely the strain of the 
simulation cell calculated from boundary conditions. For instance, the strain from boundary 
conditions is 0.0185 at third loading step whereas atomic strain gives 0.0179. 
 

 
Figure 1. Voronoi tessellation of CNT at third step of deformation and evolution of the total CNT 

strain as compared to the total nanocomposite strain. 
 

Figure 1 shows Voronoi tessellation only for atoms belonging to carbon nanotube at third 
loading step and the evolution of CNT total strain during loading history. The nanotube strain 
follows the strain of nanocomposite to a certain loading level and then lags after it as loading of the 
nanocomposite increases. This is clear evidence that we need to deal with an interfacial sliding. A 
detailed analysis atom by atom would be necessary to disclose and characterize an atomic nature of 
interfacial debonding. 

3. Conclusion 

The most important conclusion to emerge from present investigation is that atomic strain 
concept based on the construction of Voronoi cells provides means to bridge molecular and 
continuum length scales. This concept will be illustrated further with other examples comprising 
slippage of functional nanowires at interfaces in polymer based nanocomposites and cohesive 
fracture phenomena at interfaces. 
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     Within the framework of continuum dislocation theory the plane-strain constrained shear of a 
single and bicrystal strip is analyzed. For the single crystal strip we consider the single and double 
slip systems oriented at different angles to the direction of shear. For bicrystal strip the main 
assumption is that each crystal layer has only one active slip system. These slip systems are oriented 
differently with respect to the direction of shear. We also assume that both crystal layers are 
elasticall y isotropic and have the same elastic moduli . At the grain boundary the displacements and 
the tractions must be continuous. Besides, the dislocations cannot penetrate the grain boundary. The 
problem is to determine the displacements and the plastic distortion as functions of the given overall  
shear strain. 

    Our aim is twofold. First, we are going to find the solution in closed analytical form for the single 
crystal with one active slip system and with symmetric double slip systems, and for the bicrystal in 
the symmetric case (twins). If the dissipation can be neglected, then dislocations appear to minimize 
the total energy of crystal. Due to the specific form of the energy of dislocation network which is 
proportional to the dislocation density for small  densities, we show that there is an energetic 
threshold for the dislocation nucleation. If the shear strain exceeds this threshold, geometricall y 
necessary dislocations appear and pile up near the grain and phase boundaries leading to the 
material hardening. From the obtained solution we can compute the contribution of the 
geometricall y necessary dislocations to the energy of grain and phase boundaries. If, in contrary, the 
dissipation due to the resistance to the dislocation motion is essential, the energy minimization 
should be replaced by the flow rule. The solution exhibits the dissipative threshold for dislocation 
nucleation, the Bauschinger translational work hardening, and the size effect. Our second aim is to 
develop the numerical procedure for the solution of this problem in the case where the active slip 
systems are not symmetric. The agreement between the numerical and analytical solution for the 
special case of symmetry will  justify the correctness of developed numerical procedure. 
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A MIGRATION RECRYSTALLIZATION MODEL FOR POLAR ICE

R. Staroszczyk
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Ice core samples drilled from depth in a polar ice sheet reveal strong anisotropic fabrics, shown

by significant re-alignment of initially randomly oriented individual ice crystals (Gow el al. [1],

Thorsteinsson et al. [2]). Progressive re-orientation of crystal c-axes (the axes of crystal hexagonal

symmetry), taking place in the material in its response to current local strain and stress situations as ice

particles descend from the free surface to depth, gives rise to considerable changes in ice macroscopic

viscosities on different shear planes. The main micro-process that is responsible for the development

of the oriented structure of the polar ice is the crystal lattice rotation due to the dislocation glide on

the crystal basal planes. This process, present throughout the whole descent of the ice from the free

surface to depth, but the effects of which are most pronounced in the upper half of a glacier, leads—

in the absence of other micro-mechanisms—to very strong fabrics, with the majority of the crystal

c-axes clustered along the vertical.

Beside the above lattice rotation mechanism, polar ice is also subject to recrystallization pro-

cesses which have, or may have, effect on the directional properties of the material. One such a mech-

anism, the so-called normal crystal growth process, has no influence on the macroscopic anisotropy

of ice. The other mechanism, known as the rotational recrystallization (or polygonization), is most

active in the middle part of an ice sheet, and leads to the nucleation of new grains, the orientations of

which are very close to those of existing grains (the latter do not disappear). Therefore, the macro-

scopic result of this mechanism is only a slight modification of the anisotropic properties of ice. As

ice particles, during their descent, enter the bottom part of a glacier and approach its base, another

recrystallization process becomes increasingly active, due to which the structure of ice changes dra-

matically, as evidenced by multi-maxima fabrics, with very coarse and interlocking grains, found

near the glacier base (Duval and Castelnau [3], De La Chapelle [4]). Such a process, known as the

migration recrystallization, is caused by rapid migration of grain boundaries between deformed and

dislocation-free crystals, and leads to the nucleation of new grains at the expense of old ones (which

ultimately disappear). Not all the factors which initiate and control the migration recrystallization

mechanism have been identified yet, but it seems that the most important among them are: high,

i.e. near-melting temperature, high strains, strain-rates and stresses, with some role also played by

the bed topography. The macroscopic outcome of the above process is a significant weakening, and

sometimes a complete destruction, of the strong anisotropy that has developed at earlier stages of the

ice descent through a glacier. Thus, this process has a crucial effect on the overall flow of polar ice

sheets, since the latter deform mainly by shearing in near-base regions.

To date only few theoretical attempts have been made to describe the process of migration

recrystallization. These include a discrete-grain model by Van der Veen and Whillans [5], a cellular

automata model by Ktitarev et al. [6], a phenomenological model by Staroszczyk and Morland [7],

and a formulation by Morland [8] in which the process is described by means of a temperature-

dependent critical lattice-distortion parameter.

In this paper a discrete-grain model is constructed, in which the phenomenon of migration

recrystallization is modelled by extending an earlier theory by Staroszczyk [9]. In that theory, based

on the Taylor-Voigt approximation of a uniform velocity gradient within a polycrystalline aggregate,

the macroscopic behaviour of ice is derived by a simple average of the responses of a finite number

of discrete grains representing the polycrystal. A single crystal of ice is treated as a transversely

isotropic and incompressible body, the behaviour of which is assumed to be viscous. The response of
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a crystal is described by a constitutive law that involves three viscosity parameters defining different

shear resistances in different glide directions.

Now the model is extended by incorporating into it the migration recrystallization mechanism.

It is assumed that recrystallized are those crystals in an aggregate which are most stressed. Hence, a

parameter is introduced to define a critical level of the deviatoric stress invariant, and it is supposed

that a given crystal starts to recrystallize once the critical magnitude of this invariant has been reached

in the crystal. A new grain is nucleated from that undergoing recrystallization in a smooth manner

(in existing models it is usually assumed that the process occurs abruptly), and the orientation of this

new grain is chosen in a way that is most favourable for its microscopic deformation by creep (that is,

a newly formed grain is least stressed in a current macroscopic stress/strain configuration).

The model predictions are illustrated by the results of numerical simulations carried out for

sustained uniaxial compression and simple shear, showing the evolution of the oriented structure of

the material. Further, the variation of instantaneous macroscopic viscosities with increasing strains

for different magnitudes of the critical stresses triggering the process of migration recrystallization

is illustrated, displaying such features as the occurrence of recrystallization waves, or showing an

example in which the viscosity in uni-axial compression becomes, due to the recrystallization, less

than that of an isotropic sample (without the recrystallization involved the axial viscosity increases

with the deformation). The latter feature has been known from experiments, but has not been predicted

yet by any of the theoretical recrystallization models available so far.
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THE ENERGY APPROACH TO DETERMINING PLASTIC DEFORMATION OF METAL

CRYSTALS

M. Kursa and H. Petryk

Institute of Fundamental Technological Research, Warsaw, Poland

1. Introduction

Non-uniqueness of active slip systems selection in the rate-independent theory of single crystal

plasticity represents a well-known difficulty, and different methods have been proposed in the litera-

ture to overcome it. The method used in this paper is based on the energy criterion of path stability.

The main concept is that a stable deformation path corresponds to step-by-step minimization of the

incremental energy supply under prescribed kinematic constraints and under certain symmetry restric-

tions imposed on the constitutive law. A novel feature of the present approach is that the minimization

is simultaneously performed with respect to shear increments on all slip systems and to the deforma-

tion gradient components that are left unconstrained. In particular, if only the overall deformation

gradient is prescribed, either fully or partially, then the energetically preferable deformation pattern

in a crystal can be nonuniform and lead to deformation banding and microstructure formation. A

respective computational algorithm for large elastoplastic deformations of metal single crystals has

been developed and used to simulate typical tests like uniaxial tension and channel-die compression.

2. Minimization of incremental energy supply

A general description of the incremental energy minimization approach can be found in [1].

The following minimization problem is examined

(1) ∆E → min subject to kinematical constraints

where ∆E is the increment in energy to be supplied from external sources to the mechanical sys-

tem, consisting of the deformed body and the loading device, in order to produce quasi-statically a

deformation increment. In this paper we consider either kinematic control or zero external loads, so

that ∆E reduces to the increment of deformation work ∆W split into the sum of the increments in

the Helmholtz free energy and virtual dissipation. For each slip system the Schmid yield condition

τk = τ c

k
is adopted, where τk is the resolved stress (projection of Kirchhoff stress τ on k-th slip-system

dyad sk) and τ c

k
is its current critical value. It is shown that the symmetry restriction imposed by in-

trinsic consistency between minimization (1) performed with accuracy to the first- and second-order

terms [1] is reduced to the requirement gkj = gjk examined below.

3. The hardening moduli and symmetry restriction

The evolution equations for critical shear stresses τ c

k
and yield functions fk = τk − τ c

k
are

(2) τ̇ c

k
=

∑

j

h∗

kj
γ̇j , ḟk = Λk · Ḟ −

∑

j

gkj γ̇j ,

where γ̇j ≥ 0 is the shear-rate on j-th slip-system, h∗

kj
are slip-system hardening moduli, gkj are

slip-system interaction moduli at prescribed strain-rate, F is the deformation gradient, and Λk is a

tensor orthogonal to the yield surface fk = 0 in F-space. Taking into account the plastic flow of the

material relative to the crystallographic lattice, it is shown that

(3) gkj − gjk = h∗

kj
− h∗

jk
+ τ · (sksj − sjsk) .
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Different ways of ensuring the required symmetry gkj = gjk by reducing to zero the right-hand

expression in (3) are considered, and their quantitative effect on the material behaviour is studied.

4. Example

As an example, the channel-die compression of an Al-alloy single crystal is considered. Ideal-

ized geometry of the specimen before and after deformation is shown in Fig. 1, the latter determined

for two different initial orientations of the crystal. Compressive stress-strain diagrams calculated for

five different crystal orientations are shown in Fig. 2a which can be compared to respective experi-

mental data taken from reference [2] and shown in Fig. 2b. The effect of formation of deformation

bands is also investigated.

(a) (b) (c)

Figure 1. Initial configuration of a sigle crystal in a channel die (a) and calculated configurations after com-

pression to εln = 1.25 for Cube (b) and Copper (c) initial crystallographic orientations.
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Figure 2. Compressive stress-strain diagrams for channel-die compression of a single crystal of five different

crystallographic orientations: calculated curves (a) and experimental results from ref. [2] (b).
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MICR OMECHANICAL MODELLING OF METALLIC MATERIALS OF HIGH SPECIFIC
STRENGTH ACCOUNTING FOR SLIP-TWIN INTERA CTIONS

K. Kowalczyk-Gajewska
Instituteof FundamentalTechnological Research, Warsaw, Poland

1. Intr oduction

The aim of the studyis developmentanda preliminaryvalidationof micromechanicalmodel
of largeplasticdeformationsof polycrystallinematerialscharacterizedby high specificstrengthand
low ductility (eg. Mg alloysor intermetallics).Dueto latticesymmetrythenumberof slip systemsin
thesematerialsis limited. Disadvantageouseffect of this facton ductility maybepartially balanced
by the initiation of othermechanismof plasticdeformation- twinning. In modellingof twinning,
as comparedto modelling of crystallographicslip, one shouldaccountfor its polarizedcharacter
(uni-directionality)andappearanceof new twin relatedorientationwithin the grain [1]. Nowadays
growing interestin hcp metalssuchasmagnesiumor titanium alloys andintermetallicsresultedin
developmentof modelsof crystalplasticityaccountingfor twinning,e.g.[2–4]. In thepaperthesingle
grainmodelproposedby Gambin(cf. [5]) reformulatedto incorporatetwinning is used.In orderto
accountfor appearanceof twin relatedorientationsa new reorientationscheme,calledProbabilistic
Twin Volume Consistent(PTVC) scheme,is developed. Experimentsindicatecouplingsbetween
evolutionof activity of slipandtwin mechanisms.Thehardeningruledescribingslip-twin interactions
is proposed.Modelpredictionswill beanalyzedfor hcpmaterialsandintermetallics.

2. Model description

Twinning,similarly to slip, is realizedby simpleshear, however, in thiscaseonly somevolume
fractionof amatrixgrainis shearedonthespecifiedtwin planein thespecifiedtwin directionwith the
specifiedamountof shearγT . As aresultthetwinnedsub-grainis formed.Contrarytoslip mechanism
twin is unidirectional.Thetwinnedparthasdifferent,but specifiedlatticeorientationwith respectto
thematrixgrain,thoughthelatticeorientationin thematrixgrainis alsounaltered,cf. [1]. In orderto
accountfor twinning in theproposedmodelwe follow thestandardprocedure,eg. [2; 4]. Twinning
is describedas uni-directionalslip mode. The rate of pseudo-slipγ̇r is connectedto the rate of
volumefraction ḟ r of twinnedpartcreatedby thetwin systemr accordingto theformula γ̇r = γT ḟ r.
Modellingof twinning in thecontext of textureevolution requirestakinginto accounttheappearance
of new twin-relatedorientation.A new method,thePTVC scheme,which originatesin VanHoutte
reorientationconditionis developed.It takesinto accountthehistoryof thedeformationprocessand
maintainsthevolumefraction of reorientedgrainsat a level that is consistentwith shearactivity of
twinscontributingto thedeformation.Ontheotherhand,contraryto PredominantTwin Reorientation
scheme,cf. [3], thePTVCschemedoesnotrequiretheanalysisof thewholepolycrystallineaggregate
andtheidentificationof any additionalconstantsor parameters[6].

Crystalplasticity with singleyield surfacemodifiedin order to incorporatetwinning is used,
cf. [5],[7]. Theevolution of slip andtwin activity is capturedby thehardeningrule. Following the
reasoningpresentedin [3] thehardeningrule is proposedin theform (M , N - numberof slip andtwin
systems,respectively)

τ̇ r

c
= Hr

(ss)

M
∑

q=1

h(ss)

rq

˙̄γ
q

+ Hr

(st)

2M+N
∑

q=2M+1

h(st)

rq
γ̇q, τ̇ r+M

c
= τ̇ r

c
, r ≤ M(1)



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 237

τ̇ r

c
= Hr

(ts)

M
∑

q=1

h(ts)

rq

˙̄γ
q

+ Hr

(tt)

2M+N
∑

q=2M+1

h(tt)

rq
γ̇q, r > 2M(2)

and ˙̄γ
q

= γ̇q + γ̇q+M . Hardeningsub-matricesh(αβ)

rq
accountfor themutualinteractionsof thedefor-

mationmechanismsof theslip-slip,slip-twin, twin-slip andtwin-twin types.Thesematriceshave the
form whichdistinguishesbetweenthehardeningdueto slip or twinningoncoplanarandnon-coplanar
systems.The functionsHr

(αβ)
describethehardeningof r-th slip systemor r-th twin systemdueto

activity of otherslip or othertwin systems.For hardeningof theslip systemr dueto activity of slip
systemstheVoce-typelaw with saturationis prescribedin theform usedin [4]. This law accountsfor
the athermalstatisticalstorageof moving dislocationsanddynamicrecovery. For the hardeningof
slip systemr dueto twin activity thefollowing rule is used

Hr

(st)
= hst

0
\ τ r

(

fT \ (f st

sat
− fT )

)

(3)

that accountsfor geometricaleffects of twin boundariesin reducingmain free path distanceand
hst

0
andf st

sat
≤ 1 arethe materialparameters.The hardeningof twin systemdueto slip activity is

neglectedor governedby thesimplifiedlinearlaw while thehardeningof twin systemdueto activity
of twinning is assumedsimilarly as in (3). The correspondingparameterf tt

sat
< 1 enablesoneto

describethe saturationof the volumefraction of twins below one. In the model twinning andslip
in reorientedgrainsis moredifficult thanbeforereorientationor even impossible.Moreover, slip in
reorientedgrainsis severelyrestrictedto theplanesthatarecoplanarwith thematrix-twin boundary.

3. Results

The presentedmodelwill be appliedto studythe materialresponseandtexture evolution for
hcpmaterialsandγ-TiAl intermetallicsof equiaxedandlamellarmicrostructure.Theperformanceof
thedevelopedreorientationschemewill becomparedto theexisting approachesandavailableexper-
imentalresults.It shouldbenotedthatboth,PTVC schemeanddescriptionof slip-twin interactions
with useof thehardeningrule (1-2), maybeappliedfor differentaveragingschemesfor polycrystal
aswell asothermodelsof crystalplasticity, for exampletherate-dependentmodel.
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1. Introduction 

The interpenetrating phase composites (IPC), or interpenetrating metal-ceramic networks, are 
advanced engineering materials which consist of entirely interconnected networks of solid phases. 
The rationale behind designing the IPC is to achieve a highly durable material that would combine 
the most desirable properties of the constituent phases. The detailed description of IPC and their 
applicabilit y is given e.g. in [1]. The methods of estimation of the effective elastic properties of the 
IPC’s are presented and compared ([2], [3], [4]). A numerical method for calculating random 
composite structure model was developed. Numerical methods for calculating real composite 
microstructures were developed and used for Al2O3-Cu IPC microstructure acquired from the 
computer micro-tomography (CT). The results of measurements of Young's modulus for different 
types of Al2O3-Cu interpenetrating composites are also presented and compared with the analytical 
approximations and numerical calculations. 

 

2. FEM modeling of the interpenetrating structure 

The calculations were made for the 3D interpenetrating cross structure, shown in Fig. 1, for the 
random voxel structure, and for the real structure obtained from computer tomography. There were 
three effective elastic constants calculated: Young's modulus, Poisson's ratio and shear modulus. To 
model Young's modulus and Poisson's ratio, tensile load was applied as the uniform displacement 
field applied to one side of the cube, with fixing boundary conditions on the opposite side. To 
model shear modulus, tangent displacements were applied together with antisymmetric boundary 
conditions.  

There were convergence studies made to compare the results for different mesh densities for the 
calculations of Young's modulus, Poisson's ratio and shear modulus. The method of extrapolation to 
other composite components was proposed. The effect of porosity of the porous ceramics on the 
effective properties was also investigated. 

The calculations for the real structure of the Al2O3-Cu interpenetrating composite obtained from 
computer tomography were made. The inner part of the image, with the shape of the cube of the 
dimensions 400×400×400 voxels, was extracted to be used for calculations. The real structure of the 
material was represented as cubic voxels, where each voxel was made of only one material. Each 
voxel was modeled as 8-node brick element. Due to complexity of such a big model the whole 
structure was divided into 512 equal in size cubic parts and then each part was calculated 
separately. The applied loads and boundary conditions were analogous to the applied for the cross 
structure. 
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Fig. 1. Unit cubic cell  of the 
IPC model according to [2] 

Fig. 2. Effective Young’s modulus of Al2O3-Cu IPC – 
analytical and numerical models and CT measurements results. 

 

The numerical results for the effective Young’s moduli  are presented in Fig. 2, compared with 
theoretical predictions and results of measurements of the Al2O3-Cu interpenetrating composites. It 
can be seen that these numerical results fit between Hashin-Shtrikman bounds [4] and are closer to 
the upper bound. The influence of the composite microstructure on the effective properties can be 
also seen. 

3. Conclusions 

The numerical methods of estimating the effective properties of interpenetrating phase composites 
were presented and compared with existing theoretical models and results of measurements of 
IPC’s of different microstructures. The developed numerical methods are in accordance with the 
existing theoretical models applicable to the IPC’s. 

From the presented results it could also be seen that computational methods offer the best 
possibiliti es for modeling the features of the real material, such as porosity, microcracking, 
debonding between phases and thermal stresses. Further investigation of these methods should then 
be made. 

4. References 

[1]  Basista M. and Weglewski W. (2006). Modelli ng of damage and fracture in ceramic-matrix 
composites - an overview, J. Theor. Appl. Mech., 44, 455-484. 

[2] Feng X., Tian Z., Liu Y. and Yu S. (2004). Effective elastic and plastic properties of 
interpenetrating multiphase composites, Appl. Comp. Mater., 11, 33-55. 

[3] Gross D. and Seelig T. (2006). Fracture Mechanics with an Introduction to Micromechanics, 
Springer. 

[4] Hashin Z. and Shtrikman S. (1963). A variational approach to the theory of the elastic 
behaviour of multiphase materials, J. Mech. Phys. Sol., 11, 127-140. 



240 Selected Topics of Contemporary Solid Mechanics

MODELLING OF MICROSTRUCTURE FORMATION

BY MINIMIZATION OF INCREMENTAL ENERGY SUPPLY

H. Petryk

Institute of Fundamental Technological Research, Warsaw, Poland

1. Microstructures and material instability

It is well documented experimentally that microstructures can form in initially homogeneous

solids during plastic deformation or phase transition. This paper is concerned with the modelling of

this phenomenon in rate-independent inelastic solids under quasi-static loading, with particular refer-

ence to plasticity of metal crystals and polycrystals and to martensitic phase transformation in shape

memory alloys. Formation of dislocation cells, cell blocks, deformation bands and shear bands within

single grains of plastically deformed metals and alloys, of networks of macroscopic shear bands in

metal polycrystals, and of twinned martensite and austenite-martensite laminates in shape memory

alloys, are viewed as basic examples. A unifying feature of these seemingly distinct microstructures

is that non-uniformity of deformation associated with the microstructure formation in not enforced by

external conditions but is due to intrinsic instability in the deformed material.

In elastic or pseudo-elastic solids, the well-known notions of ellipticity, rank-one convexity

and quasi-convexity of a nonlinear elastic energy function are related to material stability whose

loss leads to formation of fine microstructures. When the evolution of a microstructure is associated

with intrinsic dissipation, the stability analysis becomes more complex. An extended condition of

thermodynamic stability is developed which in general is less restrictive than the classical one on

account of a rate-independent dissipation term in the respective Lyapunov functional. To describe

microstructure formation, the total incremental energy supplied to a material element is minimized

according to the energy criterion of stability of deformation paths [1, 2].

2. Minimization of incremental energy supply

This may be regarded as an extension of the standard approach based on minimization of the

elastic or free energy to inelastic materials with rate-independent dissipation. The variational ap-

proach to determining microstructure formation in a homogeneous and uniformly strained inelastic

material follows the basic rule:

∆E → min subject to kinematical constraints(1)

where ∆E is the increment in energy to be supplied from external sources to the thermodynamic

system under consideration to produce a virtual deformation increment. The analysis is restricted to

isothermal quasi-static transformations. The prefix ∆ denotes a virtual increment from a given state,

corresponding to an increment of an external control parameter. ∆E is generally split into the sum

∆E = ∆W + ∆Ω of the deformation work increment ∆W and the increment ∆Ω in the potential

energy of external loads. If the (virtual) dissipation D associated with a local deformation increment

is defined then the further split ∆W = ∆φ̄ + ∆D̄ can be used involving the averaged increments ∆φ̄

in the Helmholtz free energy and ∆D̄ in the dissipated energy.

In applications, the energy functional in the minimization rule (1) is evaluated at least to the

second-order terms since its first-order representation leaves the incremental deformation indetermi-

nate. Accordingly, a symmetry restriction is imposed on the incremental stiffness moduli [1, 2] and

dissipation function [3].
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3. Examples

The microstructure formation is calculated by repetitive solving the incremental energy min-

imization problem (1) along a deformation path. This is illustrated below by the example of finite-

element simulations of the post-critical plastic deformation of a homogeneous incrementally nonlinear

material. The overall plane strain compression under periodic boundary conditions is applied, with

a small amount of shearing superimposed starting from 29% compression. The deformation pattern

shown in Fig. 1 emerges through a sequence of bifurcations. The advantage of using rule (1) is in au-

tomatic selection of the post-critical deformation path which is otherwise indeterminate. The rule (1)

has also been applied to overcome the long-standing difficulty of non-uniqueness in crystal plasticity

and to simulate the formation of banded microstructures in metal crystals.

(a) (b) (c) (d)

Figure 1. Calculated plane strain pattern at (a) 30% (b) 35% (c) 40% (d) 44% compression (with a small

amount of shear) of a polycrystalline metal obeying the two-surface corner theory of plasticity [4].

Another area of applicability of (1) is the simulation of stress-induced martensitic microstruc-

tures in crystals of shape memory alloys, as shown schematically in Fig.2.

polycrystal single crystal austenite-martensite martensite lattice
domains rank-two laminate rank-one laminate

Figure 2. Schematic view of stress-induced martensitic microstructures in crystals of shape memory alloys.
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In the micropolar (or the Cosserat type) continuum each material particle can translate and 

independently rotate, that is it has six degrees of freedom of a rigid body, [1,2]. The micropolar 
continuum is used nowadays with success to model the behaviour, for example, of granular media, 
composites, polycrystalline solids, liquid crystals, magnetic fluids, nano-materials as well as thin 
bodies: rods, plated and shells. 

Two strain measures of the micropolar continuum, called usually the stretch and wryness 
tensors, were originally proposed by Cosserats [1] in an awkward, now hardly understandable 
notation. In the contemporary literature the stretch and wryness tensors are defined in different 
ways using, for example: a) components in two different curvilinear coordinate systems associated 
with the undeformed (reference) and deformed (actual) placements of the body, b) components in 
the convected coordinate systems, c) Lagrangian or Eulerian descriptions, d) different 
representations of the rotation group SO(3), e) formally different definitions of gradient and 
divergence operators, f) different sign conventions, and f) requiring or not the measures to vanish in 
the undeformed placement of the body. As a result, definitions of the strain measures for the 
micropolar continuum used in different papers are in many cases not equivalent. 

In this report we discuss three different methods of defining the strain measures of the non-
linear micropolar continuum: 1) by a direct geometric approach, 2) introducing the strain measures 
as the fields work-conjugate to the respective internal stress and couple-stress fields, and 3) 
applying the principle of material frame-indifference to the polar-elastic strain energy density. All 
the three methods lead to the same definitions of the stretch and wryness tensors. Our strain 
measures expressed in the coordinate-free notation are of the relative type, for they are required to 
vanish in the undeformed placement of the body. 

1. Geometric approach 

In the undeformed placement the material particle of the micropolar body is given through the 
position vector  and three orthonormal directors E�x , 1,2,3,a E a�  h  where  is the 3D vector 

space. In the actual placement the same material particle becomes described by the position vector 
 and three orthonormal directors 

E

E�y a E�d . Thus, the finite displacement of the body is 

described by 

(1)             ( ) ( ) , ( ) ( ) ,a a b aF M  �   y x x u x d h Q x h  

where  is the microrotation tensor. (3)a a SO � �Q d h

Analysing differences between position and orientation differentials d , d , d , andda ax y h d  we 

can define the Euclidean norms 

(2)              
2

2

||d d || d d d d ,

|| d d || d d d d .

T T

T T

�   

�   

y Q x x E E x y G G y

C y Q
�

x x x y y

< <

< <� � ± ±
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In (2), 
1

2 a aGrad uB h h  and 
1

2 a grad uC d da  are the microstructure curvature tensors in the 

undeformed and deformed placements, respectively, with Grad  and  being the corresponding 
gradient operators and 

grad

(3)              
1 1

1 1

, ,

, ,

T

T

� �

� �

 �   �

 �   �

E Q F I G QEF I QF

Q CF B Q F C QBF� ± �

where Grad F y . The measures  are the natural stretch tensors while  are the natural 
wryness tensors of the micropolar continuum in the Lagrangian and Eulerian descriptions, 
respectively. 

,E G ��±

2. Work-conjugate strain and stress measures 

The local equilibrium equations of the micropolar continuum in the Lagrangian description 
are 
(4)               , ( ) ,T TDiv Div ax�  � � �  T f 0 M TF FT m 0

where T  and M  are the stress and couple stress tensors of the 1st Piola-Kirchhoff type, and  
denotes the axial vector of the skew tensor( .  

( )ax A

)A

Multiplying the vector equations (4) by the kinematically admissible virtual translation Gu  
and virtual rotation  fields, respectively, after appropriate transformations we can 
formulate for the micropolar continuum the principle of virtual work in which the internal virtual 
power density becomes expressed as 

( )Tax GQQ

(5)              G G6  �S E P< < � �  

In (5), the virtual measures ,G GE �  - the virtual changes of  defined by (3) - are work-

conjugate to the corresponding stress measures ,  of the 2nd Piola-Kirchhoff type. 

,E �
T S Q T T P Q M

3. Principle of material frame-indifference 

The elastic micropolar body is usually defined by assuming the existence of the strain energy 
density ( , , , ; )W W Grad y F Q Q x . The function W  should be invariant under transformations 
following from a rigid-body motion of the reference frame o �y Oy a ,  for arbitrary 

 and . Then W  can be reduced to , that is W  still depends on . 
We bypass this inconvenience by postulating the strain energy density in the equivalent form 

oQ OQ

(3)SO�O E�a ( , )TW E Q x� �� � Q

( , , , ; )T T TW W Grad y F Q Q x  which under the transformations given above can be reduced to 

. As a result, the density  depending only on  at each  is the one which assures 
the principle of material frame-indifference to be identically satisfied. 

ˆ ( , )W E x�� Ŵ ,E � x

We also present a review of alternative defini tions of the strain measures for the micropolar 
continuum proposed in the literature. 
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BOUNDARY VALUE PROBLEMS IN THE TWO-TEMPERATURE THEORY OF 
THERMOELASTICITY OF BINARY MIXTURES  

 
 

M. Svanadze  
 Ilia Chavchavadze State University, Tbili si, Georgia  

 
 

1. Introduction 

The nonlinear theory of thermoelasticity of mixtures of two- or many-component solids was 
developed by Green and Steel [1]. A linear variant of this theory (the diffusion model) was 
proposed by Steel [2]. The theory of thermoelasticity of binary mixtures (the shift model) was 
constructed by Iesan [3]. In [1-3], the mixture components are assumed to have the same 
temperature value.  

The linear and nonlinear theory of thermoelasticity of binary mixtures with components 
having different temperature values were respectively constructed by Khoroshun and Soltanov [4] 
and Iesan [5]. Fundamental solutions of steady oscill ation (vibration) equations of the two-
temperature linear theory of mixtures are constructed in terms of elementary functions in [6]. 

In this paper, the boundary value problems (BVPs) of steady vibration of the two-temperature 
linear theory of thermoelasticity of binary mixtures are investigated by means of the boundary 
integral equation method (potential method [7, 8]). The Sommerfeld-Kupradze type radiation 
conditions are established. The uniqueness and existence theorems of solutions of the BVPs are 
proved using the potential method and the theory of multidimensional singular integral equations.  

2. Basic boundary value problems  

          The system of equations of steady vibration in the two-temperature linear theory of 
thermoelasticity of binary mixtures is written as [4, 5] 
                uwdwcubua 1

2
11  div grad   div grad ρω++∆++∆ ,0 grad grad )( 212111 =−−−− θαθαα wu  

(1)           wwbwauduc 2
2

22  div grad   div grad  ρω++∆++∆ ,0 grad  grad )( 222121 =−−−+ θαθαα wu   
      ,0)  ( div ) () ( 21112121211111 =+++∆++∆ wuimiamia ββωθωθω  
      ,0)  ( div ) () ( 22122222212121 =+++∆++∆ wuimiamia ββωθωθω  

where ),,( 321 uuuu =  and ),,( 321 wwww = are the partial displacements, 1θ and 2θ  are the 

temperature variations of each component, )2,1,( ,,,,,,, =jlmadcba ljljljljjj βα  are thermoelastic 

constants of the mixture, 0≥α , ω  is the oscill ation frequency, 1ρ and 2ρ are the partial densities.   

        Let ),,( 321 xxxx =  be the point of the Euclidean three-dimensional space 3E . Let S  be the 

closed surface surrounding the finite domain +Ω  in 3E .  ,,2 νCS∈  ,10 ≤<ν  ,SU
++ Ω=Ω  

.\3 +− Ω=Ω E   A vector function U  is called regular in −Ω  (or +Ω ) if )()( 12 −− ΩΩ∈ CCU l I    

(or )()( 12 ++ ΩΩ∈ CCU l I ), )()(
6

1

xUxU
j

ljl ∑
=

= , )()( 12 −− ΩΩ∈ CCU lj I , 0)()( 2 =+∆ xUk ljj , and 

(2)            )|(|)()
||

( 1|| −=−
∂

∂
xoexUik

x
xik

ljj
j ,      

for 1|| >>x , where jk  is the wave number, ,8,...,2,1=l 6,...,2,1=j , 212
3

2
2

2
1 )(|| xxxx ++= . Equaliti es 

in (2) is the Sommerfeld-Kupradze type radiation conditions in the two-temperature theory of 
thermoelasticity of binary mixture. 
       Problem +

fI )( : Find a regular solution to system (1) for +Ω∈x  that satisfies the boundary 
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condition )()}({)(lim zfzUxU
Szx

=≡ +

∈→∋Ω+
.  

        Problem −
fI )( : Find a regular solution to system (1) for −Ω∈x  that satisfies the boundary 

condition  )()}({)(lim zfzUxU
Szx

=≡ −

∈→∋Ω−
, where f  is the known vector function on S . 

4. Uniqueness and Existence Theorems 

        Theorem 1. Exterior BVP −
fI )(  admits at most one regular solution. 

       Theorem 2. Interior homogeneous BVP +
0)(I  has a non-trivial solution )0,0,,( wuU =   in the 

class of regular vectors, where the vector  ),( wuV =  is a solution to the system 
                            uwdwcubua 1

2
11  div grad   div grad ρω++∆++∆ ,0)( =−− wuα  

(3)                       wwbwauduc 2
2

22  div grad   div grad  ρω++∆++∆ ,0)( =−+ wuα       

,0 div  div 1211 =+ wu ββ    ,0 div  div 2221 =+ wu ββ   for    +Ω∈x                
satisfying the boundary condition 
(4)                     0)}({ =+zV ;                                  

the problems +
0)(I  and (3), (4) have the same eigenfrequencies. 

       Theorem 3.  If ν,2CS∈ , )(',1 SCf ν∈ , 1'0 ≤≤< νν , then a regular solution of the problem 
−
fI )(  exists, is unique, and is represented by sum  ),('),()( )1()2( gxZagxZxU +=  for −Ω∈x , where 

),()1( gxZ  and ),()2( gxZ  are the single-layer and double-layer potentials, respectively, '
2

'
1' iaaa += ;  

'
1a and '

2a  are the real numbers, 0'
1 >a , 0'

2 <a , and g  is a solution of the singular integral equation 

)(),('),()(
2

1 )1()2( zfgzZagzZzg =++− for Sz∈ , which is always solvable for an arbitrary vector f . 
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1. Introduction 

Piezoceramics are widely used as actors and sensors in many technical applications. They 
offer very precise positioning and high dynamics. It makes them suitable for vibration damping 
especiall y at high frequencies. However, they need comprehensive ampli fiers and power supply 
when used as actors. An alternative approach for vibration control and damping is piezoelectric 
shunt damping cp. Fig.1.  

 

Figure 1. Mechanical structure with piezo element. Shunting and switching principles. 

It features an electrical network which is connected to the electrodes of the piezoceramics. 
The piezoelectric transducer is embedded into the mechanical structure and couples the mechanical 
and the electrical systems by energy conversion by the piezoelectric effect. The aim of the network 
design is to cause a dynamical behavior of the piezoceramics which influences the mechanical 
vibration in the desired way. Typicall y, a resonant LR shunts are used for vibration damping, which 
for maximum eff iciency, must be tuned to the natural frequency of the mechanical system or to the 
frequency of excitation [1]. The drawback of this passive solution is the small  frequency bandwidth. 
Therefore, this technique is appropriate for vibration problems with only one dominant invariant 
frequency known in advance. A negative capacitance network has been proposed to increase the 
damping performance and the frequency bandwidth. However, a negative capacitance cannot be 
realized in a passive way and requires power supply for operation [2]. Another solution for 
vibration damping is switched LR shunt [3]. In this technique, the electrical network is connected 
and disconnected periodicall y to the electrodes of the piezoceramics. An electronic switch circuit is 
needed to connect and disconnect the network at appropriate times. Typicall y, the switching is 
triggered by the mechanical vibration itself. It has been shown that these switching shunts are very 
robust against changes of the system parameters and the excitation frequency. 

2. Piezoelectr ic model 

For the calculations, a linear, one dimensional model of the piezoceramics is used, cp. Fig.1. 
The mathematical model is derived from the constitutive equations [1]. In case of the switching it is 
necessary to establish the energy amount that may be extracted from the mechanical structure in the 
quasi steady state by integration of the product of the momentary voltage up at the piezo element 
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and the piezo curent ip over one mechanical vibration period: dttituE
tt

t

pp∫
∆+

=∆ )()( . The calculations in 

Laplace domain (s=jω) are divided into two parts where the switch is open: voltage at the piezo 
Up,open Eq(1) and closed: voltage at the piezo Up,close, and the piezo current Ip,close Eq(2).   

 (1)  
s

U
sEU

p
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−

−= 0,
, )( ;  
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where: 
ps

m C

dc
sXsE 3333)()( −=  is the internal voltage source of the piezo, sLRsZ +=)(  is the switched 

impednce shunt, the parameters of the piezo are: Cps - piezo capacitance, c33 - mechanical stiffness 
of the piezo d33 - piezo sensitivity, Xm - external deformation. The variation of the open and close 
time of the switch influences the amount of the energy being transferred to the shunt. 

3. Measurements and the conclusions 

The measurements are performed on the single supported beam with a piezo path attached to 
the structure. The energy dissipated in the system is plotted over a normalized close and open 
switch time cp. Fig.2. 

 

Figure 2. Measured dissipated energy. 

It is proven that contrary to the heuristic control law proposed in [3], the switching times 
should be adjusted to the time constant of the external branch in order to achieve the maximum 
possible energy extraction.  
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CONFORMAL CONTACT BETWEEN A PUNCH AND A LAYER WITH THIN COATING

A.V. Manzhirov and K.E. Kazakov
Institute for Problems in Mechanicsof theRussianAcademy of Sciences, Moscow, Russia

Consider conformal contact between a double layered foundationand a rigid punch in the case
of plane strain. The foundation consists of a viscoelastic aging layer of arbitrary thicknessH and a
thin viscoelastic aging coating of variable thicknessh(x) whose surfacefollows a complex surface
of the punch. The lower border of the foundation is in the state of smooth or ideal contact with the
underlying rigid base (smooth or ideal contact is achieved between the layers). Suppose that, start-
ing from an instant τ0, the smooth rigid punch with a complex shape of its surfaceis indented into
the conformal surfaceof the coated viscoelastic layer with forceP (t) applied with eccentricity e(t).
The contact region is independent of time, and the contact line length is 2a. The viscoelastic coat-
ing of variable thickness is produced at an instant τ1 ≤ τ0 and homogeneously ages thenceforth.
The lower viscoelastic layer of arbitrary thicknessis produced at an instant τ2 ≤ τ0 and also ages
homogeneously.

For the problem stated above, the mixed integral equation and the additional conditions in the
plane-strain casehave the form [1] (t ≥ τ0)

(I −V1)
θq(x, t)h(x)

E1(t − τ1)
+ (I − V2)F

2(1 − ν2

2
)q(x, t)

πE2(t − τ2)
= δ(t) + α(t)x, x ∈ [−a, a],(1)

∫

a

−a

q(ξ, t) dξ = P (t),

∫

a

−a

ξq(ξ, t) dξ = M(t).(2)

Here, q(x, t) is contact pressure under the punch; M(t) = e(t)P (t) is the moment of the applied
force P (t); E1(t) and E2(t) are instant elastic strain moduli of the coating and the lower layer, re-
spectively; τ1 and τ2 are the instants at which the coating and the lower layer are produced; θ is a
dimensionlesscoefficient that depends on the properties of the contact between the coating and the
lower layer; I is the identity operator; Vk (k = 1, 2) are Volterra integral operatorswith tensile creep
kernels Kk(t, τ); F is a Fredholm integral operator with a known kernel of the plane contact prob-
lem, kpl[(x − ξ)/H ] [1,2]; δ(t) is the punch settlement andα(t) is its tilt angle. Note that conformal
contact isa generalization of interaction between bodieswith planesurfaces.

Given the applied force and the eccentricity, it i s required to determine the contact pressure
under thepunch, its settlement, and its tilt angle.

A solution of equation (1) with the additional conditions (2) can be found bya generalized
projection method used for solving mixed integral equations [3–6]. The structure of the solution for
contact pressures has the form

q(x, t) =
1

h(x)
[z0(t)P0(x) + z1(t)P1(x) + . . .],

where zk(t) is a function of time t, and Pk(x) are polynomials of some special form (k = 0, 1, . . .).
Thus, it i s possible to have an explicit dependence of the solution on the coating thicknessh(x).
This fact allows us to find effective analytical solutions for bases with coatings whose thicknessis
specified by functions of a complex structure, in particular, rapidly oscill ating functions. In such
situations, effective analytical solutions can hardly be found by other known methods. It should be
noted that in the case under consideration, contact pressures, the settlement, and the tilt angle of
the punch are proportional to the indenting force. This property is observed only in solutions of the
conformal contact problem.
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Figure. Contact pressures for P (t)/a ≡ 1 N/m2, e(t) ≡ 0 at the initial instant for different surfaceprofiles.

The settlement and the tilt angle of the punch are also obtained in terms of explicit analytic
formulas. Obviously, for the constant force and moment, the settlement and the tilt angle tend to
some asymptotic values.

Figure represents numerical results for two cases of coated bases: (a) the coating thicknessis
described by an oscill ating function; (b) the real surfaceprofile is given as determined from experi-
mental data. It can be seen that thesolutionsobtained above take into account all specific features of
thesurfaceprofile.

A similar problem can be formulated in the axisymmetric case, and its solutioncan beobtained
by thesamemethod.
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A COUPLED DISCRETE-HOMOGENIZED APPROACH TO STUDY THE BEHAVIOR OF
BALLAST UNDER RAIL WAYS

M. Hammoud, D. Duhamel and K. Sab
UniversitéParis-Est,InstitutNavier, LAMI, EcoledesPonts,Paris, France

1. Abstract

Modeling of granularmaterialsis an importantresearchareaespeciallyin civil engineering.
Granularmaterialsarestronglypresentin nature,andareinvolvedin many industrialprocesses,such
astheballastusedundertherailwaysof a high-speedtrains. Usingonly a discreteapproachto sim-
ulatea large mediumthatemploys an enormousnumberof grainsof ballastseemsvery difficult in
termsof calculationsand implementation.Moreover, a homogeneousapproachconsideredlike a
continuumapproach,doesnot give theexact responsein a zonewhereparticularandlocalizedphe-
nomenacan occur. The purposeof this paperis to presenta formulation for couplingbetweena
discreteapproachat the microscopicscaleanda homogenizedapproachdeducedfrom the discrete
approachat themacroscopicscale.Numericalmethodsthatareenableto treatsuchsituationswhere
thedomaincanbedecomposedin subdomainsdescribedby approacheson variousscales,arepro-
posed.It is at thesametime a questionof clarifying thebasesof theseapproachesandof proposing
numericaltoolsadaptedto thiskind of situations.
Keywords: Discreteapproach,Homogenizedapproach,grainsof ballast,staticequilibrium,deflec-
tion.

2. Intr oduction

A primary objective of modernmaterialsmodeling,is to predict the materialsresponseand
failure governedby deformationmechanisms.Modeling the ballastall alonga line at high speed
(TGV) by usinga DiscreteElementsMethod(DEM) seemsvery difficult in 3D. This difficulty is
dueto thelongtimeof simulationandwhichcarriesoutatahighcost.However, by usingcontinuum
mechanicsfor zoneswheresingularphenomenaoccur, wecannotobtainexactbehavior of thestudied
material. It is clear that somecoupledmethodologymustbe establishedto combinethe strengths
of both discreteandcontinuummodeling. Although this field hasacquireda substantialhistory, it
remainsanactiveareaof research[1], [2], [3].

The majority of methodsof couplingbetweenthe discreteandcontinuummodelingconsider
firstly a microscopicapproachon fine scale,anddeducethe coarseapproachon macroscopicscale
from themicroscopicapproach.

In theobjectiveof basingaclearideaon thebehavior of theballastundertherails of a TGV in
2D or 3D, we proposea 1D modelcomposedof a beamrestingon springs,andon which we applya
loadF .

In thiswork, thedeflectionof thebeam(aswell asall nodeparameters)thatminimizestheen-
ergy of thesystemis calculatedusingtwo approaches;discreteapproachandhomogenizedapproach
deducedfrom thediscreteapproach.A comparisonbetweentheresponseof thesytemobtainedusing
theseapproacheswill bealwaysmadein orderto illustratethecaseswherethehomogenizedapproach
cannot replacethediscreteapproach.Thisdifferencewill bringusto applythecoupledapproach.

3. Discreteand HomogenizedApproach

We notethatthebeamrespresentsa rail, underwhich thetracktie andthegrainsof ballastare
modelledby springswith elasticbehavior. Theappliedload is supposedfix, sowe areinterestedto
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thestaticproblem.Thestaticequilibriumequationof thediscreteapproachis written:

(1) EIu(4)(x) +
N

∑

i=1

h kiu(xi)δ (x − xi) = Fδ(x − D)

D, h andki meansrespectively thedistancebetweentheendof thebeamandthepointof application
of theappliedload,thespacingbetweenconsecutive track tiesandthestiffnessof springs.N is the
numberof tracktiesandxi is thenodeposition.

For thehomogenizedapproachweproceedby thehomogenizationof thebeamcomparedto the
stiffnessesof thesprings.Thephilosophyof thisapproachreturnsto thefact,thatin themicroscopic
scalewe startedfrom anenormousdegreeof freedom(dof ), whereasthehomogenisationis usedto
replacethezonesthathave homogeneousdof by only onedof , which will have like consequenceto
reducethenedeedcomputingtime.

After a numericalimplementationof theseapproaches,severaltestwereelaborated.We tested
many caseswherewe have heterogeneousandhomogeneousstiffness.In thecaseof heterogeneities
undertherail way, it wasclearthat thetwo approachesleadto differentresults,especiallywhenthe
ratio betweenthenumberof theelementsof two approachesincreases.This differenceis illustrated
moreparticularly in thezonespresentingheterogeneities.Becauseof this difference,a coupledap-
proachbetweenthehomogenizedanddiscreteapproahesthatis enableto produceasimilar behavior
of ballastlike thatproducedby thediscreteapproach,is proposed.

4. Coupled Approach

The first stagein the numericalsolutionof the coupledapproachis a homogenizedapproach
where the ratio betweenthe size of a homogenizedelementand anotherdiscreteelementis very
high. Firstly themechanicalparameterson thefirst nodearecalculatedandthecriteriaof couplingis
applied.This criterioncanbesummarizedasfollows: If thedeflectionandrotationerrorscalculated
by two approachesis lower than10%, thescaleof computationis notchanged,elsethediscretization
is refinedthat it meansa decreasingin the size of the homogenizedelement. This procedureof
refinementis usedaslongasit is necessaryin orderto beplacedonthescaleof thediscreteelements.

5. Conclusion

After applying the coupledapproachin the caseswhere the homogenizedand discreteap-
proachesdo not give an identicalbehavior of the ballast,we could show the efficiency of this ap-
proachand it canbe summarizedin two points. Firstly, the goodagreementbetweenthe discrete
andthecoupledbehavior andsecondly, thereductionof thenumberof discretenodesthat impliesa
reductionin thecomputationtimecomparedto thediscreteapproach.
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MECHANICAL BEHAVIOR OF BULK METALLIC GLASSES

L. Anand

Department of Mechanical Engineering, Massachusetts Institute of Technology

Cambridge, MA 02139, USA

In recent years, certain amorphous metallic alloys which can be solidified in relatively large

section sizes under moderate cooling rates have been developed. Such disordered metals are referred

to as bulk metallic glasses.

When a metallic glass is deformed at ambient temperatures, well below its glass transition tem-

perature, its inelastic deformation is characterized by strain-softening which results in the formation

of intense localized shear bands; fracture typically occurs after very small inelastic strain in tension,

but substantial inelastic strain levels can be achieved under states of confined compression, such as in

indentation experiments. The micro-mechanisms of inelastic deformation in bulk metallic glasses are

not related to dislocation-based mechanisms that characterize the plastic deformation of crystalline

metals. The plastic deformation of amorphous metallic glasses is fundamentally different from that

in crystalline solids because of the lack of long-range order in the atomic structure of these materials.

Computer simulations in the literature show that at a micromechanical level, inelastic deformation

in metallic glasses occurs by local shearing of clusters of atoms (≈ 30 to 50 atoms), this shearing

is accompanied by inelastic dilatation that produces strain-softening, which then leads to the forma-

tion of shear bands. An important consequence of the micro-mechanism of inelastic deformation in

amorphous metals is that at the macroscopic level, experimentally-determined yield criteria for inelas-

tic deformation are found not to obey the classical pressure-insensitive forms, but show a significant

pressure sensitivity of plastic flow, which may be approximated by the Coulomb-Mohr yield criterion.

In this talk I will present a complete three-dimensional constitutive model for the elastic-

viscoplastic response of pressure-sensitive and plastically-dilatant isotropic materials. The flow-rule

in this model is a generalization of a two-dimensional (plane-strain) “double-shearing” constitutive

model (used in soil mechanics) to three-dimensions. The constitutive model has been implemented

in a finite element program, and the numerical capability is used to study the deformation response

of amorphous metallic glasses. Specifically, the response of an amorphous metallic glass in tension,

compression, strip-bending, and indentation is studied, and it is shown that results from the numerical

simulations qualitatively capture major features of corresponding results from physical experiments

available in the literature.
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MECHANICAL BEHAVIOUR OF TiAl ALL OYS DURING STATIC AND DYNAMIC 
DEFORMATIONS 

 
 

H.J. Luckner, S.P. Gadaj, W.K. Nowacki  
Institute of Fundamental Technological Research, Warsaw, Poland 

 
 
Mechanical behavior of materials (TiAl intermetalli cs) applied in airplanes, helicopters and 

power generators subjected to compression in the range of the strain rates (10-4 s-1 ÷ 104 s-1) have 
been investigated.  
Three different TiAl alloys have been studied: 
1. composition: Ti-48Al-2Cr-2 Nb - Insamet 
2. composition: Ti-43Al-0.8Mo-0.8Cu-0.2 - Pol. Ś l. 
3. composition: Ti-6Al-4V - Stepino Titanium Company Ltd. 

The stress-strain characteristics of high accuracy have been obtained  in quasi-static test 
conducted on  TiAl specimens (5 mm diameter, 5 mm height) mounted to the Instron testing 
machine. In order to acquire true values of mechanical parameters the laser externsometer was 
applied. It ensured determination of real values of strains and mechanical parameters. The smart 
extensometer technique enables to measure deformation of speciemens directly and independently 
from the testing machine and the grip interaction. All  experiments have been carried out at room 
temperature. Three tests have been done for each rate of deformation value. 

Dynamic investigations were carried out on Hopkinson pressure bar apparatus, available in 
IPPT, according to the technique presented in [1, 2].  

In each test we obtained strain-stress characteristics as well  as values of Young’s modulus and 
yield stress. 

The examples of the stress-strain relations obtained during uniaxial quasi-static compression 
of the TiAl material, for the selected rates of deformation, are presented in the Fig. 1. 

 

Fig. 1. Stress-strain relations obtained during quasi-static compression tests of the TiAl 
intermetalli c: a) for the same rate of deformation, b) for different rates of deformation 

 
The mechanical characteristics recorded for the compression tests of Ti-6Al-4V intermetalli c 

(Fig. 1a), have pointed that the differences between results obtained for the same rate of 
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deformation are not significant. The results presented in the Fig. 1b have shown that for higher 
strain rate, the higher strain hardening is observed. Moreover, in the case of the highest strain rate 
being applied, namely 1 s-1, the stress-strain relation has manifested a dynamic character. In the 
Fig. 2 examples of the same relations obtained for dynamic rates of deformation are presented. 
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Fig. 2. Stress-strain relations obtained for dynamic compression tests of TiAl itermatalli c, 
performed with the strain rates from the range 3400 s-1 - 4400 s-1, and the example of quasi-static 

ones obtained using the mechanical and laser extensometers 
 
The stresses recorded in the dynamic tests are higher than those observed in static tests. In the 

elastic range of deformation the results obtained for the dynamic rates of deformation and as well  as 
the quasi-static ones (acquired by the laser extensometer) are comparable. 
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WAVE AND DIFFUSIVE PHONON HEAT TRANSPORT IN DIELECT RICS AND 
SEMICONDUCTORS UNDER HIGH THERMAL LOADS 

 
Z. Banach, W. Larecki 
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Abstract The new types of heat transport equations for transient processes  in dielectrics and semiconductors under high thermal 
loads are derived from the microscopic, kinetic-theory description of a phonon gas. The modified Grad expansion method is 
applied to the relaxation time approximation of the Boltzmann-Peierls equation in order derive a wave hyperbolic nine-moment 
system. The diffusive parabolic four moment system is obtained by means of a similiar modification of the Chapman-Enskog 
expansion method applied to the same kinetic model. Both modifications are based on expansions of the phonon distribution 
function about  a nonequilibrium anisotropic Planck distribution, thereby admitting arbitrarily large heat fluxes and conforming  
to the time scales of the phonon gas relaxation processes. 
 

In many modern technological applications, high transient thermal loads are applied to dielectric 
and semiconducting materials. It is well recognized that, in those cases, neither the classical 
Fourier law nor the Maxwell-Cattaneo-Vernotte heat wave equation accurately predict the 
thermal response of the material. Since the heat transport by phonons (quanta of a crystal 
vibrational energy) predominates in dielectrics and semiconductors, the suitable heat transport 
equations should be derived in some way from the microscopic, kinetic-theory description of a 
phonon gas. Hence, we consider the Boltzmann-Peierls  equation governing the phonon 
distribution function and assume the commonly used Callaway’s relaxation time approximation 
of the collision term. The latter involves the relaxation time τR of resistive processes that 
conserve energy, and the relaxation time τN of normal processes that conserve additionally the 
quasi-momentum and  lead to a nonequilibrium anisotropic Planck distribution, also called a 
drifting distribution. These two relaxation times determine natural time scales for the flow of a 
phonon gas.  
 
Our objective is to obtain the approximate description of the phonon gas flow in the time scale of 
the order of τN, in both wave and diffusive regimes. We aim at the theory admitting arbitrarily 
large values of the compnents of the heat flux vector and taking into account the relaxation times 
τR  and  τN , since fast thermal phenomena are considered. We adopt a physically justified 
assumption that τN is much smaller than τR.  Clearly, during the first time period, normal 
processes make the phonon gas approach the displaced Planck distribution, and then during the 
longer time period, resistive processes return it to the equilibrium Planck distribution. Hence, the 
use of the respective expansions of the phonon distribution function about a nonequilibrium 
anisotropic Planck distribution function, expressed in terms of the energy density and the heat 
flux [1], for the derivation of the sought hydrodynamic descriptions of  the phonon gas flow 
suggests itself. Commonly used simplifications in the phonon kinetic model are employed. 
Namely, no distinction is made between longitudinal and transverse phonons, linear isotropic 
phonon dispersion relation Ω = c |k| is assumed (c is the constant Debay speed), the components 
of the wave vector k are assumed to range from - ∞ to +∞ and the relaxation times τN  and τR are 
assumed to be constant.  
 
In order to derive the hyperbolic evolution equations for the  phonon gas state variables, we 
generalize the method of Grad in the sense that, instead of the local equilibrium Planck 
distribution, we take the nonequilibrium anisotropic Planck distribution as a base for the 
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expansion [2,3]. Our reasoning is as follows: Firstly, we set up a weighted Hilbert space for the 
expansion with the aid of the formula for a kinetic entropy of the phonon gas. Secondly, we 
define an orthogonal basis in this Hilbert space. Then, the expansion coefficients are determined 
and the relations between those coefficients and the moments of the distribution function are 
established. Substitution of the truncated expansion into the corresponding system of moment 
equations leads to a system of the evolution equations for the moments. In this way, a hierarchy 
of closed systems is obtained. Each system contains the relaxation times τN and τR, is nonlinear in 
the energy density and the heat flux, and depends linearly on the higher-order moments of the 
distribution function. The first system of the hierarchy is the nine-moment system which includes 
the deviatoric part of the flux of the heat flux as a gas state variable.  
 
A similiar modification of the Chapman-Enskog method is employed for the derivation of  the 
diffusive heat transport equations. Namely, the expansion in gradients of the energy density and 
the drift velocity of the phonon distribution function about a nonequilibrium displaced Planck 
distribution is assumed as a solution of the Boltzmann-Peierls equation. The relaxation time τN 
plays the role of the expansion parameter. The zeroth-order terms in τN yield the hyperbolic 
system for the energy density and the drift velocity, equivalent to that derived in [1]. The 
first-order terms result in turn in the second-order quasilinear parabolic system of equations for 
the same unknowns. The relaxation time τR appears in the production term on the right hand side 
of an equation for the drift velocity, whereas the relaxation time τN appears in the expression for 
the deviatoric part of the flux of the heat flux. The coefficients of  the system, interpreted as the 
transport coefficients, are nonlinear functions of the energy density and the drift velocity. It is 
demonstrated that this parabolic system is consistent with the second law of thermodynamics, i.e., 
it enables us to define a macroscopic entropy density as a function of hydrodynamic variables 
which satisfies the balance equation with a non-negative production due to both resistive and 
normal processes. Finally, a comparison of the obtained four-moment parabolic system  with the 
result of parabolisation of the nine-moment hyperbolic system [4] is presented. It is expected that 
the nine-moment quasilinear hyperbolic system and the four-moment quasilinear parabolic 
system can describe more adequately wave and diffusive heat transport under the rapidly varying 
high thermal loads than the previous theories which treat the heat flux in a perturbative manner.  
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HEMIVARIATIONAL INEQUALITIES MODELING

DYNAMIC CONTACT PROBLEMS IN VISCOELASTICITY
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In the paper we study a mathematical model of the dynamic process of frictional contact be-

tween a deformable body and a foundation. The unknown variables of the system are displacement

vector field and stress tensor field defined on the set Ω ⊂ R
d, d = 1, 2, 3, which the body occupies.

The body under consideration is assumed to be viscoelastic with a linear elasticity operator and a non-

linear viscosity operator. The contact is modeled with a general normal damped response condition.

The quasistatic and dynamic contact problems for viscoelastic bodies have been recently investigated

in many contributions, see e.g. Han and Sofonea [4], Jarusek [5], Kuttler [6], Rochdi et al. [9] and

the literature therein. In this paper we consider two additional phenomena connected with the contact

process.

The first of them is adhesive interaction between the body and the foundation. We refer to

Frémond [2, 3] in order to introduce a surface internal bonding field having values between zero and

one, which describes the fractional density of active bonds on the contact surface. An evolution of

the bonding field is governed by an ordinary differential equation. In particular we consider adhesive

viscoelastic bilateral contact. The main feature of this model is the fact that during the process there

is no gap between the body and the foundation. From the mathematical point of view the bilateral

contact condition is very convenient since it leads to a linear subspace of admissible displacements.

The second phenomenon is a wear of the material. To model the wear of the contacting sur-

faces we introduce (following Section 3.2 of [10]) the wear function, which measures the depth, in

the normal direction, of the removed material. We treat the problem with a simplified version of the

Archard law which is a rate condition for wear production. This law allows to eliminate the unknown

variable, the wear function, from the model. In this manner the problem decouples and we are led to

a variational formulation involving only the displacement field.

In both cases the dependence of the normal and tangential stress on the normal and tangen-

tial displacement is supposed to have nonmonotone character of the subdifferential form. Therefore,

a convex analysis approach to the problem is not possible. We are lead to a mathematical model,

called a hemivariational inequality, which involves the Clarke subdifferential of a locally Lipschitz

functional. For instance, we formulate the system coupled with a differential equation and an evolu-

tion hemivariational inequality obtained as a variational formulation of a hyperbolic equation. The

problem is following: find the displacement field u and the bonding field β such that

(1)



































〈u′′(t) + A(t, u′(t)) + Bu(t) − f(t), v〉V ∗
×V +

∫

ΓC

j0(x, t, β(x, t), γu(t); γv) dσ(x) ≥ 0

for all v ∈ V, a.e. t ∈ (0, T )

u(0) = u0, u′(0) = u1

β′(t) = F (t, u(t), β(t)) on ΓC × (0, T )

β(0) = β0 on ΓC ,

where A : (0, T ) × V → V ∗ is a nonlinear damping operator, B : V → V ∗ is a linear elasticity

operator, V denotes a subspace of the Sobolev space H1(Ω; Rd), V ∗ is its dual, j0(x, t, ·) is Clarke
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directional derivative of a locally Lipschitz function j(x, t, ·) : R
d → R, f ∈ L2(0, T ; V ∗), γ stands

for a trace operator and ΓC is the part of the boundary of the set Ω on which the contact take place.

The function β : ΓC × (0, T ) → [0, 1] measures an intensity of adhesive bonds and the function β0

denotes the initial bonding field. The function F is prescribed.

The main result of the paper is to provide the existence of a weak solution to the adhesive

frictional contact problem and to the wear contact one, respectively. It is attained by embedding the

problems into a class of second order evolution inclusions and by applying a surjectivity result for

multivalued operators. The novelty of the model is to consider the coupling between the viscoelas-

tic properties of the material with the adhesive properties on the contact surface and nonmonotone

possibly multivalued boundary conditions. The work is completed with a few model examples of

subdifferential boundary conditions which include the functions of d.c. type (difference of convex

functions) being useful in modeling of nonmonotone sawtooth contact and friction laws. These ex-

amples illustrate the applicability of our results.
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1. Introduction

The main aim of the following discussion is the analysis of the adiabatic anisotropic process

during fast tension test, where the rate of strains reaches nearly 104s−1. An anisotropy is induced by

the evolution of the intrinsic microstructure and affects on all stages of the analysis. The problem

is defined in terms of the continuum mechanics in the framework of thermodynamics. The essential

role, in the formulation, plays the definition of the temperature evolution due to the influence of the

intrinsic microdamage. The microdamage introduces an additional term to the temperature evolution

law, thus an identification of all of its components is needed.

The microdamage is incorporated into the constitutive structure as a component of the postu-

lated internal state vector, and is described by the second order, symmetric tensorial field - called

strictly microdamage field [2]. Microdamage field governs the influence of the evolution of the mi-

crovoids, microcracks etc., in micro level, on the macro material structure - what in turn can lead to

the failure (the loss of the continuity in macro level).

The proposed material model is implemented in the Abaqus commercial finite element code,

using the capability of the user subroutine interface.

2. Evolution of temperature

Let us assume that the free energy function ψ exists and takes the form

(1) ψ = ε− ϑη,

where ε is the density of the internal energy, ϑ denotes the absolute temperature and η is an entropy.

The first law of thermodynamics, after assuming that thermal energy is transferred through the surface

only and keeping Eq. (1), has the local form

(2)
1

ρRef

τ : d − ψ̇ − ϑ̇η − η̇ϑ−
1

ρ
divq = 0,

where ρRef is reference density, τ is Kirchhoff stress tensor, d is symmetric part of the spatial velocity

gradient, ρ is actual density and q denotes the vectorial heat flux.

Assuming moreover that

(3) ψ = ψ̂(e,F, ϑ; µ),

where e is spatial strain tensor, F is deformation gradient and µ denotes the internal state vector, one

can obtain the following local form of the second law of thermodynamics

(4) −
∂ψ̂

∂µ
· Lυµ −

1

ρϑ
q · gradϑ ≥ 0,

and its important consequence that

(5) η = −
∂ψ̂

∂ϑ
,
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where Lυ denotes Lie derivative, where υ denotes velocity field. Eq. (2) can be then rewritten to the

form

(6) ρϑη̇ = −divq − ρ
∂ψ̂

∂µ
· Lυµ.

Assuming that the internal state vector has two components, namely

(7) µ = (∈p, ξ),

where ∈p is the equivalent viscoplastic deformation and ξ is microdamage tensor and taking the time

derivative of the Eq. (5), we have from Eq. (6) the fundamental temperature evolution law [1]

(8) ρcpϑ̇ = −divq + ϑ
ρ

ρRef

∂τ

∂ϑ
: d + ρχ∗τ : dp + ρχ∗∗

K : Lυξ,

where the specific heat

(9) cp = −ϑ
∂2ψ̂

∂ϑ2
,

and the irreversibility coefficients χ∗ and χ∗∗ are determined by

χ∗ = −

(

∂ψ̂

∂ ∈p

− ϑ
∂2ψ̂

∂ϑ∂ ∈p

)

√

2

3

1

τ : P
,(10)

χ∗∗ = −

(

∂ψ̂

∂ξ
− ϑ

∂2ψ̂

∂ϑ∂ξ

)

1

K
.

If one puts q = 0, and taking the crucial assumption that K = Lυξ, the final form of the

temperature evolution law in adiabatic anisotropic process is obtained

(11) ϑ̇ = ϑ
1

cpρRef

∂τ

∂ϑ
: d +

χ∗

cp
τ : dp +

χ∗∗

cp
Lυξ : Lυξ.

The last term in Eq. (11) governs the influence of the anisotropy on the temperature field in material

structure.

Instructive numerical examples will be presented.
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1. Introduction

The application of higher order continuum theories, with size effect considerations, have re-

cently been spread in the micro and nano-scale studies. One famous version of these theories, pro-

posed by Mindlin[1], is the couple stress theory. This paper utilizes this theory to study the anti-plane

problems of elliptic inclusions.

2. Solution of the governing equations

The governing fi eld equation for the anti-plane problems of couple stress elasticity within a

centrosymmetric isotropic material is given by

(1) �
��� � ������ � ��

where � is the characteristic length and �� is the out of plane displacement, [2]. Concerned with

the problems of elliptic cylindrical inclusions, the solution of Eq.(1) is sought in elliptic coordinates,

��� �� with ���� ��� � ����� � �� �� �	
� � �	
 ��, Fig.1. Where � is a positive constant.

Figure 1. An elliptic domain within an infi nite medium.

The general solution of this equation is taken as �� � ��, provided that

(2)
��

���
�� �

��

���
�� � ��

��

���
�� �

��

���
�� �

��
���

���� �� � �� ����� � �	

Consider an elliptic domain,  within an infi nite medium, 
, as shown in Fig.1. In the elliptic

coordinate system the interface between  and 
 is described by � � ��. The long and short semi-

axes of  are denoted by �� and ��, respectively. The general solution of Eq.(1), periodic in �,

associated with the exterior and interior points of  are respectively given by �
���
� and �

���
� as:

�
���
� ��� �� �

��

���

�
��� �� �� � �� �	
 ��

�
���� �� � �	
� ��� �(3)

� �������� �������� �� �

��

���

�������� �������� �� � �������� �������� ���
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and

�
���
� ��� �� �

��

���

�
��� �� �� ��� �� � �� �	
 �� �	
� ��

�
�(4)

� �������� �������� �� �
��

���

�������� �������� �� � �������� �������� ���

where � � ������
�. Here �� and ��� are the angular Mathieu functions and ���, ���, ��� and

��� are the radial Bessel type Mathieu functions. Assume that the displacement fi eld ��� � ������� �
���������� 			 is given inside, where the summation is performed on �� � � �� � and ����, �

�

���� 			 stand

for the eigenstrains [3]. The unknown coeffi cients in Eqs.(3-4) are determined through satisfaction of

the following conditions on � � ��,

(5) �
���

� � �
���

� � �
���

� � �
���

� � �
���
� � �

���
� � ���� �

���
�� � �

���
�� �

where � � and � � are the reduced traction components and ��� is the component of the stress tensor.

The superscripts ��� and ��� over a fi eld quantity implies that it is derived from the displacements,

�
���
� and �

���
� , respectively.

3. Numerical results and conclusion

Suppose  is an inclusion with uniform eigenstrain, ���� � �.  and 
 are made of same

material, and so they have the same shear modulus, � and characteristic length, �. To examine the

size effect, various ratios for �
	�

are considered. In a special case with �� � ��, the results via the

present formulation reduce to the results derived from the work of Lubarda [2]. For a case where

�� � �	���, the shear stresses ��� and ��� just outside of the inclusion along the inclusion-matrix

interface are shown in Fig.2. This fi gure verifi es that the results of the present study approach the

classical solutions as the inclusion dimensions grow. It is observed that ��� attains its maximum at

the end points of the long axis of the inclusion, while ��� vanishes at these points.
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Figure 2. The stress distribution along the inclusion-matrix interface, approached from the matrix.
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Abstract: In this note, a theoretical and analytical model of the conical and Ogive projectile penetration 
into metallic targets under oblique impact is presented .The failure is assumed to be asymmetry petaling 
and the analysis is performed by using the energy balance and work done .The done work consist of the 
required work for plastic transformation Wp, the work for transferring the matter to new position Wd and 
the work for bending of the petals Wb. 
The analytical model can be predicated the value of final and ballistic velocity of the impact by using the 
energy balance. 
In this present study, by assuming the crater formation, the value of work done is calculated during the 
oblique penetration of conical projectile into thin metallic targets. 
The work done consist of the required work for plastic transformation Wp, the work for transferring the 
matter to new position Wd and the work for bending of the petals Wb.  
In several studies [3,9], it has been shown that we can neglect the loss of energy by temperature (friction) 
.We also neglect the plastic work in dishing target plane. Although this loss of energy isn't important in 
speeds very higher than ballistic limit, but in speeds near to ballistic limit is considerable. 
As will be shown, Wp, Wd, Wb  for conical projectile are: 
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The total work done during penetration is equal to: 
 

bdp WWWW ++=                                                                          (4) 
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2

 
The residual speed can be obtained by using the energy balance equation. 
 

WVVm ri =− )(
2

1 22                                                                         (5) 

 
Therefore:  
 

2

1
2 )

2
(

m

W
VV ir −=                                               (6) 

 
If Vr =0, the balli stic limit is computable. 
 

2

1

)
2

(
m

W
Vb =                                               (7) 

 
For projectil es with ogive nose Wp , Wb  are the same conical projectiles, but  Wd is dependent to nose 
shape .profile of a ogive projectil e is  
 
  

                                                                                          (8) 
 
A simpler approximation formula can also be used: 
 

                                                                                                                                 (8) 
 
Where: 
L = cone length, d = cone base diameter, C= the cali ber of the cone (C= L/d). 
Therefore we can calculate the work for transferring the matter to new position ,Wd ,with numerical 
methods. 
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1. Introduction 

The paper presents the analytical and finite-element efforts of limit loads of thick-walled 

hollow circular cylinders. The internally pressurized structures are of strain hardening viscoplastic 

materials. It is appropriate to evaluate the limit loads by limit analysis sequentially to illustrate the 

interesting interaction between strengthening and weakening behavior reflecting the properties of 

strain hardening and strain-rate sensitivity during the deformation process. Particularly, the related 

analytical solutions are also derived for rigorous validation of the numerical results. 

2. Problem Statement and numerical investigation 

We consider a plane-strain viscoplastic problem of the von Mises-type material with nonlinear 

isotropic hardening. The problem domain D  consists of the kinematic boundary Dkw . The problem 

statement leads naturally to the lower bound formulation. By duality theorems [1], the corresponding 

upper bound formulation can be stated in the form of a constrained minimization problem as 

minimize  � �uq
*

 

subject to � �uq
*

= dA
G D

Y

��³ H
V

�   

0 �� u
*

    in D  

(1)       kinematic boundary conditions on Dkw  

where H�
��

 is the dual norm of the primal norm V
�

 based on the flow rule associated with the von 

Mises yield criterion. YV  is a material constant denoting the yield strength. G  is a constant relating to 

the velocity control in each step but may be of various values in a process. 0 �� u
*

 is the 

incompressibility constraint inherent in the von Mises model. On the other hand, the behavior of 

viscoplastic, nonlinear isotropic hardening is described in the form as 

(2)  
> @ m

Y h )/()exp()( 00 HHHVVVV ����� ff  

where 0V  is the initial yield strength, fV  is the saturation value of 0V  and h  is the hardening 

exponent. H  is the equivalent strain and H�  is the equivalent strain rate. 0H�  and m  are the reference 

strain rate and strain-rate sensitivity, respectively. We conduct a sequence of limit analysis problems 

with updating the configuration of the deforming structures and the current yield strength. In each 

step and therefore the whole deforming process, rigorous upper bound solutions are solved iteratively 

by a combined smoothing and successively approximation (CSSA) algorithm [2]. 

3. Analytical investigation 

For rigorous comparisons, we also derive the corresponding analytical solutions with the 

hardening exponent 3 h . The initial interior and exterior radii of the cylinder are denoted by 0a  

and 0b . Also, its current interior and exterior radii are denoted by a  and b .With the boundary 

conditions ir Par   )(V , 0)(   brrV , we have the limit load expressed as [3] 

(3) 
� � � � � � � � � �> @)1/(/1/1)(1///1/1/23/1/ 222222

00
22

0

1

0 ������ ��
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where a�  is the velocity of the innermost edge. In addition, it is interesting to reveal the interaction 

between strengthening and weakening behavior during the deformation process. Therefore, we come 

to consider the condition of stability, namely the existence of a hardening phenomenon before the 

weakening behavior. Mathematically, it is expressed as 0/)/( 0 !ww aPi V . If we apply the velocity 

control to simulate the action of internal pressure, we get the stability condition as 

(4)  ]1)//[(]1)/][(2/)1[(2/)3(/ 22
00

2
000 �����! �

f
mababmmVV  

4. Comparison and validation 

We adopt the dimensional consistently parameters: 0.50  a , 0.100  b , 3 h , 0.1 a� , 0.10  H� , 

and a constant step size 01.0 't . Figure 1 showns the effect of the strain-rate sensitivity m  on the 

limit internal pressure 0/ViP  with the yield strength ratio 05.2/ 0   f VVR . As shown, the computed 

upper bounds agree well with the analytical solutions. Table 1 lists the analytical results of the 

stability condition showing the effects of the strain-rate sensitivity m . 
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Figure 1. Effect of the strain-rate sensitivity m  on the limit internal pressure 0/ViP  

m=0.1 m=0.2 m=0.3 m=0.4 m=0.5 

2.009 2.201 2.035 2.052 2.071 

Table 1. Effect of the strain-rate sensitivity m  on the stability condition in terms of the yield strength 

ratio 0/VV f  
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1. Introduction  

The foundations of bifurcation theory outside elasticity were laid in works [1, 2]. Further 

investigations in this direction have shown that bifurcation of deformation process is closely 

connected with the problem of singularity of yield surface [3]. The question of systematic 

investigation of stability outside the limits of elasticity at complex precritical loading remains 

insufficiently studied. For the solving of such problems it is necessary to use theory of plasticity 

that adequately describes mechanical behaviour of polycrystals at arbitrary loading. In the present 

work the theory of micro strains [4, 5, 6] is used. This theory leads to singular yield surface and 

allows describing deformation of metals at complex loading. In [7] it was shown that the theory is 

capable to describe ratcheting – the accumulation of inelastic strain under the cyclic loading. This 

accumulation can cause the bifurcation in some situations.  

2. Problem statement  

Let’s consider elastic-plastic body occupying volume 0V  in the init state. On a part of a 

surface u:  we shall specify rate of displacements iv , and on a part of a surface V:  –  rate of 

surface pressure � �ip t� . We shall assume, that during some moment of time crt t , alongside with 

the basic solution of a boundary problem 0

iv  there is other solution b
iv . The problem of stability for 

a difference of solution is reduced to following problem of optimization in a class of cinematically 

possible differences of velocities: 

0

�
( ( )) 0

V

dVG' � '  ³ : v� , ( ) 0'  v x  ��� u:�x , 

where S�  is rate of first Piola-Kirchhoff tensor, �v  is tensor of rate gradient and 

( ) ( ) ( )b a' �  � � � . 

Structure of constitutive relations of theory of micro strains is such that at active pre critical 

loading the domain of directions of full loading, within limits of which constitutive relations are 

linearized, exists. At that we have following inequality  

0
( ) ( ) ( ) ( )J J

b a b a b a b aV � V � t � �: d d d d : G : d d , 

where 
JV  - Jaumann derivative of Cauchy stress tensor, d  - rate deformation tensor, 

0
G  - 

stiffness matrix of linearized comparison body, which coincide with stiffness matrix of theory of 

micro strains at full loading. It is worth to note that stiffness matrix 
0

G  is functional of precritical 

loading process. 

Last inequality allows reducing the problem of bifurcation of deformation process to Euler 

stability problem of linearized comparison body: 

0� � S  � , 
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JS  V � �R : v� �  

0

JV  G : d� , 

with boundary conditions  

( ) 0 v x , ��� u:�x , 

0� S  N �  at V:�x . 

This system of equations with homogeneous boundary conditions allows to investigate bifurcation 

of elastic-plastic bodies at complex loading. 

3. Results 

In the present work it is considered the problems of localization of plastic deformation and 

stability of stripe at plane strain, and also the stability of thick plate and surface of half-space at bi-

axial precritical loading. The analysis of influence of type of applied loading trajectory on 

bifurcation of deformation process was done. Bi-axial trajectories of loading and trajectories of 

complex cyclic loading with ratcheting were considered. It is shown that the history of loading can 

essentially influence on critical parameters of problem.  
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The main objective of the present paper is to discuss procedure of the numerical investigation 
of localized fracture in polycrystalline material (particularly in DH 36 steel) generated by impact-
loaded adiabatic processes. We take advantage of experimental results for DH 36 steel obtained by 
W.K. Nowacki and P. Gadaj. Particularly we based on the experimental observations of the double-
shear specimen placed between two bars by using a Split Hopkinson Presser Bar in dynamic tests at 
high strain rates. Attention is focused on the proper description of a ductile mode of fracture 
propagating along the shear band for high impact velocities. This procedure of investigation is 
based on utilization the finite element method and ABAQUS system for regularized thermo-elasto-
viscoplastic constitutive model of polycrystalline material. 
 
1. Introduction 

 
The properties of steel are strongly affected by the manufacturing process. In many processes 

in which large plastic deformation occurs, a large amount of heat is generated. The effect of the 
temperature increase on the mechanical behavior of the material can be significant and cannot be 
neglected in an accurate constitutive model. The understanding of high-strain-rate behavior of 
metals is essential for the modeling and analysis of numerous processes including high-speed 
machining, impact, penetration and shear localization. Recently, considerable progress has been 
made in understanding the role of rate controlling dislocation mechanisms on the temperature and 
strain rate dependence of the flow stress for metals and alloys. 
In large plastic deformation that occurs in the simple shearing of sheet metal as well as in many 
other forming processes of polycrystalline material the microshear bands in material, resulting in a 
sever localized deformations, are generated. 
In the present study a thermo-viscoplasticity model is used for investigating heat generation in steel 
with microshear banding is also studied. Special attention is directed at microshear bands generation 
associated with dynamic loading. In order to obtain a consistent microshear band generation and 
study its effects, the viscoplasticity model employed is formulated within a thermodynamic 
framework. In polycrystalline models, viscoplastic deformation takes place in the form of slip 
within a discrete slip system. A slip itself is a manifestation of dislocation motions. An increase in 
dislocation density results in a decrease in the mobility of the dislocations, due to pileups and to 
interaction with dislocation forests and other obstacles. The decrease in dislocation mobility can be 
seen as a plastic hardening or an increase in slip resistance. Any given dislocation is on a 
microscopic level surrounded by a stress field in which energy is stored. Since the viscoplastic flow 
is due to dislocation motion, the stored energy increases with an increase of viscoplastic 
deformation. The rate of stored energy is equal to the difference between the rate of plastic work 
and the dissipation of energy which leads to a heat generation. The heat generation is often 
measured by the fraction of plastic work dissipated as heat χ, which of course is also a measure of 
the rate of stored energy. Taylor and Quinney in 1934 made early attempts to measure this quantity. 
They concluded that the fraction of plastic work converted to heat is a constant lying somewhere 
between 0.8 and 0.95. Later experiments, on the other hand, have shown that the fraction is not a 
constant. Mason et al. (1994), for example, showed that for austenitic steel this fraction χ, varies 
between 0.6 and 1, depending upon the accumulated plastic strain. Rosakis et al. (2000) also 
showed that χ can be influenced by the strain rate.  
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2. Constitutive model   

 
A general constitutive model of thermo-elasto-viscoplastic polycrystalline solids with a 

finite set of internal state variables is used. The model, formulated within a thermodynamic 
framework for large deformations is based on the flow rule proposed by Perzyna (2005). To obtain 
a thermodynamically consistent formulation here, however, account has been taken of the work of  
Pę cherski (1998), in which the microshear bands is incorporated on a total form in the strain rate 
deformation tensor. In the model that Perzyna (2005) developed the flow rule is considered to be of 
a power type. The set of internal state variables consists of two scalars, namely equivalent inelastic 
deformation and volume fraction of microshear bands. The equivalent inelastic deformation can 
describe the dissipation effects generated by viscoplastic flow phenomena and the volume fraction 
of microshear bands. The relaxation time is used as a regularization parameter. The evolution of the 
microshear banding related to slip resistance here is assumed to be local for each slip system and to 
be of a logistic function type. These assumptions turn out to be crucial for modeling the heat 
generation in a consistent way and also allowing it to be calibrated to experimental tests.                                  
    
3. Numerical results 

 
The capabilities of the model will be demonstrated in numerical example. The example 

concerns the simple shear response of polycrystalline steel, special emphasis being placed on the 
heat generation due to plastic work. As a numerical example we consider dynamic simple shearing 
and localized fracture in thin plate. We idealize the initial boundary value problem observed 
experimentally by assuming that the impact loading is simulated by a velocity boundary conditions 
which are the results of dynamic contact problem. The separation of the projectile from the 
specimen, resulting from wave reflections within the projectile and the specimen, occurs in the 
phenomenon. 
A thin shear band region of finite width which undergoes significant deformation and temperature 
rise has been determined. Its evolution until occurrence of final fracture has been simulated. Shear 
band advance and the development of the temperature field as a function of time have been 
determined. Comparison of numerical results with experimental observation data has been 
presented. The numerical results obtained have proven the usefulness of the thermo-elasto-
viscoplastic theory in the investigation of dynamic shear band propagations and localized fracture. 
The model can also be used for a fully coupled thermomechanical analysis. 
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1. Abstract 

Based on statistical thermodynamics the model for solids with mesodefects (microcracks and 
microshears) was developed. To confirm the self-similar nature of the plastic wave front theoretical 
study of relaxation mechanisms was carried out using the constitutive model of solid with 
mesodefects. Experimental results and numerical calculations for plane shock wave propagation and 
spall  failure are discussed. 

2. Statistical model 

The developed statistical model of solid with mesoscopic defects allowed the formulation of 
phenomenological model in terms of two independent variables - the defect density tensor and 
structural scaling parameter and the simulation of shock wave propagation in the linkage with 
structural relaxation phenomena [1,2]. It was established the link of the Hugoniot elastic limit with 
kinetics of structural transition (mathematicall y related to the defect density tensor) in the structural 
metastabilit y area, that has generall y thermall y-activated character. The development of plastic 
front is described as the consequence of self-consistent structural (orientation) transition in 
microshear ensemble that is realized due to the kinetics of structural scaling parameter.  

Based on the statistical theory [2] the mathematical model was proposed for plane shock wave 
propagation in metal. The mechanisms of plasticity, induced by correlated behavior of microshear 
ensembles, were studied [1,3] in the of internal structural variables – the defect density tensor and 
the structural scaling parameter.  The defect density tensor (microshear induced strain) was 
introduced as the mean value ikik snp = of “microscopic” shear tensor  

(1)   )(2/1 kikiik vllvss += , 

where νr  is unit vector normal to slip plane of a microscopic shear; l
r

 is a unit vector in the 
direction of shear; s is the shear intensity, n  is the microshear  density. The statistical theory 
allowed us to establish the second internal variable for continuum with mesodefects – the structural 
scaling parameter δ  associated with two characteristic structural scales: the mesodefect nuclei and 
the distance between defects. The plastic deformation is described in terms of mentioned variables 
as the structural-scaling transition and corresponds to the scenario of continuous orientation 
transition in the microshear ensemble along the structural scales.  

According to statistical theory these transitions are realized as the multiply metastabilit y of 
non-equili brium free energy that for the uni-axial case ( ,xx xxp pε ε= = ) is given by the following 

nonlinear form  
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where mF  is energy scale, Σ - dimensionless stress.   
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3. Results and discussions 

Results of numerical calculations for single shock in the Armco iron are presented in papers 
[1,3]. It was shown that the self-similarity of the plastic shock-wave fronts in solids is the 
consequence of existence of two independent mechanisms defining structural relaxation. These 
mechanisms are related to the structural-scaling transition in terms of two independent variables 
(defect density tensor and structural-scaling parameter). The kinetics of these two characteristic 
variables (oder parameters) at the steady-state plastic wave fronts is reali zed in the self-criti calit y 
regime with generation of auto-solitary strain modes that provides the self-similar scenario of 
relaxation on the large range of structural scales. 

In present investigations a setup for plate impact experiment has been developed at Institute of 
Continuous Media Mechanics of Ural Branch of RAS to study dynamic fracture at strain rates up to 
106 s-1. Experiments were carried out at a different impactor velocity in order to investigate 
dependency on loading conditions.  

The numerical simulation of plane shock wave propagation was carried out to establish spall  
conditions and to propose the mechanism of damage-failure transitions described as a specific form 
of self-organized criti calit y in the ensemble of mesoscopic defects – structural-scaling transition. 
Characteristic features of this transition are the generation of collective modes in mesodefect 
ensemble that are responsible for damage localization and transition to failure. Collective modes 
have the nature of self-similar solution and describe the blow-up damage localization kinetics with 
characteristic time (peak-up time) on the set of spatial scales. Mechanism of spall  failure can be 
linked with resonance excitation of blow-up collective modes and has the nature of delayed failure 
with the delay time corresponding to the peak-time of the self-similar solution. 
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1. General

Coupled damage-plasticity models are relatively simple if isotropy is assumed, while they have

all features necessary for the numerical modelling of composites: void or crack growth, irreversible

deformations and stiffness degradation can be represented. However, if applied in localized failure

simulations, the models require regularization which can be performed as a non-local enhancement,

having either a gradient or integral form.

The aim of the paper is to present a damage-plasticity model at large strain, based on a free

energy and dissipation potentials decomposed into elasto-damage and plastic parts. The model in-

corporates a gradient-type averaging equation for the strain energy which is a driving force of elastic

damage coupled to irreversible deformations. The paper is based on the concepts presented in the

paper by Liebe and Steinmann [4], extending the theory with a coupling to plasticity. An implemen-

tation in the FEAP finite element package is performed. Numerical simulations contain one-element

tests and the one-dimensional tensile bar benchmark.

2. Local model

The model is based on the multiplicative split of the deformation gradient F into elastic and

plastic parts. We adopt the Helmholtz free energy in the form, cf. [7, 1]:

Ψ = (1 − D)Ψe(be) + Ψp(κp),(1)

where D is the scalar damage parameter growing from 0 for the intact material to 1 for complete

damage, be = F eF eT the elastic left Cauchy-Green tensor and κp the internal variable (plastic strain

measure).

The elastic part of the Helmholtz potential is the strain energy composed of the volumetric and

deviatoric parts, respectively:

Ψe = W = Ψ′′e(J) + Ψ′e(b′e)(2)

where J = det(F ) and b′e = J−2/3be is the isochoric elastic left Cauchy-Green tensor. When the

Kirchhoff stress τ is derived from Ψ in a usual manner, the effective Kirchhoff stress tensor τ̂ occurs:

τ = (1 − D)τ̂(3)

The definitions of Ψ′e and Ψ′′e are based on [7] and lead to a relation between the Hencky strains

(logarithmic stretches) and principal effective Kirchhoff stresses which resembles the classical linear

Hooke’s law. The plastic part of the Helmholtz potential is standard.

Further, the dissipation potential is postulated in a decoupled form

Φ(τ , q, Y ; D) = Φp(τ̂ , q) + Φd(Y )(4)

In the associative case the first part is equal to the yield function Φp ≤ 0 that depends on the effective

Kirchhoff stress τ̂ , while parameter q represents the yield strength with isotropic hardening. In the
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simplest case linear hardening q = σy +hκp and the Huber-Mises yield function are used. The second

part of the dissipation potential is the damage loading function Φd = Y − κd ≤ 0, in which Y is the

thermodynamic force conjugated to damage, equal to the strain energy W . Both the yield and damage

conditions are subject to respective Kuhn-Tucker conditions. The damage parameter is computed as

a function of the current damage history parameter κd:

D = fd(κd), κd = max
−∞<s<t

(Y (s), κd

0
)

with the initial damage threshold κd

0
. This function can for instance be exponential [4] or based on

the model of Lemaitre [7].

To integrate the nonlinear problem in time, we follow the approach pioneered by Simo in order

to preserve the convenient small-strain structure of return mapping algorithm, see [2].

3. Gradient-enhancement

The introduction of gradient-enhancement requires the selection of a non-local parameter and

the formulation of a corresponding averaging equation. Within elastic damage models there is an

energy gradient formulation with a non-local stored energy W̄ serving as an independent variable,

and a damage gradient formulation with damage parameter D serving as an independent variable and

its gradient D entering the free energy function [4]. There are also gradient enhanced theories with

non-local damage parameter D̄ [1]. In the case of ductile damage models, a kinematic non-local

variable z̄ is introduced, having its local kinematic counterpart, e.g. the equivalent plastic strain [3].

Here the first option is adopted, called in [4] the Energy Gradient Formulation. The damage

driving force W is substituted by its non-local counterpart W̄ in the damage condition, cf. [6]:

W̄ = W − DivW → Φd = W̄ − κd ≤ 0, κd = max
−∞<s<t

(W̄ (s), κd

0
)(5)

where a damage flux W is introduced. If the damage flux is derived from the non-local energy

by W = −c∇XW̄ with c related to the square of an internal length scale, an implicit formulation

ensues which resembles the computationally convenient concept of averaging [5]. It remains to decide

whether the averaging should be performed in the initial configuration as above (Lagrange averaging,

cf. [6]) or in the current configuration (Euler averaging, cf. [3]). This issue is discussed and the

results of one-dimensional tensile bar benchmark are presented.
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1. Introduction and statement of the problem 

      Originall y, Gurson obtained a yield surface for porous plastic materials under some particular 
conditions. Here we give a generalised form of the Gurson yield surface (A), viz 
 

(1)          0)xq1()/trcosh(qx2)/(),x,(f 22
M2

12
MeqM =+−+= σσσσεσ , 

 
where σ  denotes the Cauchy stress tensor, Mσ  the flow yield strength, q=3/2 and x is a function of 
the void volume fraction v. An essential fact is the presence of the hydrostatic stress [1]. 
      Close relations exist between stress levels in the matrix material, viewed as the effective 
material, and the porous material, viewed as the damaged material. By example, in CDM, the 
respective stress tensors ( σσ ,r ) are connected by some relation [2] 
 
(2)          )x(y/r σσ = ,   1)x(y0 ≤≤ ,   y(0)=1,   y(1/q)=0, 
 
where y(x) is an unknown decreasing scalar operator. But the introduction of the matrix material by 
means of (2) leads to the explicit use of the von Mises yield surface fr=0 (B) on the matrix material. 
 
2. The yield sur faces fr and f 
 

      As Gurson, we suppose that the matrix material is rigid-plastic. The void-function x(v )is taken 
as a damage variable and the equivalent plastic strain Mε  as an internal variable. The yield surface 

(B) is given as a function of the state ( Mr ,εσ ) of the matrix material. But this state ( Mr ,εσ ) is 

connected to the state ( M,x, εσ ) of the damaged material by the formula (2); so it is equivalent to 

express this yield surface in function of the parameters ( M,x, εσ ), obtaining 
 
(3)          0))x(y()/(),x,(f 22

MeqMr =−= σσεσ . 

 
Note that (3) is not a yield surface for the damaged material (except in particular cases). 
      Now if a mechanical process occurs in the damaged body, then from (1) we have 0f ≤ . But 

the matrix material undergoes some accompanying process and from (3) we have 0f r ≤ . So the 

region 0f ≤  must be restricted by the region 0f r ≤ . This is not surprising since the Gurson 
surface is a necessary condition only, satisfied by the damaged material under the hypothesis fr=0. 
If we suppose that reversible processes are possible (leaving the rigidity hypothesis), then the 
domains 0f r ≤  and 0f ≤  generally intersect [2]. The particular case of the strict inclusion 

“ 0f ≤  implies 0f r ≤ ”  is possible, but not the reverse one. This last result is due to the fact that it 
is not possible to give an a priori evolution of the matrix material since the presence of micro-voids 
restricts the deformations of the matrix material. Naturall y the domains 0f ≤  and 0f r ≤  may 
coincide. 
      Due to rigidity hypothesis, it is easy to show that a damage-plasticity effect arises only when the 
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condition y(x)<y0(x)=(1-qx) is satisfied. Fig 1 describes the two yield curves f=0 and fr=0. 
 
 
 
 
 
 
 
 
 
 
      Along AMB, the matrix is plasticall y strained whereas the micro-voids do not suffer irreversible 
opening. Along BNC, due to very small  elastic strains (rigidity hypothesis) of the matrix, micro-
voids suffer opening. Finall y, if the stress point rests on the intersection point B, then damage-
plasticity arises.  
 
3. Constitutive model and conclusion 
 
      We quote below the equations of damage-plasticity process only (arising in B, Eq (4)): 
 
(4)          )x(yxq1)/trcosh(qx2 222

M2
1 −+=σσ   ,  )x(y)/( 22

Meq =σσ  

(5)          I)/trsinh(qx/)(3d M2
1

Mrp σσλσσλλ ++= (
 

(6)          )d:()v1( p
1

M
1

M σσε −−−=&   ,  MMnp )(Aa)dtr)(v1(v εε && +−= . 

 
Eq (5), for the plastic strain rate dp, is an associative evolution law at the non-smooth point B with 
two multipliers ( λλ ,r ) (σ(  is the deviator of σ ). Eq (6) are evolution laws of Mε and v [3,4], where  
the dot designs time-derivative, an is a material constant and A a classical Laplace-Gauss function 
(to be specified). In the evolution law of the void volume fraction v, the first part represents the 
geometric growth vg and the second part the contribution of the void nucleation vn. 
     The relations (6) give Mε&  and v&  through linear function of dp, then as linear functions of the two 

multipliers by using (5). But the two consistency conditions give Mε&  and v&  through linear functions 
of the stress rate (σ& ), so that the two multipliers may be written as linear functions of (σ& ). Finall y 
we obtained an expression of dp in function of the stress rate (σ& ). Simple examples show the abilit y 
of the actual scheme and so, in this work, as a new result, attention was given to the necessity of 
using simultaneously yield conditions of both the damaged and virgin materials. 
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1. Introduction 

In the mechanics of deformable rigid body a wide class of problems is devoted to the research 
of contact interaction of rigid bodies [1]. One of the most essential conditions accepted for the solution 
of contact problems is fast attenuation of stresses and strains if the distance between the considered point 
and contact area increases. 

In addition to the solutions for contact problems mechanics of a deformable rigid body have 
well  developed methods of studying of stress-strain state without considering local effects in the 
areas of load application (see for example [2]). 

Mechanical systems known as active systems [3] operate in conditions of contact interaction and 
loaded by non-contact forces. Mechanical and mathematical model of three-dimensional stress state of 
typical roller-shaft active system is considered in the present work. Calculation results show signifi-
cant difference between such stress state and traditional contact and non-contact stress states. 
 
2. Stress state 

Roller-shaft active system is loaded by contact FN and non-contact Q forces (figure 1). Thus 
stresses caused by the action of distributed normal p(x, y), tangential q(x, y) contact tractions and 
non-contact load (figure 1) should be taken into account: 
(1) )()()( b

ijij
n

ijij σ+σ+σ=σ τ ,     i, j = x, y, z,,  

where )(n
ijσ  – stresses caused by normal contact traction, )(τσ ij – stresses caused by tangential contact 

traction (force of friction), )(b
ijσ  – stresses caused by non-contact loads.  

 
Figure 1. Loading scheme of roller-shaft system 

 
Calculation of stresses )(n

ijσ  in any point of the half-space under the surface when 0<z  caused by the 

action of normal contact tractions p(x, y) is carried out numerically using Boussinesq problem solution )(B
ijσ  

[1] (determination of stress components in the half-space caused by unit normal force) [4,5]: 
(2) ( ) ( ) ( )

( )
∫∫

ηξ

ηξ−η−ξσηξ=σ
,

)()( ,,,,,
S

B
ij

n
ij ddzyxpzyx ,  

Calculation of stress state )(τσij  under the action of friction force modeled by the distribution of 

tangential tractions q(x, y) is also carried out numerically using Cerruti problem solution )( С
ijσ  [1] 

(determination of stress components in the half-space caused by unit tangential force) [4,5]: 
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(3) ( ) ( ) ( )
( )
∫∫

ηξ

τ ηξ−η−ξσηξ=σ
,

)()( ,,,,,
S

C
ijij ddzyxqzyx ,  

Stresses caused by non-contact loads are defined applying particular approaches (for example 
bending theory):   
(4) )()()()( Q

ij
N

ij
M

ij
b

ij σ+σ+σ=σ ,  

where indexes M, N and Q correspond to internal moment, normal and shear forces.  
Since model (1) is constructed as the superposition of components ),,( )()()( b

ijij
n

ij σσσ τ  of stress 

there is a possibilit y of analysis of both general solution and any of special cases. 

 
Figure 2. Distributions of stresses )(n

xxσ  (a), )(b
xxσ  (b), )(n

xxσ + )(b
xxσ  )0( >Q  (c), )(n

xxσ – )(b
xxσ  )0( <Q  (d), 

normalized by maximum Hertz stress p0 in the neighborhood of contact area (y = 0, а  / b = 0.5), 
(a and b are the greater and smaller semi-axes of contact elli pse) 

 
It is easy to see from the distributions presented in figure 2 that the stress state in the active 

system (figures 2.c and 2.d) strongly differs (qualitatively and quantitatively) from traditionally 
studied stress states under contact or bending (figures 2.a and 2.b respectively). Using (1) it is 
possible on the one hand to investigate how the field of the stresses (strains) caused by volume 
deformation is disturbed in some local area where the field of contact stresses (strains) simulta-
neously occurs. On the other hand it is possible to investigate how the field of local stresses (strains) 
changes when the field of the stresses (strains) caused by volume deformation is imposed on it.  
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Over the last decades a number of theories capable of describing mechanical response of dif-

ferent materials under a complex loading were created. These theories are usually formulated at the

micro structural level and the most widely-used of them are the theories of plasticity for mono- and

poly-crystalline materials which are based on the concept of sliding. The main assumption of such

theories is that the plastic deformation of the representative volume is some aggregate of deforma-

tions of sliding of single-crystals on the planes of different orientation. Such direction in the theory

of plasticity was developed in the works of Batdorf, Budiansky, Bazhant, Hutchinson, Hill, Leonov,

Malmeister, etc. In contrast to sliding theories, in the theory of microstrains (Chernyakov, Kadashe-

vich, Novozhilov) a representative volume is considered as an aggregate of the variously oriented

grains. It is assumed that every micro-particle (grain) is characterized by an orientation tensor µ,

determining the direction of micro-plastic deformation, and by the local yield limit τ . In general case

the theory of microstrains assumes, that µ is the arbitrary normed deviator i.e.

(1) µ : µ = 1, tr µ = 0,

where ”:” denotes the contraction of tensors by two indexes and ”tr ” means the trace of a tensor. In

the papers [1-4] it was proved that other types of tensor µ allow to obtain a number of micro structural

theories of plasticity on the base of the theory of microstrains. In particular, choice of µ like following

(2) µ =
1
√

2
(~n⊗ ~m+ ~m⊗ ~n) , |~n| = 1, |~m| = 1, ~n · ~m = 0

allows to derive a number of sliding theories.

Results, which concern possibility of obtaining different microstructural theories, had analytical

character, and only a possibility of a high-quality approximation was shown, however a quantitative

side of the question was not examined due to lack of computational power.

Nowadays with intensive development of the computational engineering, a possibility of nu-

merical implementation of integration scheme of the constitutive relations of the microstrains theory

appeared. This allows us to conduct quantitative comparison of different mechanical theories which

use microstuctural approach.

We offer the new method of representation of the directional tensor µ in the following form:

(3) µ = ρ(ξ)

[(

−
cos ξ
√

6
−

sin ξ
√

2

)

~j1~j1 +

(

−
cos ξ
√

6
+

sin ξ
√

2

)

~j2~j2 +

(

cos ξ
√

6

)

~j3~j3

]

,

where ~jk, k = 1..3 are three principal directions of the tensor, which are defined as arbitrary oriented

orthogonal unit vectors and can be expressed through two spherical angles φ, ψ and one auxiliary

angle θ and ξ is a type-angle parameter (measure of a third invariant) for the tensor µ .

In the case ρ(ξ) = 1 the representation (3) fulfils conditions (1) and leads to the known variant

of the theory of microstrains [2]. Choosing ρ(ξ) 6= 1 allows us to obtain the variants of theory which

are capable of describing materials whose mechanical response is different under the compression,

tension and shear. In this case holds µ : µ = ρ(ξ), i.e. the norm of µ is not identity like in
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classical variant of theory. This fact required a proper generalisation of constitutive relations which

was successfully made. Also, choosing ξ = const, in particular ξ = π/6, makes (3) equivalent to

(1). So the representation (3) of the orientation tensor µ is rather general and can be used to obtain

different cases.

A unified numerical integration algorithm for the constitutive relations of the theory of micros-

trains based on the new representation of the directional tensor (3) was created. This approach allows

to unify numerical implementation for different theories based on the framework of the microstrains

theory. It is now possible to investigate a number of different cases of microstrains theory and their

connection with other microstructural theories. However an emphasise was made on comparison of

theory of microstrains to the theories, based on conception of sliding. And it is shown that distinction

of deformations, expected in the theory of microstrains and sliding theories in a material subjected to

complex loading has an order of distinction of initial yield conditions, i.e. conditions of Huber-Mises

and Treska

[1] Yu. I. Kadashevich, V.V. Novozhilov (1968.) On the effect of micro pre-stresses in the theory of
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[3] Yu. I. Kadashevich, Yu. A. Chernyakov (1992) Theory of plasticity, taking into account micro

stresses. Advances in Mechanics. 15, N. 3-4, 3-39.

[4] V. P. Shneider, Yu. A. Chernyakov (2006) The development of micro deformations theory: the

account of polycrystalline material grain sizes. In Proceedings of third international conference

”Multiscale Material Modeling”. Freiburg (Germany), 530-533.
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1. Introduction 

Traditionall y friction force is considered dependent only on one force factor that is normal 
contact load [1]. Research of mechanical systems named active stress-strain state of which is 
conditioned by action of both contact and non-contact loads showed that stresses and strains caused 
by not-contact loads form additional boundary conditions on contact surface [2]. It therefore leads 
to essential change of characteristics of friction. 

 
2. Formation of boundary condition 

Friction force F in an active system can be considered as some function of usual friction force 
)(cF  [1] in sliding (or rolli ng) and non-contact component of friction force )(bF  that appear due to 

action of non-contact (cyclic) stresses and strains. Generall y friction force in active system may be 
considered as the vector sum of components )(cF  and )(bF : 

(1) )()( bc FFF += ,   

In (1) ∫=
S

bb dsspP )(  is additional contact load caused by distribution of contact pressure 

(2) ( ) ( )( )
00

,
==

σ=
zSbzSzzbb pp u ,   

where Sz ⊥ , S – contact area. 
In formula (2) ( ) ( )00

,
==

σ
zSbzSzz u  are boundary conditions in the field of contact the emerge due 

to the action of non-contact force. 
Let us consider their formation using roller-shaft active system as an example.  
In the neighborhood of contact nonzero components of console shaft stress-strain state caused 

by bending force Q are defined according to following formulas 

(3) ( ) ( )
( ) ( )zR

I

lyQb
yy +

ν+
−=σ

14
, ( ) ( )b

yy
b
yy E

σ=ε 1
, ( ) ( ) ( )b

yy
b
xx

b
zz E

σν−=ε=ε   

where 64/4
2RI π= , R – shaft radius, l=l1–l2, l1 – shaft length, l2 – distance from a point of the fixing 

of the shaft to the centre of contact 
Displacements corresponding to stress-strain state (3) of contact area points are 

(4) ( ) ( )
0=∫ ε=

z

b
ii

b
i diu  (i = x,y,z)  

Let us consider the simplest approach to definition of contact tractions pb for the given 

displacements ( )b

zu .  

We will  assume that contact platform and half-space underneath as a compressed cylinder with 
the cross-section in the form of contact platform. Cylinder’s height is R because in coordinate 

system originating in the centre of contact area displacements ( ) 0=
−= Rz

b
zu . Then contact force bP  

(compressing cylinder) corresponds to displacements ( )b
zu on the surface of contact (upper surface of 

cylinder). Force bP  is found from the equalit y of ( )b
zu  and the value of displacement of upper 

surface of compressed cylinder: 

(5) 
( )

2R

Eu
SpP

b
z

bb == .  
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In a case of Coulomb dependences between normal force and friction force friction coeff icient 
in the active system will  be  

(6) ( ) ( ) ( )
( )
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 σ
, p0 is the maximum contact pressure in 

the center of contact 
Analysis of formula (6) and a figure 1.a,b shows that in active system under simultaneous 

action of contact and non-contact loads the resulting coeff icient (force) of friction in extension zone 
of the shaft decreases and in a compression zone increases in comparison with coeff icient (force) of 
pure friction. 

 

 

 
 
 

 
 

Figure 1. Analytical (a,b) and experimental (c) dependences between coeff icient of friction and 
stresses caused by non-contact load in active system. 

 
Figure 1 shows that analytical dependence qualitatively corresponds to the results of 

experiments.  
The presented dependence is practicall y significant because it gives the possibilit y to control 

friction process by means of non-contact loading as effectively as by means of contact loading. 
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1. Implicit Standard Materials

Themechanical behavior of many materialscan bemodeled bya constitutive law derivingfrom
a convex lower semi-continuous (lsc) potential Φ. A stress-like variable y is related to a strain-like
variablex equivalently by oneof the threefollowing conditions:
(i) y ∈ ∂Φ(x) i.e. y belongs to thesubdifferential of Φ at x ( ∀ξ, Φ(ξ) ≥ Φ(x) + 〈ξ − x, y〉)
(ii) x ∈ ∂Φ⋆(y) i.e. x belongs to thesubdifferential of Φ⋆ at y ( ∀η, Φ⋆(η) ≥ Φ⋆(y) + 〈x, η − y〉)
(iii) Φ(x) + Φ⋆(y) = 〈x, y〉.

The brackets enclosing x and y denote the duality product between x and y. Condition (iii)
can beregarded asan extremal caseof theFenchel-Young inequali ty Φ(x)+Φ⋆(y) ≥ 〈x, y〉 derived
directly from thedefinition of theLegendre-Fenchel-Moreau functional transformation [10]

Φ⋆(y) = sup
x

(〈x, y〉 − Φ(x)).

Such materials are called ” Generalized Standard Materials” [8]. However, there exist materials,
clays for example [5], whose behavior cannot be modeled by a convex lsc potential. In this case,
the constitutive law is called non-associated. Giving up the sum decomposition in (iii), Gery de
Saxcé [5] succeeded in modeling the behavior of a new classof materials, the ” Implicit Standard
Materials” . These materials are characterized by a bipotential b(x, y), as stated in the following
section.

2. Bipotentials

A function b(x, y) satisfying the conditions:
(i) b(x, y) is convex and lsc in x (ii) b(x, y) is convex and lsc in y (iii) b(x, y) ≥ 〈x, y〉
is called bipotential [4]. When the constitutive law of a material can be expressed indifferently by
any of the following three conditions:
(iv) y ∈ ∂xb(x, y) i.e. y belongs to thesubdifferential of the function ξ 7→ b(ξ, y) at ξ = x
(v) x ∈ ∂yb(x, y) i.e. x belongs to thesubdifferential of the functionη 7→ b(x, η) at η = y
(vi) b(x, y) = 〈x, y〉
this law is said to admit thebipotential b, and thematerial is referred as ”Standard Implicit” .

The ”Generalized Standard Materials” arespecial ” Implicit Standard Materials” with separable
bipotentials of the type b(x, y) = Φ(x) + Φ⋆(y), for which condition (iii) is nothing else than the
Fenchel-Younginequality.

3. Parallelism of two vectors

As a start point to exhibit the bipotential modeling the Coulomb dry friction ([5], [6]), let us
consider the constitutive law enacting that two vectors x and y of an Hilbert spaceH have the same
orientation. This constitutive law is not maximal monotone and therefore cannot be described by a
convex lsc potential. Nevertheless, one can expressthis law by makingequal theproduct of thenorms
with the duality product: ||x|| ||y|| = 〈x, y〉. We can remark that the function b(x, y) = ||x|| ||y||



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 287

satisfies the conditions (i), (ii) and (iii) of Section 2, the last one being true thanks to the Cauchy-
Schwarz-Buniakovsky inequality. The equivalenceof the three conditions (iv), (v) and (vi) is due to
the following property of the norm in a Hilbert space: the subdifferential of the norm at x is equal to

the closed unit ball i f x = 0 and is reduced to
{

x

||x||

}

if x 6= 0.

4. Representing aconstitutive law by a function

For representing a maximal monotone multifunction x 7−→ y ∈ Tx ⊂ H, S. Fitzpatrick
([3],[7]) introduced theglobal convex lsc function

F (x, y) = 〈x, y〉 − inf
y
′
∈Tx

′

〈x′ − x, y′ − y〉.

SinceT ismaximal monotone, the aboveinfimum inf
y
′
∈Tx

′

〈x′−x, y′−y〉 isnon-positive anditsequality

to 0 holds if and only if y ∈ Tx. Therefore F (x, y) is bounded from below by the duality product
〈x, y〉, andwerecover the conditions of Section 2for F to be abipotential representingT .

Thus, in case of maximal monotonicity of the constitutive law, a bipotential can be constructed
as a Fitzpatr ick function ([1],[2],[9]). But, does Fitzpatrick’s methodwork for nonmonotone con-
stitutive laws?

In this lecturewewill present two examples. Thefirst one concernsthelinear monotone explicit
law y = Ax with S = A+A

T

2
as a positive-definite linear mapping. The second one is devoted to the

nonmonotone implicit law discussed in Section 3.
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1. Introduction 

This paper describes the strength and the collapse mode under shear of hybrid steel girders 
which are considered as the combination of shell  elements.  

When an I-sectioned girder is subjected to the bending, higher stress arises in the flange plates 
of the girder. A hybrid steel girder is a girder which has flange plates made with the higher strength 
steel and a web plate with “normal”  steel. In the discussion on a hybrid steel girder, behaviour under 
the bending has been mainly focused. As a member of the Subcommittee on "the design method of 
hybrid steel girders" organized by JSSC (Japanese Society of Steel Construction)[3], one of the 
authors made a series of studies[1-2] on the hybrid steel girders. As described above, a hybrid steel 
girder is effective for the bending. Therefore, it is natural that the bending behaviour of the hybrid 
girders is focused.  

However, to design a hybrid steel girder, its shear behaviour such as the collapse mechanism 
under shear must be known. Thus, in this paper, numerical analyses are made to know the strength 
and the collapse mechanism of hybrid steel girders under shear. The results of the collapse 
mechanism and strength are compared to those of the homogeneous girders which are made of the 
same grade steel for their flange and web plate. 

2. Numerical models and numerical method 

A typical numerical model is ill ustrated in Figure 1. As ill ustrated in Figure 1, the model is 
fixed at its left, and is subjected a downward load at its right edge. This model has its length l=5000 
mm, web depth b=1200mm and flange width bf=260 mm. The web panel with the width of a and 
subtended by two stiffeners is focused in this study. The stiffeners have their section of 100 x 8mm. 
The web thickness tw is tw=8mm or tw=12mm, and the flange thickness tf is varied from tf =4mm to tf 
=20mm to investigate the effect of the flange stiffness.  

The aspect ratio of the focused panel, α=a/b is considered as one of parameters and from 0.75 to 
3.0, that is, a is from 900mm to 3 600mm.  

In this study, the grade SM400 steel which has the yielding stress σy of σy =245Mpa and the 
grade SM570steel with σy =460MPa are considered. For the hybrid girder, The SM570 steel is 
utili zed for only the flange plates of the hybrid girder, and for the flanges of the homogeneous girder 
and the web plates, SM400 is considered.   

The numerical analysis is made with the computer program package MSC Marc, and the model 
is discretized with 50x50mm thick shell  elements. 

260 

Figure 1. A typical numerical model 
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3. Numerical results 

In Figure 2, a deformation pattern of the hybrid girder with tw=8mm, tf=12mm and α=1.0 at the 
ultimate load is ill ustrated. The distinct shear buckling deformation is observed in the web plate in 
this figure. This figure also shows that each flange plate deforms with the web deformation. However, 
although it is not clear in this figure, no plastic hinge is formed in the flange plate in this model.  

The maximum load Pmax of this model is Pmax = 1096 kN, and the corresponding homogeneous 
girder has its Pmax is Pmax =1091 kN. Thus, in this case, the hybrid girder has almost equal strength to 
the corresponding homogeneous girder. In the case with the aspect ratio α=3.0and with the same plate 
thickness, both the hybrid girder and the homogeneous girder also have no plastic hinge in their 
flange plates. However, in this aspect ratio, the hybrid girder has its Pmax = 758 kN and this is larger 
by 8% than the homogeneous girder which has the Pmax = 700 kN. Although the detail  is not shown in 
this abstract, with the larger aspect ratio, hybrid girders have larger Pmax than homogeneous girders. 

In addition, on the cases with the plate thickness of tw=12mm, tf=12mm, or tw=8mm, tf=8mm, 
hybrid girders have no plastic hinge in the flange plates although in corresponding homogeneous 
plastic hinges arise in the flanges. That is, in these cases, the hybrid girder and the homogeneous 
girder have different collapse mode to each other. 

4. Conclusion 

The flange plates of a plate girder carry mainly the bending, and the shear is carried by mainly 
web plate. A hybrid steel girder is originall y considered to carry the bending effectively. However, 
the results shown in this paper indicate that a hybrid girder is also effective for the shear when the 
girder has the larger aspect ratio. In addition, to estimate the shear strength of a girder, the collapse 
mode with the plastic hinges in the flange plates is often adopted. But, the collapse mode of a hybrid 
girder obtained in this study has, in some cases, no plastic hinge although the plastic hinges arise in 
the corresponding homogeneous girder. This fact suggests that a separate shear collapse mode is 
required for the hybrid girders other than the homogeneous girder. 
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Figure 2. Shear Deformation of Hybrid Girder (α=1.0, tw=8mm, tf =12mm) 
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Phase transitions (PT) play an important role in different problems of continuum mechanics. 

Equilibrium conditions of elastic thin-walled structures (plates and shells) undergoing PT of 

martensitic type were formulated in [1, 2] within the dynamically and kinematically exact theory of 

shells presented in books [3, 4]. From experimental data we know that PT depending on strain rates 

and inelastic effects may considerably influence the stress state of the solid. 

The aim of this contribution is to extend the results of [1, 2] by taking into account thermal and 

viscoelastic effects of the shell material phases under quasistatic loading. 

1. Basic relations of nonlinear shell thermostatics 

The 2D local equilibrium equations as well as the energy balance and the Clausius-Duhem 

inequality satisfied at any part of the undeformed base surface M  of the shell are [1, 2]  
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Here  and  are the internal surface stress resultant and couple stress tensors of the nominal 

type,  is the surface gradient of shell deformation 

N
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M
ysGrad ( )  �y x x uF ,  denotes the 

axial vector associated with the skew tensor , while  and  are the surface gradient and 

divergence operators on M, respectively. Additionally, 
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H  is the surface internal energy density, K  is 

the surface entropy density,  is the surface influx vector,  are the heat influxes through the 

upper  and lower (-) shell faces,  is the internal surface heat supply, while by  and  

we denote temperatures of the external media surrounding the shell from above and below.  
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2. Constitutive equations of thermoviscoelastic shells 

 The surface stress measures  depend only on prehistories of the surface natural strain and 

bending tensors , [4], as well as on the temperature 

,N M
,E K T . We split the surface stress measures 

and their constitutive equations into elastic (equilibrium) and inelastic (dissipative) parts,  
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Here � , ,T T �\ H K \ �  E K
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 is the surface free energy density, and  

. 
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3. Continuity conditions and kinetic equation 

The phase interface in the shell may be modelled by a smooth surface curve . Then 

along C  the 1D local equilibrium and thermodynamic continuity conditions are [5]  
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Here the expression [  means the jump at , ...] (...) (...)� � � C  v u�  is the translational velocity 

vector,  is the normal velocity tangent to  of the phase curve  with the unit 

outward normal  and  the velocity of C  kinematically independent on , 
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Q
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ax  is the 

angular velocity vector, and  represents creation of entropy at the interface . 2G

Transforming (3) it can be shown that the surface Eshelby tensor  introduced in [1] satisfies 

the thermodynamic continuity condition 

C
> @ 0�  CQ Q

T�M K

 in the case of equilibrium. For the coherent 

interface, when the independent translation u  and rotation  fields are supposed to be continuous 

at , we obtain C C . For the interface incoherent in rotations, when only 

 is continuous at C  and continuity of Q  may be violated, we have . From 

the thermodynamic point of view the expression 

Q
C T
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u T
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> @ /d CQ Q ds�  is the configurational force acting on 

the phase interface, with s  the length along C . 

Thermodynamically consistent kinetic equation along  is given by the relation  C

(4) > @� �/ ,V K d ds �CQ Q  

where K  is a non-negative definite kinetic function. The equation (4) describes motion of the phase 

interface  under quasistatic deformations of the shell. It generalizes the balance equations on the 

equilibrium phase interface obtained in [1, 2]. 

C

During Solmech2008 we present solutions of some model problems for two-phase 

viscoelastic shells under quasistatic loading. 
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DIRECTION BY “ ALMOST REGULARLY PLACED”  RIBS 
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Non-closed circular cylindrical shells simply supported on longitudinal edges 
strengthened by “almost regular”  systems of longitudinal or annular ribs are considered. Exact 
solutions of the problems of statics, dynamics and stabilit y of the shells are obtained in the 
form of trigonometric series with respect to the coordinate orthogonal to the ribs. Previously 
such solutions have been found only for the closed shells strengthened by regular systems of 
longitudinal ribs. 

At a regular placement all  mechanical and geometrical parameters of ribs are equal. 
The distances between ribs are equal and distances from edges of shells up to the nearest ribs 
are equal to the distances between the ribs. At “almost regular”  placement of the ribs, as 
opposed to regular placing, distances from the shell  edges up to the nearest ribs are equal to 
half of the distance between the ribs. In both placing cases a shell  is segmented by ribs, the 
number of segments is equal to the number of ribs. 

The obtained solutions are convenient both for calculations and for the analysis of 
deformation of shells, as they lead to the suff iciently simple transcendental equations for 
determination of characteristic numbers, criti cal stresses at loss of stabilit y, natural frequencies 
of vibrations and wave parameters. 
The “almost regular”  placement of ribs is widely used in many structural designs of elements 
and mechanical constructions. 

These are the problems that are solved for shell s strengthened by longitudinal ribs: 
   
A. A common solution of a non-homogeneous system of equations of balance is obtained. It 
enables studying both the character of influence of loadings at a curvili near edge of a semi-
infinite shell  on its stress-strain state and the influence of a discrete ribs placement on a zone 
extent in which it is essential. 
 
B. The problem of finding criti cal stresses at loss of stabilit y of the shells simply supported on 
all  edges under joint action of a longitudinal tension or compression and external or internal 
pressure is reduced to the calculation of minimal roots of the transcendental equations of three 
types, differing by character of wave formation: 
 
1. The wavelength in the circumferential direction is almost independent of a ribs arrangement 
(in this case critical stresses depend on all  rigidity characteristics of the ribs). 
2. The maxima of the form of deflection are on axes of ribs (in this case critical stresses depend 
only on ribs rigidity in bending in a radial plane and in tension - compression). 
3. Nodes of the deflection curve are on the axes of the ribs (in this case critical stresses depend 
only on ribs rigidity in bending in the planes equall y distant to tangents to the shell  surfaces, 
and in torsion). 
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As a result of the analysis of the above-mentioned transcendental equations, the simple 
approximate formulas for calculation of the shells stabilit y are suggested at a large suff iciently 
number of ribs. The condition of appli cabilit y of the structurall y orthotropic shell  theory is 
formulated. 

 
C. The problem of determination of natural frequencies of vibration of shells which are simply 
supported on all  edges is also reduced to calculation of the roots of the transcendental 
equations of the specified three types. Their analysis permits obtaining simple expressions to 
find low natural frequencies at a suff iciently large number of ribs and to formulate conditions 
of applicabilit y of the constructively orthotropic shell  theory. 
 
D. It is found that investigation of the influence of a discrete ribs placement on wave 
parameters of harmonic waves propagating along shell s is reduced to the determination of roots 
of transcendental equations of the same three types. The analysis of these equations is fulfill ed. 

 
For non-closed shells which are simply supported on all  edges strengthened by “almost 

regular”  systems of annular ribs the problem of determination of critical stresses under joint 
action of compression (tension) and external (internal) pressure is solved. Their calculation is 
reduced to the determination of the minimal roots of the transcendental equations of the three 
types similar to those obtained for shells strengthened by longitudinal ribs. Previously for the 
shells strengthened by regular systems of annular ribs only the approximate equations of two 
types (the first one and the third one) have been derived.  

The determination of natural frequencies of vibrations of the shell s strengthened by 
“almost regular”  systems of annular ribs is also reduced to the calculation of roots of the 
transcendental equations of the three types. For mentioned shells the obtained approximate 
expressions enable calculation of the critical stresses and natural frequencies of vibrations at a 
suff iciently large number of ribs. 

Similar exact solutions and approximate formulas are also deduced for the closed shells 
strengthened by “almost regular”  systems of annular ribs. 
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EVALUATION OF THE PERTURBATION SENSITIVITY AND THE LIMIT LOADS
OF SHELL S BY THE PERTURBATION ENERGY CONCEPT

J. Pontow and D. Dinkler
Institute for Structural Analysis, Braunschweig, Germany

1. General

Theperturbationsensitivity andthe limit loadsof shellsarewidely discussed phenomena. Both
phenomena may be classified with respect to the time und the type of a perturbation. Contrary to
other methods, theperturbationenergy concept enablesto describe thebuckling processin avery nat-
ural way and to analyse theperturbationsensitivity aswell as the limits loadsby auniform approach.

2. Perturbation energy concept

Basic ideaof theperturbationenergy concept is the identification of a criti cal statebelongingto
a fundamental stateF [1] . The differenceof strain energy between both states is an indicator for the
stabilit y of the fundamental state and referred to as the perturbation energy Πcr . As several criti cal
states may exist, the identification of the criti cal state which is relevant for the stabilit y of the funda-
mental state is interpreted as an optimisation problem,

(1) f (zF ,∆z) = Πcr → Min.

In thisproblem, thefundamental state isrepresented by thestatevariableszF andthedistance aswell
as the direction between the fundamental and the criti cal state are denoted by the change ∆z of the
state variables. The kind of the criti cal state depends on the distribution in time of the perturbation.
For a kinetic perturbation, the state N characterised by vanishing first variation of the incremental
elastic potential and by nochange of the fundamental load is the criti cal state, compare figure 1. In
case of a static perturbation, the state M of vanishing second variation of the potential is the criti cal
state. These conditionsconstrain the optimisation problem(1) whose solutionmay be found by non-
linear eigenvalueproblems. Thereby, the order of nonlinearity with respect to the eigenvalue and the
eigenvector, respectively, is governed by the formulation of thepotential.
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Figure 1. Load-deformation behaviour of aperturbation-sensitive shell

In general, non-initial load perturbationsPp are necessary to reach a criti cal state. Non-initial
perturbations concerning other parameters of the model equations, such as the bedding modulus and
thewall thickness, influencethetopology of the energy surface andemphasisethesimilarity between
the perturbation energy concept and the perturbation theory. The effect of initial perturbations is
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measured by the associated change of the fundamental energy ΠF as well as the change of the per-
turbation energy. For identifying the static limit loads of different shells by one energy value, the
perturbation energy is normalised by the bending stiffnessof the shell continuum as bending energy
is the dominating part of theperturbation energy. The referencevalueof thenormalised perturbation
energy, πcr,M =2.7%, represents aproper indicator for realistic static limit loads. Kinetic limit loads
aredetermined with respect to afundamental state and bythedegreeof stabilit y [2] . Furthermore, the
optimisation of the perturbation sensitivity of a shell i n terms of a certain load level and the design
parameter x may bedescribed by theobjective function

(2) f (x,zF(x),∆z(x)) = Πcr − Πcr
req

= 0

where Πcr
req represents the required perturbation sensitivity. The computation of the solution of this

load-level-specific optimisation is based on the linearisation of the objective function which is per-
formed bytheforward differencescheme. In general, thesolutionisfoundafter few iterations. During
the optimisation, the energy surface and so the fundamental state as well as the distance and the di-
rection between thefundamental andthe criti cal state are changing. Furthermore, theoptimisationin-
fluences thefundamental energy andtheload level of singular points in theprimary load-deformation
path. The advantage of the proposed optimisation procedure over a systematic change of the design
parameter becomesobviously especially for high-dimensional systemsandseveral design parameters.

3. Numerical results

For cylindrical and spherical shells, the perturbation sensitivity and static limit loads are ana-
lysed including different loadings, geometries, boundary conditionsand material parameters. The re-
sults indicate that spherical shells under radial pressure are nearly as perturbation-sensitive as cylin-
drical shells subjected to axial pressure. For these buckling cases, limit loads according to the refe-
rence value of the normalised perturbation energy are in goodagreement with those corresponding
to theECCS-Recommendations, but differ for elasto-plastic material behaviour significantly to those
according to DIN 18800[3] . The limit loads calculated for conical shells under meridional pressure
arefor different meridional angles similar to those correspondingto DASt-Richtlinie013. In addition,
bucklingcaseslessintensively discussed in thedesignrulesare analysed.But it i snot possibleto spec-
ify realistic limit loadsof all thesebucklingcasesby thereferencevalueof thenormalised perturbation
energy due to the absenceof a problem-specific scaling of theperturbation energy. Nevertheless, for
fibre reinforced compositesconsisting of uniform UD-layers an adequatescaling is feasible.

The stabilit y of a shell against a kinetic perturbation load depends on the energy induced into
the system by the perturbation load. Therefore, the influenceof the distribution in time and spaceof
the perturbation load onthestabilit y of a spherical shell i s investigated. The results highlight the im-
portanceof theperturbationenergy concept not only for the evaluation of thebuckling resistancebut
also for thedetermination of an unfavourableperturbation load andthekinetic limit load, repectively.
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Stiffness method (displacement based formulation) is a widely applicable method for analysis 
of structures such as beams, plates, shells and etc. Analyzing structures with variable thickness by 
using stiffness method, the structure is discretized into straight elements with constant mechanical 
properties and a constant thickness which is an average of thickness at the element’s nodes. 
Increasing number of elements, a better approximation is obtained but on the other hand, 
dimensions of stiffness and mass matrices increase so that more time and memory would be 
required. However, this method is the proper conventional method which can be found in technical 
literature. In general, application of the displacement based formulations lead to violation of one of 
the three basic equili brium equations due to assumption of displacement fields in that method.  

Force methods (flexibilit y method) can be a proper substitute for stiffness method as they 
absolutely satisfy the three basic equili brium equations at all  points of the element. In the present 
paper, unit load method which is considered as force method has been applied for derivation of 
stiffness matrix. However, application of force method is generall y more complicated than stiffness 
method so that a combination of these methods (stiffness and force methods) can bring in accuracy, 
simplicity and time and memory saving. 

In this paper, a new method for static analysis of thin curved shells with variable thickness is 
presented. The basis of the method is employing shape functions of non-prismatic curved beams 
which are obtained by utili zing unit load method. This new method can be applied to any kind of 
shells with any variable thickness function and boundary conditions. This method could be easil y 
extended to complex analysis of structures such as non-linear analysis in both geometric and 
material non-linearity cases. In fact, this method is the logical development of finite element 
calculations and employs mathematical computations and numerical integrals.      

Comparing the results obtained by this method and those obtained by ordinary methods 
obviously proves its excellence in both convergence and economy. In static analysis of spherical 
and cylindrical shells, indeed, the results computed by using few elements with this formulation are 
completely comparable with the results obtained by using numerous elements with ordinary 
formulations. It is worth to note that this new formulation can be applied in any standard 
displacement based finite elements programs and algorithms. 

The authors have started a new studying on extension of this method to dynamic analysis of 
shells with variable thickness and good results have been gained, so far. 
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AN ASYMPTOTIC APPROACH TO PROBLEMS OF SCATTERING 
ACOUSTIC WAVES BY ELASTIC SHELLS 

 
V. Kovalev

 Moscow University of Management of Moscow Government, Moscow, Russia  

1. Scattering of stationary acoustic waves by elastic shells is considered. A procedure is 
proposed for constructing an approximate solution, based on matching the expansions for 
different asymptotic models of the interaction of the shell  with the acoustic medium. In the 
vicinities of zero frequency the refined Kirchhoff-Love theory of fluid-structure interaction 
is applied [1]. This model takes into consideration transverse compression of a shell  by a 
fluid and some other phenomena. In the vicinities thickness resonance frequency long-wave 
high-frequency approximations are employed [2,3]. They describe small  number resonance 
of higher order Lamb waves. Outside the vicinities of zero frequency and thickness 
resonance frequency vibrations of a shell  correspond to short-wave motions. Here a flat 
layer model is used [2,3]. It is shown for different parameters of material in a shell  that the 
flat layer model has overlap regions both the refined Kirchhoff-Love theory and the theories 
associated with long-wave high-frequency approximations. A comparison of numerical data 
corresponding to asymptotic and exact solutions cylindrical and spherical shells shows that 
the proposed procedure is highly eff icient. 

 
2. Let the plane acoustic wave  [ ])(exp0 tkippi ωξ +−=   be scattered either by a circular 

cylindrical shell  or by a spherical shell . We introduce the following parameters 
characterizing the scattering process:                                   
                        ckcciccii /,/),2,1(/,/ 1201 ωγβρρκ ===== .  

Here 1c  and 2c are the dilatation and distortion wave speeds in the material of the shell , 

respectively, 1ρ  is the mass density of the shell , c  is the sound speed in the fluid, ρ  is the 

mass density of the fluid, ω  is the circular frequency, ip  is the pressure in the incident 

wave, 0p  is a constant. The incident pressure ip  and the scattered pressure sp  have to 

satisfy the Helmholz equation. In addition, the scattered pressure sp  should obey the 

radiation condition at infinity. 
Let ),( θr  be cylindrical or spherical coordinates (the problem do not depend upon the 

axial coordinate in the case of a cylindrical shell  and upon the angle along parallel in the 
case of a spherical shell ), the radius of the shell  be equal R , and the half-thickness of the 

shell  be equal h .  The incident pressure can be written as ∑
∞

=
−=

0
0 )()()(

n
nn

n
ni FkrfiEpp θ .  

Here for a cylindrical shell  10 =E ,  2=nE   ( 1≥n ),  nn Jf = , )1()1(
nn Hg = ,  θθ nFn cos)( = , 

nN = , nJ  is a cylindrical Bessel function of the first kind, )1(
nH  is a Hankel function of the 

first kind; for a spherical shell  sphere 12 += nEn ,  nn jf = , )1()1(
nn hg = ,  )(cos)( θθ nn FF = , 

21+= nN , nj  is a spherical  Bessel function of the first kind,  )1(
nh  is a spherical Hankel 

function of the first kind, nP  is a Legendre polynomial. The solution for the scattered 

pressure in the case of normal incidence of the plane acoustic wave has the form  

(1)                                  ∑
∞

=
−=

0

)1(
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n
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n
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 The coeff icients nB  have to be defined by solving the contact problems for the 

equations describing the motion of the shell . We introduce the relative half-thickness of the 
shell  Rh /=η . Let us consider three approximate models mentioned above.  

The regions in which the refined asymptotic model and the model based on classical 
Kirchhoff–Love theory can be used are limited by the inequaliti es     

,/,/ 21
2

1
2

−− <<<< ηωηω cRcR  respectively [1]. Thus, both of these theories describe 

only the order Lamb-type waves 0S  and 0A  or the fluid-born waveA . The relevant mode 

numbers lie in the ranges 1−<< ηn  and 21−<< ηn  for the refined asymptotic model and the 
Kirchhoff–Love theory, respectively. 

The first modes of higher order Lamb-type waves correspond to long-wave high-
frequency vibrations of fluid-loaded shells. There are two types of the long-wave high-
frequency approximations [2,3]. The transverse approximation is to use in the vicinities of 
the thickness stretch resonance frequencies. In the vicinities of the thickness shear resonance 
frequencies the tangential approximation should be used. The model formulated above is 
applicable only for the small  values of the parameter n  ( 1−<<ηn ). But series (1) only 

begin to converge when 1~~ −ηxn , where kax = , i.e. solution contains short-wave 
components as well . Consequently, when calculating the scattered pressure using formula 
(1) the long-wave high-frequency approximations must be used together with the flat elastic 
layer model that will  be considered below. 

The flat elastic layer model is developed in references [2,3]. The equations for this 

model are valid under following conditions:  ,~/~/~/ 1
2

−∂∂∂∂ ηωθζ cR    i.e. for short-
wave motions of the shell . In this case the equations of elasticity written in curvili near 
coordinates can be replaced by those in plane problem of elasticity presented in Cartesian 
coordinates, in doing so the radial coordinate is “ frozen”  on the mid-surface of a shell .    

The results of the synthesis of the form function in the far field ( ∞→r ) in the case 
of backscattering ( 0=θ ) are presented in [2,3]. Here 

(2)                                            ∑
∞

=
−=

0

)1(
n

n
nnBEGp  

The long-wave high-frequency approximation is applied beginning with the first 
thickness resonance frequency and only for 10<n . The rest of series (2) is evaluated by the 
flat layer model. A numerical analysis demonstrates advantages of the chosen scheme. The 
calculations for different parameters of material in a shell  and value parameter η  
( 17/169/1 ≤≤η ) show that there exist overlap regions, therefore, the proposed method give 
a possibilit y to describe both the resonance components of the partial modes and the 
scattered pressure with high accuracy. 
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1. General 

In this paper, the results of a series of elastoplastic large deflection analyses on a specific 

cylindrical shell part of the ship hull girders under inplane compression is reported. Nonlinear finite 

element method is applied in the calculations. It is revealed that the assumption of elastic-perfectly 

plastic behaviour for this part of the ship hulls is not realistic and may result in very optimistic 

predictions of the ship hull overall strength. 

2. Introduction 

Flat and curved stiffened plates are the key elements in the construction of ships and offshore 

structures. In a transition region between the bottom and side shells of the ship hull, there is a 

cylindrical part that is so-called bilge, Figure 1 (left). In most of the research works concerning with 

the ultimate strength of the ship hull girders under extreme sea conditions, the behaviour of this part 

is assumed to follow an elastic-perfectly plastic regime. No serious assessment has already been 

made or published on the strength and behaviour of this cylindrical shell part.  

A series of full range elastoplastic large deflection analyses is performed on a parametric 

model of the bilge shell plating. The nonlinear finite element approach is applied for the 

investigations. Buckling and collapse modes are detected for the models. Also the average stress-

average strain relationships of the models are summarised in a format to get a deep insight into the 

behaviours. Finally, it is revealed that the assumption of elastic-perfectly plastic behaviour for this 

part of the ship hulls is not realistic and may result in very optimistic predictions of the ship hull 

overall strength. 

3. Model for analysis 

The extent of the model for analysis is shown in the left part of the Figure 1. It is located 

between the two mid-span lines of the bilge brackets. Proper boundary conditions derived from real 

situations are applied to the edges of the model. Mechanical and geometrical characteristics of the 

parametric model are given in Table 1. A typical FE model for analysis with incorporated boundary 

conditions is shown in the Figure 1 (right). The model also is imperfect and initial deflections based 

on the real measurements are included in it.  

  
Figure 1. Extent of the bilge part for analysis (left) and its FE model (right). 
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2250   Length (L) [mm] 

1800 Radius (R) [mm]  

9,10,12,14,16 Thickness (t) [mm] 

235.2,274.4,313.6 Yielding Stress  ( )Ys
  [MPa] 

206000 Young s Modulus (E) [MPa] 

0.3 Poisson s Ratio ( )v  

Table 1. Mechanical and geometrical characteristics of the model. 

4. Results and conclusions 

A series of elastoplastic large deflection analyses is performed applying nonlinear finite 

element method. An extract of the results are shown in Figure 2. Some of the key results are: 

The average stress-average strain relationships for the models are the same in a pre-collapse 

or pre-ultimate strength level, regardless of the changes for thickness or yield stress. With the 

increase of the shell thickness or decrease in the yield stress, the slope of the post-ultimate strength 

part of the curves would be decreased. In the case of very extremely thick plates of a regular yield 

stress, a behaviour near to the elastic-perfectly plastic behaviour might be observed. It is finally 

concluded that the assumption of elastic-perfectly plastic behaviour for this part of the ship hulls is 

not realistic. 

 

(a) the results for the case of MPaY 2.235=s  

 

(b) the results for the case of mmt 9=  

Figure 2. Average stress-average strain relationships of some analysed cases with different values of 

thickness or yield stress. 
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Thanks to the pioneering works of J.L. Lions [1] there exists a general tool for the study of the the

exact controllability of a distributed system, in particular of various shell models. More precisely

let us suppose that it is possible to act on (at least) a part of the boundary of a thin, linearly elastic

and isotropic shell with suitable boundary conditions. Then null (or exact) controllability consists in

proving that starting from an arbitrary initial state it is possible to steer the shell to rest, by a proper

choice of the boundary control, in a finite time. The Hilbert Uniqueness Method (HUM) introduced

by J. L. Lions allows to find a control as a minimum of a functional (continuous and convex in a

suitable framework) whose coercivity is essentially reduced to the proof of a uniqueness result.

The summation convention is adopted, the greek indices take values in the set 1, 2 and the latin indices

in the set 1, 2, 3.

Let ω be a bounded connected domain in R
2 with boundary γ and let y = (yα) denote a generic point

of ω. Let θ ∈ C∞(ω; R3) be an injective mapping such that the vectors aα(y) := ∂αθ(y) form the

covariant basis of the tangent plane to the surface S := θ(ω) at the point θ(y) ; let a3(y) = a3(y) :=
a1(y)∧a2(y)

|a1(y)∧a2(y)|
be the unit normal vector to S. For any displacement field via

i expressed in terms of the

contravariant basis the deformed surface is ˜θ(v)(ω) where ˜θ : v = (vi) → θ + via
i. In the framework

of linearized theory small displacement v are considered. In the Koiter model the membrane and

flexural deformation energy are defined by the symmetric forms

(1) aM(u, v) =

∫

ω

aαβλµγαβ(u)γλµ(v)
√

ady

(2) aF (u, v) =

∫

ω

aαβλµραβ(u)ρλµ(v)
√

ady

where γαβ(u) and ραβ(u) are the linearized change of metric and of curvature tensors associated to u.

Let ǫ ≥ 0 a real parameter and let be Aǫ = AM + ǫ
2

3
AF the operator in H = L2(ω)3 associated to the

bilinear form

(3) aǫ(u, v) = aM(u, v) +
ǫ2

3
aF (u, v)

defined on a suitable subspace V of kinematically admissible displacements (as general references on

shell theory see e.g. [2], [3], [4]). Let us consider the evolution problem :

(4)











∂u
∂t

2 (y, t) + Aǫu(y, t) = 0, for y ∈ ω and t > 0

u(y, 0) = u0(y), ∂u
∂t

(y, 0) = u1(y) for y ∈ ω

Bu(y, t) = v(y, t) for y ∈ γ and t ≥ 0

where B is a suitable system of boundary conditions. The system is exactly controllable in time T if

given an initial data (u0, u1) it is possible to find a control v that can drive the system (4) to rest at

time T i.e.

u(y, T ) = 0,
∂u

∂t
(y, T ) = 0 for y ∈ ω
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In [5] it is for instance proved the exact controllability when the middle surface of the shell satisfies

a suitable condition (e.g. is not too far from a plane). It is natural to study the dependence of the

controllability time T on ǫ. Let us remark that when ǫ → 0 one has a singular perturbation problem ;

hence one can expect that the controllability time T (ǫ) → ∞. This can be proved in similar situations

(see e.g. [7]). Moreover one can prove in the case ǫ = 0 a non-controllability result [6] : there exist

some in initial data (u0, u1) such that the evolution system (4) is not exactly controllable.

In this paper we address the following problem :

In the case ǫ = 0 find a space of controllable initial data (u0, u1).

We will give some preliminary partial results obtained in a joint work with Farid Ammar-Khodja

and Arnaud Münch, [8]. The characterization of the controllable initial data depends on the study

of the spectral problem associated to the operator AM . This will be illustrated on the example of

hemispherical shells and on the example of an arch.

[1] Lions J.L., Contrôlabilité exacte, perturbations et stabilisations de systèmes distribués, 2 Tomes,

Masson, Paris 1988.

[2] P.G. Ciarlet, Mathematical Elasticity, vol. III : Theory of shells, Studies in mathematics and its

applications, North-Holland, Amsterdam, 2000.

[3] J. Sanchez-Hubert, E. Sanchez-Palencia, Coques élastiques minces : propriétés asymptotiques,

Masson, Paris, 1997.

[4] K. J. Bathe, D. Chapelle, The finite element analysis of shells-fundamentals, Springer, Berlin,

2003.

[5] Miara B., Valente V., Exact controllability of a Koiter Shell by a Boundary Action, J. Elasticity

52 267-287 (1999).

[6] Geymonat G., Valente V., A noncontrollability result for systems of mixed order, SIAM J. Control

Optim , 39 (3), 661-672 (2000).

[7] Lagnese J.E., Lions J.L., Modelling, Analysis and Control of Thin Plates, Masson, Paris, 1988.

[8] Ammar-Khodja F., Geymonat G., Münch A., In preparation
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STRESS STATE OF NONTHIN NONCIRCULAR ORTHOTROPIC

CYLINDRICAL SHELLS WITH VARIABLE THICKNESS UNDER

DIFFERENT TYPES OF BOUNDARY CONDITIONS.

Ya. Grigorenko and S. Yaremchenko

S.P. Timoshenko Institute of mechanics of NAS of Ukraine, Kiev, Ukraine

1. Basic assumptions

The abstract addresses the static problems for nonthin noncircular orthotropic shells using re-

fined Timoshenko-type model based on the hypothesis of a straight line .

Let the shell mid surface be referred to the orthogonal coordinate system s, θ, where s and θ
are the coordinates along the generatrix and directrix, respectively. Let γ be normal coordinate to the

surface s, θ.

The first quadratic form of the mid surface is dS2 = A2

1
ds2 + A2

2
dθ2, (0 6 s 6 l, θ1 6 θ 6 θ2),

where A1 = 1 and A2 = A2(θ) are the Lame coefficients.

According to the hypothesis accepted, the displacements of the shell can be represented as

(1) us(s, θ, γ) = u(s, θ) + γψs(s, θ), uθ(s, θ, γ) = v(s, θ) + γψθ(s, θ), uγ(s, θ, γ) = w(s, θ),

where u, v and w are the displacements of points of the coordinate surface along the directions s, θ,

γ, respectively; ψs and ψθ are the total angles of rotation of the rectilinear element.

The strains can be expressed as

(2)
es(s, θ, γ) = εs(s, θ) + γκs(s, θ), eθ(s, θ, γ) = εθ(s, θ) + γκθ(s, θ),

esθ(s, θ, γ) = εsθ(s, θ) + γ2κsθ(s, θ), esγ(s, θ, γ) = γs(s, θ), eθγ(s, θ, γ) = γθ(s, θ),

where

(3)

εs =
∂u

∂s
; εθ =

1

A2

∂v

∂θ
+ kw; εsθ =

1

A2

∂u

∂θ
+

∂v

∂s
; κs =

∂ψs

∂s
; κθ =

1

A2

∂ψθ

∂θ
− kεθ;

2κsθ =
1

A2

∂ψs

∂θ
+

∂ψθ

∂s
−

k

A2

∂u

∂θ
; γs = ψs − ϑs; γθ = ψθ − ϑθ;

ϑs = −
∂w

∂s
; ϑθ = −

1

A2

∂w

∂θ
+ kv;

k is the directrix curvature.

The equilibrium equations are:

(4)

∂Ns

∂s
+

1

A2

∂Nθs

∂θ
+ qs = 0,

1

A2

∂Nθ

∂θ
+

∂Nsθ

∂s
+ kQθ + qθ = 0,

∂Qs

∂s
+

1

A2

∂Qθ

∂θ
− kNθ + qγ = 0,

∂Ms

∂s
+

1

A2

∂Mθs

∂θ
− Qs = 0,

1

A2

∂Mθ

∂θ
+

∂Msθ

∂s
− Qθ = 0,

where Ns, Nθ, Nsθ, and Nθs are the tangential forces; Qs, Qθ are the shear forces; Ms , Mθ , Msθ,

and Mθs are the bending and twisting moments; qs , qθ and qγ are the components of the surface load.

Elastic relations for orthotropic shells,which are symmetrical with respect to the chosen coordinate

surface, have the form

(5)

Ns = C11εs + C12εθ, Nθ = C12εs + C22εθ, Nst = C66εsθ + 2kD66κsθ,

Nθs = C66εsθ, Ms = D11κs + D12κθ, Mθ = D12κs + D22κθ,

Mθs = Msθ = 2D66κsθ, Qs = K1γs, Qθ = K2γθ,
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where Cij , Dij , K1, and K2 are the parameters that depend on the material properties and shell

thickness.

2. Resolving technique and its application

Choosingthe displacements u, v, w, and the total angles of rotation ψs, ψθ as unknown functions

and using (3)–(5) the resolving system of partial differential equation describing the stress state of

orthotropic non circular cylindrical shells can be presented as follows [2]:

(6) Ly = 0,

where L is the linear differential operator of the second order and y = {u, v, w, ψs, ψθ} is the desired

vector-function. Adding to (6) boundary conditions on ends and boundary conditions on rectalinear

contours in the case of a closed shell or symmetry conditions, if a shell is open, we obtain two-

dimensional boundary-value problem, whose solution can be presented in the following form:

(7) y = Φy
∗

,

where y
∗

= {u0(θ),. . .,uN(θ), v0(θ),. . .,vN(θ), w0(θ),. . .,wN(θ), ψs0(θ),. . .,ψsN , ψθ0(θ),. . ., ψθN(θ)}
is unknown vector-function and components of matrix Φ, which satisfy various boundary conditions

on ends, are linear combinations of cubic B-splines on a uniform mesh. Substituting (7) into (6)

and boundary or symmetry conditions, we require that they would be held at the N + 1 points of

collocation si along the generatrix. As a result, we obtain one-dimensional boundary-value problem

(8)
dz

dθ
= Az + f, B1z = b1 (θ = θ1), B2z = b2 (θ = θ2),

where z = {y
∗

, y′

∗

} is the vector-function of θ; f is the vector of right-hand sides; A is the square

matrix whose elements depend on θ; B1 and B2 are the matrices of boundary conditions, b̄1 and

b̄2 are the corresponding vectors. The one-dimensional boundary-value problem (8) can be solved

by the discrete-orthogonalization method [1]. Substituting y
∗

into (7), we obtain the solution of the

two-dimensional boundary-value problem.

On the basis of the approach proposed, we have solved the set of problems related to the stress-

strain state of orthotropic cylindrical shells with an elliptical and corrugated cross-section. Analysis

of displacement and stress fields under different boundary condition is carried out.

[1] R. Bellman and R. Kalaba (1965). Quasilinearization and nonlinear boundary-value problems,

Elsevier, 218 p.

[2] Ya.M. Grigorenko and S.N. Yaremchenko (2004). Stress Analysis of Orthotropic Noncircular

Cylindrical Shells of Variable Thickness in a Refined Formulation , Int. Appl. Mech., 40, 266-

274.
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2Polish Japanese Institute of Information Technology, Warsaw, Poland

1. Introduction

Mixed finite elements exhibit a higher accuracy of displacements and stresses and a better con-

vergence rate in non-linear problems than elements based on other formulations. Since the pioneering

paper by Pian of 1964, a lot of work has been done to improve mixed methods; the elements and their

theoretical foundations.

Among the mixed elements, particularly well known is the Pian-Sumihara (PS) element [1],

which is slightly more accurate than the EAS4 element for coarse distorted meshes. Afterwards,

several elements were developed, which perform slightly better than the PS element, including the

element by Yuan, Huang and Pian [5] and by Piltner and Taylor of [2].

The objective of the current paper is to present our recently developed mixed finite elements

based on the incremental Hellinger-Reissner (HR) functional and the incremental Hu-Washizu (HW)

functional, see [3] and [4]. They are directly applicable to ’solid-shell’ elements and to the shell

elements without the drilling rotation.

2. Characteristics of the approach

The key feature of our approach is the use of the skew coordinates associated with the natural

basis at the element’s center {gc

k
}, and defined as follows

xS = ξ +
(j,η)c

jc

ξη, yS = η +
(j,ξ)c

jc

ξη,(1)

where jc, (j,ξ)c and (j,η)c are the parts of the expansion of the Jacobian’s determinant, det J =
jc + (j,ξ)c ξ + (j,η)c η. The motivation behind the use of these coordinates will be explained in the

presentation. The representations of stress and strain are assumed in terms of the skew coordinates as

follows.

The contra-variant components of stress are assumed in the basis {gc

k
}, i.e. σ = σkl gc

k
⊗ gc

l
,

k, l = 1, 2. The representation of σkl is assumed (matrix G1) and transformed to the reference

basis on use of

σref = Jc G1 JT

c
, G1

.
=

[

q1 + q2 yS q5

symm. q3 + q4 xS

]

,(2)

where Jc is the Jacobian matrix evaluated at the element center. The above 5-parameter representa-

tion in G is identical as in the PS element, but the skew coordinates are used.

The co-variant components of strain are assumed in the co-basis {gk

c
}, i.e. ε = εkl gk

c
⊗ gl

c
.

The representation of εαβ is assumed (matrix G2) and transformed to the reference basis on use

of

εref = J−T

c
G2 J−1

c
, G2

.
=

[

q6 + q7 yS + q8 xS q12 + q13 xS + q14 yS

symm. q9 + q10 xS + q11 yS

]

.(3)

The applied 9-parameter representation of strain is linear for all components.
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A beneficial consequence of using the above representations in skew coordinates is that, for a

linear elastic case, the homogenous equilibrium equations and the compatibility condition are satisfied

point-wise, regardless of the element’s shape, which is an exceptional property. Note that for the

representations in the natural coordinates, these equations are satisfied only for parallelograms.

3. Mixed and mixed/enhanced elements based on HR and HW functionals

Several mixed and mixed/enhanced 4-node elements are developed and tested in [3] and [4],

using also the 7-parameter representation of stress, which requires an additional strain enhancement.

We selected two elements, designated as HR5-S and HW14-S, as the best performers. The HR5-S is

based on eq.(2), while the HW14-S on eq.(2) and eq.(3). These elements are mixed; although they

use less parameters they still perform similarly as the mixed/enhanced elements.

The developed elements are based on the Green strain, and are applicable to large deformation

problems and non-linear materials. They have a correct rank, and pass the patch test. They were

subjected to a range of benchmark tests, to establish the coarse mesh accuracy and the sensitivity

to mesh distortion. One of these tests is the Cook’s membrane, see Fig.1, where E = 1, ν = 1/3,

h = 1, P = 1, which is very indicative, because the shear deformation dominates, and the elements

are trapezoidal.

a)

x

y

PA

1
6

4
4 4
4

48

b)
Element Mesh 2 × 2 Mesh 32 × 32

HR5-S 21.353 23.940

HW14-S 21.353 23.940

EAS4 21.050 23.940

Q4 11.845 23.818

5β-A,B,C [5] 21.35

QE2 [2] 21.35

Ref. 23.81

Figure 1. Cook’s membrane. a) Initial geometry and load, b) Displacement uy at point A for two meshes.

The numerical results confirm that our new HR5-S and HW14-S elements are more accurate

and less sensitive to mesh distortion than the EAS4 element and the PS element. They use a smaller

number of modes than the other top elements described in the literature, because the enhancement is

not needed, yet they yield equally accurate results.
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A PIEZOELECTRIC SOLID SHELL ELEMENT

ACCOUNTING FOR MATERIAL AND GEOMETRICAL NONLINEARITIES

S. Klinkel and W. Wagner
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1. Introduction

This contribution is concerned with a piezoelectric solid shell finite element formulation. In

recent years several new elements have been proposed. Some of these model a reference surface

of the shell structure. Here, a surface oriented piezoelectric solid shell element is developed. With

respect to the laminated structure of piezoelectric devices a more or less sophisticated laminate theory

is necessary. The so-called solid shell elements circumvent laminate theories by modelling each ply

with one element, see e.g. [3] and the references therein.

The most piezoelectric shell formulations assume a geometrically linear theory. In [4] it is

pointed out that nonlinear characteristics can significantly influence the performance of piezoelectric

systems. In particular this holds for buckling of plates. A geometrically non-linear theory allows large

deformations and includes stability problems. Typical materials for the utilization of the piezoelectric

effect are ferroelectric ceramics like barium titanate (BaTiO3) and lead zirconate titanate (PbZrTiO3)

abbreviated as PZT. Ferroelectric ceramics show a strongly nonlinear behavior, which is caused by so-

called domain switching effects, see e.g. [2] and the references therein. The present shell formulation

incorporates a material model accounting for the physical nonlinearities. The model is thermody-

namically consistent and determined by two scalar valued functions: the Gibb’s free energy and a

switching criterion.

Usually the electric potential inside the piezoelectric model is assumed to be linear through the

shell thickness. To fulfill the electric charge conservation law exactly a quadratic electric potential

through the thickness is necessary. In this paper the finite element formulation is based on a variational

principle including six independent fields: displacements, electric potential, strains, electric field,

mechanical stresses and dielectric displacements. To obtain correct results in bending dominated

situations a linear distribution through the thickness of the independent electric field is assumed. The

element has 8 nodes; the nodal degrees of freedom are displacements and the electric potential. The

presented finite shell element is able to model arbitrary curved shell structures and incorporates a

3D-material law.

2. Numerical simulation

Telescopic actuators consist of concentric shells interconnected by end caps which alternate in

placement between the two axial ends of the shells, see Fig. 1. The diameters in Fig. 1 refer to the

outside of the cylindric shells. The telescopic actuators are designed to accomplish for a high displace-

ment actuation at the cost of force, see [1]. The cascading shells are polarized in radial direction. The

transversal isotropic elastic material constants are given as E1 = E2 = 60.61 ·109 N/m2, E3 = 48.31 ·
109 N/m2, ν23 = ν13 = 0.41, ν12 = 0.29, G23 = G13 = 22.99 · 109 N/m2, G12 = 23.47 · 109 N/m2.

The piezoelectric modulus is described by e13 = e23 = −29.878 C/m2, e33 = 10.631 C/m2,

e51 = e62 = 17.034 C/m2 and the permittivity is defined as ǫ11 = ǫ22 = 15.09 · 10−9 C2/N m2,

ǫ33 = 14.16 · 10−9 C2/N m2. The piezoelectric constants e13 and e33 are taken from [1] and all other

quantities are assumed. The nonlinear material model is described in [2]. The orientation of the local

basis system ti is defined by t1 in circumferential direction, t2 in axial direction and t3 in radial direc-

tion. With respect to symmetry only a quarter of the system is modeled by finite elements, see Fig. 1.
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Figure 1. Left: Telescopic actuator: system, boundary conditions and finite element model. Right: axial

deflection versus electric field
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Figure 2. Telescopic actuator: deformed configuration with a plot of electric potential and axial displacement

The system is supported in X3-direction at the lower bottom at the outside edge and it is is loaded by

applying an electric potential to the piezoelectric cylindrical shells shown in Fig. 2. The load deflec-

tion behavior of the axial displacements, see Fig. 1, is highly nonlinear due to the occurring domain

switching effects. A comparison to the experimental data in [1] shows good agreement, which is very

promising for further calculations.
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Plates and shells with a complex shape made of inhomogeneous anisotropic materials are 

widely used for construction of structure elements in modern engineering. The present report 
proposes an eff icient approach to solving the free vibrations problems of shallow shells with the 
variable thickness within the framework of the classic models.  The object of  investigation is the 
class of free vibration problems for  orthotropic  rectangular in a plane shallow shells of variable 
thickness in two coordinate directions. The problems are described by the system of linear partial 
differential equations with the variable coeff icients [1]: 
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Here u , v  and w  are the unknown displacements of shell  midsurface points ; t  is the time; 
),( yxhh =  is the shell  thickness; ),( yxρ=ρ  is the density of the  material; hBC ijij = , 

123hBD ijij =  { } { }( )6,2,1, =ji  are the strain and bending stiffness of the shell . 

The different boundary conditions (rigid fixing, hinge supporting and their combinations) for 
displacements are specified on the shell  contours. 

System (1) is solved in two steps. At the first step, we approximate the unknown 
displacements  in one of the coordinate directions (for example OY) by the segments of series 
consisting the linear combinations of the B-splines of the third and fifth power [2, 3]: 

(2)  ( ) ( )∑ ψ=
=

ω N

i
ii

tj yxueu
0

,1 , ( ) ( )∑ ψ=
=

ω N

i
ii

tj yxvev
0

,2 , ( ) ( )∑ ψ=
=

ω N

i
ii

tj yxwew
0

,3 , 

where, )(xvi  and )(xwi  ( Ni ,0= ) are the unknown functions, ( )yi,1ψ  and ( )yi,2ψ  are the linear 

combinations of the B-splines of the third power, ( )yi,3ψ  are the linear combinations of the B-
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splines of the fifth power, which exactly satisfied boundary conditions for displacements on the 

contours consty = ; ω  is the unknown frequency of free vibrations; 1−=j ; by ≤≤0 . 
Substituting (2) into (1) with allowance for the boundary conditions and  requiring  expansion 

(2) would be the coincident with the exact solution  in the number of points of collocation,  which 
are the roots of the Legendre second-order polynomial   on segment [0,1], we arrive at the one-
dimensional eigen-value problem . This problem  can be written down in the normalized Cauchie 
form as: 

(3)  ( )Yx
dx

Yd ω= ,A  ( ax ≤≤0 ), 

(4)  ( ) 001 =YB , ( ) 02 =aYB , 

where [ ]TwwwwvvuuY ′′′′′′′′= ,,,,,,,  is the vector-column of the unknown functions and theirs 

derivatives with the dimensionalit y ( )18 +N ; ( )ω,xA  is the specified square matrix of the order 

( )18 +N ; 1B  and 2B  are specified rectangular matrices with the dimensionalit y ( ) ( )1814 +×+ NN . 
At the second step, the one-dimensional eigen-value problem  (3) – (4) is solved  by the stable 

numerical method of discrete orthogonalizaiton in combination with the method of incremental-step 
search [2, 3]. 

On the basis of the method proposed, the spectrum of frequencies and modes of free 
vibrations of orthotropic plates and   shallow rectangular in a plane shells of different shapes, whose 
thickness varies in one or two coordinate directions, is studied. It is supposed that the shells 
contours are rigidly fixed or hinged  supported. Theirs combinations are possible. 

The following cases of free vibrations are considering:  the orthotropic rectangular plate with 
linearly-variable thickness: 
(5)  ( )

 −α+= 1210 axhh ; 

orthotropic shallow rectangular in plane cylindrical shell   of the thickness varying by the law : 

(6)  ( )






 +−α+= 1661 2
0 xxhh ; 

 cylindrical orthotropic panel with the thickness varying  in two directions  by the law: 
(7)  ( )( ) ( )( )byaxhh πβ+πα+= cos1cos10 . 

Here 0h  is the thickness of plates (shallow shells) with an equivalent mass and   constant 

thickness, 5.0≤α , 5.0≤β  are the coeff icients, which determine the type of the shell  in the given 

coordinate direction. 
The numerical-analytical approach proposed makes it possible to analyze frequencies and 

modes of free vibrations of rectangular in plane shallow anisotropic shells with different boundary 
conditions and the thickness varying in two directions in wide range of varying geometrical and 
mechanical parameters. rectangular planes rectangular planes rectangular planes rectangular planes . 
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1. Introduction  

It is well known that the effect of structural geometric imperfections can dramatically 

decrease the nominal load carrying capacity of shell structures. As it is difficult and expensive to 

measure the initial structure imperfections in situ or in laboratory a methodology of identification 

and description of the available data should be provided. An important part of the structural 

imperfection modelling in a reliability context is the representation of random fields describing the 

statistical variation of properties or structure parameters. The presented procedure provides an 

opportunity for the reproduction of the measured maps of steel cylindrical tank geometric 

imperfections. Generations of the nonhomogeneous random fields based on the original conditional-

rejection method of simulation are applied [1, 3]. Using the measured data an envelope of the 

imperfections is also estimated. It allows for simulation of extreme but still realistic fields of 

imperfections. When nonlinear geometric and material effects are taken into consideration the shell 

reliability can be evaluated only numerically. Nonlinear numerical analyses of petrol tanks, silos 

and underground tanks with and without initial geometric imperfections are performed. Soil 

parameter randomness is also included in the calculations. The results indicate that the initial 

imperfections influence the solutions. 

2. Identification of the measured geometric imperfections 

The identification and simulation procedure is presented on the basis of measured in situ 

imperfections of nine steel cylindrical vertical tanks of V = 5000 y 50000 m
3
 capacity [2]. The tank 

side surface imperfections can be considered in terms of a two-dimensional scalar random field 

described by a probability density function. The following hypotheses were formulated and proved 

[3]: the stochastic process is stationary and ergodic along the horizontal lines, and the random 

variables can be described by a Gaussian probability density function. Using the above assumption 

the following nonhomogeneous correlation function is introduced 

(1) � � � �� � � �1 2
1 2 1 2 2 1 2 1 2 12
, , , cos exp

z z
K y y z z y y y y z z

h
D Z E J � � � � � , 

where: 1y , 2y , 1 , and  are the point coordinates, and h denotes the tank height. The correlation 
function parameters 

z 2z
D , Z , E , and J  are estimated on the basis of the measured data. The 

assumption that the random field of imperfections is ergodic along the horizontal lines, makes it 
possible to analyse not single (the measured) but hundreds of realizations. The global experimental 
covariance matrix  of the measured imperfection field was obtained according to the following 
statistical formulas: 

eK

(2) � �� �
1 1

1 1
,

1

NR NR
T

e i i

i iNR NR  

 � �  
�
¦ ¦K x x x x x ix , 

where i  (i = 1, … NR) is the measured imperfection vector, NR is the number of realizations, and x
x  represents the mean value vector. Making use of the calculated matrix e  the parameters of the 
correlation function (1) are determined by a standard regression analysis. The error analysis proved 
that the scattered pattern of imperfections was modelled accurately. 

K
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It is possible to describe the correlation function as an envelope of the extreme imperfections. 
Examining the calculated normalized standard deviations for all tank data it is easy to notice that the 
simplest solution is the approximation of the standard deviation to a parabolic function. 

3. Simulation of the geometric imperfections 

The field of geometric imperfections is numerically simulated taking advantage of the 

correlation function (1) and the estimated constants. In the process the conditional-rejection 

simulation method is used [1, 3]. An important role in the calculations is played by the propagation 

base scheme covering sequentially the mesh points and the random field envelope which allows to 

fulfill the geometric and boundary conditions of the structure model. Any homogeneous or non-

homogeneous field of practically unlimited sizes can be generated. 

The simulation process is presented using the data of tank of 5000 m
3
 capacity. Two cases are 

analysed, i.e. the simulation of the measured imperfections as precisely as possible, and the 

simulation of the maximal imperfection values. As the field of the initial imperfections is an example 

of circular data the simulation method has been appropriately modified. As many as 2000 

realizations have been simulated. The calculated global and variance errors of the simulations 

indicate excellent convergence of the field estimators.  

4. Numerical calculations and conclusions 

The numerical calculations include three cases of tank of 5000 m
3
 capacity. The first case 

refers to an ideal cylindrical shell. The tank data for the second case include the measured initial 

geometric imperfections. The third calculation is performed for the simulated extreme 

imperfections. 

The results of the nonlinear calculations indicate that the tank initial imperfections can cause 

significant variations in stress fields in comparison with the solution related to an ideal surface. The 

steel of the tank with imperfections has yielded at a point connecting the bottom with the side 

plates, and in the areas where extreme imperfections appear. It should be noted that the yielding 

process has occurred despite the fact that the initial field of imperfections is rather a typical one. 

Additionally, the random numerical model of tanks is extended by introducing random 

variability of soil foundations which can have a degrading effect on the tank loading capacity. To 

this end the randomness of the soil parameters should be described by a correlation function which 

was chosen arbitrarily. The results indicate that the influence of the soil parameters variability is not 

significant in this case. 

The numerical calculations for silos and underground tanks revealed that the initial geometric 

imperfections influenced their mechanical behaviour. However, because of the lack of experimental 

data the results are preliminary ones. 

It should be stressed that formulation of a methodology of identification, classification and 

description of the tank imperfections can lower the laborious and high cost of experiments, and 

ensure a better and much safer design. 

5. References 

[1] J. Górski (2006). Non-linear models of structures with random geometric and material 

imperfections simulation-based approach. Gdansk University of Technology, Monograph, 

Vol. 68. 

[2] G. Orlik (1976). Deformation of shapes of cylindrical steel shells, statistical analysis and 

numerical simulations. Ph.D. Thesis. Technical University of Gda
�

sk, Gda
�

sk, (in Polish). 

[3] H. Walukiewicz, E. Bielewicz and J. Górski (1997). Simulation of nonhomogeneous random 

fields for structural applications, Computers and Structures, 64, No. 1-4, 491-498. 

[4] P. Wilde (1981). Random fields discretization in engineering calculations, Warsaw: PWN, (in 

Polish). 



314 Selected Topics of Contemporary Solid Mechanics

ON DETERMINING THE DEF ORMED SHELL MIDSURF ACE 
FROM PRESCRIBED SURFACE STRAINS AND BENDINGS 

 
 

W. Pietraszkiewicz1, M.L. Szwabowicz2, and  C. Vallée3 

1
 Institute of Fluid-Flow Machinery, Gda

�
sk, Poland 

2
 Maritime University, Gdynia, Poland 

3
 Université de Poitiers, Futuroscope, France 

 
 
 

The intrinsic formulation of the geometrically non-linear theory of thin elastic shells, 
proposed in [1], allows one to find strains DEJ  and bendings DEN  of the shell midsurface. Then the 

position vector y  of the midsurface of the deformed shell can be found from known DEJ and DEN  by 

one of two methods proposed in [2]. 
In this report we develop an alternative novel method of determining the vector y  from 

prescribed DEJ and DEN . The present approach uses the right polar decomposition of the midsurface 

deformation gradient , where  is the surface right stretch tensor and  is the 3D rotation 
tensor. Applying the method developed here the vector 

 R RU U R
y  is calculated in three consecutive steps 

described briefly below. 
Let ( )DT x x , D  ��� , be the position vector of the shell midsurface M  in the reference 

(undeformed) configuration. At each point x M�  we define the natural base vectors 

/ D ,D DT w w {a x x , the unit normal vector 1

1

a
2 un a a , the covariant components aDE D E a a<  

of the surface metric tensor a  with det ( )a aDE , and the covariant components ,abDE E �a n<  of 

the curvature tensor . In the deformed configuration the shell midsurface b M  is parameterized by 
the convected coordinates DT  so that its geometry is described by the same symbols with a bar 
above them: , , , , ,eE D .a a b tcD D Ea n  Then the deformation state of the shell midsurface is described by 

the covariant components 
1

( )
2

a aDE DE DJ  � E  and (b b )DE DE DN  � � E  of the surface strain  and 

bending  tensors, respectively. 

�

�

Introducing the midsurface deformation gradient , D
D �F y a , by the theorem of Tissot we 

can justify the right polar decomposition  F RU . Then the field ( )DT y y  can be found in the 
three steps described below. 
 
a)  From known DEJ  the stretch field ( )DT U U  is found by pure algebra through the explicit 

formula 

(1)              
� �
� �

1 1 2tr det 2

tr 1 2tr det

� � �
 

� �

a
U

��� � �

� �� � ��� �

 . 

 
b)  From known  and U DEN  the rotation field ( )DT R R  is calculated by solving the system of two 

linear PDE’s 
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(2)              

, , ,

( ) ,

k

a a
b U b k U

a a

ON
D D D OD N D

ON U NU O ,UDE DE DU N OE OE D D ON U

H P

P H H N H _

 u  �

 � �  �

R R k k a n
 

where DEH  and ONH  are components of the surface permutation tensor , and � |(.)D  denotes the 

surface covariant derivative in the metric aDE . The integrability conditions  of the 

system (2)1 are proved to be equivalent to the compatibility conditions of the non-linear theory of 
thin shells. 

,DE
DEH  R 0

Using the theorem of Frobenius – Dieudonné it has been shown that the solutions to the 
problem (2)1 can be converted into an infinite set of systems of ODE’s along curves , 
parameterized by the length coordinate s  and covering densely the entire domain of 

C M�
M : 

(3)              , ,
d d

ds ds

D

D ,
T

  u  
R

RK K I k k k  

where I  is the identity tensor of the 3D vector space. 
Solution to the initial value problem (3)1 may be obtained with any of the well known 

techniques, numerical techniques inclusive. In particular, applying the method of successive 
approximations the solution to (3)1 can be given in the form 

(4)               

0

0
0

0 1

, ,

( ) , ( ) ( ) ( ) , 1,

s s i

i

s

i i

s

s s t t dt i

f

 

�

  

  

¦

³

R R R R O

O I O O K t

0where  is the rotation tensor at 0 ( )s R R 0s s . 

 
c)  With  and  already known the system R U ,D D y Fa  can be integrated by quadrature 

(5)               
0

0 0, (
x

x

d xD
D T �  ³y y RUa y y 0) .

The equation (3)1 is identical with the one describing spherical motion of a rigid body about a 
fixed point. Thus, one can point out a number of special cases when the equation has the solution in 
closed form. This indicates that the novel method presented here might in some cases be more 
efficient in applications than those proposed in [2]. 

Details of the method will be published in [3]. 
A similar approach has recently been successfully applied to analyse the classical problem of 

differential geometry: recovery of the surface from components of its two fundamental forms. 
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1. Introduction 

Structures made from technical fabrics become more and more popular. Design of such 
structures is diff icult as not only geometric non-linearity, but also very special constitutive 
modeling is necessary. Usuall y the finite element method is used in the design process. Typical 
commercial software can not be applied in this case, as typical membrane elements can not properly 
express behavior of fabric threads during deformation.   

There is several constitutive models which can be used in such calculations (see [1], [2]), but 
most of them can not be applied in commercial FEM systems. Additionall y, usuall y they can be 
used for only one type of constructive modeling of threads behavior: non-linear elastic, viscoelastic 
or viscoplastic. Proposed in [3] the dense net model of a technical fabric can be used with all  three 
mentioned before approaches. It is also applicable for the three node triangle [4], and for four node 
isoparmetric membrane shell  finite elements [5]. 

The idea of the dense net model is relatively old, but in the paper new, practical aspects of its 
application will  be discussed. 

2. Experiments for  dense net model identification 

To perform calculation of any structure it is necessary to know its material properties. A 
technical fabric is build from at least two very different materials (threads and coating) and has 
different properties in different directions which additionall y can change in deformation process. 
National standards require only very simple tests [6] which are not enough to describe the fabric 
behavior in FEM calculations. The type of constitutive description depends also from the type of 
calculations which is going to be performed (e.g. nonlinear elastic formulation is enough in the 
initial stage of design, viscoelastic must used in long time behavior investigations, while in extreme 
loadings calculations the viscoplastic approach seems to be the best). The laboratory equipment for 
technical fabric test must enable recording of time, displacements and forces. A standard strength 
machine must be equipped in a special support system, and must guarantee good accuracy and 
frequency of recorded results. For creep and shear tests special stands which will  be presented 
during conference are necessary. Generall y for identification of warp and weft threads the uniaxial 
tests are the most often performed. The bi-axial tests are diff icult and their results are hard in 
application to constitutive identification. During conference examples of such tests will  be 
presented and their advantages and drawbacks will  be discussed. 

3. Numerical aspect of dense net model application 

3.1. Identifi cation 
After experimental tests identification of threads and coating properties is necessary. Pure 

experimental data are usuall y not applicable as for the rheological models calculation of the time 
derivatives of strains is necessary. The least squares method is the most often used numerical tool 
on this stage of research. The author experience in identification of non-linear elastic, viscoelastic 
and viscoplastic models for a warp and weft will  be presented. The numerical methods of 
verification of identification results will  be also given. 
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3.2. Introduction of identifi cation results into FEM calculations 
In the FEM calculations of textile structures self-constructed or commercial software can be 

used. From that second group only systems which enable the user subroutines introduction can be 
selected (e.g. MSC.Marc or Abaqus). In such subroutine the dense net model describes the 
constitutive relations for a typical membrane shell  element. The modeling by triangle elements is 
easier as the directions of threads famili es can be univocall y determinate by the edges of an 
element. For the four node isoparametric membrane elements more complex calculations are 
necessary [2]. The main problem in calculations ob membrane-cable structures is determination of 
initial balanced configuration. This process is well  known as the form-finding and is supported by 
special software [7]. The most important type of loading for li ght structure like a hanging roof is the 
wind loading. Due to complex shape of a roof only expensive test in an aerodynamic tunnel can 
give proper distribution of the wind pressure and suction. In the initial stage of design the approach 
proposed in [8] can be used. Very often not only static but also nonlinear dynamic calculations are 
necessary. 

5. Calculation example 

In year 2009 (for the 100th anniversary of erection) reconstruction of the Forest Opera in 
Sopot is planed. The theatre will  be covered by the new hanging, textile roof supported by two over 
100 m span steel arches. The author is involved in the roof design process. Necessary experiments 
and most of the calculations of the cable-textile part of the roof were performed in Gdansk 
University of Technology. In numerical calculations of the new roof the dense net model with 
different types of constitutive models was used. Some problems the form-finding of climatic 
loadings determination will  be presented during conference. 
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1. General 

This communication addresses the application of the general nonlinear 6-field shell theory in 

the analysis of layered composite shells. The FEM model is constructed basing on the statically and 

kinematically exact theory of shells that accommodates naturally finite (unlimited) translations and 

rotations [1]. Kinematics of the shell is described by the field of generalized displacements 

composed of the translation field and the proper rotation field. Due to the presence of rotation 

tensor the elements have naturally six degrees of freedom at each node, including the so-called 

drilling dof.  

A typical composite shell made of an orthotropic fiber-reinforced material can be analyzed as 

a layered structure, with the fibers of the reinforcement in each lamina placed in the surfaces 

parallel to the shell mid-surface. It is assumed that the shell is composed of a finite number of 

individually homogeneous layers. Each layer is made of linearly elastic and orthotropic material. 

The layers are perfectly bonded and no slip between them is possible. Assuming an Equivalent 

Single Layer (ESL) model the entire laminate is represented by a single-layer panel with macro-

mechanical properties estimated as a weighed average of the mechanical properties of each lamina 

[2, 3]. 

2. Formulation  

The rigorous treatment of the shell theory and its various FEM implementations for isotropic 

shells has been already extensively dealt with, see e.g. [4] and references given there. Since the 

current formulation incorporates the drilling dofs, the strain measures are generally not symmetric 

(H12 z H21 and N12 z N21). As a consequence, the constitutive relations for the layered composite panel 

are assumed in the following forms:  

(1) 
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11
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where the components C
ijkl

 and 6ijkl
 resulted from an appropriate integration of the 3-D anisotropic 

constitutive relations through the thickness of the whole shell (assuming zero value of the 

transverse normal stress components). 

3. Example  

To illustrate the performance of the considered model, the results for one of the most 

demanding benchmark tests for large rotation shell analysis, the semi-cylindrical shell under a point 

load are presented in Fig. 1. This example was introduced by Stander et al. [5], who, however, 
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considered only the case of an isotropic shell. The case of a layered composite shell was proposed 

by Sze et al. [6] who investigated two different cross-ply lamination schemes: [90/0/90] and 

[0/90/0]. Quite recently, the same composite panel was examined by Arciniega and Reddy [7]. One 

should notice, that none of the authors of the papers [5-7] bothered with a proper physical meaning 

of the applied input data; to correct that issue we assume the following dimensions: L = 304.8 mm, 

R = 101.6 mm and h = 3  mm; together with material parameters for boron-epoxy type composites: 

Ea = 20.685 kN/mm
2
, Eb = 5.17125 kN/mm

2
, Gab = Gac = 7.956 kN/mm

2
, Gbc = 1.989 kN/mm

2
 and �

ab = 0.25. For isotropic case the following material properties are used: E = 20.685 kN/mm
2
, �  = 0.25. The load is assumed as the proportional P(

�
) = 

�
 Pref , where Pref = 1000kN. To avoid 

discussions about mesh convergence or spurious zero-energy forms the computations were carried 

out using 40×40 CAMe16 elements with full integration. The discretizations in the Fig.1 are given 

for the whole structure. 
 

 

 

       

 

 

 

Figure 1. Semi-cylindrical shell under a point 

load, comparison of solutions 
 

The obtained results, as presented in Fig. 1, show a very good agreement with the reference 

solutions [6], what demonstrates a big potential of the proposed formulation and encourages to 

further research.  
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1. Governing equations 

In the theory of thick plates (differently called Reissner-Mindlin plates) is taken into account 
that transverse strengths and connected with them shear strains have influence on plate 
deformations. The thicker is the plate, the higher is the influence of transverse strengths - from here 
name of this theory. In the thick plate theory occurs three independent displacement parameters: 
deflection w and two rotations ϕα. Additional load of the plate composes moment fields mα. 

Thick plates are described by the following dynamic equili brium equation system [1] 

(1) 

1 1 2 2

3

1 1 1 11 1 22 2 12 1 1 1 1

3

2 1 12 2 2 22 2 11 2 2 2 2
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1 1
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2 2 12
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v v h
Hw D H D D c m

 

Where H and D mean shear and bending stiffness of the plate, and γ is the mass density. 

2. Free vibrations 

We transform equations (1) into a form of free harmonic vibrations assuming 

(2) ( ) ( ) ( ) ( )
0,

, , ,

α
ω ω

α αϕ ϕ
= =

= =i t i t

q m

w t w e t ex x x x
 

The equation system (1), written in a convenient form to calculate the fundamental solution, can be 
written as 

(3) δδ=ij j k ikL u  

The fundamental solution of the harmonic vibration equation (3) can be found using the Hörmander 
method. This solution is a function of the parameter ω.  

Using the BEM an algebraic equation system with the parameter ω can be obtained. 

(4) 
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Equation system (4), independent of the chosen boundary conditions, can be written in a compact 
form 
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(5) ( ) 0ω =A X  

This system has a nonzero solution providing that the determinant of the matrix A is equal zero: 

(6) ( )det 0 , 1,2,...ω ω= ⇒ =i iA  

3. Forced vibrations 

We presuppose the solution of the system (1) in a following form of eigenfunction series: 

(7) 
( ) ( )
( ) ( )
( ) ( )

1 1 1

2 2 2

ϕ ϕ
ϕ ϕ

 ⋅ 
   = ⋅  
   ⋅   

∑
n wnN

n n
n=1

n n

w w T t

= T t

T t

u

x

x

x

 

Equation system (1) separates then into three independent scalar equations of time. Let’s write one 
of them 

(8) ( ) ( ) ( ) ( )2γ γ ω+ + =&&
wn w wn n wn nhT t c T t h T t q t  

The solution of this equation can be easy found in an analiti cal way. 
A numerical example of the solution of the plate using the upper described routine will  be 

presented during the conference. 
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R-FUNCTIONS METHOD APPLYING TO LARGE DEFLECTION ANALYSIS OF 
ORTHOTROPIS SHALL OW SHELL S ON ELASTIC FOUNDATION 
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Shallow shells are structural elements of many modern constructions, in particular case if they 
made from composite materials. Investigation of such shells is connected with large mathematical 
diff iculties due to complexity of mathematical statement. 

In the present work a geometric non-linear bending of orthotropic shallow shells with 
complex planform resting on an elastic foundation is studied. To solve the system of the governing 
equations the theory of R-functions [1], variational methods and step-by-step method are used. A 
principal advantage of this approach is the possibilit y to investigate the shallow shells of an 
arbitrary planform and consider the different boundary conditions. It should be noted that desired 
solution is found in analytical form. 

Governing equations for large deflections of shallow shells on base of the classical theory [2] 
are: 

 

(1)   ( ) ( ) ( ) pq,WLWDL kij1 −=−∇+ ΦΦ  

  ( ) ( ) ( ) 0W,WL
2

1
WAL kij2 =+∇+Φ , 

 

where W is the deflection function, Ф  is the stress function, q is the transverse loading, p is the 
foundation pressure. The equili brium system is supplied by corresponding boundary conditions.  

For Winkler foundation p can be defined mathematicall y by 
 

(2)   rWp = . 
 

To solve nonlinear system (1) let us linearize it. One of the known method of linearization is 
the step-by-step method, which was proposed by Vlasov and was developed by his followers [3]. 
As result the given system (1) is reduced to the following linear system: 

 

(3)   ( ) ( ) ( ) 0W,WLWAL iikij2 =+∇+ δΦδ  

  ( ) ( ) ( ) ( ) WrQ,WL,WLWDL iiiikij1 δΦδΦδΦδ −=−−∇+  

 

where Wδ  and Φδ  are increments of the unknown functions on the present loading step.  
On every i-th step this system are solved by variational Ritz’s method. Unknown functions are 

presented as expansions in series with help of coordinate functions satisfying the given boundary 
conditions. Problems of constructing such sequences for shells of an arbitrary shape have been 
solved by RFM (R-Functions Method). Note, that RFM allows to describe the domain boundary as 
uniform analytical expression, and to receive, as result, a solution in an analytical form.  

The sought for solution on k-th step may be presented as 
 

(4)  ( )
∑
=

=
k

1i
i

k WW δ , ( )
∑
=

=
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k ΦδΦ , ( )
∑
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To exact the approximate solution method by Newton-Rafson is applied. 
In the present study to find the upper and lower buckling loads the algorithm is worked out. 
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Proposed approach allows to build a whole deflection curve of shallow shell . 
The numerical implementation of the offered approach is carried out in framework of a 

system POLE-RL [4]. Its reliabilit y was checked out by test examples. To demonstrate possibiliti es 
of the proposed method there would be solved the non-linear bending problem shallow shell  ( 1k =0, 

2k =20) with complex plan form (figure 1) and mixed boundary conditions. It is supported that 

shell  is made from glass-epoxy material with following mechanical characteristics: 21 E/E =3, 

212 E/G =0.6, 12v =0.25. Boundary conditions are assumed to be sliding simply supported on the 
sides 2/ax ±=  and sliding clamped on another parts of the boundary. Foundation modulus is r=20 

 

Fig. 1 Planform of a glass-epoxy shallow shell  (b/a=0.5, a1/a=0.4, b1/a=0.2, d/a=1) 
 
 

Fig. 2  
 

On fig.2 the dependence of load-maximum deflection is presented. 
 

References 
[1] Rvachev V.L. R-function theory and some it’s applying. K., 1982. 552p (in Russian) 
[2] Ambartcumyan S.A. Total theory of anisotropic shells. M., 1974. 448 p. (in Russian) 
[3] Petrov V.V. The stage-up loadings method in nonlinear plate’s and shell ’s theory. Saratov, 

1975. 119 p. (in Russian) 
[4] Rvachev V.L., Shevchenko A.N. Problem-oriented languages and systems for engineering 

calculus.-K, 1988. –198p. (in Russian) 

 x  a1 -a1 -a/2 

-b/2 

 a/2 

b/2 

 d 

 y 

b1 

 b1  

  

 x 

 y 

h/Wmax  



324 Selected Topics of Contemporary Solid Mechanics

ON A SURFACE-RELATED SHELL FORMULATI ON
FOR THE NUMERICAL SIMULATI ON OF

TEXTI LE REINFORCED CONCRETE LAYERS

R. Schlebsuch and B. Zastrau
Instituteof Mechanicsan Shell Structures, Dresden, Germany

1. Introduction

The numerical simulation of thin textile reinforced concrete (TRC) strengthening layers is the
object of this research. Its mechanical description is implemented by a shell formulation demanding
an efficient numerical solution strategy. The shell model is formulated with respect to one of the
outer surfaces, i.e. the shell formulation is surface-related. The discretization and interpolation of
the associated variational formulation are sources of several locking phenomena. Extensions and/or
adjustmentsof well -known techniquesto prevent or at least to reducelockinglikethe assumed natural
strain (ANS) methodand the enhanced assumed strain (EAS) method have to bemade.

2. Governing Equations

Since shells are three-dimensional bodies the field equations of continuum mechanics are the
starting point for the mechanical model. They can be found in many textbooks, e.g. [1]. This set
of partial differential equations with pertinent boundary conditions has to be solved for the TRC
strengthening layer. An efficient numerical solution of this problem becomes easier if the problem is
reformulated usingabackground of variational calculus.

3. Var iational Formulation

Theweak formulation of thegoverningequations isgained bythestandard procedure and leads
for hyperelasticity to thewell -known generalized HU-WASHIZU functional:

ΠHW (U, Ẽ,S, t0) =

∫

Bt

(ρtf(E(U) + Ẽ) − symS .. Ẽ)dV +

∫

Bt

ρt(Ü − f) · UdV

−

∫

∂tBt

t̂0 · UdA +

∫

∂UBt

t0 · (̂U − U)dA → stat.,(1)

whereby a re-parametrization following thesuggestion of [5] was made:

E = E(U) + Ẽ ⇔ E
U − E = −Ẽ(2)

introducing the residuum of the kinematical field equation Ẽ. The demand for stationarity of this
functional is equivalent with the field equations and the pertinent boundary conditions. But now the
residuum of the kinematical field equation: Ẽ = 0 appears as EULER-LAGRANGE equation. Further
following the suggesting of [5] a L2-orthogonality between the second PIOLA-K IRCHHOFF stress
tensor S and the residuum Ẽ of the kinematical field equation is enforced. Therefore the second
term in the first integral on the right-hand side of equation (1) vanishes. This results in a modified
stationarity condition that represents the following abstract variational formulation:

Find

(U, Ẽ) ∈ X1 ×X2 = H
1(Bt, E

3) × L2(Bt, E
3 ⊗ E3)

(t0,S) ∈ M1 ×M2 = L2(Bt, E
3) × L2(Bt, E

3 ⊗ E3),
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such that

a(U, Ẽ; η, δẼ)+b1(η, t0) = F(η, δẼ) ∀(η, δẼ) ∈ X1 ×X2

b1(U, δt0) = G1(δt0) ∀δt0 ∈ M1

andtheorthogonality condition
∫

Bt

S .. Ẽ dV = 0 is fulfilled.
This abstract mathematical formulation allows to investigate the problem from a mathematical

point of view andshows thestructureof the three-dimensional problem.

4. Sur face-Related Shell Formulation

The displacement field U representing the motion of the shell continuum, i.e. of the TRC
strengthening layer, is restricted byakinematical assumption:

U = V + Θ3
W,(3)

Corresponding to the particular position of the referencesurfaceit follows for the normal coordinate
Θ3 ∈ [0, H]. Thedisadvantageof this shell kinematics is that it causes POISSON thicknesslocking.

Starting from the kinematics (3) a surface-related shell formulation is derived, i.e. surface-
related strain tensors, surface-related stressresultant tensors etc. are defined. Further details can be
foundin [2, 3].

5. FiniteElement Formulation and Fur ther Locking Phenomena

The discretization of the functional is one source of locking phenomena that can be reduced
or even avoided by an enhancement of the strain tensor, cp. [5], or of the finite element formulation,
cp. [4]. Sincewe are dealing with a surface-related shell formulation extensions and/or adjustments
of thesetechniqueshaveto bemade andarepresented. Thisprocedurefinally leads to avery efficient
surface-related finitevolumeshell element that can beused in itsrespectiveframework of application,
i.e. thesimulation of TRCstrengthening layers.
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RECOVERY OF DISPLACEMENT FIELDS FROM STRESS TENSOR FIELDS

IN SHELL THEORY

C. Mardare

Université Pierre et Marie Curie, Paris, France

The stresses and displacements arising in an elastic shell in response to applied forces are mod-

eled by a system of partial differential equations defined over a three-dimensional domain, represent-

ing the shell in its natural state (i.e., in absence of applied forces).

In the classical theory of shells, the displacement field is the primary unknown, while the stress

tensor field inside the shell is a secondary unknown, given in terms of the displacement field by the

constitutive law of the elastic material; see, e.g., Ciarlet [2]. By contrast, in the intrinsic theory of

shells, the stress tensor field is the primary unknown, while the displacement field is a secondary

unknown; see, e.g., Antman [1], Ciarlet et al. [3], Pietraszkiewicz et al. [6, 7], and Vallée [8]. One

of the principal problems arising in the intrinsic theory of shells is to show that the displacement field

can be recovered from the stress tensor field inside the shell. This presentation is dedicated to this

problem.

Consider an elastic shell which in absence of applied forces occupies a domain contained in

a thin neighborhood of a surface S = θ(ω), where ω ⊂ R
2 is a domain with a sufficiently smooth

boundary and θ : ω → R
3 is a sufficiently smooth immersion. Assume that the elastic material

constituting the shell is homogeneous and isotropic, hence characterized by its two Lamé constants

λ > 0 and µ > 0. Finally assume that the shell is subjected to applied forces and that the shell is free,

i.e., the displacement is not subjected to any boundary conditions.

As a mathematical model for this problem, we select the two-dimensional Koiter equations (see

Koiter [5]). According to this model, the stresses inside the shell are related to the infinitesimal change

of metric and change of curvature tensor fields of the surface S by a bijective linear function. As a

consequence, recovering a displacement field η : ω → R
3 from the stress tensor field inside the shell

amounts to recovering η from the infinitesimal change of metric and change of curvature tensor fields

of the surface S, defined in what follows by their respective covariant components γαβ and ραβ . Here

and in the sequel, Greek indices and exponents vary in the set {1, 2} and the summation convention

with respect to repeated indices and exponents is used.

Our main result is as follows (for details, see [4]). Assume that ω is simply connected. Let

(γαβ) and (ραβ) be two symmetric matrix fields with components γαβ ∈ L2(ω) and ραβ ∈ H−1(ω)
that satisfy the following compatibility conditions, which we shall call the “Saint Venant equations

on the surface S”, viz.,

γ
σα|βτ

+ γ
τβ|ασ

− γ
τα|βσ

− γσβατ + Rν

·αστ
γβν − Rν

·βστ
γαν

= bταρσβ + bσβρτα − bσαρτβ − bτβρσα,

ρ
σα|τ

− ρ
τα|σ

= bν

σ
(γ

αν|τ
+ γ

τν|α
− γ

τα|ν
) − bν

τ
(γ

αν|σ
+ γ

σν|α
− γ

σα|ν
).

Then there exists a vector field η : ω → R
3 of class H1 such that the two fields (γαβ) and (ραβ)

are respectively the linearized change of metric and linearized change of curvature tensors associated

with the displacement field η, in the sense that

γαβ =
1

2
(∂αη · ∂βθ + ∂αθ · ∂βη) in ω,

ραβ = (∂αβη − Γν

αβ
∂νη) · a3 in ω.
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The functions γ
αβ|σ

and γ
αβ|στ

denote respectively the first and the second covariant derivatives of

the field (γαβ), Rν

·αστ
denotes the components of the Riemann curvature tensor of the surface S, bαβ

and bτ

σ
denote respectively the mixed components of the second fundamental form of the surface

S = θ(ω), and a3 :=
1

|∂1θ ∧ ∂2θ|
∂1θ ∧ ∂2θ.

The proof of this result furnishes an explicit algorithm for recovering the vector field η from

the matrix fields (γαβ) and (ραβ): one first solves the system

λ
αβ|σ

+ bασλβ − bβσλα = γ
σβ|α

− γ
σα|β

,

λ
α|σ

+ bν

σ
λαν = ρσα − bν

σ
γαν ,

where the unknowns are the antisymmetric matrix field (λαβ) and the vector field (λα) with compo-

nents λαβ ∈ L2(ω) and λα ∈ L2(ω); then one solves the system

∂αη = (γαβ + λαβ)aβ + λαa
3 in ω,

where {a1, a2, a3} is the dual of the basis {∂1θ, ∂2θ, a3}. The vector field η ∈ H1(ω; R3) found in

this fashion has the desired properties.

Note that the first system has solutions because the matrix fields (γαβ) and (ραβ) satisfy the

above Saint Venant equations on a surface and that the second system has solutions because the

matrix fields (γαβ) and (ραβ) are symmetric.

These results may be viewed as the infinitesimal versions of the reconstruction of a surface from

its fundamental forms, because the Saint Venant equations on a surface are nothing but the first order

part with respect to ε of the Gauss and Codazzi-Mainardi equations associated with the immersion

(θ + εη).
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OPTIMAL STABILL IZATION OF POSTBUCKLING PATH  
FOR CONICAL SHELL S UNDER EXTERNAL PRESSURE 
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A postbuckling path for a conical shell  under compressive radial pressure is unstable one. It 
means that loss of stabilit y of a shell  can be associated with a snap-through, which can lead to very 
large deflections and finall y, to destruction of a structure  

A standard problem of structural optimization under stabilit y constraints is usuall y formulated 
as maximization of the instabilit y load for a prescribed volume of a design element. Very often a 
standard optimal structure has unstable postbuckling behaviour and it is very sensitive to 
imperfections. That is weakness of the design and it indicates that the combination of geometricall y 
nonlinear analysis with the design becomes necessary, especiall y from the practical point of view. 
Postbuckling constraints of a special form added to formulation of the optimization problem permit 
to modify the postbuckling path and the stable postbuckling path can be created, even in the case of 
unstable behaviour of a reference structure. 

The effect of modification of the postbuckling behaviour in most cases has been obtained by 
changing sizing variables, which are usuall y dimensions of the design elements. This type of 
problems were considered, for example, by Bochenek [1, 2]. In this paper an alternative concept is 
applied, namely stabili zation of the postbuckling path is obtained by application of additional 
loadings acting on a shell  without changing of a shape and sizes of the optimized structure. These 
loadings can be either active forces applied to a structure or passive ones (reactions of the additional 
supports), or both active and passive forces acting simultaneously. Such problems, for finite-degree-
of-f reedom of rod system that models the behaviour of a real shell  structure, was considered by 
Bochenek and KruŜ elecki [3]. On the other hand KruŜ elecki and Król [4] examined the real 
cylindrical shells with different geometrical parameters whereas KruŜ elecki and Trybuła [5] 
investigated such shells under twisting moment. These papers showed that axial loadings can 
stabili ze an initiall y unstable postcriti cal path.  

In this paper stabili zation of a postbuckling path for a simply supported (different variants of 
supports are considered) truncated conical shell  under radial compressive pressure is formulated as 
a certain modified non-standard problem of optimization. From mentioned above types of 
stabili zing loadings only an active axial force is investigated here. Calculations are performed using 
ANSYS code for elastic shells of different length, thickness and and semi-vertex angle.  

The problem of optimization is stated as follows. The minimum value of the axial load N, 
which leads to the stable behaviour of a shell  is looked for 

( ) 0),(,
2

2

=
∂
∂=

∂
∂ ∗∗ Nf

f

p
Nf

f

p
tosubject

NMinimize

 

where f denotes a displacement of a wall  of a shell . The displacement ∗f  refers to the horizontal 
inflexion point at the equili brium path, Fig.1. The above conditions lead to elimination of the snap-
through and finall y, one obtains the stable postbuckling path even the original equili brium path is 
unstable one. It is shown in Fig.1, where the thick line refers the stable equili brium path under the 
minimum axial load N. This formulation of the optimization problem contains only one design 
variable N and two constraints, which are imposed on the postbuckling state. They ensure the stable 
behaviour of the cylindrical shell  under external pressure. A condition of a constant volume of the 
structure is automaticall y fulfill ed because that formulation does not take into account modification 
of the shell  geometry. 
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Fig.1. Equili brium paths for N=0 and N≠0 

 
Calculations were performed for a semi-vertex angle from 5 to 45 degrees, three different 

length and thickness of a shell  assuming only elastic deformations. The numerical analysis showed 
that the active forces can improve the resistance of the radiall y compressed truncated conical shells 
against buckling. The criti cal pressure for elastic shells under additional axial loading can be much 
higher in comparison with a structure loaded by external pressure only. The active force can 
stabili ze the initiall y unstable postbuckling path for elastic shells under external pressure. Then, the 
optimal shells do not lose their stabilit y at all . 

 
Fig.2. Equili brium paths for the shell  with semi-vertex angle equals to 150, Rsr/L=2, h/Rsr=0.005 

 
In Fig.2 the postbuckling paths are presented for the shell  with semi-vertex angle equals to 

150, Rsr/L=2 h/Rsr=0.005, where Rsr means the mean value of the shell  radius. The postbuckling 
paths are shown in dimensionless coordinates: p/pcr, w/h, where pcr denotes the criti cal pressure 
(maximum pressure at the equili brium path for N=0) and w stands for the maximum radial 
displacement. As a measure of applied active force we took 0σσ= zs , where zσ denotes the axial 

stress ANz =σ . The dash lines (1) represent the postbuckling path for s=0, the line (2) 
corresponds to the active force, which stabili zes the postbuckling path and the line (3) is connected 
with the active forces, which is larger than the minimal stabili zing one.  
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MULTIMATERIALS WITH SHELL-LIKE REINFORCEMENT
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After the pioneering works of Pham Huy-Sanchez [1], and Caillerie [2], the thin inclusion of a third

material between two other ones when the rigidity properties of the inclusion are highly contras-

ted with respect to those of the surrounding material has been deeply investigated. More recently,

Chapelle-Ferent [3] in order to justify some methods used in FEM approximation have studied the

asymptotic behavior of a shell-like inclusion of 1

ε
p -rigidity (p = 1 or p = 3) in a 3D domain. In a

slightly different geometrical and mechanical context, Bessoud et al. [4] have studied the behavior

of a ε-thin 3D layer of 1

ε
-rigidity. We study a new situation where the shell-like thin layer is obtai-

ned by the translation in the normal direction of a general 2D surface. Using a system of curvilinear

coordinates we deduce the formal limit problem for the two cases p = 1 and p = 3. We obtain the

same limit problems as in [3], also if the kinematical assumptions for the physical problem are not the

same. Indeed in [3] the authors a priori assume a shell-like energy in the thin layer. One must stress

that the well-posedness of the limit problems is essentially linked to the shell inhibition phenomena

[5]. For the well-posedness of the flexural and membrane shell models see e.g.[6], [5]. When ω is

planar and in the isotropic case, the surface energy term can be interpreted as the membranal energy

of a Kirchhoff-Love plate (p = 1) and as the flexural energy of a Kirchhoff-Love plate (p = 3).

1. Shell-like inclusion : asymptotic behavior

In the three-dimensional Euclidean space E3 referred to the Cartesian coordinate frame (O; e1,
e2, e3), let Ω+ and Ω− be two disjoint open domains with smooth boundaries ∂Ω+ and ∂Ω−. Let

ω = {∂Ω+ ∩ ∂Ω−}
◦

, which is assumed to be a domain in R
2 having a positive two-dimensional

measure and let y = (yα) denote a generic point of ω. Let θ ∈ C2(ω; R3) be an injective mapping

such that the vectors aα(y) := ∂αθ(y) form the covariant basis of the tangent plane to the surface

S := θ(ω) at the point θ(y) ; the two vectors aα(y) of the tangent plane, defined by the relations

aα(y) · aβ(y) = δα

β
, form its contravariant basis. Also let a3(y) = a3(y) be the unit normal vector to

S. Let Ωm,ε := ω×] − ε, ε[ , with Γ±,ε := ω × {±ε}. Let xε denote the generic point in the set Ω
m,ε

,

with xε

α
= yα. We consider a shell-like domain with middle surface S = θ(ω) and thickness 2ε > 0,

whose reference configuration is the image Θ
m,ε(Ω

m,ε

) ⊂ R
3 of the set Ω

m,ε

through the mapping

Θ
m,ε : Ω

m,ε

→ R
3 given by Θ

m,ε(xε) := θ(y) + xε

3
a3(y), for all xε = (y, xε

3
) = (y1, y2, x

ε

3
) ∈ Ω

m,ε

.
Moreover, we suppose that there exists an immersion Θ

ε : Ω
ε

→ R
3 defined as follows :

Θ
ε :=

{

Θ
±,ε on Ω

±,ε

Θ
m,ε on Ω

m,ε , Θ
±,ε(Γ±,ε) = Θ

m,ε(Γ±,ε),

with Θ
±,ε : Ω

±,ε

→ R
3 immersions over Ω

±,ε

defining the curvilinear coordinates on Ω
±,ε

. We

insert the intermediate shell-like layer moving the image Θ
+,ε(Ω

+,ε

) ⊂ R
3 of the set Ω

+,ε

, (resp.

Θ
−,ε(Ω−,ε)) in the a3(y) (resp. −a3(y)) direction of an amount equal to ε > 0, the small dimen-

sionless real parameter. The structure is clamped on Γ0 ⊂ (∂Ωε \ Γm,ε) and Γm,ε := ∂ω×] − ε, ε[ is

traction free. We suppose that the materials occupying Ωε are linearly elastic and isotropic. Let

V ε = {(V , v) ∈ H1(Ωε; R3) × H1(Ωm,ε; R3); V
|Ωm,ε = v; V

|Γ0
= 0}.
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The physical variational problem in these curvilinear coordinates on the variable domain Ωε is

(1)

{

Find (U ε, uε) ∈ V ε such that for all (Vε, vε) ∈ V ε

A−,ε(U ε, V ε) + A+,ε(U ε,V ε) + Am,ε(uε, vε) = L(V ε),

where A±,ε(U ε,V ε) and Am,ε(uε, vε) are the bilinear form associated with the elastic behavior of the

domain. In order to study the asymptotic behavior of the physical problem (1), we apply the usual

change of variable, which transforms Ωε into a fixed domain Ω.

Now, the leading terms (U 0, u0) of the asymptotic expansion satisfy the following limit pro-

blems :

1. p = 1 :
{

Find (U 0, u0) ∈ VM such that for all (V , v) ∈ VM

A−(U 0,V ) + A+(U 0,V ) + Am

M
(u0, v) = L(V ),

where

VM = {(V , v) ∈ H1(Ω; R3) × H1(ω; R3); V
|ω

= v, V
|Γ0

= 0},

Am

M
(u, v) =

∫

ω

aαβστγστ (u)γαβ(v)
√

a dy is the bilinear form associated with the membrane

behavior of the shell, aαβστ are the contravariant components of the elasticity tensor of the shell

and γαβ(u) are the covariant components of the change of metric tensor.

2. p = 3 :

{

Find (U 0, u0) ∈ VF such that for all (V , v) ∈ VF

A−(U 0,V ) + A+(U 0,V ) + Am

F
(u0, v) = L(V ),

where

VF = {(V , v) ∈ H1(Ω; R3) × H2(ω; R3); V
|ω

= v, V
|Γ0

= 0, γαβ(v) = 0 in ω},

Am

F
(u, v) =

1

3

∫

ω

aαβστρστ (u)ραβ(v)
√

a dy is the bilinear form associated with the flexural

behavior of the shell and ραβ(u) are the covariant components of the change of curvature tensor.
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1. Problem statement 

A series of deep cylindrical laminated panels (Fig. 1) with various stacking sequences of a 

laminate made of a glass-epoxy composite was considered by Tsai et al. [1] assuming the following 

geometrical data: R = 12 in, L =5.5 in, 
�

 = 0.5, and h = 0.04 in. 

 

 
Fig. 1: Clamped cylindrical panel under point load 

 

In the present research a more detailed study on the influence of the degree of orthotropy on 

the performance of the laminate is presented for selected stacking sequences of a cross-ply laminate 

(Fig. 2), assuming a variable degree of orthotropy n = 1, 2, 5, 10, 15 and 30. The orthotropic 

material of a single layer characterized by Ea = 20.46·10
6
 psi, Eb= Ea / n, Gab = Gac = 0.62·Eb, 

Gbc = 0.31·Eb, and Qab = 0.313. 

 

 

�
1

�
2

[0/90/0/90]s [90/0/90/0]s[0/0/90/90]s[90/90/0/0]s

 
 

Fig. 2: Various lamination schemes considered for analyzed panel 
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The geometrically non-linear analysis in the present research is performed with the own FEM 

code SHL04 [2] based on the large rotation formulation LRT56 [3]. Constitutive relations for 

composite laminate are constructed assuming the Equivalent Single Layer (ESL) model with global 

constitutive relations established with enhanced Lamination Theory adequate for the First Order 

Shear Deformation (FOSD) theory.  

2. Results examination 

The results of the analysis are presented in Fig. 3 as a graph of the critical snapping load vs. 

the value of the degree of orthotropy, n, for all four considered cross-ply schemes: [90/0/90/0]s, 

[90/90/0/0]s, [0/90/0/90]s and [0/0/90/90]s.  
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Fig. 3: Interrelation between the degree of orthotropy and the level of critical snapping load 

 

It is quite obvious that a higher bending stiffness could be anticipated for the [0/90/0/90]s 

laminate than for the [0/0/90/90]s one, because in the former case the reinforcement along the 

T
��

-direction is located closer to the outer surfaces. For the same reason, one can expect to obtain a 

higher overall bending stiffness by changing the stacking sequence from [0/90/0/90]s to [90/0/90/0]s 

and even a bigger increase of the stiffness can be anticipated for the [90/90/0/0]s laminate. 

However, with a little amazement one can observe in Fig. 3 that despite of reduction of the overall 

panel stiffness accompanying the increase of the degree of orthotropy, the value of the critical 

snapping load for the [90/0/90/0]s laminate varies in a very limited range as compared with the 

previous considered stacking sequences. Even more surprising observation can be made for the 

[90/90/0/0]s laminate, where the reduction of the overall stiffness for the increased degree of 

orthotropy n is accompanied quite paradoxically by the increase of the critical snapping load.  
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At it is well  known, during the exploitation of a passenger automobile the carrying body of an 
automobile is under the influence of dynamic loads. Under the influence of irregularities of road an 
automobile body is under the forced oscill ation. As the carrying body of a passenger automobile 
consists most of shell  elements, so it is interesting to investigate the oscill ation process of it. Above 
mentioned investigation, done by traditional analytic methods, relates with huge complexity, so this 
work is devoted to the investigation of mentioned process by method of finite elements. The road 
irregularities are exerting randomly and it is important to take into account all  the cases of the 
oscill ation in order to avoid resonances during the exploitation.  

The above mentioned calculations, if they are done by traditional methods, require a lot of 
assumptions, which influence on the accuracy of the obtaining data. Especiall y, here the carrying 
body of an automobile is introduced as a material particle which is connected with the car 
suspension by the solid connection. 

It doesn’ t make an opportunity to completely calculate and to assess the designing automobile's 
driving evenness. 

Driving evenness is one of the operational attributes of an automobile, which describes the 
abilit y of an automobile to move on the unequal road by the given interval of velocities.  

The engine generates some vibrations too. But these vibrations are too small  comparison with 
above mentioned vibrations. Vibrations have huge influence upon not only driving evenness, but 
also the technique-operational attributes of an automobile. 

In general, the basis of oscill ation investigation is the following equation 

(1)  [ ]{ } [ ]{ } [ ]{ } ( ){ }tFuKuCuM =+′+′′   Where 

[ ]M  - Mass matrix, [ ]C  -Damping matrix, [ ]K  - Stiffness matrix, { } { } { }uuu ,, &&&  are accordingly 

nodal acceleration, velocity and displacement vectors, ( )t – time. 
Above mentioned matrices are formed automaticall y. The density and volume have to be 

entered, which are the calculation starting points of the mass of each finite element. 
 During modal analysis the above mentioned equation has the following view. 

 (2)  [ ]{ } [ ]{ } 0=+′′ uKuM   

During Harmonic analysis the loads are changing their influence by harmonic type. The basis 
equation has the same view, but in compare with the following. 

(3)  ( ){ } ( ) ( )( ){ }ϕωϕω +++= titFtF sincos0  

The modal analysis gives us an opportunity to obtain the own oscill ation frequencies in the 
most possible directions. In this case the first five directions which are most possible are 
remarkable. The other ones are not actual. The results are introduced in the Table1. 

 
Sub step Oscill ation 

frequency 
Measure 

 1 12141 [Hz] 
2 30593 [Hz] 
3 70655 [Hz] 
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4 81472 [Hz] 
5 87277 [Hz] 

Table1. The results of calculated own oscill ation frequency 
 

These results are obtained by the calculation of the shell  element, which is welded on the 
one side. On the other side an external force is acting by sinusoidal principle. This case is more 
usual in carrying body automobiles and represents more interest. 

The described model is shown on the Figure1 

 
Figure1. The designed model of shell  element 

 
After above mentioned calculations, the interval of the external force frequency is given in 

that case, that the value of own oscill ation in the according node is the mentioned interval. 
The result is given the Figure2, where we can easil y see the function of oscill ation amplitude 

and frequency. 

 
Figure2. Function of oscill ation amplitude and frequency 

 

The case of resonance is evident here. 
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1. Introduction 

Silos are special structures widely used in industries to store all  kind of agricultural products. 
Loads exerted by the stored material over the silo walls are criti cal in the silo design. Eurocode [1] 
specifies how to calculate the pressures due to the stored material depending on different 
characteristics of the silo: shape, slenderness or capacity. If filli ng is centric, a symmetric flow is 
expected and, therefore, horizontal pressures acting on the silo wall  will  have a constat value for the 
circumferential position at any height. In addition, pressures are greater for higher silo depths.  

However, filli ng is sometimes eccentric and non-symmetric behaviours may also appear 
during filli ng and emptying. In those cases, asymetric flow might appear and this can lead to non-
symmetric pressures over the silo wall . Eurocode defines the patch-load to reproduce these non-
symmetric pressures. The patch-load is an asymmetric pattern of lateral pressures applied over a 
part of the silo wall  (Figure 1) and added to the symmetric pressures. The patch-load can be applied 
at any height of the silo but in a reduced length of the walls. In consequence, the design of the silo 
must satisfy structural safety with independence of the patch-load localisation.  

 

Figure 1. Requirements of patch-load according to Eurocode (EN 1991-4 2003) 

For low silo capacities, Eurocode allows replacing the patch-load with a uniform increment in 
lateral pressures. However, this simpli fication is not possible for silos with large capacities. In this 
case, the calculation of the wall  stress states due to the patch-load is more complex than for 
symmetric loads.   

2. Methodology. 

A three dimensional Finite Elements Model with ANSYS software was developed to simulate 
the cylindrical corrugated silo walls with flat bottoms (Figure 2). The application of unsymmetrical 
pressures in silo walls has been considered in some research [2] but simulating smooth walls. The 
possible influence of different factors in the stress state of the silo wall  after the application of the 
patch-load was considered: the slenderness of the silo (λ=hc/dc), the flexibilit y of the wall  (t/0.5·dc) 
and the silo height, hh, at which the patch-load is applied. By varying the silo height, hc, the silo 
diameter, dc, and the wall  thickness, t,  forty eight finite element models were developed as a result 
of considering four slenderness values (

λ
=1.35, 

λ
=1.62, 

λ
=1.90 and 

λ
=2.17), three thicknesses of 

the wall  (t=2 mm, t=6 mm and t=9 mm) and four positions for the patch-load (hh=0.2·hc, hh=0.4·hc, 
hh=0.6·hc, and hh=0.8·hc). Results were also obtained for different circumferential positions (0º, 45º, 
90º, 135º and 180º) in the silo wall  in order to detect the stresses asymmetries produced by the non-
symmetric condition of the patch-load. 
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The purpose was the comparison of the stress states resulting after applying the patch-load 
and the lateral pressures due to the stored material.  Firstly, lateral pressures due to the stored 
material were applied to the silo wall  and the wall  stresses in the circumferential positions were 
obtained. After that, the patch-load was applied to the silo wall , and the new stress state of the silo 
wall  was obtained for the same circumferential positions. Finall y both sets of results are compared, 
and the increment ratio of stresses, k, is obtained at every part of the silo wall .  

 

Figure 2. Geometry on an elemental undulation of the corrugated wall  (Dimensions in mm). 

3. Results. 

The patch-load makes the silo wall  suffer an inward deformation in the pressure zone and an 
outward deformation in the opposite part (Figure 3a). It can be clearly seen in Figure 3b that an 
overstress in the silo wall  is detected where the patch-load is applied (k>1). The patch-load does not 
produce any change in the stress state above the silo height where the patch-load is applied. A linear 
increase in k is detected for the silo wall  placed below hh. These results may be used to simpli fy the 
procedure defined in Eurocode, even for the higher capacity silos.   
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Figure 3. a) Deformation of the silo wall  b) Increment ratio of stresses, k, over the silo wall . 
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1. General 

The dynamic contact of the solid body through elastic buffer on a circular sector of spherical 

shell is studied. The intender is simulated by mass and the elastic cylindrical element, which strikes 

the target. Interaction is considered to be elastic with constant contact area. Dynamic behaviour of 

the shell is described by without moment moving equations taking the rotary inertia into account 

and, therefore, are wave equations. These equations allow to assume, that in the plate the transient 

longitudinal wave, because of which there is a deformation of a shell material outside of contact 

area, is generated with final velocity. In the present work, the procedure similar to the one proposed 

in [1] for the analysis of transverse impact of a solid sphere upon an elastic buffer positioned on an 

elastic orthotropic plate, is used to the case of shock interaction of a solid body with an elastic 

circular sector of spherical shell which hinge-supported on the perimeter. 

During the interaction of the body with the shell, a quasilongitudinal wave representing the 

surfaces of strong discontinuity begin to propagate. In a spherical shell of the surface of strong 

discontinuity represent spherical surfaces – strip, whose generators are parallel to the normal to the 

median surfaces and guides locating in the median surface are circumferences extending with the 

normal velocity G. Behind the wave fronts, the solution is constructed in terms of ray series 

representing power series, whose coefficients are the different order discontinuities in the time-

derivatives of the required functions, and the variable is the time passed from the moment of arrival 

of a wave to the given points of the shell: 
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where [Z,(k)]=Z
 +

,(k) � Z
 -
,(k)=[w 

k
Z/w t

 k
] are the leaps of the derivatives of k-degree by the time t from 

the equation Z on the wave surface 6, i.e. if t=R1(M�M0)/G, r0 is the initial radius of the contact area, 

indexes “+” and “–” mean that the value is found directly in front of and behind the wave front 

respectively, H(t) – the one-term Heviside’s function, R1 – shell’s radius, M  - coordinate directed on 

the meridian, M0 – angle coordinate for boundary of contact area. 

To determine the ray series coefficients for the desired functions, it is necessary to 

differentiate the governing equations for shell with respect to time, to take their difference on the 

different sides of the wave surface, and to apply the condition of compatibility [2] 
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where G/Gt is the G - derivative with respect to time. 

As a result of the procedure described, we are led to the system of recurrent differential 

equations, which solution gives us the discontinuities in time-derivatives of the desired values 

within arbitrary constants 
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where E is the modulus of elasticity, V is Poisson's ratio, U is the density shell’s material, w and uM 

are the normal and tangential along meridian displacement respectively. 

The arbitrary constants are determined at splicing on border of contact area of the solution for 

required function inside a contact disk and outside of it from following equations 

 � � � �m w P tD �  ��� �� ,  � � � �
0

2
0 02 sin� h� r w � r N N P tM T M M M

xx

  � � , (5) 

where D is the displacements of the impactor’s upper end, P(t) is the contact force proportional to 

the buffer’s deformation, m is the mass of the impactor, h is the thickness of the target, r0 is the 

impactor’s radius, N �  and N �  are the longitudinal forces on the boundary of the contact region. 

The compact analytical expressions for contact force and dynamical normal displasement are 

defined. 
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here E1 is the impactor’s elastic modulus, V1 is the initial velocity of contact, c1, c2 are the constants. 

The carried out numerical researches allow to make the conclusion about influence of 

parameters of a construction on dynamic characteristics of interaction. 
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1. General 

Current developments of mechanics of elastic medium is closely connected with the 
construction of generalized mathematical models which consider material’s particle as a complex 
object endowed with additional properties describing material’s inner structure (unlike the classical 
theory of elasticity which considers particle as a material unit). Presently, theories of elastic 
mediums with micro- and nanostructure are successfull y cultivated on the basis of micropolar 
(momental, asymmetrical) theory of elasticity, otherwise, on Cosserate’s continuum. 

Alongside with the development of the three-dimensional micropolar elastic model, presently, 
construction of applied theories for micropolar elastic plates and shells is becoming more actual. 

In papers [1, 2] on the basis of the asymptotic method linear theories of micropolar thin 
elastic plates and shells with boundary layer are constructed. Depending on the values of sizeless 
physical parameters of the plate and shell  theories of micropolar elastic plates and shells with 
independent and constraint rotation and theories with “small  shift rigidity”  are constructed. 

In present paper on the basis of the constructed general theories of micropolar shell  [2] 
mathematical models for micropolar elastic cylindrical shells with independent and constraint 
rotation and “with small  shift rigidity”  are studied. 

2. System and boundary conditions of micropolar  elastic cylindr ical (axe symmetr ical) shell s 
with independent rotation 

Balance equations [2]: 
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where −132211     N,T,T are forces averaged  along the shell’s thickness, −12L is the averaged moment 

from momental stresses, −132211
Г

,
Г

,
Г are components of tensor deformation, −12χ is the bending 

in shell ’s middle surface, −w,u1 are the transitions, and −2Ω is the independent rotation of points of 
the shell ’s middle surface. 

Boundary pivot conditions: 

  0Г ,w = ,T 0Г11 = 0Г12 =L
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3. System and boundary conditions of micropolar  elastic cylindr ical (axe symmetr ical) shell s 
with constraint rotation: 

Balance equations: 
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4. System and boundary conditions of micropolar  elastic cylindr ical shells (axe symmetr ical) 
with “ small  shift  r igidity” : 

Balance equations: 
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Boundary pivot conditions:  

0,=Гw ,T 0Г11 = 0Г11 =G
 

On the basis of the above mentioned mathematical models of micropolar elastic cylindrical 
(axe symmetrical) shells, definition of stress-deformed state in them is brought to final formula and 
numerical results. On the basis of the numerical results, properties of the constructed applied 
theories of microplar shells are analyzed, conclusions and recommendations on the application of 
the micropolar materials are made. 
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1. Introduction

Nine-node shell elements are more complex than four-node elements, but are advantageous in

some applications, involving dominant in-extensional bending.

In the current paper, we develop a finite-rotation 9-node shell element with drilling rotation,

which is based on the Reissner’s kinematics and the Green strain. The basic 9-node isoparametric

Lagrangian shell element suffers from the transverse shear and membrane locking. Several tech-

niques of avoiding them were proposed and tested in the literature. One of the most effective is the

assumed strain (AS) method, which consists of sampling of strain components at certain points, and

extrapolating these values over the element. We apply and modify this method, for details see [1].

2. Basic shell equations

Classical papers on the subject are restricted to two-parameter rotations, which have to be de-

fined in the local basis and transformed to the reference basis. We define an extended configuration

space in terms of the deformation function χ and rotations Q ∈ SO(3)

Cext

.
= {(χ, Q) : B → R3 × SO(3) | χ ∈ C},(1)

which includes the drilling rotation, so, in effect, we have 3 rotational parameters per node, and

the rotation vector can be directly assumed in the reference basis. The rotations are included in the

formulation using the rotation constraint (RC) equation: skew(QT F) = 0, where F
.
= ∇χ, see

[2]. The formulation is based on the following 3D two-field functional

F2(χ, Q)
.
=

∫

B

[

W(FT F) +
γ

2
skew(QT F) · skew(QT F)

]

dV + Fext,(2)

where W is the strain energy, and γ ∈ (0,∞) is the regularization parameter.

The shell kinematics is based on the Reissner’s hypothesis, with the current position vector

expressed as follows,

x(ξα, ζ) = x0(ξ
α) + ζ Q0(ξ

α) t3(ξ
α),(3)

where x0 is the current position of the reference surface, and Q0 is a rotation of the reference

surface, and t3 is the shell director normal to the reference surface in the initial configuration.

Besides, ξα ∈ [−1, +1] and ζ ∈ [−h/2, +h/2], where h is the initial shell thickness.

The strain energy is assumed in the Saint Venant-Kirchhoff’s form, W
.
= 1

2
λ (trE)2+G tr(E2),

where E
.
= 1

2
(FT F − I) is the Green strain, and λ, G are Lamé constants.

3. Features of our 9-node shell element

The developed 9-node shell element has the following features: (a) the drilling rotation is in-

cluded, yielding 3 rotational dofs/node, (b) the rotations are parameterized by the canonical rotation

vector, and are unrestricted, (c) the Reissner’s kinematics is applied, so the transverse shear energy is

included.
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To eliminate the transverse shear and membrane locking, the AS method is applied. A modifi-

cation of the AS method is proposed, consisting in treating the sampling and the numerical integration

together, which results in 6 sampling points being replaced by two sampling lines, see Fig.1. This

change facilitates the implementation and significantly improves efficiency of differentiation, for de-

tails see [1]. The two-level approximation is applied to strain components in the ortho-normal basis

at the element’s center.

a aa a

b b

b b

- sampling points
- Gauss points

X XX XX X

X X

X

X XX X

X XX XX X

L1,L2 - sampling lines

L1 L2

Figure 1. Location of sampling points and lines, a =
√

1

3
, b =

√

3

5
.

4. Numerical tests

The developed 9-AS shell element is subjected to a range of benchmark tests, to establish the

sensitivity to mesh distortion, the coarse mesh accuracy, and to confirm the lack of locking. One of

the tests is the analysis of deployment of a ring, with the deformation shown in Fig.2. Our results are

compared with results obtained by the MITC9 element of ADINA and the S9R5 element of ABAQUS.
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Figure 2. Deployable ring. Progressing stages of deformation.
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1.  Theoretical results and compar ison with experimental data. 
 

The method of calculation of the problem and full  notation are presented in [1]. The 
equations of motion   are derived using the principle of stationary action.     

 Using the standard procedure of the energy method we obtained the analytical solution for 
finding the vibration frequencies of the cylindrical shell . They can be represented in the following 
form 
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where ωij – frequency, K=Eh/(1-µ2), h,r – thickness and radius of the shell , E – modulus of 
elasticity, µ – Poisson’s ratio, ρ0 – the mass density of the material.  

In the general case from three different values of ω 2 one can determine ω min, where ω ij – 
parameters of frequency. Shells with the following data were calculated and tested [2]: length – 
450mm, diameter – 400mm, thickness – 0,5mm. The shells had boundary conditions corresponding 
to simple supported edges. 

In Figure 1 the dependence fij=ωij/2π on i is presented, where i– the number of waves in the 
circumferential direction, j – the number of half- waves in the longitudinal direction.  
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Fig. 1. 
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In Fig.1 the theoretical curve for an ideal shell  is shown, calculated by the above method 
(solid dark line). The theoretical results [2] are represented by (o) while the experimental data [2] 
are shown by badges (•,

▲
) and the theoretical results for shells having initial deflections are given 

by the dotted line and thin solid line. The last two shells had deflections with 3  half-waves with 
amplitude w0/h=0,5 and the zone their placing along the length of the shell  is dl=l0/l=0,25 (in the 
middle part). The first  shell  had two dents and one bulge, the second one had two bulges and one 
dent. The form of deflections was close to 0 sin( / )π= lw w j x  and j equals 3 . The initial 

imperfections increase by 15% the value of the minimal eigen frequency. 
As can be seen from Figure 1 the test data (•,

▲
) are  close to the theoretical values (black 

curve). If we take in account axisymmetrical imperfections of the form, the corresponding results 
(dotted and thin lines) almost coincide with the test data. 

From Fig. 1 is clear that regular deflections of such type increase the eigen frequencies of 
vibration and bring them closer to  experimental ones of the defected [2]. 

 
2. Conclusions.  

 
 A new analytical approach for the analysis frequencies of vibration of the smooth 

cylindrical shells having initial deflections of the form is used. The analytical solution and the 
results of calculations are presented. At present there exists a number of methods to calculate 
vibrations of frequency of ideal shells. But  real shells usuall y have nonideal forms. 

 The suggested method allows one to define more precisely the eigen frequencies of 
vibration of incomplete shells. This approach will  be used to analyse  ribbed cylindrical shells 
having axisymmetric imperfections under the compressive axial force. 

The new numerical approach has been developed at last time for ribbed shells of rotation 
[3]. The method presented here allows to define more quickly the eigen frequencies than the 
numerical method [3]. 
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ON THE MECHANICSOF FUNCTIONALLY GRADED PLATES

H. Altenbach1 and V. A. Eremeyev2
1Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany

2 South Scientific Center of RASci & South Federal University, Rostov onDon, Russia

Metalli c and polymeric foams are more and more used as a material for lightweight struc-
tures [1]. Such structuresare applied in the automotiveor airspaceindustries sincethey combine low
weight, high strength and excellent possibiliti es to absorb energy. The foam itself can be modeled as
a functionally graded material with mechanical propertieschanging over the thicknessdirection.

The aim of this contribution is a new theory based on the direct approach in the plate theory
added by the effectiveproperties concept.

1. Basic equations

Let us consider for the brevity the geometrically and physically linear theory. In addition, we
assume plate-like structures. Here we use the so-called direct approach. In this case one states a
two-dimensional deformable surface. On each part of this deformable surfaceforces and moments
are acting –they are theprimary variables. The next step is the introduction of thedeformationmea-
sures. Finally, it i s necessary to interlink the forces and the moments with the deformation variables
(constitutive equations). Such a theory is formulated by a more natural way in comparison with the
other approaches. But the identification of thestiffnessand other parameters is anon-trivial problem
and must be realized for each classof plates individually.

Themotionequationsand thekinematic equationsaregiven by the relations [2–4]

(1) ∇ · T + q = ρü + ρΘ1·ϕ̈, ∇ ·M + T
×

+ m = ρΘT

1
·ü + ρΘ2·ϕ̈,

(2) µ =
1

2

[

∇u · a + (∇u · a)T
]

, γ = ∇u · n + c · ϕ, κ = ∇ϕ

HereT, M are the tensors of forces and moments, q, m are thesurfaceloads (forces and moments),
T

×
is thevector invariant of theforcetensor,∇ is thenablaoperator, u, ϕ arethevectorsof displace-

ments and the rotations, Θ1,Θ2 are the first and the secondtensor of inertia, ρ is the density, (. . .)T

denotes transposed and ˙(. . .) is the time derivative. a is the first metric tensor, n is the unit normal
vector, c = −a × n is thediscriminant tensor, µ, γ andκ arethetensor of in-planestrains, thevector
of transverseshear strainsand the tensor of theout-of-planestrains, respectively.

Limiting our discussion to the elastic behavior and small strains we assume the followingcon-
stitutive equationsof aplate

(3)
T · a = A··µ + B··κ + γ · Γ

1
, T · n = Γ · γ + Γ1··µ + Γ2··κ,

M
T = µ··B + C··κ + γ · Γ

2

A,B,C are 4th rank tensors, Γ1,Γ2 are 3rd rank tensors, Γ is a 2nd rank tensor expressing the ef-
fective stiffnessproperties. They depend onthe material properties and the cross-section geometry.
In the general case the tensors contain 36 different values – a reduction is possible assuming some
symmetries.

Let us consider an orthotropic material behavior and aplanemid-surface. In thiscaseonegets

A = A11a1a1 + A12(a1a2 + a2a1) + A22a2a2 + A44a4a4,
B = B13a1a3 + B14a1a4 + B23a2a3 + B24a2a4 + B42a4a2,
C = C22a2a2 + C33a3a3 + C34(a3a4 + a4a3) + C44a4a4,
Γ = Γ1a1 + Γ2a2, Γ1 = 0, Γ2 = 0
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with a1 = a = e1e1 + e2e2, a2 = e1e1 − e2e2, a3 = c = e1e2 − e2e1, a4 = e1e2 + e2e1, e1, e2 are
unit basic vectors.

2. Stiffnesstensors identification

The individuality of each classof plates in the framework of the direct approach is expressed
by the effective properties (stiffness, density, inertia terms, etc.). Let us focus our attention onthe
stiffnessexpressions. The identification of the effective stresses should be performed onthe base of
thepropertiesof thereal material. Let usassumethegeneralized Hooke’s law with material properties
which depend on z. The identification of the effective properties can be performed with the help
of static boundary value problems (two-dimensional, three-dimensional) and the comparison of the
forces andmoments (in thesenseof averaged stressesor stressresultants).

Finally, weget the followingexpressions for thestiffnesstensor components [2,4]

(4)

(A11;−B13; C33) =
1

4

〈

E1 + E2 + 2E1ν21

1 − ν12ν21

(1; z; z2)

〉

,

(A22; B24; C44) =
1

4

〈

E1 + E2 − 2E1ν21

1 − ν12ν21

(1; z; z2)

〉

,

(A12;−B23 = B14;−C34) =
1

4

〈

E1 − E2

1 − ν12ν21

z(1; z; z2)

〉

,

(A44;−B42; C22) = < G12(1; z; z2) >,

(5) Γ1 =
1

2
(λ2 + η2)

A44C22 − B2

42

A44

, Γ2 =
1

2
(η2 − λ2)

A44C22 − B2

42

A44

,

where< . . . > is the integral over theplate thicknessh, whileη2 andλ2 are theminimal eigen-values
of the followingSturm-Liouvill eproblems

d

dz

(

G1n

dZ

dz

)

+ η2G12Z = 0,
d

dz

(

G2n

dZ

dz

)

+ λ2G12Z = 0,
dZ

dz

∣

∣

∣

∣

∣

|z|=
h

2

= 0

The described above approach was applied to FGM plates made of metal or polymer foams with
nonhomogeneousdistribution of porosity [4,5].

3. Conclusions

We presented the theory of FGM plates on the basis of the direct approach. The considered
approach to model FGM plates within the framework of a 5-parametric theory of plates has an ad-
vantage with respect to theories of sandwich or laminated plates sincemany classical results can be
improved without any difficulties.
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[5] H. Altenbach and V. Eremeyev (2008). Analysis of the viscoelastic behavior of plates made of
functionally graded materials, ZAMM. (submitted).
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FORMULATION OF THE INITIAL INVARIANT–BASED 
SHELL  FINITE ELEMENT MODEL USING THE PLANE CURVE GEOMETRY 
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A new approach is proposed for formulating a triangular finite-element of the Kirchhoff-Love 
thin elastic shells undergoing arbitraril y large displacements and rotations. The starting point of the 
approach is to represent the strain energy of the shell  as a function of the invariants of the strain and 
curvature-change tensors of the shell  middle surface. Given elongations and curvature changes of 
any three fibers lying on the middle surface along three independent directions, one can readil y 
calculate these invariants. For a triangular element, it is a natural choice to take the element sides as 
these fibers. Thus, the strain energy is written as (summation over m=1,2,3) 
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where E, ν, and h are Young’s modulus, Poisson’s ratio, and wall  thickness of the shell , 
respectively, εI and εεI  ( κI and κκI ) are the first and second invariants of the strain (curvature-

change) tensor of the middle surface, respectively, F is the area of the middle surface of the finite 
element, and ml , mε , and mκ  are the length, strain, and curvature change of the mth element side, 

respectively. 
Since the normal components mε  and mκ  have clear physical meaning of normal elongation 

and normal curvature change, respectively, they can be approximated without using shape functions 
for the displacement fields over the element. Namely, the strain and curvature-change fields are 
obtained by superposing approximations of mε  and mκ  for three independent directions. For this 

purpose, combinations of the beam solutions can be used. 
The use of the invariants allows one to avoid constructing of the local coordinate systems 

related to finite elements, calculate the stiffness matrix of the finite element straightforwardly for 
the lengths of the element sides, simpli fy the formulation of the shell  finite-element model, and 
reduce the computational work. 

For the shell  element presented, the question of description of finite rotations is solved by 
associating the element with a certain geometrical object called the kinematic group [1,2] that 
consists of the nodal position vectors and normal vectors to the shell  middle surface and possesses 
the property of geometrical variabilit y. The finite element–kinematic group association implies that 
the strains and curvature changes of an element are related to strain parameters that characterize 
changes in the kinematic group configuration.  

An attempt is undertaken to improve nonlinear bending capabiliti es of the finite element by 
taking into account finite curvature changes within the element. To this end, the following 
assumptions are used: 
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(a) each side of the triangular element is a plane nearly circular curve which remains plane 
and nearly circular during the deformation; 

(b) for each element side, the normal vector to the middle surface of the shell  does not deviate 
from the curvature plane of this side; 

(c) the strains of the element sides are constant. 
It should be noted that the assumption (a) imposes no restriction on the magnitude of the 

curvature changes of the triangle sides. The assumption (c) implies that the strain-tensor 
components are constant within the element. It follows that the membrane behavior of the element 
is modeled in a simple manner and similar to that of the constant-strain triangle. 

A three-node curved triangular element with five degrees of freedom per node (three 
translations of the node and two rotations of the normal vector to the middle surface) is developed. 
The accuracy of the shell  element is studied using typical geometricall y nonlinear benchmark 
problems of thin elastic plates and shells [3]. Numerical results obtained show that the finite 
element provides high accuracy and convergence rate with respect to the number of finite elements 
thus supporting the validity of underlying assumptions. The solutions presented are in good 
agreement with numerical data available in the literature. Namely, the element performs very well  
under pure bending loading conditions: it can be rolled up so that the mutual rotation of the normal 
vectors within the element can be as large as 90°. 
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SOME PROBLEMS CONCERNING THE DEFORMATION OF
ANISOTROPIC COSSERAT ELASTIC SHELLS

M. Bı̂rsan
Departmentof Mathematics,“A.I. Cuza” Universityof Iaşi, Romania

1. Intr oduction

Weinvestigatethedeformationof loadedcylindrical anisotropicelasticshells,in theframework
of theCosserattheory. Within thelineartheory, weapproachtherelaxedSaint–Venant’sproblemand
theproblemof Truesdell.

The theoryof Cosseratshellsis an interestingapproachto themechanicsof elasticshell–like
bodies,in which thethin three–dimensionalbody is modelledasa two–dimensionalcontinuum(i.e.
a surface)endowed with a deformabledirector assignedto every point. For a detailedanalysisof
the theory of Cosseratsurfacesand its relation with other shell theories,we refer to the classical
monographof Naghdi[1] andthemodernbookof Rubin[2].

Due to its importancein engineering,the Saint–Venant’s problemhasbeenstudiedin many
articlesin the context of classicaltheoriesof shellsor in the theoryof Cosseratsurfaces[3]. For
isotropicandhomogeneousCosseratshells,thesolutionof Saint–Venant’srelaxedproblemwasgiven
in [4].

In the presentwork, we consideranisotropicandinhomogeneouscylindrical Cosseratshells.
Thecylindrical surfacescanbeopenor closed,andthecross–sectionis not necessarilycircular. We
assumethattheconstitutivecoefficientsof theCosseratshellareindependentof theaxial coordinate.

2. The relaxedSaint–Venant’sproblem

For any Cosseratshell,we denoteby r andd thepositionvectorandthedirectorassignedto
every point of the deformedsurface. Let R andD designatethe positionvectorand the director
fields associatedto the referenceconfigurationS of the Cosseratsurface. Then,the (infinitesimal)
displacementu anddirectordisplacementδ aredefinedby

(1) u = r − R, δ = d − D.

We considerthat thereferenceconfigurationS is a generalcylindrical surface(openor closed),and
wedenoteby z ands theaxial coordinateandthecircumferentialcoordinateonS, respectively.

Thewell–known Saint–Venant’sproblemconsistsin determiningtheequilibriumof suchshells
underthe actionof prescribedcontactforcesand contactdirector couplesdistributed over its end
edges.In therelaxedformulationof thisproblem,weconsiderthattheterminalloadsaregivenin the
form of theresultantforcesandresultantmomentsactingon theendedges.

We determinea solutionof therelaxedSaint–Venant’s problemfor anisotropicCosseratshells
usingthemethodestablishedby Ieşan[5] in thecontext of three–dimensionalelasticity. Our solution
is presentedin the form of the displacementfield v = (u, δ) and it is expressedin termsof the
solutionsto someauxiliary boundary–valueproblemsfor ordinarydifferentialequations(calledthe
cross–sectionplaneproblems).

In orderto obtainthesolution,we separatetherelaxedSaint–Venant’s probleminto two prob-
lems:(P1) theextension–bending–torsionproblem,and(P2) theflexureproblem.

First, we searchfor a solution v = (u, δ) of the problem(P1) suchthat ∂v/∂z is a rigid
body displacementfield of the Cosseratshell. As in the three-dimensionaltheory, this solution is
determinedin termsof four constants,saya1 , a2 , a3 anda4 , which canbeinterpretedastheglobal



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 353

measuresof axial curvature,axial strainandtwist. Wedenotethesolutionof theextension–bending–
torsionproblemby v = v{a1, a2, a3, a4} , indicatingthusits dependenceon theconstantsak .

For theflexureproblem(P2), weobtainasolutionof theform

(2) v =

∫

z

0

v{b1, b2, b3, b4} dz + v{c1, c2, c3, c4} + w(s),

where{b1, b2, b3, b4} and{c1, c2, c3, c4} areconstants,while w(s) is a displacementfield depending
only on s, whicharedeterminedin thepaper.

3. Truesdell’sproblem

We notice that the solutionobtainedfor the relaxed Saint–Venant’s problemin the theoryof
Cosseratshellspossessessomepropertieswhich areanalogousto thecharacteristicpropertiesof the
classicalSaint–Venant’s solution for cylinders. For instance,we prove that our solutionscan be
characterizedasminimizersof the strainenergy on certainclassesof solutions(in correlationwith
thecorrespondingthree–dimensionalresultsfor cylinders,seee.g.[5, 6]).

Further, weextendthisanalogyandderive asolutionfor theproblemof Truesdellfor anisotropic
cylindrical shells.In [7], Truesdellproposedthefollowing problemfor thetorsionof elasticcylinders:
to definethe functionalτ(·) on thesetof all solutionsu of the torsionproblem,correspondingto a
scalartorqueM , suchthat

(3) τ(u) = −
M

µD
,

whereµD is the torsionalrigidity of the cylinder. Podio–Guidugli[8] rephrasedthe problemfor
extensionandbending,while Ieşan[5] consideredtheflexureof elasticcylinders.

We presenta solution of Truesdell’s problemformulatedfor the extension–bending–torsion
problemandfor theflexureproblemof anisotropiccylindrical shells.

Examplesaregivenfor orthotropiccylindrical shellsandfor thespecialcaseof Cosseratplates.
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[5] D. Ieşan(1987).Saint–Venant’s Problem, LectureNotesin Mathematicsno.1279,SpringerVer-
lag,Berlin.

[6] J.L.Ericksen(1980).Onthestatusof St.Venant’ssolutionsasminimizersof energy, Int. J. Solids
Struct., 16, 195–198.

[7] C. Truesdell(1978).Somechallengesofferedto analysisby rationalthermomechanics.,in: G.M.
de la PenhaandL.A. Medeiros(eds.),Contemporary Developmentsin ContinuumMechanics
andPartial DifferentialEquations, North–Holland.

[8] P. Podio–Guidugli(1983).St.Venantformulaefor generalizedSt.Venantproblems,Arch.Rational
Mech. Anal., 81, 13–20.



354 Selected Topics of Contemporary Solid Mechanics



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 355
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WITH LINEAR AND ROTATIONAL SIDE SUPPORTS AND 3D ROOF MODEL  
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1. Introduction 

The present research is devoted to study lateral buckling of truss with linear and rotational 

elastic side-supports. In the paper geometrically non-linear analysis of example truss with linear and 

rotational elastic side supports is compared with geometrically non-linear analysis of part of the 

roof construction with purlins and truss-bracing. The problem of bracing stiffness required to 

provide lateral stability of compression members is present in design codes [1], [2]. To the best of 

the author knowledge similar problem for trusses with elastic side supports have been investigated 

only in few studies as for example in experimental investigations [1] or in studies [4], [5].  

2. Model description 

In the present parametric study a roof truss shown in Fig. 1 is considered. The height of the 

truss in the middle is 1.61 m and 0.9 m near supports. The truss is made of steel of fd = 305 MPa. 

The connections between truss elements are stiff. It is assumed that the load is applied in the top 

chord joints. The top chord is laterally braced every 2.4m in joints by linear and rotational elastic 

side – supports and built-up top chord section is battened every 0.6m. The compressed chord of the 

truss is sized according code [1] for design value of axial force 700 kN, and the plastic resistance to 

normal force is 945 kN. The stiffness of linear elastic side supports is 50-1000 kN/m. The range of 

stiffness of supports has been approximated according codes [1], [2] as relation between force and 

limited support displacement. The stiffness of rotational side-supports is 20 kNm/deg. The part of 

the roof with truss bracing and purlins is also considered. The case of stiff and hinged truss-purlin 

connection is considered. It was assumed that upper and lower truss chord are bent in out of truss 

plane direction, and that the shape of imperfection is parabolic with maximal value of L/500, 

opposite in upper and lower truss chord.  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1. Truss with linear and rotational elastic side – supports and part of roof construction. 
 

3. Results of numerical simulations, conclusions 
 

For different stiffness of side-supports a non linear relation between normal force in 

compressed chord due to out of truss plane displacement has been calculated (Fig. 2). The limit 

normal force increases with increase of side support stiffness. For all of considered stiffness of 

linear supports excepting 50 kN/m the limit normal force of truss chord is greater than design value 
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U65
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L 40×4  

or  L 20×3 
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of normal force. The additional rotational supports causes about 77% increase of limit normal force 

for support of stiffness 50 kN/m and about 20% for supports of stiffness 1000 kN/m.  In  the case of 

roof model with purlins and truss bracing, increase of limit normal force caused by stiff connection 

between truss and purlin is 87% for bracing of L20×3 and 104% for L40×4. Moment in rotational 

supports is lower than bending design moment of purlins, caused be typical gravity loads, so it is 

possible to consider purlins as rotational supports of the truss on condition that the connectors 

between the purlins and the truss are designed to carry arising moment.  
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Fig.2. Normal force in compressed chord due to out of plane displacement for different stiffness of 

side supports 

 

For all of side support stiffness, excepting truss bracing of L40×4 with stiff truss-purlin 

connection, the buckling length related to side – support distance is greater than value of relative 

buckling length described in code [1], so code [1] requirements are not precise and in fact predict 

higher critical force in compressed chord than calculated in example truss.  

Relation between side supports reaction and normal force in compressed chord is non-linear. 

For force level corresponding to design load of the truss side support reaction is about two times 

lower than described by code [1].  
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RAISING OF A SEMI-CIRCULAR VAULT

A.V. Manzhirov and D.A. Parshin
Institute for Problems in Mechanicsof RussianAcademy of Sciences, Moscow, Russia

Figure. Semi-circular vault under accretion

The aim of this paper is to obtain a solution
of the following engineering problem: to construct a
heavy circular vault onasmooth rigid horizontal base
by layerwise accretionalongtheinternal surfaceof an
initial arc-shaped structure (seeFig.). It is assumed
that the fixation of the vault to the base prevents its
separation but allows for freesliding. The case un-
der consideration is that of plane strain. The material
is assumed isotropic, uniformly aging, and elastic or
viscoelastic. Presented research results are based on
the ideas of growingsolidsmechanicsand mathematical theory of accreted solids (see, e.g., [1–8]).

Initial boundary value problems are formulated, in order to describe quasi-static deformation
of this structure subject to its own weight combined with an arbitrary variable load on its external
surfaceprior to, during, and after the processof its piecewise continuous accretion. These problems
take into account the possibilit y of using prestressed structural elements in the processof accretion.
For theseproblemsanalytical solutionsare constructed in termsof seriesand quadratures. Numerical
calculationsaredemonstrated byresultsobtained for variousproblemsconnected with different types
and modes of raising of thin-walled and thick-walled vaults made of thin-walled elements, as well
as the reinforcement of initially thick-walled vaults. It is shown that the stress-strain state of raised
heavy objects essentially depends on the technique and the regime of their construction, and that the
characteristicsof their stress state in theprocessof constructionmay attain valuesthat greatly exceed
those at the end onthisprocess.

The effect of creep, aging, and material weight on the deformation of a heavy vault under
accretion bystress-freestructural elements is studied. Wesingleout andanalyzethemain tendencies
whose continuousinteraction determinesthestress-strain stateformationin theobject beingaccreted.
From thestandpoint of these tendencies, some limitingregimesof accretion are considered.

Thus, if the accretion of avault is fairly fast, avery strongload-relief if observed in itsoriginal
part. However, on the initial stageof thisaccretion process, thevault experiences stresses that greatly
exceed theoriginal ones. In the caseof athin-walled original arc, thedifferencebetween thesestresses
is substantial. However, if the accretion process is slow then the material added on the final stage
remains practically stress-free. In this situation, the stresslevel in the original part of the structure
becomes much greater than the initial one. If the original arc is sufficiently thin, it i s subject to very
highstressesat the initial instant, andtherefore, thefinal structurewill haveregionswith stresslevels
greatly exceeding themaximal level calculated onthebasisof thefinal configuration.

Therefore, if one fails to take into account gravity forces during the entire processof raising a
heavy object, onemay cometo an entirely wrong pictureof itscurrent and itsfinal state, in particular,
one may obtain greatly overestimated values for the strength and the operational bearing capacity of
thestructure.

It is shown that for agradually accreted vault onasufficiently thick original arc, thefinal struc-
ture may have much smaller stresses than those calculated for a ready-made structure immediately
installed on the base. For a vault with a thin original arc, it has been shown that if one varies the
accretion rate in a suitable manner, the stresses in the final structure can be substantially decreased
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relative to the initial state of the original arc, so that the admissible stress values in the accretion
processare never achieved.

In the course of these investigations, it was foundthat even a fairly thick-walled original arc,
being installed ona smooth base, tends to separate from the base in peripheral regions of its bottom
due to its own weight. Without taking some special measures, it i s impossible to get rid of these
regionsof separating (negative) contact stressesby subsequent reinforcement of such an arc.

Another problem under investigation is that of accretion of a vault using prestressed elements.
For avault accreted in thisway, it i salso impossibleto ensure forces that would permanently prevent
separation of thevault from thebase. However, usinglayerwise accretionwith suitableinitial stresses,
one can ensure amuch better resulting stress state in the total structure than in the case of accretion
by stress-free elements, i.e., one can minimizenegative pressure on the base and the general stress
level in thebody.

One also considers an accretion processin which the vault vertex is fixed by suspension with
controllable tension that compensates a given part of the current weight of the vault and vanishes at
the end of theprocess. This technique leads to substantially smaller stresses in thefinal structure than
those obtained by common accretion in the same temporal regime. In this case, it i s also possible
to obtain a much better final contact stressdiagram than that for a ready-made vault installed onthe
same base. If, in addition to suspension, the elements used for accretion are subject to some initial
extension, then it is even possible to construct a thin-walled vault that will exert positive pressure at
all pointsof thebase.
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1. Introduction 

Stability is one of the most important fields in structural designing, especially for slender and 

lightweight structures. The overall capacity of such structures is often limited by critical load 

connected with buckling or snapping instability. Calculation of critical load may be carried out in 

different ways. One of the most popular approaches is based on a so called initial or linearized 

stability and consists in solving eigenvalue problem. This classical approach is well known and was 

introduced in many finite element programs. Unfortunately the accuracy of solution obtained in this 

way may be very poor if the pre-critical behaviour of the structure is highly nonlinear. The paper 

presents a more flexible method for estimating of critical load based on the generalized 

parameterization and formulation of eigenvalue problem. 

2. Generalized eigenvalue problem 

Detection and calculation of critical point may be carried out using different methods [1-2]. 

First of all, one can distinguish “exact” methods based on “true” nonlinear equilibrium equations, 

from approximate methods based on some simplifications, i.e. artificial linearization of the problem. 

The first family of methods is especially useful as an additional tool for path following and 

continuation process. Precise estimation of critical load may be achieved in direct or indirect way 

[1]. The second family of methods enables prediction of critical load in advance (extrapolation), 

with or without evaluation of intermediate points on the equilibrium path. The most representative 

and commonly used method of this family is connected with so-called initial buckling eigen-

problem, described as follows: 

(1) 0)( 0  O� vKK g  

K0 and Kg are matrices of initial and geometric stiffness respectively [3]. The solution to the above 

eigenproblem enables to establish both critical loads and corresponding buckling modes; however 

(as was stated above) the accuracy of critical load predicted in this way may be very poor. The 

paper discusses successive improvements to the above approach. The final conclusion of the 

investigation leads to the following generalized eigenvalue problem: 

(2) 0vKK  »
¼

º
«
¬

ª
K'
K�K

K'�K
)(

)()( 0
00  

in which the consistent tangent stiffness matrix K is calculated in two successive points on the 

equilibrium path. Contrary to classical approach, K is parameterized here in different way (O is not 

proper parameter in the vicinity of limit point hence the tangent stiffness matrix can not be treated 

as the function K(O)). Above parameterization may be based on “leading” displacement or the arc-

length method.  

3. Example 

Consider well known von Mises truss shown in Fig. 1. The nonlinear behaviour of this structure 

is described by the equilibrium path shown in Fig. 2. For simplicity, the calculations were carried out 
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for a = b = 1 and EA = 1. Comparison of accuracy of predicted critical load using different methods is 

included in Tab. 1. The first column describes the applied method, starting parameter (O0 or K0) and its 

increment. Two next columns include critical displacement (vcr) and load (Pcr). The ratio and relative 

error of critical load is presented in two last columns. The table clearly shows the great improvement 

of accuracy using proposed approach. Contrary to classical methods the estimation is now 

understated (safer). More complex examples, including structures exhibiting buckling mode 

interaction [2], and more detailed discussion of the results will be presented in the full paper. 
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Fig. 1. Mises truss. Fig. 2. Equilibrium path. 

 

Method vcr Pcr Pcr/P* error 

Exact (v*, P*) 0.490175 0.187403 - - 

Initial BP - 1.414210 7.55 654.6% 

Linearized BP - 0.471405 2.52 151.5% 

Quadratic BP - 0.291344 1.55 55.5% 

ULSP  0+0.1 - 0.363021 1.94 93.7% 

ULSP  0.10+0.01 - 0.289520 1.54 54.5% 

ULSP  0.18+.005 - 0.191697 1.02 2.3% 

GSP  0+0.1 0.619114 0.173228 0.92 -7.6% 

GSP  0.1+0.1 0.552731 0.184047 0.98 -1.8% 

GSP  0.3+0.1 0.494929 0.187384 1.00 -0.01% 

GSP  0.4+0.1 0.490080 0.187403 1.00 -4.1e-8 

Tab. 1. Comparison of accuracy of critical load for different methods. 

4. Conclusions 

The paper has discussed different approaches for calculation of critical load. Successive 

improvements to the original eigenproblem describing initial buckling have been studied. The result 

of presented investigations is the method for estimation of critical load without complete (and time 

consuming) determination of equilibrium path. The numerical examples have proved its high 

efficiency. It may successfully be applied both in bifurcation and load limit points. It also enables 

early prediction of multiple critical points. 
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1. Introduction 

The submitted paper is dedicated to the modelli ng in laboratory the operating conditions to 
which the tension clamps and the track panels are subjected during the operation. EWEM tension 
clamps are the topic of the analysis, Fig. 1. Within the installation the tension clamp is stressed, the 
pressing arm is picked up in vertical direction and the tension clamp starts to press on the foot of 
rail  with the pressing force proportional to the picking up of the pressing arm. During a transport of 
tract panels the tension clamps are stressed with additional forces from the gravity of hanging 
sleepers and from the inertial forces arising due to oscill ating motion of track panels.  The tension 
clamp acts as a linear element only to the certain value of picking up of the pressing arm. After the 
crossing of the limit value of picking up the plastic deformations come into existence. The tension 
clamp is weakened in this stage because of its abilit y to activate pressing force is reduced 
proportionall y to the value of the permanent irreversible deformation. It was the reason for 
modelli ng in laboratory the operating conditions to which the tension clamps and the track panels 
are subjected during the operation. In such a way it is possible to determine the limit value of the 
picking up and to estimate the conditions of overloading the tension clamp and to predict its 
behaviour in real conditions. 
 

 
 

Fig.1 EWEM tension clamp 

2. Static and dynamic test 

The set of 16 tension clamps were tested in static and dynamic load regime. The stiffness 
characteristics described the dependence of acting pressed force versus deformation of a clamp have 
been the subject of static tests. Except of static test the part of a rail  was subjected to the dynamic 
cyclic load simulating the three years operation in real conditions, Fig. 2.  
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Fig. 2 Dynamical experimental testing 

 
After the dynamic test the static test was carried out again. The influence of dynamic 

loading on the degradation of mechanical properties was estimated. Also the influence of additional 
load by the gravity forces and the inertial forces within oscill ation of track panels during transport 
was modelled in laboratory conditions, Fig. 3. All  influences were estimated and recommendations 
for praxis were yielded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Experimental modelli ng of additional load 
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1. Introduction 

Earthquake-induced pounding between insufficiently separated buildings or bridge segments 
may result in some local damage at the contact points during moderate earthquakes [1] or may lead 
to collapse of structures during severe ground motions [2]. Structural pounding has been recently 
intensively studied numerically (see, for example, [3,4]). On the contrary to numerical analyses, 
only few experimental studies have been conducted concerning mainly the validation of the 
numerical models (see [5]). Therefore, the aim of the present paper is to show the results of more 
extensive experimental study performed on a shaking table using models of two towers equipped 
with colliding elements made of different building materials. 

2. Setup of the experiment 

A small shaking table (see Figure 1) located at the Gdańsk University of Technology was 
used in the experimental study. It is a unidirectional device with the platform dimensions of 
0.75 0.6 m×  excited by the linear actuator with the stroke of 0.5 m  and maximum acceleration of 

210 m/s . Two 1 m  high model towers with different dynamic properties (see Figure 1) were built to 
be tested during the experiment. Each of them was constructed from four steel columns with the 
mid-height horizontal connections and additional skew bracings to prevent transverse as well as 
torsional vibrations. All elements used in the left tower had the rectangular cross section of 
6 6 mm× , whereas the right tower was constructed from members with the section of 8 8 mm× . 
Additional plates made of different building materials, i.e. concrete, steel and timber were fixed at 
the top of each tower in order to study the pounding-involved structural response due to impacts 
between various materials. The top mass of the towers was kept constant for all experimental tests, 
apart from the material used. 

3. Results of the study 

The experimental study was 
conducted under the NS component of 
the El Centro earthquake (18 May 1940) 
for different gap size values between the 
towers. In this paper, the examples of the 
results for the gap size of 0.04 m are 
presented. The displacement time 
histories of the towers for concrete-to-
concrete, steel-to-steel and timber-to-
timber pounding are shown in Figure 2a, 
2b and 2c, respectively. For the purposes 
of comparison, the displacement time 
histories for the independent vibrations 
of the towers are also presented in 
Figure 2d.  Figure 1. Setup of the shaking table experiment. 
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  a) concrete-to-concrete pounding   b) steel-to-steel pounding 
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  c) timber-to-timber pounding   d) independent vibrations 
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Figure 2. Displacement time histories of towers under the El Centro earthquake. 

4. Conclusions 

The results of the experimental study show that pounding may result in substantial increase of 
the structural response; however, it can also play a positive role by reducing vibrations (see 
reduction of the peak displacement for the left tower on Figure 2c). Moreover, the results show the 
considerable influence of the type of material used for colli ding elements on the behaviour of 
structures during earthquakes.  

The study described in this paper was performed using relatively small  structural models. 
Therefore, further experimental study is planned to be conducted on larger models of real structures 
in order to verify the results obtained. 
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1. Introduction 

Prefabricated structures became more and more popular in European countries, including 
Poland. Many systems used in prefabrication are simply taken from countries with low seismicity, 
such as Finland or Belgium, and thus are not designed and tested under earthquake excitation. 
Although there are some recent records of earthquake activity in Poland [1], the strengthening of 
this type of structures is crucial when constructing in seismic countries, li ke Slovakia or Romania. 

It has been shown, that damage of prefabricated structures during recent earthquakes is 
usuall y caused by insuff icient connection strength [2]. Many of the structures have been heavil y 
damaged, some of them completely destroyed, showing urgent necessity of further research. 
Therefore, the aim of this paper is to test an example of a prefabricated structure undergoing strong 
ground motions, and thus to prepare background for planned laboratory experiments and 
simulations. 

2. Numerical model 

The investigation has been focused on the week points of the beam-to-column connections 
(see Fig.1). As the example, the behaviour of frame of 2-storey frame building with pinned beam-
column connection (see Fig. 2) under the El Centro earthquake (1940) has been simulated with 
ABAQUS commercial software. The non-linear analysis has been conducted, which has been 
proven to be essential when the structural response under earthquake excitation is investigated (see, 
for example, [3]). In the study, the behaviour of concrete has been modelled using damaged 
plasticity model (see [4,5]). Reinforcement has been modelled using layered material with rebar 
elements embedded into concrete. A non-linear (elastoplastic) strain-hardening model has been used 
to simulate the reinforcing steel behaviour. All  
structural members have been modelled by multi -
layer shell  elements with multiple integration points 
through the thickness.  

�

     Fig. 1. Example of connection used by Ergon                     Fig. 2.  FEM model of the structure        
Company in the regions with low seismicity 
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3. Response analysis  

The results of the preliminary analysis in the form of stress distribution in connecting bar are 
shown in Fig. 3. It can be seen from the figure that failure of the structure is due to plastic flow of 
the connecting bars. It should be mentioned that, in the connection, neoprene bearing carries mainly 
compression (vertical) forces, whereas horizontal loads are acting on steel bars, which are rigidly 
connected with corbel and beam.     

 
 

           Fig. 3. Stress distribution                               Fig. 4 Equivalent plastic strain  
                   in connecting steel bar                        in connecting steel bar                 

4. Conclusions  

The stresses in the connection between beam and column due to earthquake excitation have 
been assessed in this paper. The non-linear analysis has been conducted in order to enhance the 
accuracy of the study. The results show the need of changes in the investigated part of the structure 
in order to make it earthquake-resistant. Further numerical simulations and experimental studies are 
planned to be conducted so as to adapt the system to meet earthquake reliabilit y. 
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1. Introduction 

Engineering systems are often composed of prefabricated elements, parameters of which are 

listed in professional catalogues. In the case of structural design, the catalogue is in the form of a 

list of available rolled profiles. The minimum weight structural design consist then in assigning to 

all structural members elements from the catalogue, assuring fulfilments of imposed constraints.  

Such a process is known as Discrete Structural Optimization (DSO). The difficulties arising in DSO 

come from relatively large numbers of combinations between obtained from both numbers of 

structural members and available parameters. These numbers can reach values of  more than 10
10

. 

This makes impossible to find a minimum just from a direct enumeration.  

The first attempts to solve Discrete Structural Optimization were made in 1960s and 1970s. 

In the beginning of 1980s several stochastic approaches were applied in DSO. Most known are: 

Genetic Algorithm; Simulated Annealing; Evolutionary Optimization. Recently, other stochastic 

methods based on Particle Swarm optimization by Kitayama et al.[1] and Harmony Search by Lee 

et al. [2] has been applied to DSO. 

The concept of controlled discrete optimization was proposed in earlier authors papers. 

Gutkowski proposed a controlled mutation consisting in verification of stresses at each generation 

of the evolutionary optimization algorithm. Also, by Gutkowski et al.[3], a control of stresses was 

applied in an algorithm in which redundant material is removed in elements with least stresses. This 

approach was then applied by Guerlement et al. [4] DSO, taking in to account EC codes. 

In this study, the idea of removing redundant material is enhanced by combining the 

continuous and discrete solutions. At the end of the paper, several numerical examples, with 

numbers of combinations up to 30
8
 are presented and their effectiveness is validated. 

2. Formulation of the problem 

The structure under consideration is of a given topology and composed of jo elements, which 

are taken from a list of available parameters as: thickness of a metal sheet  h, cross section areas 

(CSA) A and/or moments of inertia I of a beam. Each j-th member having CSA Aj  is made of  linear 

elastic material. Small displacements and stresses within elastic range are assumed for the whole 

structure. The structure is subjected to q0 multiple static loads.  

The governing equations, and in the same time equality constraints, for the problem, 

applying Finite Element Method (FEM), are: 
 

 

 

 

Inequality constraints, are imposed on: 

• the largest and smallest values of listed parameters as  Amin  ≤  A ≤  Amax 

• the maximum stresses and displacements σ 0, u0 

3. The outline of the hybrid method 

A design of a structure (truss, frame, plates with reinforcements) has to be accomplished from 

a given catalogue of prefabricated elements, say rolled profiles. The design starts by finding the 

continuous structural optimization problem for the discussed structure, under given load and 
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subjected to assumed constraints. Next, a catalogue, separately for each structural member is 

constructed. Two parameters from the catalogue are assigned to the member. One, larger than the 

continuous value and one smaller. Now, a discrete solution removing redundant material is 

obtained. The second  step consists in enlarging catalogues for all members to two larger, and two 

smaller values from the obtained discrete solution in the first step. Again, the discrete solution for 

such a set of values is obtained. The procedure of enlarging the catalogue is ended when in two 

successive steps the discrete solution are the same. 

4. Numerical examples 

In order to illustrate applicability of the method, a 25 transmission tower with 30
8
 combinations, 

was analyzed. After calculations, it was observed that presented algorithm requires 100 FEM 

analyses, while for the same structure Evolutionary Optimization needs 104 FEM analyses. 
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1. Introduction 

The present paper constitutes the results of further investigation in the area of designing 

structural components made of fibre-reinforced composite materials (cf. Ref.[1-3]). 

To fulfil the assumed properties of a composite structure one can modify some its structural 

parameters, such as mechanical properties of a matrix and fibres, fibre density, shape and 

arrangement of fibres etc. However, as shown in previous research, the full advantages of 

composite materials are obtained when the reinforcing fibres are optimally distributed and oriented 

or shaped in the matrix with respect to assumed objective behavioural measure under actual loading 

conditions of the structure. It is important particularly when the unique or important from 

behavioural point of view structures are considered. 

The stiffness and stress optimization of fibre-reinforced composite materials is performed with 

the aid a hybrid evolution-gradient oriented algorithm. Such algorithm can serve as an alternative 

technique to classic methods applied in the optimal design of a structure made of fibre-reinforced 

single- or multilayered composite materials. 

2. Object of analysis 

A thin, two-dimensional and linearly elastic disk, made of multilayered composite material, is 

supported on the boundary portion SU with prescribed displacement u
0
 and loaded by body forces f

0
 

within domain its A and by external traction T
0
 acting along the boundary portion ST , cf. Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Two-dimensional composite disk subjected to service loading 

 

The material of each layer is a composite made of a matrix reinforced with a ply of long and 

arbitrary shaped unidirectional fibres of assumed cross-section. The mechanical properties of the 

matrix and the fibres in k-th layer are Emk, νmk and Ewk, νwk, respectively. The fibres are regularly 

spaced and perfectly aligned in the matrix with constant density ρwk, and their orientation at any 

point of the composite material is denoted by θk with respect to the global co-ordinate system x-y 

(see Fig. 1). 
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The microscopically non-homogeneous composite material is next modelled by a 

macroscopically homogeneous, orthotropic and linearly elastic material in the analysis step of 

composite structure behaviour. The purpose of this modelling process is to determine the 

extensional stiffness matrix D for the model of the composite in the global co-ordinate system x-y 

and to express its components in terms of the mechanical properties of the reinforcing fibres and the 

matrix, fibre density as well as fibre orientation, namely  

 

         ( )
kwkmkmkwkwkijij

EEDD θρνν ,,,,,=             (1) 

 

Each of these parameters influences the mechanical properties of the composite disk and then it 

can be treated either as constant parameter or as the design variable during the optimal design of a 

composite structure. 

3. Optimization procedure 

Let us assume that the mechanical properties of fibres and matrix as well as fibre density are 

given in advance, whereas orientation of rectilinear fibres or parameters defining the shape of 

curvilinear ones will be selected as the design variables during optimization procedure of composite 

layout. To describe the layout of reinforcing fibres in this last case, a polynomial, spline or Bezier 

function will be used. 

The optimal design of fibre orientation or layout in a composite material will be discussed either 

for the case of the mean stiffness design for a disk subjected to service loading or for the case of 

stress design. Thus, in the first case, the problem can be formulated as a minimization of work done 

by external forces acting on structural element with the constraint imposed on total cost of 

composite structure and other behavioural constraints, while in the second case the objective 

functional will be expressed using the Tsai-Wu stress criterion. 

4. Hybrid optimization system 

The optimisation procedure defined in previous section will be performed with the aid of a 

hybrid, evolution-gradient oriented optimization system composed from two main modules. 

The first module is the module of initial optimization performed using the evolution algorithm 

starting from randomly selecting initial solution, while the second module performs the final 

optimization using the gradient-oriented algorithm starting from the last, best solution generated by 

evolution algorithm. The finite element method is applied in both modules in order to perform the 

analysis step of structural behavior. In addition, this method is also used in final optimization 

module for performing the sensitivity analysis of state fields in order to obtain the gradient 

information for objective functional and behavioral constraints. 
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1. General 

Genetic algorithms (GA) have become a popular approach in designe optimization in 
engineering applications in recent years. GAs base on the rule of the survival of fittest in natural 
selection. Improvement of global search can be done by employing in optimization procedure of 
neural networks (NN) which can learn and adapt changes over the time. 

In the paper the design optimization with the use of FEA and both genetic algorithms and 
neural network approaches is discussed. The prepared software tool bases on existing open source 
libraries, namely Galil eo for GA, and ffnet for NN. FE modeling, analysis and post-processing were 
carried out with the use of Abaqus Unified FEA suite. The optimization procedure was 
implemented with the use of Python (objective programming language) and the Abaqus Scripting 
Interface. 

2. First approach - optimization using FEA and GA 

The first presented approach of optimization is based on GA only. Evaluation of each 
individual bases on the results of FE analysis using Abaqus. The chromosomes created during 
genetic process constitute the starting point for evaluation procedure. For each chromosome, FE 
model is created and simulation is performed. The obtained results are interpreted according to 
a given objective function. The flow-chart of the applied algorithm is presented in Figure 1. 
The described approach is general one. Any nonlinear static as well  as dynamic FE simulation can 
be used for evaluation procedure. Unfortunately, GAs are in general computationall y expensive. 
Moreover, a random character of GAs requires a multiple usage of optimization procedure. As a 
result of above, this approach requires eff icient and robust methods and resources and it is not used 
for large design optimization problems. 

3. Second approach - optimization using FEA, GA and NN 

The base of modification of the described above method is an assumption that GA does not 
demand a precise solution for each chromosome. The crucial task of evaluation mechanism is 
extracting features of a chromosome which improve the qualit y of the individual. Thus, it is 

Figure 1. Chromosome evaluation using Abaqus 
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recommended to use an estimation tool which can rate the fitness less accurately but faster. 
In the second presented approach of optimization it is proposed to replace the evaluation 

based on FE analysis with an estimation based on NN. In order to train NN, numerical analysis 
results for the selected and randomly generated chromosomes are used as a training set. When the 
learning process is terminated, an optimization attempt is carried out with the use of GA. This step 
corresponds to the first presented idea of optimization process with one exception; the evaluation 
procedure is done now with the use of NN. For each iteration of an optimization loop a training set 
is updated. A new training data consists of the result for the best individual obtained using GA and 
additionall y, in the case of parallel computations, either results for random chromosomes or for 
created as a result of the best chromosome mutation. New training data verifies the GA solution in 
the first place and increases space of NN approximation on the other hand. As a result, the next GA 
optimal solution is calculated taking into consideration all  previous attempts. The architecture of 
NN is changing simultaneously with the optimization process. The well -fitted architecture of NN is 
calculated according to a learning error. Each expensive FE analysis is used for improving an 
estimation tool – NN. The greater number of analyses, the better estimation of individual is 
expected, however, in many cases NN is able to detect advantageous features even in a small  
number of training data. A flow-chart of the algorithm described above is presented in Figure 2. 
 

4. Examples 

The presented algorithms were tested and verified for several problems. The general character 
of GA optimization method enables us to use it in cases of a wide range of engineering applications. 
At the beginning very simple linear problems e.g. spanned beam with a uniformly distributed load 
was considered. Next, optimization of more complex nonlinear structures such as screw connection 
and skin-stringer structure were carried out. 

5. References 

[1] D.E. Goldberg (1989), GeneticAlgorithm in Search, Optimization and Machine Learning, 
1st ed, Addison-Wesley Professional. 

[2] T. Burczy
ń
ski, Adam Długosz and W. Ku

ś
 (2006), Parallel evolutionary algorithms in shape 

optimization of heat radiators, Journal of Theoretical and Applied Mechanics, 44, 2, 351−366. 

[3] T. Burczy
ń
ski, W. Ku

ś
, A. Długosz and P. Orantek (2004), “Optimization and defect 

identification using distributed evolutionary algorithms”, Engineering Applications of 
Artifi cial Inteligence, 17, 4, 337−344. 

[4] H.K. Chao and R.E. Rowlands (2007), “Reducing tensile stress concentration in performed 
hybrid laminate by genetic algorithm”, Composites Science and Technology, 67, 13, 
2877−2883. 

 

Figure 2. Flow-chart of modified optimization procedure.  
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1. Introduction 

Sandwich panels used as the external wall  cladding of industrial and storage buildings are 
considered in this paper. Alternative systems of wall  cladding include corrugated sheets, wall  
cassettes and façade panels. An advantage of sandwich panels over the above mentioned systems is 
that they are full y prefabricated, therefore during erection on the building site they do not need 
additional layers, either thermal or waterproof, and can be erected in all  weather conditions. High 
bending rigidity coupled with small  weight, as well  as thermal and damping properties, speak in 
their favour.  

In this paper we are looking for pareto optimal solutions for multi -span sandwich panels with 
polyurethane foam core (PUR) and slightly profiled steel facings. The panels are subjected to 
external load of wind and to drastic changes of temperature. It is well  known in the literature that 
the interaction of loads and distortions leads to a conflict in structural optimization [4]. The 
deteriorate influence of the temperature on the state of stress can be reduced by introduction of 
elastic supports. Therefore, the design variables vector referring to the panel is enhanced by support 
stiffness coeff icients.  

The optimization problem is non-convex [5], therefore we use distributed parallel 
evolutionary algorithms [2]. A large number of constraints is introduced by the way of external 
penalty functions. To describe the structural response of a sandwich panel we use the modified 
Reisner-Mindlin plate theory. According to this theory we assume that: the materials of steel 
facings and of the foam core are isotropic, homogeneous and linearly elastic; the facings are 
parallel; normal stress in the foam core is negligible (τ

xzC = 0); the shear stresses are constant in 
transverse direction (τ

xzC = τ
yzC = const.) and the in-plane strains ε

x, 
ε

y and γ xy are small  compared to 
unity [1]. 

2. Problem formulation 

Thermall y and mechanicall y loaded multi -span sandwich panels on elastic supports are 
considered. Mechanical load results from wind pressure with positive or negative values and is 
considered as uniformly distributed. The thermal distortions are induced by the temperature 
difference between the internal and external face sheets (1).  

(1)  ext..int ttt −=∆ . 

We assumed 
�

t = -55̊ C or 
�

t = -40̊ C (for summer) and 
�

t = 50̊ C (for winter). Both face 
sheets have the same thermal expansion coeff icient: α

T = 0.000012 1/˚C.  
The design variables are geometric parameters describing the thickness of the facings and soft 

core, as well  as the stiffness parameters of the elastic supports. All  design variables have the 
prescribed range (box conditions) resulting from the technology of production, transport and 
erection. Our objective is to find the optimal variable vector x 

(2)  [ ]2121 ,,,, kkDttx = , 

which minimizes the multi -objective function F*(x, L), given by 
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(3)  ( )
quality

1
3

cost
2211321

* )(       , −⋅+⋅++⋅=++= LDttFFFLxF ααα , 

where: t1 and t2 represent the thickness of the external and internal face sheets, respectively, D is the 
thickness of the soft core, k1 and k2 are the stiffness coeff icients of the external and internal supports 
respectively and α

i are coeff icients which reduce the expression to a non-dimensional form. 
The aim of the optimization is to find the panel of minimum cost C=F1 + F2 for the maximum 

span L, i.e. (min F3), and satisfying the set of constraints gi(x, L). These constraints result from 
ultimate limit state conditions (shear stresses in the core, normal or wrinkling stresses in the facings, 
crushing of the core at supports) and serviceabilit y limit state conditions (displacements). The 
importance of the flexural wrinkling of flat and slightly profiled sandwich panels must be stressed 
[3]. The external penalty function method allows to change the optimization problem with 
constraints into one without constraints; thus the fitness function is given by 

(4)  ( ) ( ) ( )∑
=

+=Ψ
24

1

* ,,,
i

i LxGLxFLx , 

where Gi(x, L) is the external penalty function. The characteristic Pareto optimal curve of the cost C 
for the span L is presented in Fig. 1. 
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Fig. 1. Pareto optimal solutions: cost C versus L. 

Elastic supports result in a redistribution of the value of the internal forces. We observed a 
decrease of the support reaction force and bending moment at the internal support, and an increase 
of the bending moment in span. Keeping in mind that flexural wrinkling is an extremely important 
condition [3], the above-mentioned phenomenon improves the ultimate state of stresses in those 
structures. Hence, introduction of optimall y designed elastic supports can significantly increase the 
allowable spans of panels. 

3. References 

[1] K. Stamm and H. Witte (1974). Sandwichkonstruktionen: Berechnung, Fertigung, Ausführung, 
[2] T. Burczy

ń
ski, W. Kuś  (2004). Optimization of structures using distributed and parallel 

evolutionary algorithms, Lecture Notes on Computational Sciences, 3019, 572–579. 
[3] P. Hassinen, L. Martikainen, K. Berner (1997). On the Design and Analysis of Continuous 

Sandwich Panels, Thin-Walled Structures, 29, 129–139. 
[4] Z. Mróz, A. Garstecki (2005). Optimal loading conditions in the design and identification of 

structures. Part I: Discrete formulation, Structural Optimization., 1, 1-18. 
[5] I.E. Grossmann, L.T. Biegler (2004). Part II . Future perspective on optimization, Computers 

and Chemical Engineering, 28, 1193–1218. 



376 Selected Topics of Contemporary Solid Mechanics

STATIC FEA OF MECHANICAL COMPLEX STRUCTURES  
 
 

C. Iancu, A. Nioata
Department of Applied Mechanics, University “ Constantin Brâncuşi”  Târgu-Jiu, Romania 

1. Introduction 

 In the large category of conventional machines for plastic deformation, the mechanical 
presses have the largest use. So, the mechanical presses, and especiall y the “C”-bed presses, 
represent one of major trend in designing, based on several advantages. 

 The bed is the base element of a mechanical press, having the role to 
sustain the cinematic assembly and to convey the pressing force from 
working parts to piece.  

The classic calculus of the bed for crank mechanical press is based 
on determination of stress and deformation due to maximum load at the 
nominal force. So, this methodology has limitations, being impossible to 
estimate discrete values on different points or sections of structure. For the 
mentioned reasons have been developed modern analysis methods, FEA for 
structural calculus being hardly used lately. This method is presented on a 
numeric example, represented by the bed of a crank mechanical press type 
PMCR-63, mechanical press with open bed, with nominal force 630 kN, 
presented in fig.1. 

Fig.1  PMCR – 63 press 

2. STATIC ANALYSIS OF PMCR-63 MECHANICAL PRESS BED 

 The model of the analyzed structure, completed and prepared as shown in [1], is now ready 
for FEA. For either static or dynamic FEA, must be followed the phases: defining the mesh; 
defining the environment bonds; defining the loads; performing analysis and result interpretation. 

2.1.  Defining the mesh  

 The mode of obtaining the mesh was presented in [1]. The mesh have 10307 nodes, 25734 
finite elements and 103590 degree of freedom (DOF), elements type SHELL 3 for discretization of 
all  bed plates and type TETRA 4 for discretization of cantilevers and the bosses.  

Fig.2 The discretized structure     Fig.3 The environment bonds 

2.2.  Defining the environment bonds  

 The environment bonds are applied to nodes being in the zone of bed resting on foundation. 
In this zone are blocked all  DOF (3 translations and 3 rotation). In fig.3 are presented the 
environment bonds. 
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2.3. Defining the loads  

 The forces developed on working are generated by rod-crank mechanism. Their effect is 
transmitted by superior bosses and by bed table in whole structure. So on the bed action forces on 
bed table, with maximum value of 63 tf and reaction forces on upper bosses, with same value, but 
contrasted direction. Since the action of these forces isn’ t concentrate, the forces on upper bosses 
were considered like a uniform distributed pressure on bosses width, having the value p

1
= 63 N/mm

2
 

and the force on bed table li ke a distributed pressure on a surface of  Φ300 mm, p
2
= 9,17 N/mm

2  

2.4. Performing analysis and result interpretation  

 The model completed and prepared for analysis as shown, was studied with COSMOS/M 
software, with solving option FFE (Fast Finite Element). The results show both displacement and 
stress analysis, concerning maximum values and distribution on structure.  
 In fig.4 is presented the displacement distribution for the structure, observing a continuous 
distribution that implies a correct model. The maximum displacement is: δmax=0,94727 mm. Also 

for symmetric nodes the displacement value are very similar, that confirms the model is correct.  
 In fig.5 is presented the stress distribution, (Von Mises). The admissible strength considered 
are:   

-bending strength: 200 MPa   -traction-compression strength: 180 MPa 
The maximum stress is 182 MPa, and because the structure is stressed on traction-

compression compound with bending, the admissible strength considered is σ Von max = 200 MPa, 

so the stress is bellow the admissible strength.  
   

 
Fig.4  Displacement distribution    Fig.5  Stress distribution  

3. Conclusions 

 In this paperwork are presented the steps needed in order to perform a static FEA analysis 
for complex structures, such as frames for mechanical presses. It was shown that the results show a 
continuous distribution of displacements and stresses that validate the model, proving it correct. 
Also, with this type of analysis it became possible knowing values in every point of the press bed 
that interest, and preparing the way for the optimization of such a complex structure. 
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In the paper, the model of heat conduction in solids reinforced by short fibres with a 
functionall y gradation of effective features (functionall y graded materials - FGM) will  be 
constructed. The proposed model will  contain a set of equations for an averaging temperature 
(describing macroscopic changes) and functions called fluctuations (describing the influence of a 
microstructure on the heat flow). The model will  be tested on the examples of numerical solutions. 

1. Conductors reinforced by fibres 

We are going to consider the conductors, whose configuration in the physical space with the 
Cartesian orthogonal coordinate system 3

321 Rxxx ∈),,(  will  be an area ),( 33 hh−×Π=Ω , where 

),(),( 2211 hhhh −×−=Π . Those conductors will  be strengthened with thin fibres. We assume that the 

fibres are distributed parallel to the axes αx , 21,=α . 

The conductors need not to be periodical, however in the area Π is possible to section off  a 
part 21 II × , where ]/,/[ 22 ααα λλ−=I , 21,=α  and αλ  are the quantities characterizing the 

structure of the reinforcement. 
For any Π∈),( 21 xx , let us determine the functions of a saturation by the fibres 

),( 2111 xxνν = , ),( 1222 xxνν = ,  such that ),( 21 x⋅ν  is for every 2x  a 1λ -periodic function, while  

),( 12 x⋅ν  is for every x1 a λ2-periodic function. 
An essential assumption from the point of view of a method of modeling which we are going 

to use below, is a demand, that the functions v1, v2 were slowly varying with respect to the 
coordinates x2, x1, respectively, what we denote in a form: )(),( 2

1
11 ISVx εν ∈⋅ , )(),( 1

1
22 ISVx εν ∈⋅ . 

The introduced way of gradation can be a consequence of a slow variabilit y of the length of the 
fibres or a slow variabilit y of the saturation of these fibres. 

In the case under consideration, the functions v1, v2 are not periodical and the direct 
application of methods of asymptotical homogenization is not effective. Therefore, we are going to 
use a nonasymptotic method, known as the tolerance averaging technique [1]. 

2. Equations of a heat conduction 

For the described conductors is assumed that the heat conduction is held according to the 
Fourier’s law, i.e. is described in the area Ω × 〈t0, t1〉 by the equation 

(1) fcK lklk =−∂∂ θθ &)( ,   321 ,,, =lk  

where ),,,( txxx 321θθ =  is a temperature, ),,,( txxxff 321=  – a source of heat, c, K  = (Kkl) – a 

specific heat and a tensor of a heat conduction in Ω, respectively, which assume the constant values 
cM, M

klK  in the matrix of the conductor, cF, KF in the fibres. We also assume that in the fibres a one-

directional heat flow is held and FM
kl KK << . 

The thermophysical features of the medium will  be described with functions: c: Π → R, 
K : Π → R of the form as below: 
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)),(),((),( 12221121 xxxxccxxc FM νν ++= , 

),(),( 211112111 xxKKxxK FM ν+= ,     ),(),( 122222122 xxKKxxK FM ν+= ,  

(2) MKxxKxxK 1221212112 == ),(),(  

where vα  are λα-periodic functions with respect to x2 and x1, respectively, 0 ≤ vα ≤ 1, 1 − vα ≅ 1. 
The functional coeff icients (2) are oscill ating and non-continuous. They describe a 
micrononhomogeneity of the considered conductors. 

3. Averaged model 

According to the tolerance averaging technique, we carry out a micro-macro-decomposition 
of a temperature in a form: 

(3) ),,()(),,()(),,(),,( txxxtxxxtxxtxx 21
2

2
2

21
1

1
1

2121 ψϕψϕϑθ ++=   

where 

(4) )(),(),,( ∆∈⋅⋅ 1
εψϑ SVtt A   A=1,2 

for every t. 
The function ϑ(·), occurring in (3), can be interpreted as the macroscopic part of a 

temperature field θ(·), whereas the functions ψA(·) describe the microfluctuations of the temperature 
θ(·) in any part I1 × I2. These functions are the new functions to be sought. The functions ϕA(·, t) 
(shape functions) are linearly independent and must be known. 

According to the tolerance averaging technique, the equations for the sought functions ϑ(·), 
ψA(·, t), A = 1, 2, have the form [2]:  

>=<∂∂><+∂>∂<+><− fKKc AA ϑψϕϑ βααββααβ
&  

(5) ϑϕψϕϕψϕϕ βααββααβ ∂>∂<−>∂∂<−><− ABBABBA KKc & >=< Afϕ  

The equations (5) have a sense only if the functions )(),( ∆∈⋅ 1
εψ SVtA , i.e. they are slowly 

varying functions. This condition can be proved only a posteriori – when these functions are 
already known. 

4. Concluding remarks 

In the constructed nonasymptotic model occurs n + 1 equations for the temperature and 
fluctuations, whose determination depends on certain periodic and oscill ating functions called shape 
functions, which must be known. In the paper will  be presented such functions, according to the 
tolerance averaging technique. Moreover, the model will  be numericall y tested. 
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ABSTRACT 
 
Recently, the use of Optical Fibre Sensors (OFS) utilising Brillouin scattering effect for reading 
distributed measurements of temperature and strains has been addressed. Moreover for the strain 
readings, a few of technical devices were proposed for connecting the optical fibre sensor to the 
structure, in order to obtain better results in terms of accuracy of measurements. 
Recently, several authors have shown that, by means of distributed experimental strain readings, it 
is easy the safety monitoring and assessment of large structures as bridges, pipes, tall buildings, 
dams and tunnels. Moreover, the great utility of this new sensors were demonstrated by the authors 
for detection of defects rising in large structures, and accuracy and reliability of measurements were 
discussed. In foregoing papers some of the authors furnished the mechanical response of optical 
fibre, when this is embedded in a bearing support beam-like element, where OFSs are treated in the 
framework of elastic Functionally Graded Material Cylinders (FGMCs), under symmetrical load 
conditions. In this framework they obtained the complete set of the so called no-decaying solutions, 
which present axial strain in the system core-jacket not varying with the radius, and hence equal to 
the value assumed in the supporting element. Laboratory tests carried out on aluminium large rods 
in extension, and on wires for cables for suspended bridges, equipped with embedded-type optic 
fibre sensors showed the optimal accuracy of the distributed strains carried out by this new OF 
sensor. These results allow to facing a few of new applications, among which one of the most 
important is represented by the monitoring and identification of defects occurring in large structures 
such as trusses, suspension, or cable-stayed bridges. Namely, the problem of the identification of 
defects occurring in the wires constituting the cables for suspended or cable stayed bridges is one of 
the unsolved concern of the modern maintenance and monitoring bridge technology. As matter of 
fact, most part of these bridges suffers the corrosive action and the damage due to both natural and 
pullution agents present in the athmosphere. As already shown in several technical papers, several 
aggressive agents are able of strongly reducing the stiffness of the suspension cable system, and the 
corrosion processes are very fast being able of significant reductions  af stiffness also in a few of 
months. The stiffness of the cables is usually due by that of thousands of wires. The reduction of 
cable stiffness is usually related to effects of corrosion of wires related to their cross section 
reduction, as well as to the decrease of the Young modulus E due to chemical agents that modify 
the material. In the present paper the problem of detection of corrosion or other damage effect, 
acting on wires for cables suspension or cable-stayed bridges, will be addressed by using structural 
analisys methods coupled with the results of on field experimental tests on cables. 
The proposed identification procedure is based on a program of on-field test’s , in which the 
distributed strains   are measured on all the cables by means of Optical Fibre sensors. Eachone of 
the planned statical tests must be developed in the same conditions of temperature, without any 
noise effect (wind, vibration,..), and requests the application of the load distribution  q over the 
bridge beam. The paper shows that the structural problem can be solved theoretically by means of a 
modified Finite Element strategy, based on a linear system of equations expressing the stationarity 
conditions of  Total Potential Energy, in presence of the initial cable stiffnesses  . 

                                                 
* Corresponding author: e-mail: nunsci@unina.it; Tel.: +39-081-7683727 (Off ice); Fax: +39-081-575 6147  
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After the occurrence of corrosion or other damage effects able of significantly reducing the cable 
stiffnesses, the experimental distributed cable’s strain readings can be utilised in the same equation 
system, where the actual unknown cable stiffnesses are left as unknown parameters to determine. 
The outlined inverse procedure, by locking the cables's degrees of freedom to the values compatible 
with the measured cable’s strains, allows to obtaining both the actual reduced values of the cable 
stiffnesses and the free part of the degrees of freedom. As an example, a case study of identification 
of corroding effects appearing in a cable stayed bridge structure is also presented. 
Keywords: structural damage, defect identification, non-destructive tests, inverse structural 
problems, optical fibre sensor, distributed strain, rod structures, suspension bridge, cable-stayed 
bridge, Brillouin Scattering Effect. 
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1. Introduction  

Natural frequencies, which depend on geometry, material properties and support conditions of 

bodies, characterize the dynamical properties of structures. For structures of complex geometry and 

made of different materials, natural frequencies are usually calculated by the finite element method 

(FEM) or the boundary element method (BEM). The methods can be coupled in order to exploit 

their advantages and solve the problem more efficiently. 

The free vibration analysis of homogeneous plates by the dual reciprocity BEM (DRBEM) 

was presented for the first time by Nardini and Brebbia [2]. Albuquerque et al. [1] applied the 

method for the free vibration analysis of anisotropic plates. Górski and Fedeli
�

ski [3] used the 

DRBEM for determination of natural frequencies and mode shapes of non-homogeneous plates. 

In the present paper, the formulation and application of the coupled DRBEM and FEM in the 

free vibration analysis of stiffened plates is presented. The generalized algebraic eigenvalue 

problem is transformed into the standard one and solved. One numerical example is presented and 

frequencies for the reinforced cantilever plate, computed by the present method and the FEM, are 

compared.  

2. Formulation of the eigenvalue problem  

Consider a plate, occupying the domain :I
 and enclosed by the outer boundaries *1

I
 and *2

I
, 

reinforced by a stiffener, occupying the domain :II
, as shown in Fig.1. The *1

I
 and *2

I
 are parts of 

the boundary, where displacement and traction boundary conditions are prescribed, respectively. 

The boundary connecting the plate and stiffener (the interface) is *3
I{*3

II{*3
I,II

. The translational 

degrees of freedom of the plate and stiffener (beam) at the *3
I,II

 are coupled and the rotational ones 

of the beam at the *2
II
 are free. The subscripts 1, 2, 3 correspond to the fixed, free and common 

boundary and the superscripts I, II correspond to the plate and beam domain, respectively.  

 
 

Figure 1. A plate reinforced by a stiffener. 

The materials of the plate in plane stress or strain and the stiffener are linear elastic, isotropic 

and homogeneous. The plate is modeled by the DRBEM and the stiffener by the FEM. The 

numerical solution is obtained after discretization of the body into the curved boundary and straight 

beam finite elements. One boundary element along the *3
I,II

 is connected with two finite elements. 

The ideal connection at the nodes of the plate and stiffener is assumed. 

The detailed transformations and the resulting matrices are presented in the full length paper. 

The final algebraic eigenvalue problem for the body in Fig.1 has the following form  
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where H , G  and M  are the BEM modified coefficient matrices, K , T and M  are the FEM 

matrices, u2 and u3 are displacements at the free boundary and at the interface, respectively, t3 are 

tractions at the interface.  

3. Numerical example 

Both sides of the plate are symmetrically reinforced by four beams of channel sections as 

shown in Fig.2. The length and height of the plate is L=H=0.5 m, the dimensions of each beam are 

20u10u2u2 mm, and the other dimensions are l=h=0.4 m. The material of the plate (:I
) and beams 

(:II
) is PMMA in plane stress and aluminum, respectively. The values of mechanical properties for 

these materials are: modulus of elasticity EI=3.3 GPa and EII=70 GPa, Poisson’s ratio QI=0.42 and 

QII=0.34, density UI=1180 kg/m
3
 and UII=2700 kg/m

3
. 

 

 
 

Figure 2. A stiffened plate. 

 
Frequency [Hz] 

No. 
BEM/FEM FEM 

Difference

[%] 

1 398.57 398.86 0.07 

2 910.94 897.93 1.45 

3 902.06 902.74 0.08 

4 1501.0 1500.0 0.07 

5 1684.1 1672.6 0.69 
 

Table 1. Results of analysis. 

 

The total number of the boundary and finite elements in the BEM/FEM analysis is 112 (32 

elements at the interface) and 64, respectively. The total number of 4-node quadrilateral and beam 

finite elements in the FEM analysis by the MSC Nastran system is 2604 and 90, respectively. 

Table 1 shows the lowest five frequencies computed by the present BEM/FEM formulation 

and the FEM. A good agreement of the results can be observed, except of 2
nd

 frequency, which 

corresponds to the longitudinal mode shape, respectively.  

4. Conclusions 

The coupled DRBEM and FEM is presented in the free vibration analysis of stiffened plates. 

This approach results in reducing the size of the final system of equations in comparison with the 

FEM because only the outer boundary and the interface of the body are discretized. Due to simple 

modification of discretization, the method can be easily used in optimization problems.  
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1. Formulation of the problem

The paper is devoted to the multi-objective optimization of fibre-reinforced, multi-layered lam-

inates. Interply hybrid laminates are considered [1]. External plies of the laminates are made of

a stronger and more expensive material while internal plies are made of a weaker but less expensive

material.

The aim of the paper is to find the optimal set of ply angles and the number of plies made

of particular materials in order to satisfy contradictory criteria. In order to solve a multi-objective

optimization (MOO) task, the multi-objective evolutionary algorithm is employed. In the present

paper the Pareto attitude to the multi-objective optimization is used [2]. A MOO problem can be

expressed as searching for the vector of non-dominated (efficient) solutions x, which minimizes the

vector of k objective functions. The vector x is required to satisfy the m inequality and p equality

constrains.

A fibre-reinforced, symmetric hybrid laminates are considered. It is also assumed that laminates

are symmetrical - as a result there is no coupling between shell and bending states. The ply orienta-

tions (fibre ply angles) and the number of external plies of the laminate are the design variables. Two

objective functionals are taken into account:

1. The minimization of the structure cost. It is assumed that the thicknesses of plies hi, the number

of plies N and area of the plate Ai are fixed. The dimensionless cost C is calculated as follows:

C = [nece + (N − ne)ci] hiAi(1)

where: ne - the number of external plies; ce, ci - the unit costs of the external and internal ply materials,

respectively [1/m3].
2. The maximization of the fundamental eigenfrequency:

arg max{ω1(x); x ∈ D}.(2)

2. Multi-Objective Evolutionary Algorithm

Traditional, typically gradient optimization methods are fast and precise, but usually lead to

local optima. To increase the possibility of reaching the global optimum the global optimization

methods [4] are employed. Evolutionary Algorithms (EAs) are also very useful if the information

about the objective function gradient is hard or impossible to obtain. The only necessary information

for the EA to work is the objective (fitness) function value. As EAs work on a population of possible

solutions of the problem, the searching is multidirectional. Each possible solution is called a chro-

mosome and it consist of genes. In the real-value coding each gene typically represents one design

variable.

To solve presented multi-objective optimization problem the Non-dominated Sorting Genetic

Algorithm (NSGA-II) [3] has been used. In order to calculate the objective functions values the

boundary-value problem for laminates must be solved. The Finite Element Method (FEM) commer-

cial software has been used to solve the boundary-value problem for laminates.
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3. Numerical example

The aim is to find the optimal number of external plies and the optimum values of ply angles to

i) minimize the cost of the structure; ii) maximize the 1st eigenfrequenciy. A symmetric rectangular

hybrid laminate plate 0.5x0.2m stacked up of 18 plies of the same thickness h=0.0002m is considered.

The plate is divided into 200 4-node plane finite elements. The material properties and unit costs are:

i) for external material Me: E1 =181 GPa, E2 =10.3 GPa, ν12 =0.28, G12 =7.17 GPa, ρ =1600 kg/m3,

ce =6.0 1/m3; ii) for internal material Mi: E1 =38.6 GPa, E2 =8.27 GPa, ν12 =0.26, G12 =4.14 GPa,

ρ =1800 kg/m3, ce =1.0 1/m3.

The parameters of NSGA-II are: the population size ps = 50; the number of genes ng = 10;

the mutation probability pm = 0.1; the crossover probability pc = 0.8; the number of generations

gen = 100. Each ply angle could vary in the range of 〈−90◦; 90◦〉 every 5◦, 15◦, 45◦ or continuously.

The results in the form of Pareto solutions are presented in Figure 1.

Figure 1. Optimization results for 5o, 15o, 45o and continuous variants.

4. Final conclusions

The optimization of hybrid laminates has been performed. To satisfy contradictory criteria

the multi-objective optimization method in the form of multi-evolutionary algorithm has been used.

Positive optimization results have been obtained for all considered variants (discrete and continuous).
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The papers presents an original approach to stabilit y of prismatic beam/columns subjected to 
potential loading. In that number the force of constant direction, Euler load,  as well  as generalized 
follower force, which direction depends on actual deformation of the point of the force application 
are considered. The beam-column is modeled as elastic one with possible compressing 
deformation.. The stabilit y analysis is applied by means of static and kinetic approach.  

 
The static energy approach, reveals that transition from straight shape to the bend one depends 

directly on the energy of the system. This occurs at the point for which the bending energy is lower 
than energy of compressing, and it appears at the value of loading much lower than criti cal force. 
For higher values of loading the compressing proceeds with the stable bend shape until  the criti cal 
state, which occurs with the stable bend shape too. The criti cal state is defined by the potential 
energy of elastic deformation which is equal to the maximum value at this point.  

 
The analysis of kinetic approach reveals that depending on the value of loading the mode of 

vibration can change from the first to second one and inversely. The phenomenon of the change of 
the vibration mode is connected with the energy flow from the higher modes to the fundamental 
mode. Finall y the column loss stabilit y by divergence. Also in this case the criti cal state is defined 
by energy of the system. Moreover it is observed that, for selected set of parameters, the increase of 
loading can cause an increase of eigenfrequencies as in flutter systems. Such structure is called 
divergent pseudo-flutter systems.  
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1. Abstract. 

Helicopters suffer from high vibration relative to fixed wing aircraft because of a highly unsteady 

aerodynamic environment and rapidly rotating flexible blades. High vibration causes passenger 

discomfort, fatigue in rotor system components and increases likelihood of damage to critical 

avionics components in the helicopter. Vibratory hub loads are a major source of helicopter 

vibration and involve higher harmonic forces and moments. Passive vibration devices are often used 

to suppress vibration levels at some selected places in the helicopter body, such as the pilot’s seat. 

Passive devices include pendulum absorbers, anti-resonance systems and other vibration absorbers. 

A drawback of passive devices is the large weight penalty and rapid performance degradation away 

from the tuned flight condition. [1] 

In this paper, the focus is on optimizing a full three-dimensional helicopter blade structure. The 

passive optimization that is employed here is based on energy flow analysis models combined with 

Genetic Algorithm (GA) optimization technique [2]. The mentioned subject structure consists of a 

composite main part and a steel beam that connects main part to the hub which is completely 

modeled and analyzed by ANSYS. The optimization parameters include the number of layers, layer 

thickness, fiber orientation and the type of material for the composite constituents. These 

parameters are optimized with Genetic Algorithm (GA) to guarantee a minimum vibration transition 

from the vibratory loaded blade to the blade hub. Here, Genetic Algorithm (GA) which is a general 

optimization tool for searching of large, nonlinear, discrete, and poorly-understood design spaces 

that arise in many areas of science and engineering like the design and optimization of laminated 

composite structures is utilized. However, constrained optimization via the Genetic Algorithm (GA) 

is often a challenging endeavor, as the GA is most directly suited to unconstrained optimization 

problems. Note that, traditionally, external penalty functions are used to convert a constrained 

optimization problem into an unconstrained problem for GA-based optimization studies [3]. 

Therefore, here, the death, static, linear-dynamic, and a newly developed penalty function that is so 

called two-part penalty are employed for the GA design optimization of bending and lagging 

vibration transition with the minimum blade weight.
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ABSTRACT 

 

Consider a chiral slab of uniform thickness and interposed between two different micropolar elastic 

solid half-spaces. Let B1 be the plane boundary between the micropolar half-space (in which the 

incident wave is assumed to travel) and the chiral slab, and B2 be the plane boundary between the 

chiral slab and the other micropolar elastic half-space. A plane longitudinal displacement wave 

propagating through one of the micropolar elastic solid half-spaces is assumed to be incident on the 

chiral slab. A part of the energy carried by the incident wave will be reflected back from the 

boundary B1 into the incident medium and rest will be transmitted into the elastic chiral slab. A 

portion of the incident energy transmitted into the chiral slab will proceed to interact with the 

boundary B2. Here, again some part of the energy will be reflected and rest will be transmitted into 

the micropolar medium (not the incident one). These reflected waves will go back to interact with 

the boundary B1 and the process will repeat. 

 

The equations of motion without body force and body couple densities are given by 

For micropolar elastic solid (see Eringen [1])  

   

(  

For chiral medium (see Nowacki [2]) 

   

(  

 

The constitutive relations describing force stress tensor 2ij and the couple stress tensor mij  (i, 

j =1,2,3) are given by 

For micropolar elastic solid (see Eringen [1]) 
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For chiral solid (Lakes and Benedict [3]) 

).(

,)(

,3,,,

,3,,,

kijkijijjiijkkij

ijijjiijkkij

euCm

Cuuu

)��)�)�) 

)��� 

JEGD

PGOW
 

We shall discuss two–dimensional problem in x-z plane so that second-component of displacement 

vector, first and third components of the micro-rotation vector will not enter into the analysis. 

          There are two sets of boundary conditions possible at the micropolar - chiral interfaces, i.e., 

at B1 and B2.  

Set-I:  

(i) the continuity of displacement, (ii) the continuity of traction (normal component of stress), and 

(iii) the continuity of micro-rotation, i.e.,  
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Set-II:  

(i) the continuity of displacement, (ii) the continuity of traction (normal component of stress), and 

(iii) the continuity of the normal component of couple stress, i.e.,  
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where the superscript (1) indicates the incident micropolar elastic medium, the superscript (2) 

indicates the interposed chiral medium and the superscript (3) indicates the other micropolar elastic 

medium.  

Using Helmholtz decomposition of vectors into scalar and vector potentials, the equations 

of motion can be reduced to some wave equations (coupled and uncoupled). Assuming the 

appropriate form of potentials in the respective medium and employing the above boundary 

conditions, it can be seen that each set of boundary conditions gives a non-homogeneous system of 

eighteen equations in eighteen unknown. Both the sets enable us to determine the amplitude ratios 

of various reflected and transmitted waves. For each set of boundary conditions, the equations 

satisfying them are solved numerically to obtain the reflection and transmission coefficients. Each 

set is found to exhibit different expressions of the reflection and transmission coefficients. Various 

reflection and transmission coefficients are found to be the functions of the angle of incidence, 

frequency of the incident wave, elastic parameters of the media and the thickness of the interposed 

layer. The variations in the modulus of the amplitude ratios with the angle of incidence and with the 

frequency ratio are computed for a peculiar model and depicted graphically. The effects of the 

chirality parameter and the thickness of the chiral slab on various amplitude ratios are also studied. 

Numerical results reveal that for very thin slab, the variations in all the amplitude ratios with the 

angle of incidence are found to be smooth enough. But as the thickness of the chiral slab becomes 

significant, we obtain more and more fluctuations in the variations of these coefficients with the 

angle of incidence. Comparisons in the modulus of the respective amplitude ratios obtained from 

the two possible sets of boundary conditions are also observed and are depicted graphically. Some 

results of earlier researchers [4] and [5] have also been reduced as special cases of the present 

formulation. 
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A WEAK FORMULATION FOR THE LARGE DEFORMATION CONTACT PROBLEM

WITH COULOMB FRICTION

A. Le van and T.T.H. Nguyen
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2, rue de la Houssiniere - BP 92208, 44322 Nantes Cedex 3, France

1. Theoretical considerations

In this work, a weighted residual relationship involving both the displacements and a field of

multipliers is proposed as the weak form of the large deformation contact problem with Coulomb

friction in quasi-statics. It is shown that (i) the proposed weak form is equivalent to the strong form

of the contact problem and (ii) the multipliers are equal to the contact tractions.

Consider two bodies, indexed by superscripts 1 and 2, undergoing motions φ(1) and φ(2) in the

three-dimensional space during some time interval [O, T ]. Let us assume that the bodies may come

into contact with each other and formulate the contact problem using a Lagrangian description. The

notations, rather standard, are summarized as follows. The reference configuration of the two bodies

are represented by the regions Ω
(1)

o and Ω
(2)

o . The prescribed body force per unit mass in body i is

denoted f(i). The boundary S
(i)

o of body i is partitioned into three parts denoted S
(i)

oU
, S

(i)

oT
and S

(i)

oc ,

where S
(i)

oU
and S

(i)

oT
are the parts where displacements and tractions are prescribed, respectively, and

S
(i)

oc is the part where contact potentially takes place. The stress state in body i is defined by the first

Piola-Kirchhoff stress tensor Π
(i). The nominal traction vector at any point in S

(i)

o with normal vector

N(i) is denoted T(i) = Π
(i).N(i). The spatial counterparts of surface S

(i)

o is denoted S(i).

Given a point x ∈ S
(1)

c one defines a contact point y ∈ S
(2)

c as the closest point to x via

y = arg min
x(2)

∈S
(2)

c

‖x − x(2)‖, and the proximity as g = −ν(x − y) where ν is the outward normal

at point y. One also defines the point X ∈ S
(1)

oc related to point x in question by x = φ(1)(X) and

Y(X) ∈ S
(2)

oc related to point y by y = φ(2)(Y). The tangential kinematics is characterized by the slip

velocity VT = η̇αaα which is resolved in terms of the local spatial basis (a1, a2) at point y ∈ S
(2)

c .

Likewise, the nominal traction vector at any point X ∈ S
(1)

oc is resolved as T = TNν − TT . The

coefficient of friction is µ.

The weak form proposed here is stated as a mixed relationship which involves both the dis-

placement fields U(i), i ∈ {1, 2}, defined in Ω
(i)

o and the multiplier fields λN and λT defined on S
(1)

oc .

Accordingly, the weighting functions are the virtual displacements U(1)∗, U(2)∗, and the virtual mul-

tipliers λ∗

N
, λ∗

T
. All the functions involved in the weak form are assumed to be regular enough for

the integrations and differentiations to make sense. Two positive constants ǫN , ǫT being chosen, the

weighted residual relationship is given in the following proposition.

PROPOSITION 1. ∀t ∈ [O, T ],∀U(1)∗,∀U(2)∗,∀λ∗

N
,∀λ∗

T
,

(1)

∑

2

i=1

{

−
∫

Ω
(i)

o

Π
(i)T : ∇X(i)U(i)∗dΩo +

∫

Ω
(i)

o

f(i)U(i)∗dΩo +
∫

S
(i)

oU
∪S

(i)

oT

T(i)U(i)∗dSo

}

+
∫

S
(1)

oc

[

〈λN + ǫNg〉ν −
(

1 − 〈1 −
µ〈λN+ǫNg〉

‖λT +ǫT VT ‖

〉
)

(λT + ǫT VT )
]

(

U(1)∗(X) − U(2)∗(Y(X))
)

dSo +
∫

S
(1)

oc

{

(λN − 〈λN + ǫNg〉)
λ
∗

N

ǫN

+
[

λT −
(

1 − 〈1 −
µ〈λN+ǫNg〉

‖λT +ǫT VT ‖

〉
)

(λT + ǫT VT )
]

λ
∗

T

ǫT

}

dSo = 0

where ∇X(i)U(i)∗ is the gradient tensor of U(i)∗ with respect to variables X(i) ∈ Ω
(i)

o , 〈.〉 is the Macauley
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bracket: 〈a〉 = a if a ≥ 0, = 0 if a < 0, and 〈1 −
µ〈λN+ǫNg〉

‖λT +ǫT VT ‖

〉 must be replaced by 0 at any point on

S
(1)

oc where λT + ǫT VT = 0.

One can readily prove the following statement which means that the strong form implies the

weak one: the solution fields of the strong problem - namely (U(1), U(2)) in Ω
(1)

o , Ω
(2)

o and (TN , TT , VT )

on S
(1)

oc - satisfy (1), provided that one makes in that relationship λN = TN and λT = TT . Conversely,

the following proposition shows that the weak form implies the strong one.

PROPOSITION 2. By making some smoothness assumptions, which are not specified in this

abstract, it can be shown that (1) implies at any time t ∈ [O, T ] the following local equations:

(a) The momentum balance equation for the two bodies 1 and 2.

(b) The following relation on the boundary portion S
(i)

o \S
(i)

oc = S
(i)

oT
∪ S

(i)

oU
: Π

(i)N(i) = T(i).

(c) The equalities between the components of the nominal traction vectors and the multipliers

on the contactor surface S
(1)

oc : ∀X ∈ S
(1)

oc , T(1) = Π
(1)N(1) = λNν − λT . ⇔ TN = λN and TT = λT .

(d) The normal and tangential contact laws: ∀X ∈ S
(1)

oc , g(X) ≤ 0 where

. if g < 0, then TN = 0, TT = 0

. if g = 0, then TN ≥ 0, ‖TT‖ ≤ µTN

{

.if ‖TT‖ ≤ µTN , then VT = 0 (stick)

.if ‖TT‖ = µTN , then VT ∧ TT = 0, VT .TT ≥ 0 (slip)
(e) The following relationship which expresses the equilibrium of the traction vectors at the con-

tact interface: ∀X ∈ S
(1)

oc ,∀Y(X) ∈ S
(2)

oc , T(2)(Y)dS
(2)

oc = −T(1)(X)dS
(1)

oc , where dS
(1)

oc is a differential

reference area in S
(1)

oc and dS
(2)

oc its counterpart in S
(2)

oc .

2. Numerical examples

The weak form (1) has been discretized by means of the finite element method and the contact

tangent stiffness obtained by appropriately linearizing the contact terms. Several numerical examples

have been investigated on solid or membrane structures subjected to dead or following loads, with

hyperelastic or finite elastoplastic material models. A typical example is shown here, concerning the

contact between two hyperelastic beams, one of which being subjected at one tip to a follower force.
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Figure 1. Contact between two beams. (a) Reference configuration, 3D view of the mesh and in-plane view.

(b) Deformed shape and contact tractions at the last step in the frictionless case (c) Friction case with µ = 0.3.
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1. Introduction

This research considers off-line reconstruction of spatial and temporal characteristics of dy-

namic loads in linear and elastoplastic systems. The motivation is the need for a technique for efficient

a posteriori identification of the scenario of a sudden load, to be applied in black-box type systems.

There is an ongoing research effort in the field, see e.g. [2] for a relatively recent review. How-

ever, the structures are usually assumed to be linear and the generality of the considered loads is

limited to a single pointwise load with the location known in advance or determined in an additional

nonlinear optimization. Moreover, the reconstruction is often simplified by assuming stationarity of

the load. If a moving force is considered, it has a constant velocity. A number of papers deals with

single pointwise impact loads only and disregards all load characteristics besides the location. Papers

that do consider multiple independent loads, assume superfluous number of sensors.

The approach proposed here is aimed at the fully general case. In the so-called underestimated

case it allows to use a limited number of sensors to reconstruct general dynamic loads of unknown

locations, including simultaneous multiple impacts, freely moving and diffuse loads. However, this

is at the cost of the uniqueness of reconstruction, which can be attained only with additional heuristic

assumptions. This way an equivalent load is identified, which is observationally indistinguishable

from the actual load and optimum in a given sense. Additionally, the problem of optimum sensor

location is discussed.

2. Response to dynamic load and load reconstruction

At zero initial conditions, the discretized response ε of a linear system can be expressed by

means of a simple convolution equation ε = Bp, where the vector p collects the discretized loads

in all load-exposed degrees of freedom (DOF) and B is the system transfer matrix. The elastoplastic

behavior is included by combining the Virtual Distortion Method (VDM) [1] with the return mapping

algorithm. The convolution equation takes into account the effects of the plastic distortions β of the

yielding elements, ε =
[

BB
P
] [

p
T βT

]T
. The distortions β have to satisfy the constitutive law and

are nonlinearly dependent on the unknown load p [3]. Load reconstruction amounts to a deconvo-

lution: compare the measured εM and the modeled ε system responses, and obtain the excitation by

solving the resulting system of equations. For a linear system, it leads to a large and intrinsically

ill-conditioned system of linear equations, while an elastoplastic system yields nonlinear equations.

If the system is linear overdetermined, a unique load can be found relatively easily. In under-

determined linear systems, the unknown load can be split into two complimentary components: the

reconstructible component which can be reconstructed from the measurement, and the unreconstruct-

ible component. All information about the latter is lost in the measurement process, hence it cannot be

reconstructed, but can be assumed using heuristic postulates. In an elastoplastic system, three cases

are possible: strongly overdetermined case, in which there are more sensors than load-exposed DOFs

and yielding elements, overdetermined case and underdetermined case, in which there are fewer equa-

tions than unknowns. In the strongly overdetermined case, the load p and the distortions β can be

treated as uncoupled; the resulting equation can be considered linear and solved directly. The other

two cases lead to nonlinear problems, which can be solved by gradient-based optimization techniques.
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Figure 1. Numerical example: (top left) correlation plot for the two proposed sensor location criteria. Each

dot corresponds to one of 2047 considered locations of 1 to 11 sensors; (top right) assumed actual load evo-

lution; (bottom left) identification result for the linear system, four sensors and 5 % rms noise level; (bottom

right) identification result for the elastoplastic system, five sensors and 5 % rms noise level

3. Optimum sensor location

Optimum sensor location is crucial for the accuracy of the reconstruction. Two sensor location

criteria are proposed, based either on the dimension of the unreconstructible load subspace or on its

coincidence with a given set of expected or typical loads. These criteria tend to be negatively corre-

lated, thus a third, compound criterion is proposed, which can be seen as a single a priori measure of

reconstruction accuracy.

4. Numerical example

In the numerical example a 119 element truss structure is used. There are 100 measurement

time steps (of 0.1 ms) and 110 reconstruction time steps. Since 12 DOFs are load-exposed and four

(or five) sensors are used, the resulting system is a strongly underdetermined (1320 unknowns and

400 or 500 equations). The assumed testing load and the results are shown in Figure 1.
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SPARSE GRID AND EVOLUTION-TYPE ALGORITHM

IN SHAPE OPTIMIZATION FOR BECK’S COLUMN
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1Technical University of Koszalin, Koszalin, Poland

1. Introduction

The Beck column is defined as a column clamped at one end and subjected to a certain follower

force at the other. The force in this system is always tangent to the deflection line on a free end. After

passing critical value of acting force, the Beck column loses its stability in an oscillatory manner.

The problem was first investigated theoretically by Pfluger (1950) and solved by Beck (1952). The

solution was confirmed by several authors (Pfluger 1950, Leipholtz 1962, Deineko & Leonov 1955,

Kordas & Zyckowski 1963). Nowadays the follower force play important role in civil engeneering,

vehicle dynamics and earonautics. In this paper a new approach for finding columns with a higher

value of the critical force is presented.

2. New approach in optimization

The equation of motion for the Beck column is described in the following manner [2]:

(Su′′ + Pu)
′′

= −ρü .(1)

where:

u = u(z, t) - the unknown displacement function, P - the given constant longitudinal compressing

force, S = S(z) - the bending stiffness, ρ = ρ(z) - the mass density.

For the optimization of the parameters describing the shape, eg.1 has to be studied with approp-

priate bounadry conditions. We look for the maximum P , such that solution to (1) remain stable,

cf. [1], [3], [4]. Well known procedures are the steepest-descent, gradient method and Newton’s

method. In this paper a new approach for finding optimal shape of a column is applied. The evolution

algorithms (EA) [3] are used with sparse grid interpolation to speed up the calculation of objective

function. A process of calculating each combination of decision variable is time consuming.

The main idea consists of adapting a form of evolution for finding extrema of functions. At the

begining, the algorithm creates an initial population of individuals. Then operations of differentiation

are performed on the population. Those operations are selection and mutation. The individuals are

then evaluated by the objective function, which is called here the fitness function. The best-fitted

individuals are propagated to the next generation. The process is being repeated until suitable stopping

criteria are met.

The sparse grids interpolate the objective function with a special discretization technique thus a

smooth multivariate function can be approximated with a suitable interpolation formula. The reason

for involved spare grids is to speed up the calculation of objective function and restrict the area where

the EA searches for a optimal solution.

The object of optimization is the two-segment column jointed with a passive hinge. Below

graphs show a plot of interpolated function and the plot of errors function i.e. the difference between

real and interpolated values.
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Figure 1. Graph of interpolated critical load vs. position and the compliance of hinge.
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Figure 2. Graph of errors (the difference real and interpolated values) of objective function.

An application of sparse grids with combination of evolution algorithms is a new concept in the

optimization of column profile. On the future a column with more number of elements (with mutable

cross-section) are going to be analyzed.
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1. Introduction 

The problem of manufacturing imperfections and their influence on structural configuration is 
discussed in the paper. When a structure is composed of members with dimension imperfections, 
states of stresses, strains and displacements induced by external load will  vary and additionall y in 
hyperstatic structures self-equili brated states of stresses will  arise. The influence of these effects on 
the optimal design was analyzed in [3] and [4]. However, length imperfections even in unloaded 
structure may induce variations of geometry. The problem of determination of these changes for 
selected points of a structure, which can be called geometric sensitivity analysis, is studied in this 
paper. It is extension of the previous considerations presented in [2], and here also geometricall y 
nonlinear case is analyzed. It is important to notice, that the cumulative change in point position 
may be far greater then it would appear from the value of members tolerances and it even may 
cause that the structure will  reach unstable state corresponding to the limit point.   

2. Geometr ic sensitivity analysis – linear  case  

Let us consider a truss or a frame composed of members, which have nominal lengths 

nl,...,l,l   21 , where n  is the number of members. It is assumed that member lengths may deviate from 

their nominal values by tolerances )()(
2

)(
1  ,..., , l

n
ll ttt . The change of i-th member length arising directly 

from the tolerance can be expressed in the form )l(
ii

)t(
i tl α=∆ , where 1≤iα , n,...,,i  2 1= . 

The first problem analyzed here is to determine maximal translation w  in fixed direction of 
certain point (node) induced by considered tolerances. Let us introduce the adjoint structure without 
any dimension imperfections and with the same boundary conditions as the primary structure but 
subjected to force aPλ  applied in direction of the analyzed displacement w , where λ  is the load 
parameter and aP  denotes the reference load. Now, the virtual work equation for the primary and 
adjoint structures can be written in the form 

(1)               ∑ 







∫+∆=

=

n

i l
i

)c(a
g

)c(
i

a
i

a

i

dxMlNwP
1

κλ , 

where )c(
il∆ , )c(κ  are the total elongations of members and the total curvatures in the primary 

structure, while a
iN , a

gM  denote the normal forces and the bending moments in the adjoint 

structure. Let us notice, that analyzed tolerances induce self-equili brated state of stress with elastic 
elongations )t(

i
)c(

i
)el(

i lll ∆−∆=∆  and elastic curvatures )c()el( κκ = . Using for this state and for the 
adjoint structure the virtual work principle, we get 

(2)               .dxMlN
n

i l
i

)el(a
g

)el(
i

a
i

i

0
1

=∑ 







∫+∆

=
κ  

In order to obtain relationship for the translation w in the selected direction we should substitute 
equation (2) into (1). Now, it is easy to notice, that the maximal translation occurs, when )t(

il∆  
attain extreme values i.e. when 1=iα  or 1−=iα  and when for all  members it has simultaneously 

the same (or  simultaneously the opposite) sign as  corresponding force a
iN . So,  taking 1=aPλ , the 
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 maximal translation in fixed direction can be written as follows  

(3)               ∑=∑=
==

n

i

)l(
i

a
i

n

i

)l(
ii

a
imax

tNtNw
i 11

. max α
α

 

Now, let us consider problem of determination of maximal translation cw  of certain point 
(node) in arbitrary direction. We assume, that this direction forms unknown angle β  with axis x of 
the rectangular coordinate system x, y. The translation cw  can be determined using translations in x 
and y directions. Then, we have 

(4)               ( )∑ +=⋅+⋅=
=

n

i

)l(
ii

)y(a
i

)x(a
iy

a
x

a
c

a ,tsinNcosNwsinPwcosPwP
1

αβββλβλλ  

where )x(a
iN , )y(a

iN  denote forces in i-th member induced by unit loads 1=aPλ  applied respectively 
in x and y direction. Finall y, maximal translation can be determined as the solution of the following 
problem 

(5)               ( ) 





∑ +=
=

n

i

)l(
i

)y(a
i

)x(a
imaxc tsinNcosNw

1
  max ββ

β
.  

3. Geometr ic sensitivity analysis – non-linear  case 

In this case the adjoint problem is introduced by analogy to the incremental problem for the 
primary structure related to perturbation of the current equili brium state. Then, using finite element 
notation, equili brium equation for the adjoint structure can be written in the form aat Pλ&=uK  (cf. 
[1]), where tK  is the tangent stiffness matrix and au  denotes vector of displacements. The load 

aPλ&  is applied, as previously, in direction of the analyzed displacement w , where point over the 
symbol denotes increment of the quantity. Using approach analogous as for the linear case, we get 

(6)               ∑=
=

n

i

)l(
ii

a
i

a tNwP
1

αλ& .  

In order to obtain the maximal translation, non-linear equation (6) should be solved with respect to 
w , where values iα  are chosen analogously as in (3). It is important to notice that during 

incremental process of solving the problem (6), situation when 0=λ&  may appear and it corresponds 
to structure geometric instabilit y related to the limit point. 

4. Concluding remarks 

The problem of maximal translation determination for certain points (nodes) of truss or frame 
structures induced by length imperfections of their members, is discussed in the paper. Apart from 
the linear analysis, in order to reveal possible geometric instabiliti es of the limit point type, the 
considerations are also developed for the non-linear case. 
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The computational model of geometricall y non-linear elastic beam is frequently used for 
analysis of dynamics of one-dimensional distributed systems on unilateral elastic foundation. The 
problems of forced vibrations of deformable solids under unilateral constraints are nonlinear 
problems with conditions expressed in the form of inequaliti es. Besides, in most cases it is 
necessary to take into account the dissipation of energy that is caused by external viscous resistance. 

As a rule, capabiliti es of analytical methods for solving this type of problems are limited to 
discrete systems with a small  number of freedoms. That's why the principal role in solving forced 
vibrations of deformable solids under unilateral constraints belongs to numerical methods. A 
stabili zation method for computational modeling of geometricall y non-linear forced vibrations of 
elastic beams on unilateral Winkler foundation is presented. This method was used earlier for 
computational modeling of forced vibrations of viscoelastic solids under unilateral contact [1] and 
geometricall y non-linear forced vibrations of elastic beams without unilateral constraints [2]. 

It is well  known, that if damping is present in a system then initial conditions have 
considerable effect on forced vibrations of the deformable solids only during a limited period of 
time after which the system moves to a steady-motion state. Therefore, the main idea of this 
approach is that the T-periodical solution of the original problem can be found as a solution of the 
Cauchy problem when damping is present in the system. In this case initial conditions can be 
chosen arbitraril y. 

Beam deformation is described by the Timoshenko model. It is proposed that a value of 
resistance forces is proportional to velocity. Geometricall y nonlinear equations of motion for 
Timoshenko beam on unilateral Winkler foundation are as follows 
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where w  is the transverse displacement; γ  is the angle of rotation of the normal relatively to the 
axis of the beam; u  is the longitudinal displacement; M  is the bending moment; Q  is the shear 
force; N  is the normal force; ρ  is the mass per unit of length; F  is the area of the cross section; J  
is the moment of inertia of the cross section; q  is T-periodic transversal distributed load; c  is the 
foundation stiffness; φ  is the clearance between the beam and the foundation; )(H ⋅  is Hevyside 
function; ε  is the viscous damping coeff icient per unit of length. 

The forces Q , N  and the bending moment M  are related to the displacements w , u  and the 
angle of rotation γ  by the constitutive relations 
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where E  is Young’s modulus of the beam material; G  is the shearing modulus; 652 /k =  for a 
rectangular cross section. 

For definiteness the boundary conditions have the following form: 

00 == )l(w)(w ;     00 == )l(M)(M ;     00 == )l(u)(u . 

Through a standard variational procedure, we obtain the following variational equation: 
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where K is the set of the kinematicall y admissible beam displacements. 
This equation expresses the principle of admissible displacements for the elastic beam on 

unilateral Winkler foundation and includes only first spatial derivatives of the displacements. 
The finite difference method is used for time semi-discretization of the variational equation. 

The second and the first time derivatives are approximated with three-point central differences. As a 
result an explicit three-layer scheme is used for numerical time integration. The minimization 
problem which is equivalent to the obtained variational problem on each time step is derived. 

The finite element method is used for the spatial discretization of the minimization problem. 
Two-nodal and three-nodal Lagrange finite elements are used. 

A software package based on the described computational algorithm was developed. 
Numerical solutions of a number of problems were obtained and convergence of the computational 
algorithms was investigated. The influence of foundation compliance on the solution behavior was 
investigated. Specifics of amplitude-frequency dependencies of stresses and displacements were 
researched. It is known that an amplitude-frequency dependency for the elastic beam is not unique 
due to geometrical nonlinearity, i.e. a few values of the amplitude can correspond to the one value 
of the frequency near a resonance. It is a diff iculty for numerical solving. In this study the 
continuation method is used to derive the amplitude-frequency curves. The frequency of forced 
vibrations is chosen as a continuation parameter. The calculation was performed in two stages. On 
the first stage the frequency of forced vibrations was increased in the range under investigation. On 
the second stage the frequency was decreased from the maximum to the minimum values. The 
solution for the previous value of the frequency was used for the initial condition. 

Performed computational experiments confirmed effectiveness of suggested methods for 
solving problems of geometricall y non-linear forced vibrations of elastic beams on unilateral 
Winkler foundation. 
 
[1] A. Bobylov and E. Suturin (2005). Application of the stabili zation method for analysis of 

forced vibrations of viscoelastic solids under unilateral constraints. 8th Conference on 
Dynamical Systems – Theory and Applications, Lodz, Poland, 269-276. 

[2] A. Bobylov and A. Zubko (2007). Application of the stabili zation method for analysis of 
geometricall y nonlinear forced vibrations of an elastic beam. 9th Conference on Dynamical 
Systems – Theory and Applications, Lodz, Poland, 553-560. 
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LEVEL SET METHOD IN STRUCTURAL OPTIMIZATION

A. Myśliński

Systems Research Institute, Warsaw, Poland

1. Introduction

The paper is concerned with the numerical solution of a structural optimization problem for an

elastic body in unilateral contact with a rigid foundation. Shape optimization of contact problems is

considered, among others, in [3, 7] where necessary optimality conditions and numerical results are

provided. The material derivative method is employed in monograph [7] to calculate the sensitivity

of solutions to contact problems as well as the derivatives of domain depending functionals with

respect to variations of the boundary of the domain occupied by the body. Topology optimization

deals with the optimal material distribution within the body resulting in its optimal shape [1, 5, 8].

The topological derivative [8] is employed to account variations of the solutions to state equations or

shape functionals with respect to emerging of small holes in the interior of the domain occupied by

the body. The notion of topological derivative and results concerning its application in optimization

of elastic structures are reported in many papers (see references in [8]).

2. Problem formulation

In the paper the elastic contact problem with a given friction, described by Coulomb law, is con-

sidered. The displacement field of the body in unilateral contact is governed by an elliptic variational

inequality of the second order [2]. The structural optimization problem for the elastic body in contact

consists in finding such topology of the domain occupied by the body and the shape of its boundary

that the normal contact stress along the boundary of the body is minimized. The volume of the body

is assumed to be bounded.

3. Necessary optimality condition

Introducing an adjoint system and using the material derivative method we calculate shape

derivative of the cost functional in direction of the velocity field V with respect to perturbations of

the boundary of the domain occupied by the body. Asymptotic expansion method is used to calculate

topological derivative of this cost functional with respect to the inserting of a small ball at a point

inside the optimized domain. Formulae of these derivatives are provided [4]. These derivatives are

employed to formulate a necessary optimality condition for simultaneous shape and topology opti-

mization problem and to calculate descent direction in the numerical algorithm.

4. Level set method

In structural optimization the level set method [6] is employed in numerical algorithms for

tracking the evolution of the domain boundary on a fixed mesh and finding an optimal domain. This

method is based on an implicit representation of the boundaries of the optimized structure, i.e., the

position of the boundary of the body is described as an isocountour of a scalar function of a higher

dimensionality. While the shape of the structure may undergo major changes the level set function

remains to be simple in its topology. The evolution of the domain boundary is governed by Hamilton

- Jacobi equation. The speed vector field driving the propagation of the level set function is given

by the Eulerian derivative of the cost functional with respect to the variations of the free boundary.

Applications of the level set methods in structural optimization can be found, among others, in [1].
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Recently [9], different numerical improvements of the level set method employed for the numerical

solution of the structural optimization problems are proposed and numerically tested.

5. Numerical Methods and Results

The structural optimization problem is solved numerically as the simultaneous shape and topol-

ogy optimization problem. Contact system as well as the adjoint system are discretized and nu-

merically solved using finite element method and primal - dual algorithm with active set strategy.

Lagrange multiplier method is used to solve the structural optimization problem. First this problem is

solved as topology optimization problem and at grid points where the topology derivative is negative

the holes are created. Next shape optimization problem is solved. During this step in Hamilton -

Jacobi equation velocity field V is set equal to the calculated shape gradient of the cost functional.

Finite difference method and explicit up - wind scheme are used to solve Hamilton - Jacobi equa-

tion. Numerical examples indicating that the proposed numerical algorithm allows for significant

improvments of the structure from one iteration to the next are provided and discussed.

[1] G. Allaire, F. Jouve, A. Toader (2004). Structural Optimization Using Sensitivity Analysis and a

Level Set Method. Journal of Computational Physics, 194, 363-393.

[2] I. Hlaváček, J. Haslinger, J. Nečas, J. Lovišek (1988). Solution of Variational Inequalities in

Mechanics, Springer, New York.

[3] A. Myśliński (2006). Shape Optimization of Nonlinear Distributed Parameter Systems, Academic

Printing House EXIT, Warsaw, Poland.

[4] A. Myśliński (2007). Level Set Method for Optimization of Contact Problems, Research Report

RB/78/2007, Systems Research Institute, Warsaw, Poland.

[5] A.A. Novotny, R.A. Feijóo, C. Padra, E. Tarocco (2005). Topological Derivative for Linear Elastic

Plate Bending Problems. Control and Cybernetics, 34, 339-361.

[6] S. Osher, R. Fedkiw (2003). Level Set Methods and Dynamic Implicit Surfaces, Springer, New

York, New York.
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[8] J. Sokołowski, A. Żochowski (2004). On topological derivative in shape optimization, In: Opti-

mal Shape Design and Modelling, T. Lewiński, O. Sigmund, J. Sokołowski, A. Żochowski eds.,

Academic Printing House EXIT, Warsaw, Poland, 55-143.

[9] S.Y. Wang, K.M. Lim, B.C. Khao, M.Y. Wang (2007). An extended level set method for shape

and topology optimization, Journal of Computational Physics, 221, 395-421.
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INERTI AL MOVING LOADS

B. Dyniewicz and C. Bajer
Instituteof Fundamental Technological Research, Warsaw, Poland

1. Introduction

Theproblem of bridgespansunder amoving inertial load [1, 2] hasexisted sincethebeginning
of the railways development. Together with increasing velocity of trains, the influence of the wave
phenomenonis rising as well . Dynamic effects are generated by the load of train current collectors,
travelli ng throughthe power supply cable of the overhead contact line. Solutions of inertial moving
loadapplied to discretesystemsunfortunately arepractically not reported. Inertial force, whichshould
be considered as a couple of a force and a massis usually replaced by a spring-mass system. Finally
the problem is solved as a problem with a masslessforce. We must also emphasize that the ad-hoc
massdistribution between neighbouring nodes simply fails. In the case of the beam at low speed
ranges and low ratio of the moving massto the beam massresults exhibit errors. Unfortunately, such
formulations exist in spiteof awrongformulation andanalysis.

In this presentation the differential equations

Figure 1. Thepoint massmoving onthebeam.

of the motion of a string and beams were derived
from the Lagrange equation of the 2nd kind. More-
over, the direct solution of the differential equation
was obtained as an alternative solution. Both results
coincide. We also present the numerical approach
to the moving inertial load problem. Classical fi-
nite element methodwith Newmark timeintegration
scheme mentioned in fails. The space-time finite el-
ement method is the only methodwhich enables us
to describe the masspassing throughthe spatial finite element in a continuous way. We present the
solution in the caseof astringandaBernoulli -Euler beam.

2. Formulation

Themotionequation of thebeam under amovingmassm coupled with aforceP can bewritten
as follows

(1) EI
∂ 4u(x, t)

∂ x 4
+ ρA

∂ 2u(x, t)

∂ t 2
= δ(x − vt) P − δ(x − vt) m

∂ 2u(vt, t)

∂ t 2
,

where EI is the beam stiffness, N is a tensile force and ρA is a linear massdensity. Taking into
account beam terms, we impose four boundary conditions
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andtwo initial conditionsu(x, 0) = 0 , ∂u(x, t)/∂t|
t=0

= 0 . The equationcan not be easily solved
andwemust integrate it in anumerical way. Weuse thematrix notation here

(3) M











ξ̈1(t)

ξ̈2(t)
...

ξ̈n(t)











+ C











ξ̇1(t)

ξ̇2(t)
...

ξ̇n(t)











+ K











ξ1(t)
ξ2(t)

...
ξn(t)











= P ,



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 403

which results in a short form Mξ̈ + Cξ̇ + Kξ = P, where M, C and K are square matrices for
i = j = 1, 2, ..., n.

When we calculatethevalueof general coordinatesξi(t) for each i ton. Finally we can compute
displacements of thestring-beam u(x, t)

(4) u(x, t) =
∞

∑

i=1

ξi(t) sin
iπx

l
.

Displacements given in the example below are dimensionless. They were calculated in relation
to the static deflection u0 of the string-beam loaded in the mid point by the point force P : u0 =
u0s u0b/(u0s u0b). u0s and u0b are static deflections in the case of a string and a beam, respectively.
Themasstrajectory is depicted in Fig. 2.
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Figure 2. Masstrajectory for different speedsv (bending neglected).

3. Conclusions

Wedeal with theproblem of thenumerical treatment of themovingmassproblem. Thesolution
presented in the paper shows the way of mathematical analysis which results in a universal time
stepping procedure. It enables us to solve the problem with the arbitrary speed. The solution in
the case of the string exhibits discontinuous mass trajectory [3, 4] at the end support. This fact
influences high gradients of the solution at the final stage of the motion. This phenomenon is the
paradoxical property of thedifferential equationsince considering boundary conditionsweintuitively
expect smooth curves. Numerical results of the string vibrations exhibit goodaccuracy, comparing
with semi-analytical solution. In the caseof thebeam the coincidenceof both curves is perfect.

[1] C.E. Inglis. A Mathematical Treatise on Vibrations in Railway Bridges. Cambridge University
Press, 1934.

[2] L. Frỳba. Vibrations of solids andstructuresunder moving loads. Academia, Prague, 1972.

[3] B. Dyniewicz i C.I. Bajer. Paradox of the particle’s trajectory moving ona string. Arch. Appl.
Mech., 2008. DOI: 10.1007/s00419-008-0222-9.

[4] C.I. Bajer i B. Dyniewicz. Space-time approach to numerical analysis of a string with a moving
mass. Int. J. Numer. Meth. Engng., 2008. DOI: 10.1002/nme.2372.
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1. Introduction 

Materials are rather complex systems described by a number of characteristic parameters 
(CPs), conservation laws and phenomenological equations, together with boundary and contact 
conditions. All  these relations are engaged to simulate the development of the material system, 
mostly under simpli fied conditions. The extraction of the time evolution of the CPs from the 
solution is often impossible. Therefore, we start with the Thermodynamic Extremal Principle 
(TEP), proposed by Onsager in 1931 for heat conduction and 1945 for diffusion, which allows a 
direct derivation of the evolution equations for CPs in the case of slow processes at elevated 
temperatures, e.g. diffusive processes, dealing with linear non-equili brium thermodynamics. 

2. The Thermodynamical Extremal Pr inciple (TEP) 

The TEP is outlined shortly as following, for details see e.g. [1]. We have CPs denoted as 

( ), 1,...iq i N= , e.g. concentrations etc., and their rates iq& , The total Gibbs energy of the system is 

supposed to be ( )1,...., NG q q  with its rate ( )
1

N

i i
i

G G q q
=

= ∂ ∂∑& & . Linear constraints exist in the form 

1

0, 1,...
N

k ik i
i

C a q k m
=

= = =∑ & . We define a dissipation hQ  as a positive homogeneous function of the 

1,.... ,Nq q h& &  with h being the order homogeneity. This dissipation function Qh reflects the power 

generated by the evolution of the internal variables. We look now for a maximum of Qh constrained 
by 0hQ G+ =&  and the constraints 0, 1,...kC i m= = . The result are evolution equations for the iq&  as 

(1)  
1 1

, 1,....,
N m

ij j i k k
j k i

G
U q a i N

q
β

= =

∂+ = − =
∂∑ ∑& , 

if Qh is a quadratic function ( )1
, 1

,...
N

ij N i j
i j

U q q q q
=
∑ & & . The kβ  are Lagrange multipliers. 

It is interesting to note that the TEP may be equivalent to the minimization of 

( )1 1,... ; ,....N NG q q q q∆+& & &  with ∆  being a dissipation potential for a wide class of functions as shown 

by Hackl and Fischer [2], yielding for homogeneous functions hQ h∆= . 

3. Application of the TEP 

The first application of TEP is demonstrated on grain coarsening both with grain boundary 
motion and additionall y diffusion in the matrix in the case of coarsening of precipitates, for details 
see [3]. If the grain radii  are chosen as those parameters, the application of the TEP reproduces 
Hill ert’s classical evolution equations for the radii  of individual grains (multigrain concept). The 
observed or calculated ensemble of grains is usuall y classified by a grain radii  distribution function 
involving a certain number of parameters. A new concept [4] is now represented by the direct 
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application of the TEP to the radii  distribution function by derivation of the evolution equations for 
its parameters (distribution concept). The kinetics of systems with bimodal and different 
monomodal starting distribution functions are calculated by means of both multigrain and 
distribution concepts and the results of simulations are compared and discussed. The dissipation of 
the grain coarsening process is evaluated, and it is shown that the width of the distribution function 
decisively influences the coarsening kinetics. 

The second application deals with a chemicall y driven inelastic deformation in systems with 
non-ideal sources and sinks for vacancies. As thermodynamic forces generalized chemical 
potentials including both chemical and mechanical terms appear together with an evolution law for 
the vacancies, [5]. As a representative example the inelastic deformation state in a Fe-Mn-C 
bamboo-structured wire is demonstrated in dependence on the activity of sources and sinks for 
vacancies at dislocation jogs in the bulk. Sources and sinks for vacancies are supposed to be ideal at 
grain boundaries. Fig. 1 shows the axial strain along a wire with the dimension-free length 2 and 
two grain boundaries ( )0.5, 1.5x x= =  at a certain time instant for different jog densiti es 2Lρ ; 

details can be taken from [6]. 

 

Figure 1. Chemicall y driven longitudinal strain in a wire. 
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MICROMECHANICAL MODELLING OF PSEUDOELASTIC SMA POLYCRYSTALS

UNDER NON-PROPORTIONAL LOADING

S. Stupkiewicz and H. Petryk

Institute of Fundamental Technological Research (IPPT), Warsaw, Poland

1. Introduction

This work is concerned with micromechanical modelling of polycrystalline shape memory al-

loys (SMA) undergoing stress-induced martensitic transformations. In our previous papers [1, 2, 3],

a micromechanical model of stress-induced phase transformation in SMA single crystals has been

developed, starting from transformations of the atomic lattice structure and using exact compatibility

conditions on the interfaces. In this model, sequential application of the micro-macro transition for

rank-one laminates combined with a local phase transformation criterion provides overall response

of a single crystal of a higher-rank laminated microstructure varying with the overall deformation.

The transformation criterion is rate-independent with a threshold value for the thermodynamic driv-

ing force acting on a phase transformation front, including in this way the intrinsic dissipation due to

phase transition. Selection of an optimal microstructure for the actual type of loading, from a number

of different possibilities, is based on the transformation criterion, and the corresponding procedure

can be interpreted as minimization of the incremental energy supply [4]. That approach is extended

here to the scale of a polycrystalline aggregate, with the focus on the effect of interaction between

neighbouring grains. The proposed grain-to-polycrystal transition scheme bears a resemblance to that

developed recently in [5] in a different context, namely, for the prediction of texture development in

plastically deforming metals.

2. Multi-scale model

The stress-induced martensitic transformation is assumed to proceed by the formation and evo-

lution of microstructure at several scales, starting from the scale of the crystalline lattice, through the

intermediate scales of martensite–martensite and austenite–martensite laminates, up to the scale of a

single grain with complex multi-variant martensitic microstructures. The response of a single grain

is fully defined by specifying the average Helmholz free energy φ̄ (e.g. [6]) and dissipation function

D̄. Selection of the active transformation mechanisms, i.e. the evolution of the microstructure, is then

performed by minimization of the incremental energy supply [4],

∆E → min subject to kinematical constraints,(1)

where ∆E = ∆φ̄ + ∆D̄ + ∆Ω, the prefix ∆ denotes a virtual increment from a given state, cor-

responding to a given increment of an external control parameter, and ∆Ω is the increment in the

potential energy of external loads.

In order to realistically describe the pseudoelastic response on non-proportional loading paths,

the dissipation is assumed to comprise two components,

∆D̄ = fc|∆η̄| + fr|∆η̄r|,(2)

associated with the increment ∆η̄ in the volume fraction of martensite due to the forward or reverse

austenite–martensite transformation, and with the volume fraction ∆η̄r of reoriented martensite.

Interaction of grains is accounted for by assuming that the polycrystal is an aggregate of bi-

crystals, each formed be a grain boundary, of fixed orientation, and by parts of two adjacent grains.



36th Solid Mechanics Conference, Gdańsk, Sept. 9–12, 2008 407

Compatibility conditions (equilibrium and displacement continuity) on the grain boundary are en-

forced on the average stresses and strains within each sub-grain. The average stress and strain of a

bi-crystal is can be further averaged over the aggregate of differently oriented bi-crystals using any

of the available grain-to-polycrystal transition schemes. At this stage, the effect of crystallographic

texture can be easily included in the model by choosing preferential orientations of the grains.

3. Model predictions

The model has been applied to predict the pseudoelastic response of polycrystalline NiTi on

proportional and non-proportional loading paths. Sample results are presented in Fig. 1. For instance,

from Fig. 1(a) it is seen that the bounds corresponding to the Taylor and Sachs models are significantly

improved when these schemes are combined with the bi-crystal model.
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Figure 1. Predictions of the pseudoelastic response of polycrystalline NiTi for (a) uniaxial compression and

(b) non-proportional tension–torsion loading (compared to the experimental results of McNaney et al. [7]).
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(a) Relation between torque and angle of twist. 

Fig.1. Results of torsion test for heat-treated material. 

(b) Relation between torque and temperature 
in the loading process. 
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TORSIONAL DEFORMATION AND ROTARY DRIVING 
 CHARACTERISTICS OF SMA THIN STRIP 

 
 

H. Tobushi1, E. A. Pieczyska2, W. K. Nowacki2, T. Sakuragi1 and Y. Sugimoto1 
1 Department of Mechanical Engineering, Aichi Institute of Technology, 

1247, Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan 
2 Institute of Fundamental Technological Research, Polish Academy of Sciences,  

Swietokrzyska 21, Warsaw, 00-049, Poland 
 
 

1. Introduction 

Shape-memory alloys (SMAs) have played a leading part in research into smart materials. The 
main characteristics of SMAs are the shape memory effect (SME) and superelasticity (SE). Using the 
torsional deformation of a TiNi SMA tube, twist in the blades of rotor aircraft was investigated in 
order to improve the flight performance. In practical applications making use of SMA thin strips, 
torsional deformation can be obtained simply by gripping both ends without any mechanical process. 
In the present study, the torsional deformation properties of a TiNi SMA thin strip are investigated. 
The characteristics of energy storage, dissipated work and fatigue are also investigated. 

2. Relationship between torque and angle of twist 

The relationship between torque M and angle of twist per unit length θ for the heat-treated 
material as obtained from the torsion test is shown in Fig.1.As can be seen from Fig.1(a), M increases 
with an increase in θ. At room temperature, a large residual angle of twist per unit length appears after 
unloading, giving evidence of the SME. At T = 333K, since T is As < T < Af and therefore there is a 
partial effect of superelasticity in which the reverse transformation does not completely occur, a 
residual angle of twist appears after unloading. At temperatures above 343K, the angle of twist 
recovers during unloading and no residual angle of twist appears. As can be seen from the 
relationship between torque and temperature in the loading process, shown in Fig.1(b), torque M 
increases in proportion to temperature rise T-Ms for the same angle of twist per unit length θ at 
temperatures above As. The slope increases in proportion to θ. 
I shall  next discuss the relationship between torque M and angle of twist φ based on the evidence of 
the elastic deformation due to torsion. In the case of torsion in a bar of rectangular cross-section of 
width w and thickness t, the angle of twist per unit length θ is express by using modulus of rigidity G. 
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Considering the fact that the M-θ and M-(T-Ms) curves in the loading process are close to straight 
lines, the relation becomes 

(1)  ( )sMTGawtM −= θ3  

where the factor a depends on the ratio w/t. The values of G at temperatures above and below As differ 
in a ratio of about 3 : 1. By taking the average value G = 20GPa and a = 1.61�10-2K-1, the calculated 
results can be found as shown by the solid lines in Fig.1(b). 

3. Energy storage and dissipation 

The area under the loading curve of the relation between the torque and the angle of twist 
corresponds to work done during loading. The area under the unloading curve corresponds to the 
recoverable strain energy Er. The area inside the hysteresis loop during loading and unloading 
corresponds to the dissipated work Wd. 

The relations between Er and Wd and temperature T at θ = 78.5rad·m-1 (total angle of twist φ = 
π) for the heat-treated materials are shown in Fig.2. As can be seen, Er increases markedly in 
proportion to T as the torque during unloading increases with increasing temperature. The relation 
between Er and T is expressed by a linear equation: Er=b(T-As) for b=3.68mJ � K-1, where As denotes 
the reverse transformation starting temperature under no stress and As=295K. 

On the other hand, as can be seen in Fig.2, the dissipated work Wd decreases graduall y with an 
increase in temperature T. The rate of decrease in Wd is small  and Wd is only slightly dependent on T.  

4. Torsion fatigue properties 

The relations between amplitude of the twisting angle per unit length θa and the number of 
cycles to failure Nf for the as-received and heat-treated materials obtained from the torsion fatigue test 
are shown in Fig.3, expressed on a logarithmic scale. 

As can be seen in Fig.3, the number of cycles to failure Nf decreases with an increase in the 
amplitude of the twisting angle per unit length θa. This relation is approximated by a straight line on 
the logarithmic graph. The fatigue li fe curve in the region of low-cycle fatigue seems therefore to be 
expressible in an equation similar to that already obtained for the fatigue li fe curve of TiNi SMA 
wires under bending. This can be seen in Eq.(2) 

(2)  αθ β =fa N�    for        
received-As : mrad280   0.15, 

treated-Heat : mrad580   0.20, 
1-

-1

⋅==
⋅==

αβ
αβ  

where α and β represent θa where Nf = 1 and the slope of the logθa-logNf curve, respectively. The 
calculated results obtained from Eq.(2) are shown by solid lines in Fig.3. 

Fig.2. Dependence of Er and Wd on temperature at  
θ = 78.5rad � m-1 (φ = π) for heat-treated material 

Fig.3. Fatigue li fe curves of SMA  
thin strip for torsion. 
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STRESS-INDUCED MARTENSITE TRANSFORMATION IN TINI SMA - 
EXPERIMENTAL ESTIMATION OF ENERGY BALANCE 

 
E.A.  Pieczyska 

 Institute of Fundamental Technological Research, Warsaw, Poland 
 

An equation for energy balance of the martensite forward and reverse transformation in shape 
memory alloy (SMA) on the basis of the laws of thermodynamics, applied to homogeneous 
thermodynamical processes [1], under some assumptions was obtained:   

ρ
σα

ρ
γ

ρ
γσ ∆−++=+ T

dzAM
c

dz
z

dqdTc SS
M

p )(
2

1)(
   ,  where: 

dTc p - the heat related to the SMA specific heat; dq - the heat exchange with surroundings;  

( / )γ σ ρ dz -  the work done by testing machine in order to deform the specimen; 

dzAM
c

SS
M )(

2

1 +
ρ

γ - the term of thermomechanical couplings, related to martensite formation.  

The last part of the equation, called piezocalorimetric effect, is neglected in the analysis, since 
its value is not significant. For example, for 39K, recorded for the highest strain rate 10-1s-1 , is as 
follows:-10x10-6/K x 312K x 800MPa/ 6.45g/cm3 =0.38 [J/g]. So as average contribution, 0.19 [J/g].  

Parameters of the martensite transformation; SSM AMc ,, , γ  were identified from tension test 

carried out on the TiNi shape memory alloy at three various temperatures with very low strain rate. 
As a result, it was found: 07.0,282,228,/62.5 ==== γKAKMKMPac SSM . The value of 

/K 10x10-6=α  has been given by the TiNi SMA producer - Furukawa Electric Co., while the 
material density  36.45g/cm=ρ was measured by the author. Basing on the above equation, 
completed by the estimated material parameters as well  as by the thermomechanical data found for 
the TiNi shape memory alloy tension tests performed with various strain rates, an energy balance 
for the stress-induced martensite transformation has been calculated. Thermal data, namely the 
temperature increase accompanying the exothermic martensite forward transformation, and the 
temperature decrease, accompanying the reverse endothermic transformation, were recorded in 
contact-less way by a high qualit y infrared camera. The calculations have been made for three 
various strain rates; 10-1s-1, 10-2s-1 and 10-4s-1. Finall y, the following data, depending on the strain 
rate, were estimated.  

 

ε& =10-1s-1; MARTENSITET∆ =39K, REVERSET∆ =36K,γ =0.07, z=0.95, Mc =5.62MPa/K,Ms=228K, As=282K 

During the martensite transformation:  
17.94 [J/g] + q = 6.17 [J/g] + 14.77 [J/g]; so the estimated heat exchange q = 3.0 [J/g]. 

During the reverse transformation: 
-16.56[J/g] + q=-3.28 [J/g]-14.77[J/g], so the estimated heat exchange q =-1.49 [J/g].  
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ε& =10-2s-1; MARTENSITET∆ =34K, REVERSET∆ =35K,γ =0.07, z=0.95, Mc =5.62MPa/K, Ms=228K, As=282K 

During the martensite transformation:  
15.64 J/g + q = 5.89 J/g + 14.77[J/g]; so the estimated heat exchange q =5.02 [J/g].  

During the reverse transformation: 
-16.1 [J/g] +q =-2.89 [J/g]-14.77 [J/g]; so the estimated heat exchange q =- 1.56 [J/g. K].  
 

ε& =10-4s-1: MARTENSITET∆ =4.2K, REVERSET∆ =-1, γ =0.07, z=1, Mc =5.62 MPa/K, Ms=228K, As=282K 

 
During the martensite transformation: 

1.93 [J/g] + q = 4.59 [J/g] + 15.55 [J/g]; so the estimated heat exchange q = 18.21 [J/g].  
During the reverse transformation:  

-0.46J/g+ q =-1.17 [J/g]-15.55 [J/g]; so the estimated heat exchange q= - 16.25 [J/g]. 
 
One can notice that irrespective of the strain rate applied, the heat of the new phase formation is 

much higher than those, supplied by the testing machine in order to deform the TiNi specimen, so 
the obtained results confirm the prediction of the phase transformation in SMA theory [1]. 
Furthermore, as it was found from comparison of the obtained results, the higher the strain rate, the 
higher the temperature changes and the lower the heat that transfers to the surroundings. So the 
obtained data of the martensite transformation energy balance seem to be reasonable.  

Acknowledgments: The research has been partly carried out with the financial support of the Polish Ministry of Science and Higher 
Education under Grant No. N N501 0106 33. The experiments were performed with contribution of W.K. Nowacki and S.P. Gadaj to 
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INFLUENCE OF PLASTIC DEFORMATION ON STRUCTURAL CHARACTERISTICS 

AND LONG-RANGE ORDER IN Ni3Al ALLOY 

S. Starenchenko, I. Radchenko, V. Starenchenko

Tomsk State University of Architecture and Building, Tomsk, Russia 

1. Introduction

The interest in the intermetallic alloy Ni3Al due to its unique properties is kept up for a long 

time. Properties of alloy are connected with a high ordering energy. The long-range order remains 

up to the melting temperature. However, plastic deformation essentially can change a structural state 

of alloy Ni3Al [1], decrease the long-range order degree and even can lead to its full destruction. 

2. Experimental procedure 

In this work the study of structural characteristics of the coarse-crystalline alloy Ni3Al 

deformed by cold-rolling at a room temperature is presented.  

The X-ray diffraction was used to determine the average internal strain, the crystallite sizes 

and the average size of antiphase domains based on the Hall-Williamson analysis of peak 

broadening [2]. The degree of the long-range order was determined from the ratios of the intensities 

Iss of the superlattice reflections (100) and (110) to the intensities If of the fundamental reflections 

(200) and (220), respectively, with allowance for necessary factors such as the multiplicity factor P, 

angular factor Φ and structure factor F: 

η
2
 = Iss(PΦF

2
)f / If(PΦF

2
)ss 

The long-range order parameter, the average size of the antiphase domains, the average size of 

the areas of coherent dispersion, microstresses and parameters of a crystal lattice are measured with 

the X-ray methods. Change of these characteristics during deformation gives the information 

necessary for understanding the phenomena, occurring at deformation of alloys, and also 

mechanisms of deformation-induced disordering. 

3. Results and discussion

Experimental study has showed that the initial state of the alloy Ni3Al was the two-phase 

(γ′+γ). The reflexes (220), (311) � (222) of the ordered (γ′→L12 superstructure) and the disordered 

(γ→A1 structure) phases overlap each other. The volume fraction of the ordered phase is about 0.75. 

It is suitable to the binary constitutional diagram of system Ni-Al. The effective long-range order 

parameter is η=0.86±0.05 whereas the long-range order parameter within of the ordered phase is 

η=1.00±0.05. During deformation the effective long-range order parameter decreases (fig. 1.a.1). 

This decrease occurs because of destruction of the long-range order in local places. Fig.1.a.2 shows 

the change in the long-range order parameter within of the ordered phase. It will be observed it is 

accompanied with the emergence of the defective disordered phase. The volume fraction of the 

disordered phase, which appears in the deformed alloy, is shown in fig. 1.b. The phase composition 

of the deformed material becomes more complex. There are three different phases. The secondary 
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Fig. 1. Dependence: a) 1 - the effective long-
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range order parameter of ordered phase; b) 1- 
the volume fraction of disordered phase 
(experimental); 2 - the volume fraction of dis-
ordered phase (calculated) on the degree of 
strain in the Ni3Al alloy 

disordered phase occurs besides the initial ordered and disordered phases. It exhibits that the strain-
induced order-disorder phase transition is 
heterogeneous. 

During deformation there is the increase of the 
defects within the material, growth of microstresses, 
reduction of size of the areas of crystallit es and 
antiphase domains, increase in a crystal lattice 
parameter. The dependence between the effective long-
range order parameter and density of the deformation 
antiphase boundaries is obtained. It is noticed that full  
destruction of the long-range order in the alloy Ni3Al 
even after deformation ε=0.95 does not occur. It is 
possibly connected with a high value of the ordering 
energy of the alloy. The effect of the plastic deformation 
on the state of this alloy is carried out under the 
following scheme: 

sec22 11111 ALALA inin ++→+
ε

 

 
 

0,0 0,2 0,4 0,6 0,8 1,0

2

4

6
2

1

ε

3

∆d
/d

 x
 1

0 
3

 

<
L>

, <
D

>,
 n

m

0,0 0,2 0,4 0,6 0,8 1,0

0

50

100

150

500

3

ε

2
1

 
Fig. 2. Dependence of microdistortions ∆d/d in the 
[111] (1), [100] (2) directions and average in all  
directions (3) on the degree of strain in the Ni3Al alloy  
 

Fig. 3. Dependence of the average size of the 
crystallit es (1), the average size of the antiphase 
domains (2), the average size of the fine antiphase 
domains (3) on the degree of strain in the Ni3Al alloy 
 

A mathematics model of strain-induced destruction of the long-range order in the alloys with 
L12 superstructure [2] demonstrated that among different mechanisms of the generation of the 
antiphase boundaries, such as 1) the accumulation of thermal APBs by means of the intersection of 
moving dislocations; 2) the formation of APB tubes; 3) the multiplication of superdislocations; 4) 
the movement of single dislocations; 5) the accumulation APBs at the climb of edge dislocations, 
only the movement of single dislocations and the formation of APB tubes play the more important 
role for destruction of the long-range order. However every other mechanism is needed to prepare 
the action of the most effective mechanisms. 
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ESTIMATION OF MATERIAL EFFORT DURING DRYING PROCESSES  
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ABSTRACT 

 
One of the main problems accompanying drying of saturated porous materials (e.g. ceramics, 

wood, and others) is the problem of cracking initiated by the drying induced stresses. This destruc-
tive effect appears very often at the surface of dried products, but not always. Sometimes cracks 
occur in a strange place inside the material. The reason for that is of different nature as, for exam-
ple, the pre-existing flaws, the stress reverse phenomenon, or the accumulation of energy coming 
from several components of the stress tensor.    

The aim of this paper is to discuss in more detail  the problem of mechanical energy accumula-
tion as well  as the effort of material under drying according to the energetic hypothesis. This hypo-
thesis allows calculating the overall  stress, which is necessary to formulate the strength condition 
for a given material. Such an approach is always necessary when more components of the stress 
tensor appear in a dried sample. 

The problem of energy effort in dried materials is very complex as the mechanical properties 
of such materials change themselves during the process. In order to grasp adequately this problem 
one has to use a mechanistic model of drying, in which the mechanical coeff icients have to be de-
pended on the moisture content. Only such a model may allow to obtain the adequate values of the 
stress components and to calculate properly the overall  stress.  

On the other hand the admissible stress, which has to be determined for the purpose of the 
strength condition, also changes itself along with the moisture content variation. This stress has to 
be determined in separate experimental tests for given material, similarly as the mechanical coeff i-
cients that are involved in the drying model. 

The objective of the present consideration is the analysis of the stress state in a cylindricall y 
shaped sample made of kaolin-clay and subjected to convective drying. The distribution of stress 
components throughout the cylinder and their evolution in time is determined. These stress compo-
nents allow calculating the overall  stress as a function of place and moisture content. The map of 
the cylinder space presenting the points of possibly violated strength condition is given.  

Distributions and time evolutions of liquid content X (dry basis) and temperature T are deter-
mined for the first and second period of drying using the differential equations that include the 
phase transitions of liquid into vapour and the diffusive and thermodiffusive moisture transport, [1]: 
 

)()(2 XcTcXcTcDX XTXTX +−+∇= Ω& ,         )(2 XcTc
c

lTDT XT
v

sT +−∇=
ρ
Ω

&  
(1) 

 
where DX and DT denote the mass and thermal diffusivity, cX and cT express the ratio of diffusion 
and thermodiffusion, Ω expresses the intensity of phase transition of liquid into vapour, l is the la-
tent heat of evaporation, cv is the specific heat, ρ s is the density of dry body, and ∇2 denotes the 
Laplace operator in cylindrical coordinates. 

The boundary conditions for the heat and mass transfer express the convective exchange of 
heat and vapour between cylinder and the ambient air, and the symmetry conditions with respect to 
the middle of the cylinder. The initial conditions assume the uniform distribution of moisture and 
temperature.  
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The following system of two coupled equations is used for determination of radial and longitudinal 
displacements  ur and uz  

 

( )[ ]
2

2

r

u
MXTAM

r
uM r

XTr =−−+
∂
∂+∇ γγε ,   ( )[ ] 02 =−−+

∂
∂+∇ XTAM
z

uM XTz γγε  
(2) 

 
where γT = (2M + 3A)κ(Τ)

, γX  = (2M + 3A)κ(X), ( )Tκ  and ( )Xκ  are the coeff icients of linear thermal 
and humid expansion, ε is the volumetric strain, M(X) and K(X) are the elastic shear and bulk mod-
ules dependent on moisture content. 

Since no any external surface forces acting on the cylindrical sample the radial and longitudinal 
stresses on the external surfaces equal zero. The other two boundary conditions assume zero-valued 
radial and longitudinal displacements at cylinder axis and at the bottom of the cylinder, that is 

 
0==Rrrrσ ,        0==Hzzzσ ,           ur|r = 0 = 0     and       uz|z = 0  = 0 (3) 

 
The state of stress in the cylinder is full y described by the components σrr, σϕϕ, σzz, σrz, where  

 

( ) ijXTijij XTAM δγγεεσ −−+= 2 ,          ( )ijjiij uu ,,2

1 +=ε ,     
z

u

r

u

r

u zrr

∂
∂++

∂
∂=ε  

(4) 

 
The overall  (reduced) stress and admissible stress [2] read. 

 
2222 6)()()(

2

1
rzzzrrzzrrred σσσσσσσσ ϕϕϕϕ +−+−+−= ,   )exp(0 XCXadm σσσσ −+=    

(4) 

 
Figure 1 presents the mapping of stress difference between σadm and σred in quarter plane of the 

cylinder  
a) b)    

                       
Fig. 1. Difference (σadm – σred) in a quarter plane of the cylinder: a) spatial mapping, b) flat visualization of the places 

with violated strength condition.  
 
The places in which (σadm – σred) < 0 denote violation of the material strength (dark area in Fig. 1b). 
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STRESS-STRAIN CURVE AND STORED ENERGY DURING UNIAXIAL 
DEFORMATION OF POLYCRYSTALS 
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1. Introduction 

A portion of the mechanical energy expended on plastic deformation is released as a heat and 
the remainder is stored in the material. The stored energy is an essential feature of cold worked state 
and represents the change in the internal energy of the material. 

The measurement of the stored energy is usuall y laborious and complicated therefore many 
authors have tried to calculate the stored energy from stress-strain curve though the curve does not 
contain information about the energy converted into a heat [1-3]. On the other hand both the strain 
hardening and stored energy of cold work are associated with the creation of lattice imperfections. 
Thus an attempt to find connection between stored energy and stress-strain curve seems to be 
justified. 

The aim of this work is to answer the question what information about the stored energy can 
be derived from stress-strain curve. Results of theoretical study will  be interpreted in terms of 
energy storage mechanisms and will  be compared with stored energy determined experimentall y 
during uniaxial tension. 

2. Energy balance dur ing deformation 

The theoretical analysis of energy balance for elastic-perfectly plastic material has been 
performed. The curve shown in Fig. 1 is typical for ‘ load-unload cycle’  for elastic-perfectly plastic 
material subjected to the load F. 

 

Fig. 1. Generalized load versus generalized displacement curve. 

It has been shown that in the case of elastic-perfectly plastic material the total stored energy is equal 
to: 

(1)  
0

ˆ ˆ:
B

ip
s AEB

V

E W d dV
σ

ε σ= − ∫ ∫ , 

where ˆ ipε  is the local ideal plastic strain, what means that the total energy expended on this strain is 
converted into a heat, σ̂  is the local stress tensor and V  is the volume of the gauge part of the 
specimen. 
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It should be noticed that the energy AEBW  can be calculated directly from experimentall y 

obtained stress-strain curve (area AEB in Fig. 1). 
It has been shown that the energy AEBW  is connected with internal stress field generated during non-

homogeneous plastic deformation. Performed analysis has shown that, on the basis of the stress-
strain curve, it is impossible to derive the energy stored during homogeneous deformation (the 
energy of statisticall y stored dislocations). 

3. Experimental results 

The stored energy se  was determined as a difference between the mechanical energy 

expended on plastic deformation pw  and the energy dissipated as a heat dq  

(2)  s p de w q= − , 

where se , pw , dq  are specific quantities. 

The plastic work was determined on the basis of stress strain-curve. The energy dq  was determined 

by simulating the process of specimen heating during deformation by means of controlled supply of 
electrical power in such a way that the temperature increase with time during the simulation was 
identical to that measured during the tensile test [4]. The temperature distribution on the specimen 
surface was determined using IR thermographic system. 

 

Fig. 2. The part of stored energy calculated from stress-strain curve and the measured total stored 
energy versus plastic strain for: a) 316L, b) 304L and c) Ti. 

The results of total stored energy measurements performed on the 316L and 304L austenitic 
stainless steels and titanium, were compared with that obtained on the basis the theoretical analysis 
(Fig. 2). It is shown that the stored energy, connected with non-homogeneous plastic deformation, 
calculated from stress-strain curve for all  tested materials is smaller than the total stored energy 
determined experimentall y. 
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1. Introduction 

In shape memory alloys (SMAs), strain of 6% is recovered by heating or unloading: shape 
memory effect (SME) or superelasticity (SE), respectively. In the loading process, strain appears due 
to the stress-induces martensitic transformation (SIMT) and diminishes due to the reverse 
transformation (RT) by heating or unloading. The deformation properties due to the SIMT differ 
depending on temperature and loading rate. The loading rate is designated by strain rate and stress 
rate. In the present paper, the influence of loading rate on the deformation behaviors is investigated 
for TiNi SMA. The deformation behaviors are observed by local strain, temperature variation by the 
thermography and transformation band on the surface of specimen. 

2. Dependence of deformation behavior  on loading rate 

The stress-strain curves obtained by tension tests for an SME-NT wire under various strain rate 
at temperature T=353K are shown in Fig.1. As can be seen, the overshoot and undershoot and stress 
plateau appear clearly in the case of strain rate dε/dt=1.67�10-4s-1. These phenomena do not appear 
in the case of dε/dt higher than 1.67�10-3s-1. The MT stress increases and the RT stress decreases 
with an increase in strain rate. The MT is exothermic and the RT endothermic process. Therefore, 
temperature of the specimen increases in the loading process and decreases in the unloading process 
with increasing strain rate. In the case of high strain, there is not enough time for temperature to be 
constant, and deformation processes, resulting in large variation in the MT stress. 

3. Behavior  of local strain 

The relation between local strain ∆l/l and accumulated total axial strain Σ|∆L/L| obtained by 
tension test for an SE-NT wire at strain rate dε/dt=8.33�10-5s-1 is shown in Fig.2. The local strain 
expresses a ratio of variation ∆l to gauge length l at each divided position 

�
-

�
 in the specimen. The 

Fig.1. Relation between stress and strain under 
constant strain rates in SE-NT wire at T=353K 

Fig.2. Relation between local strain and 
accumulated total axial strain in the SE test 
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accumulated total axial strain expresses the sum of absolute value of variation in total axial strain 
∆L/L in the loading and unloading process. In Fig.2, the stress-strain curves in the loading and 
unloading processes are shown by the solid lines. As can be seen Fig.2, local strain ∆l/l in one end 
position �  increases markedly at total strain Σ|∆L/L|=1.5%, and ∆l/l in another end position �  
increases by 4.5% at Σ|∆L/L|=2.0%. The variation of ∆l/l appears in turn into central part of the 
specimen thereafter. The variation in ∆l/l finishes in the central part �  at Σ|∆L/L|=6%. In the 
unloading process, ∆l/l in both ends �  and �  of the specimen decreases by 4.0% at Σ|∆L/L|=9% 
where the RT starts. The variation in ∆l/l during the unloading process appears in the similar order as 
the loading process. 

4. Transformation behavior  observed by thermography 

The temperature distributions on the surface of the SE-NT tape (width of 10mm and thickness 
of 0.7mm) through the images obtained by an infrared camera in tension test at strain rate dε/dt = 1.67
�10-3s-1 are shown in Fig.3. As can be seen Fig.3, a transformation band with high temperature due 
to the MT appears in an upper end of the specimen at strain of 1.83% (Fig.(a)). The transformation 
bands appear in a bottom end and the central part of the specimen at strain of 2.15% (Fig.(b)). 
Temperature increases thereafter in many parts of the specimen (Fig.(d)), and the MT grows in the 
whole parts of the specimen till  maximum strain (Figs.(e)-(l)). The reason why the temperature rise is 
small  in both ends of the specimen is heat flow from the specimen into the grippers. The lowest 
temperature in the unloading process is 283K and maximum temperature change is -12.2K. 

5. Transformation band on the sur face of the specimen 

The photographs on the surface of the SE-NT tape obtained by the tension test under strain rate 
dε/dt=1.67�10-4s-1 are shown in Fig.4. As can be seen, variation does not appear on the surface of the 
specimen till  strain of 1%. The band due to the SIMT occurs in an upper end of the specimen at strain 
of 2%. The transformation band grows thereafter from the upper part into the central part and occurs 
also in a bottom part at strain of 4%. The martensitic phase band occurred in both ends of the 
specimen grows toward the central part with an increase in strain. At strain of 8%, the parent phase 
with a narrow band remains in the central part of the specimen. 

Fig.3. Temperature distributions on the tape 
specimen in the loading process  

during tension test 

 1%   2%   3%    4%    5%    6%    7%    8% 

Fig.4. Deformation patterns on the surface of 
the tape specimen due to phase 

transformation in the loading process 

strain 

(a)1.83%   (b)2.15%    (c)2.67%    (d)3.10%   (e)3.37%    (f)4.77% 

(g)5.32%   (h)5.63%    (i)6.13%    (j)6.38%   (k)6.84%    (l)7.83% 
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1. Introduction 

The transformation plasticity is known to contribute a drastic effect on the simulation of some practical 
engineering courses of thermo-mechanical processes, such as heat treatment, welding, casting and so on involving 
phase transformation of steels.  Most constitutive laws for transformation plasticity have been treated to be 
independent of ordinal thermo-plasticity.   Considering that the mechanisms for both strains are essentially with 
no difference from metallurgical viewpoint, the constitutive equation for transformation plastic strain rate is 
expected to be described in relation with plasticity theory.  

A phenomenological mechanism of transformation plasticity is discussed, in the first part of the 
paper, why the transformation plastic deformation takes place under a stress level even lower than the 
characteristic yield stress of mother phase:  This is principally based on the difference in thermal 
expansion coefficient of mother and new phases.  Bearing in mind that it is also a kind of plastic 
strain, a unified plastic flow theory is derived by introducing the effect of progressing new phase into 
the yield function of stress, temperature and plasticity related parameters.  Thus obtained strain rate 
reveals to include the transformation plastic part in addition to mechanical and thermal plastic 
components.   

Application of the theory is carried out to simulate some complicated cases of varying stress and 
temperature, and the results are compared with experimental data. 

  
2. A phenomenological model     

Consider that the material is composed of mother and new phases, say austenite and 
pearlite, or martensite, being connected parallely each other [1].  Since the thermal 
expansion coefficient of mother phase mαααα is larger than that of new phase nαααα  in most 
case, tensile thermal stress is essentially induced in the mother phase.  External stress 
in addition to the tensile thermal and phase transformation stresses brings out to large 
value sometimes beyond the yield stress, which is the initiation of plastic deformation, 
or transformation plasticity.  Simple numerical calculation will be illustrated how the 
stresses in mother and new phases vary during phase transformation, and the 
dependence of applied stress is discussed. 

3. Unified transformation and thermoplasticity constitutive equation 

In order to formulate a constitutive equation of a body under phase transformation, 
we assume that the material point focused is composed of N  kinds of phases, which 
include all phases with the volume fraction Iξξξξ  ( )1, 2,3,....,I N=  and that the mechanical 
and thermophysical property χχχχ  is represented by the mixture law such that 

1

N

I I
I =

=∑χ ξ χχ ξ χχ ξ χχ ξ χ ,    with    
1

1
N

I
I =

=∑ξξξξ  .  Stress state related to the yielding of the I-th phase 
(say, mother phase, or austenite) is assumed to be affected by other phases (new phase, 
or pearlite) with the volume fraction Jζζζζ ( )1, 2,3,....,J M= [2]. Then, the plastic state of 
the I-th phase is controlled by the yield function in the form, 

 
( , , , , )p

I I ij Iij I JF F Tσ ε κ ζ= ,      ( 1,2,....,   ; 1, 2,...., )I N J M= =  .                  (1) 
 

Here, ,ij Tσ  and  Iκ  are respectively stand for uniform stress, temperature and plastic 
hardening parameter. 
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Applying the normality rule for the plastic strain rate, we finally have 
 

p

1

ˆ [ ]
N

I I I I I
Iij I I kl J

Nij kl J ij

F F F F F
G T

T =

 ∂ ∂ ∂ ∂ ∂= Λ = + + ∂ ∂ ∂ ∂ ∂ 
∑
%

&&& &ε σ ζ
σ σ ζ σ

 ,   ��������������������� (2) 
 
in which the first tem is the ordinal thermo-mechanical strain rate while the second 
corresponds to the TP strain rate. The TP strain rate possibly reveals to so-called 
Greenwood-Johnson type formula [3] in the special case of two phase.  
 

( )3 1tp Kε ξ ξσ= − && .                                                     (3) 

4. Application to the strain response for stress4. Application to the strain response for stress4. Application to the strain response for stress4. Application to the strain response for stress----temperature variationtemperature variationtemperature variationtemperature variation    

The theory developed is now applied to some cases under varying stress and 
temperature [4].  Total strain in such cases of varying temperature reads 

( ) ( ) ( )( )

0
1 d 3 1 d

s

T Te th m tp
m nT

T T K
E T

ξσ ξε ε ε ε ε α ξ α ξ β ξ σ ξ∂ 
 = + + + = + − + + + −   ∂ 

∫ ∫ ��(4) 

The first case example of application is to draw so-called temperature-elongation 
diagram depending on applied stress, and the second is related to fire distinguishment 
of structure made of a fire resistant steel (FR490A) heated and cooled between room 
temperature and 900 �  with decreasing and increasing stress.  The results of 
simulation are compared with some experimental data to verify the theory developed.  
 

5. Summary 
A discussion on the mechanism from thermo-mechanical viewpoint is carried out, and the 

constitutive law is derived for unified thermomechanical-transformation plasticity theory. 
Application of the theory is made to some processes under varying temperature and stress.  
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1. Introduction 

The thermal processes in the system casting-mould are considered. In particular, the inverse 
problem consisting in the estimation of boundary heat flux flowing from casting sub-domain to  
the mould sub-domain is analyzed. To solve the problem the global function specification method is 
applied. The additional information necessary to solve an inverse problem results from  
the knowledge of cooling curves at the point selected from casting sub-domain. The solidification 
model bases on the equation corresponding to the one domain method. As an example, the 1D system 
created by steel casting and sand mix mould is considered. On the stage of numerical solution of 
direct problem and additional one the finite difference method has been applied. 

2. Governing equations 

The thermal processes proceeding in the casting sub-domain are described by the following 
energy equation 

  [ ]( ) div λ ( )grad
T

C T T T
t

∂ =
∂

 

where C (T ) = c (T ) − L dfS  /dT [J/m3⋅K] is called a volumetric substitute thermal capacity [1], c (T ) is  
a volumetric specific heat of casting material, fS is a volumetric solid state fraction at the point 
considered, L is a latent heat.  From the mathematical point of view the equation determines  
the transient temperature field in the entire, conventionall y homogeneous casting domain and this 
approach is called 'a one domain method' [1]. 

A similar equation, namely 

  [ ]( ) div λ ( )gradm
m m m m m

T
c T T T

t

∂ =
∂

 

determines a temperature field in a mould sub-domain (cm is a volumetric specific heat of mould, λ m is 
a thermal conductivity of the mould).  

On a contact surface between casting and mould the continuity condition is given 

  : λ grad λ grad ,c m m mx n T n T T T∈Γ − ⋅ = − ⋅ =  

while on the fragments of external boundary the Dirichlet, Neumann or Robin conditions can be 
accepted [1]. The initial temperatures (pouring temperature and initial mould temperature) are also 
known. The simpler model of heat exchange between casting and mould consists in the approximation 
of mould influence by the Neumann condition (in this way the mould sub-domain is conventionall y 
neglected). 

To determine the time dependent substitute Neumann condition the cooling curves at the points 
selected from the casting domain are applied and they constitute the additional information necessary 
to solve the inverse problem considered.  
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3. Global function specification method 

It is assumed that the time dependent boundary heat flux q(t) on the external surface of casting 
is unknown. The time interval [0, t F ] is divided into intervals [t f −1, t f ] with constant step � t  = t f − t f −1 
and for t∈[t f −1, t f ]: q (t) = q(t f) = qf . In the global function specification method [2] the unknown  
values q 1,  q 2, ..., q f −1, q f, ..., qF  are identified simultaneously. 

Let us assume that the temperatures Td
f
i at the points xi are given. Applying the least squares 

criterion [2] one obtains  

  ( ) ( )21 2

1 1

, , , MIN
F M

F f f
i di

f i

S q q q T T
= =

= − →∑∑K  

where M is the number of sensors, Ti 
f are the calculated temperatures obtained from the solution of 

the direct problem by using the current available estimate for the unknown  values q f, f =1, 2, ..., F. 
At first the direct problem should be solved under the assumption that q f =q f k, f =1, 2, ..., F at 

the same time q f k for k = 0 are the arbitrary assumed values of heat fluxes, while for k > 0 they result 
from the previous iteration. The solution obtained this means the temperature distribution at the points 
xi for times t f, f = 1, 2, ..., F will  be denoted as Ti

f k. 
Function Ti

 f is expanded into Taylor series at the neighbourhood of this solution, and using  
the necessary condition of several variables function minimum, after the certain mathematical 
manipulations one obtains  

  ( ) ( ), , ,

1 1 1

, 1,2, ,
fF M F M

f s f p s sk f p f fk
i i i di i

f p i s f p i

z z q q z T T p F
= = = = =

− = − =∑∑∑ ∑∑ K  

where zi 
f, s = ∂Ti 

f/∂qs, zi 
f, p = ∂Ti 

f/∂q 
p are the sensitivity coeff icients [2]. This system of equations 

allows to find the values q1, q2, ..., q F.  

4. Example of computations 

The 1D system casting - mould is considered. The dimensions of layers corresponding to 
casting and mould: 2L1 = 0.03 m, L2 – L1 = 0.045 m. Initial temperatures equal Tp = 1550 o C (casting) 
and Tm0 = 20 o C (mould). The remaining data have been taken from [1]. In Figure 1 the cooling curves 
from casting domain are shown, while Figure 2 ill ustrates the course of real and identified boundary 
heat flux. 

    
                 Fig. 1. Cooling curves                                             Fig. 2. Real and identified heat flux 
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Goal of the study was investigation of stress-induced reverse transformation behavior 

in shape memory alloy (SMA), independent of thermal influences of the martensite one. 

To this end, specimens of TiNi SMA were subjected to tension test performed on testing 

machine with stress rate 12.5 MPa/s to strain limit 8 %, followed by cooling the specimen 

to its initial temperature, and unloading with the same stress rate. Furthermore, an 

infrared camera was used in order to measure the infrared radiation from the specimen 

surface and to find the temperature changes, accompanying the phase transformation 

processes. The experiments have been carried out in room conditions.  

The obtained results, namely the stress and the temperature changes vs. strain are 

presented in Fig.1, while the stress and the temperature changes vs. time in Fig. 2.  

Fig. 1. Stress and temperature changes vs. strain during tension test of TiNi SMA with stress rate 

12.5 MPa/s, followed by cooling the specimen to its initial temperature and unloading.  

Looking at the figures one can notice that during the loading with such a stress rate, 

the stress increases up to 850 MPa which results in temperature increase up to 30K. 

Exothermic martensite transformation starts at of about 1% and develops with increasing 

stresses above 700 MPa till the strain limit 7%. At this strain value, the processes related 

to the heat flow to the surroundings are higher than the processes related to the heat 

production, so the specimen temperature drops. The drop in temperature, observed during 

the SMA loading manifests that at this level of deformation the exothermic main 

martensite transformation in the specimen is completed.  
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Fig. 2. Stress and temperature changes vs. time during tension test of TiNi SMA with stress rate 
12.5 MPa/s, followed by cooling the specimen to its initi al temperature and unloading.  
 

During the subsequent cooling process, the temperature decreases to the initial room 
temperature due to the heat exchange with surroundings, while the stress decreases from 
860 MPa to 740 MPa. It means that the stress relaxation under constant strain is induced 
due to the delayed martensite transformation when the specimen was under cooling 
process.    

During the unloading, the main reverse transformation appears at stress of 220 MPa 
with strain of 6 % and finishes at stress of 80 MPa with strain of 0.6 %. The temperature 
drops due to the endothermic reverse transformation, up to –20K at the end of the 
process. However, one can notice that in this case the temperature drops from the same 
beginning of the unloading, which is probably caused by a "preceding" reverse transition.   

Furthermore, there is not symmetry between the martensite forward and the reverse 
transformations. This is caused by the fact that the run of the martensite transformation is 
related to the instantaneous strain rate applied [1]. For the stress-controlled tension test 
the strain rate is not constant during the loading and the unloading processes [1-3].  
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1. Introduction 

Phase transformations of different types are important way to be in control of properties of 
materials. The order-disorder transformation is one of them. It is able to change parameters of alloys 
changing a long-range order degree. A variation of antiphase domains sizes effects on properties of 
alloys as well . Despite a fact that atomic ordering has been studied many decades it will  pay 
attention long time due to a great number problems demanding their decision.  

 

2. Experimental procedure 

Experimental results of the X-ray study are presented in this work. Binary alloys based on ffc 
lattice with superstructures L12, L12(M), L12(MM), D1a have been used for research. The alloys 
were obtained by inductional melting in an argon atmosphere. The ingots were homogenized at high 
temperatures. The samples were annealed near Tmelt and quenched into ice water. The specimens of 
different alloys were annealed for ordering at various temperatures for different periods of time. X-
ray diffraction was performed with DRON-1,5 and DRON-3 diffractometers using CuKα - radiation. 

The temperature-induced order-disorder phase transition has been studied in the alloys shown 
in the table 1. The lattice parameter, the antiphase period M, the degree of tetragonal or 
orthorhombical distortions, average long range order parameter, the long range order parameter far 
from and near the antiphase boundary were obtained to study the temperature-induced order-
disorder phase transition. 

The deformation-induced order-disorder phase transition has been researched in the alloys 
presented in the table 2. The well -ordered samples were deformed by cold rolli ng in this case. The 
long-range order parameter, the average size of the antiphase domains, the average size of the areas 
of coherent dispersion, microstresses and parameters of a crystal lattice are measured. 

Table 1.  
Studied alloys and their characteristics. 

 
 Alloy Superstructure Тк,°С ηmax ηTк <D>, nm 
1 Au3Cu I (polycrystal) L12 208 0.95-1.0 0,6 15-20 
2 Au3Cu II  (polycrystal) L12(MM) 204 0.9-1.0 0,1 10 
 
3 

Au3Cd  
polycrystal 

DO23 -  
L12(M=2) 

 
422 

 
1,0 

0,7 
0,65 

 
45 

4 Au4Zn(polycrystal) L12 (MM) 305 1,0 0,5 60-80 
5 Au4Cr (polycrystal) D1a  360 0,82 0,66 33 
6 Au4V (polycrystal) D1a  565 0,94 0,9 85 
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Table 2.  
Studied alloys and their characteristics. 

 

 Alloy Superstructure Тк,°С ηmax ηTк <D>, nm 
1 Au3Cu (polycrystal) L12 208 0.95-1.0 0,6 15-20 
2 Cu-22%Pt (polycrystal) L12 685 0,8 0,6 80-130 
3 Ni3Fe (single crystal) L12 535 1,0 0,44 13 
4 Ni3Al (polycrystal) L12  1,0 1,0 >>100 
5 Au4Zn (polycrystal) L12 (MM) 305 1,0 0,5 60-80 
6 Cu3Pd (polycrystal) L12 (M) 468 0,8 0,54 50-150 

 

3. Results and discussion 

Studying of the temperature-induced and the deformation-induced order-disorder phase 
transformation has given possibilit y of establishing of their mechanisms, and has pointed at the role 
of antiphase boundaries, finding of their generality and difference. Some results of this study are 
presented in [1-4]. Increasing of the degree of the temperature or the deformation influence has 
brought on increasing amount of the defects in the alloys. The accumulation of defects has led up to 
the destruction of the long-range order in alloys. The antiphase boundaries play a particular role in 
the order-disorder transformation. Different nature of driving-forces of the order-disorder 
transformation determines differential peculiarity of every type of transformation. Essential 
disagreement of driving-forces defines the difference of mechanisms of the antiphase boundaries 
accumulation. The main features of the temperature-induced and the deformation-induced order-
disorder phase transformation are shown in the table 3. 

Table 3. 
The features of the temperature-induced and the deformation-induced order-disorder phase 

transformation 
 

 T- transformation ε-transformation 
1. a) homogeneous disordering (LRO) at T< TK. 

b) heterogeneous disordering (LRO+SRO) at 
T≤TK. 

 
heterogeneous disordering - 

(LRO+SRO) at ε>0. 
2. a) SRO-phase is absent at T< TK. 

b) SRO-phase appears at T≤ TK. 
 
SRO-phase appears at ε>0. 

3. a) <D> = const at T< TK. 
b) <D> decreases at T≤ TK. 

 
<D> decreases monotonically at ε>0. 
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ABSTRACT 

 
Non-uniform shrinkage of saturated materials subjected to drying is the main reason for gen-

eration of internal stresses. The drying induced stresses in elastic materials are of temporary charac-
ter and disappear after drying. This is however not the case when the stresses cause local inelastic 
strains [1]. In such circumstances the phenomenon of stress reverse may take place when the mate-
rial dries and the drier surface attempts to shrink but is restrained by the wet material core. Then, 
the surface is stresses in tension and the core in compression and large inelastic tensional strain oc-
cur at the surface. Latter, under the surface with reduced shrinkage, the core dries and attempts to 
shrink causing the stress state to reverse. The reversed tensional stresses inside the material cause 
often internal cracks. 

Another phenomenon that may occur in dried materials is called the locked-up or residual 
stresses. They arise when the material changes its mechanical properties during drying. Such 
stresses may occur, for example, in saturated clay-like materials that are viscoplastic, and in the 
course of drying become elasto-visco-plastic, elastoplastic, elastic and even brittle at the end of the 
process. If the change of mechanical properties is non-uniform throughout the body, the residual 
stresses mostly are present in materials after drying. Such stresses may have a substantial influence 
on the mechanical behaviour of materials during their utili zation. 

The residual stresses may elucidate, for example, why some dry materials shrink instead swell -
ing during rehydration [1]. It was stated that the compressive properties are related to the morphol-
ogy of the material. Loss of water and segregation of components that occur during drying makes 
the cell  walls rigid. The outer layer becomes rigid and acquire considerable mechanical strength 
while the interior of the material is still  of weak tensile strength. Amorphous domains are formed 
which add substantiall y to the mechanical strength of the material. 

Similar phenomenon arise during quenching of steel. This process changes the structure and 
physical properties of carbon steel because a new structure called martensite arises in some do-
mains. The accompanied to this process morphological phase transitions cause volume changes and 
induce internal stresses responsible in many cases for cracks of the material. 

The above statements lead to the conclusion that residuals stresses in saturated bodies may arise 
during hydro-thermal processes if the material suffers shrinkage and its physical properties are 
changed in some domains. That means that for description of residual stresses should be applied a 
drying model, the material coeff icients of which reflect changes of mechanical properties.  

In this paper we present a mechanistic model of drying which allows to describe the mechani-
cal changes of elastic and viscoelastic materials under drying [3]. Both materials reveal drying-
induced stresses, however, the stress history in these two materials differ from each other both 
qualitatively and quantitatively. We want to show that none of these two materials will  reveal resid-
ual stresses if the material coeff icients are assumed to be constant. In order to describe the residual 
stresses, the material properties have to vary in the course of drying, that is, the material coeff icients 
ought to be functions of moisture content.  

We shall  ill ustrate the problem of residual stresses on an example of kaolin-clay cylinder dried 
convectively. The system of differential equations was established for description of the heat and 
mass transfer as well  as the drying stresses during both the constant and the falli ng rate periods. The 
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constructed on the basis of these equations numerical algorithm enable evaluation of the distribution 
of moisture content, temperature, and stresses in the dried body and their evolution in time in all  
stages of drying. The most relevant meaning of this model is that it enables description of a com-
plete history of the drying induced stresses during the whole process up to residual stresses at the 
end. 

A number of experimental tests were carried out to observe the variation of mechanical behav-
iour of the kaolin-clay material during drying and to determine the material coeff icients as a func-
tion of moisture content. In this way we have expressed the changeabilit y of physical properties of 
the material during drying, what enabled us to describe the residual stresses at the final stage of dry-
ing.  

Figure 1a presents the time evolution of maximum circumferential stresses in the elastic and 
viscoelstic cylinder with constant shear and bulk moduli  M = 450 kPa and A = 600 kPa and relaxa-
tion timeτ = 5⋅104 min by drying in air humidity 35 % and temperature 70 oC . 

 

 
 

Fig. 1. Time evolution of maximum circumferential stresses in elastic and viscoelastic cylinder: 
a) with constant material coeff icients, b) with material coeff icients dependent on moisture content 

 
It is seen that the plot of stress evolution for viscoelastic cylinder is different as that for elastic one. 
The stresses in elastic cylinder reach maximum in some instant o time and then tend to zero, while 
those in viscoelastic cylinder reach also maximum but of smaller value, next tend to negative values 
(stress reverse), and finall y tend to zero. Figures 1b presents the time evolution of maximum 
circumferential stresses in the elastic and viscoelstic cylinder with variable material coeff icients. It 
is seen that the circumferential stresses in viscoelastic cylinder become compressive and permanent 
in the final stage of drying. They do not tend to zero as those for elastic or viscoelastic cylinder with 
constant coeff icients. This is because of change of material properties at the cylinder surface from 
viscoelastic to rigid at the final stage of drying. The relaxation time τ is near to zero for totall y wet 
material (moisture content about 40%) and becomes very large (≈ 106 min) for dry body (moisture 
content about 6 %). 

References 

[1]     Kowalski, S.J.; Rybicki, A. The vapour-liquid interface and stresses in dried bodies, Trans-
port in Porous Media, 2007, 66(1-2). 

[2]     LEWICKI P.P., WITROWA-RAJCHERT D., MARIAK J., Changes of structure during rehydration of 
dried apples, Journal of Food Engineering 1997, 32, 347-350. 

[3]     Kowalski, S.J. Thermomechanics of drying processes. Springer Verlag Heilderberg-Berlin, 
2003, p. 365. 



430 Selected Topics of Contemporary Solid Mechanics

DESCRIPTION OF CYCLI C HARDENING OF MATE RIAL WIT H PLASTI CITY 
INDUCED MARTE NSITIC TRANSFORMATION  

 

 

G.Zi
tek
 1

, 
 
Z.Mróz

 2

1
 Wrocáaw University of Technology, Wrocáaw, Poland  

2
 Institute of Fundamental Technological Research, Warsaw, Poland 

 

 

1. Introduction  

The martensitic transformation takes place in the wide group of austenitic steels mainly with 

high manganese or nickel content and may be caused by various reasons like: temperature, stress or 

plastic strain. The phase transition process may substantially affect strength properties such as: 

monotonic and cyclic hardening, corrosion resistance, fatigue life, magnetic sensitivity, etc. The 

phenomenon of mechanically induced martensite evolution was extensively investigated mostly by 

Olson and Cohen [1]. They assumed that there are two modes of transformation: stress-assisted and 

strain-induced martensite. These modes correspond to different generation of the nucleation sites 

and to different morphologies of martensite in a form of plate or lathlike structures. The range of 

temperature variation specifies the area of process of a suitable type.  

x Stress-assisted martensite – The plates of martensite form at the presence of stress. The 

process is similar to that occurring spontaneously during cooling at the stress level not 

exceeding the yield point of the austenite, [2].  

x Strain-induced martensite – The lathlike martensite [2, 3] forms as a consequence of plastic 

straining. This process may take place at a higher temperature above Ms level than that 

occurring during martensite formation in the cooling process (about  higher [2]). oC200

 

 
 

Fig.1. The lathlike martensite – AISI 304 

steel [3] 
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Fig.2. Experimental hysteresis loops [4] 

The microscopic picture of the lathlike structure of martensite induced during cyclic deformation is 

presented in Fig. 1 and the hysteresis loops are shown in Fig.2. The examined cylindrical specimens 

were made of AISI 304 steel. 

The present work aims at description of inelastic material response with plasticity induced 

martensitic transformation during cyclic deformation. The appearance of martensite changes not 

only the strength and cyclic properties but also deformation response of material under external load 

i.e., the form of hysteresis loop, (Fig. 2.). The constitutive equations are required to simulate 

deformation response of material for complex deformation paths and the related evolution of 

martensitic phase.  

2. Material model – main assumptions 

Phenomenological constitutive equations are formulated within the framework of irreversible 

thermodynamics with internal state variables. The volume fraction of martensite ([ ) is the most 
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popular macroscopic internal variable specifying the growth of martensitic phase [5] .The evolution 

equation for this parameter together with suitable model of plastic deformation provides   

description of the response under monotonic and variable loading. The two-phase material is treated 

as a thermodynamic system with two coupled irreversible processes namely, plastic deformation 

and phase transformation. Thus, two conditions of process occurrence must be formulated.  

(1)  0)Y,())(Y,((
2
3 d����� pijijijijijijp RfXsfXsF [[  the yield condition. 

(2)  0)())((
2
3 d6��� trijijijijtr RYXYXF   the transformation condition. 

Where  is the stress deviator. The yield condition (1) takes a familiar Huber-Mises form, but the 

tensor representing the additional translation of yield surface is specified by the deviatoric tensor  

related to the back stress . Equation (2) represents the transformation condition. The radius of the 

transformation surface depends on the generalized force 

ijs

ijf

ijX

6  conjugated to the internal parameter [ . 

The translation of the yield surface depends on the deviatoric tensor  which represents the center 

of transformation surface. The proposed model was analyzed assuming the tensor  in the form: 

ijY

ijf

(3)  � � � � ij
n

eij

n

klklij YYaYYYaf )()(
2
3 [[   .  

3. Identification of model parameters and simulation 

The identification of model parameters was carried out for austenitic steel AISI 304, on the 

basis of experimental data for the steady state of cyclic tension and compression. Next, the 

simulation for uniaxial and biaxial states was performed taking into account first cycles of loading. 

Examples of identification and simulation are presented in Fig. 3. 
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a)        b) 

Fig. 3. Hysteresis loops: a) the experiment and identification, b) the simulation. 
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1. Introduction 

The two-way shape memory effect (TWSME) is the reversible and spontaneous shape change 

of the alloys subject to thermal cycling. The TWSME is not an intrinsic property of a shape memory 

alloy (SMA): it is only observed after some training procedures [1]. The TWSME developed by the 

alloy depends on its previous thermomechanical history, the training method applied and the 

training parameters used. Several training routes have been reported to be associated with the 

B2→B19’ transformation, but little work has been done on training methods that consider R-phase 

transformation to be an essential part of the training process. In fact, different opinions are 

published [2, 3] concerning the influence of R-phase on the TWSME. The aim of this work is to 

study experimentally the influence of R-phase on the development of the two way memory strain 

(εtw) and on the transformation temperatures (TTs). Constant load thermal cycling (L) and tensile 

deformation below Mf (D) are used as training procedures.  

2. Materials and Experimental procedures 

A binary near-equiatomic NiTi wire (diameter 1 mm) manufactured by Euroflex (SME 495) is 

used. Two different thermomechanical treatments (A, B) are applied in order to ensure different R-

phase presence on the alloys. Treatment A consists of a heat treatment at 500ºC for 1 hour, and 

subsequent quenching in water. Treatment B consists of the same heat treatment as A, but the R-

phase is then enhanced and stabilized by a repeated thermal cycling at zero stress in the temperature 

transformation range. The TTs (MS, Mf, RS, Rf, AS, Af) are obtained by measuring the changes in 

electrical resistivity (ER) due to temperature. The A and B samples trained by L are AL and BL; the 

A and B samples trained by D are AD and BD. To perform L training, a constant training stress of 

σtr=103.7 MPa is applied to the sample in the martensitic state, and then it is repeatedly thermally 

cycled through the transformation range. D training is carried out in three subsequent steps: (a) 

tension test at a training strain of εtr = 4.5% in the martensitic state, (b) the sample is completely 

unloaded, (c) the sample is heated to above Af. These σtr and εtr guarantee the complete martensite 

reorientation in accordance with [2]. Then, repeated thermal cycling is performed on AL, BL, AD 

and BD to measure the εtw and determine the evolution of TTs. A small force of 5 N is applied to 

keep the samples stretched during TWSME tests.  

3. Results  

Figure 1 presents the TTs measured for treatments A and B, (showing R-phase); the TTs after 

L training (AL, BL) and the TTs after D training (AD, BD). Taking temperatures A and B as initial 

reference values, the R-phase transformation does not appear in all the trained samples because the 

MS increases considerably during the training cycles. ER profiles during training have not resistivity 

peaks associated with the R-phase. L training increases both martensitic temperatures and decreases 

AS. D training decreases Mf but increases MS, and decreases AS and Af for both samples equally. 

Figure 2 shows the TWSME behavior for samples AL and BL, trained by the L method. The 

evolution of the reversibility of the deformation (εR) during training illustrates that, after an initial 
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rise, εR reaches a fairly constant rate after four cycles. Thermally cycled sample BL develops εtw 

values that are similar to those of AL, but the accumulation of plastic strain (εP) is lower, suggesting 

that the dislocations introduced by prior thermal cycling can help the formation of preferentially 

oriented martensite [3], which is an essential factor to obtain a substantial εtw. 
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Figure 1. Effect of thermal treatments and training methods on the transition temperatures. 
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Figure 2. εR, εP and εtw evolution for constant load training (L). 

4. Conclusions 

D and L training enlarge TT intervals. The increase in MS and decrease in AS narrows the 

hysteresis width, and this effect is stronger in the B samples. AL and BL show resistivity peaks on 

ER curves measured after thirty TWSME tests, suggesting that the applied training parameters do 

not help to make the complete R-phase vanishment. Prior thermal cycling leads to lower εP for 

values of εtw similar to AL. L training shows similar εtw than D. 
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1. Introduction  

Twin-roll casting process is a rapid solidification process combining with hot rolling. In the 

process molten metal was solidified starting at the point of first metal-roll contact and ending before 

the kissing point. This near-net-shape process can directly produce thin strips in one step. It has more 

advantages due to its higher productivity, low cost and energy saving. Therefore more and more 

researchers have concentrated their studies on the processes [1].. 

In twin roll casting process rolling action play an important role and the liquid metal will be 

squeezed out from the mush zone, which is very different from the conventional continuous casting 

process.  In this work, we focuses the research work on the constitutive equation, stresses and 

deformation study, other aspects will be simplified. A 2D FEM model was employed and use 

sequential coupled analysis method to simulate the thermal mechanical behavior during twin-roll 

casting process of Mg alloy AZ31. Here, the Anand’s model, a temperature and rate dependent model 

for high temperature deformation, was employed to calculate the thermal mechanical stress in the 

casting process.  Based on the stresses analysis and experimental tests, it reveals that separating force 

should be strictly controlled in the twin roll casting process in order to avoid cracks caused by thermal 

and deformation stresses. 

2. Inelastic constitute equation 

In twin-roll thin strip casting process, stresses primarily arise due to high thermal gradient and 

rolling deformation. The total strain rate     can be decomposed as: 

 

                                             (1) 

where , ,e p Th
ij ij ijH H H� � � were elastic, plastic and thermal strain rate, respectively.�Elastic strain rate, thermal 

strain rate are given by:  

 

 (2) 

 

                                                                                       (3)                                                                                        

where ( )ijklE T  is the temperature dependent elastic modulus. And T�' �  is the change rate of current 

temperature and the reference temperature at the point, � is thermal coefficient of expansion. The 

plastic strain rate  p
ijH�   is described by Anand model, which is a temperature and rate dependent model 

for high temperature large deformation process.�A set of internal type constitutive equations for large 

elastic-viscoplastic deformation at high temperature was proposed by Anand and Brown [2].� The 

specific functional form for the flow equation: 
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where h0 is the hardening constant, A is the strain rate sensitivity of hardening,  s* is the  saturation  

value  of  s,  is a coefficient, and n is the strain rate sensitivity for the saturation value of deformation 

resistance, respectively. The nine parameters of Anand constitutive model A, Q, 
�
, m, h0, s� , n, a and 

s0�(the initial value of s) can be obtained from curve-fitting of compression tests, by which large strain 

and fully developed plastic flow can be achieved due to the absence of necking. Isothermal constant 

true strain rate tests of AZ31 with different strain rates and temperatures were carried out, the true 

strain versus stress curves were shown in Fig. 1.The parameters of Anand model regressed from 

comparison tests are A: 3.5x107s
-1

, Q: 160kJ/mol, 
�
: 8.5, m: 0.28, h0: 3.038x109Pa, n: 0.018, a: 1.07, 

s0: 3.5x10
7
Pa,  s� : 5x107Pa. Fig.3. show the prediction and experimental strain vs. stress curves. 
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Fig. 2. Contours of �x (a), �y (b), �xy (c) and von Mises 
stress (d) 

 
3 Thermal Stresses 

In this study, the simulation model was employed to calculate stresses. The thermal flow result of 

temperature field was imposed as body load and the reference temperature was set as the average 

temperature of strip surface. The strip surface set as free surface because solidifying shrinkage.To 

simulate rolling action in twin-roll casting process, displacement load along roller tangent direction 

was imposed. The results of stresses and deformations were shown in Fig. 2.�The stress status of strip 

surface along casting direction was tensile stress; this is one of main reasons causing strip crack 

defects. 

 

4. Conclusion 
The deformation of twin-roll casting process is non-uniformed because of high temperature 

gradient.; the backward squeeze zone and the exit zone are the two dangerous regions for 

cracks.Rolling actions is much dangerous than thermal stress. Control the solidification end near the 

kissing point can decrease rolling deformation and decrease the crack tendency. 
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1. Introduction 
 
The response of materials under impact loading has a considerable interest. It allows for clarification of 
several problems in different application fields such as civil , milit ary, aeronautical and automotive 
engineering, [1-2]. The use of TRIP steels is widespread in the industry as a structural element responsible 
for the absorption of energy during an eventual impact or accident as for example in crashworthiness 
application. Thus, in the present work mechanical behaviour of TRIP 600 and TRIP 1000 sheets subjected 
to low impact velocity at different initial temperatures is analyzed.  
 
2. Experimental setup 
 
For this task a drop weight tower has been used. Thus, it was possible to perforate the TRIP steel sheets for 
initial velocities s/m5V0 ≤  in a wide range of initial temperatures K373TK173 0 ≤≤ . The dimensions of 

the square sheets impacted are 100100x  mm. The steel sheets of thickness t = 1.0 mm and t = 0.5 mm in the 
case of TRIP 600 and TRIP 1000 respectively. The impactor used had a shape of conical nose with  
diameter of mm20p =φ  and mass of kg7.18M p = . The experimental set-up allows to obtain measurements 

of the force-time history and both, the initial and residual velocities. Finally, the process has been filmed 
using a high speed camera. 
 
3. Mechanical characterization of TRIP 600 and TRIP 1000 
 
The mechanical behaviour of both, TRIP 600 and TRIP 1000, has been defined using different strain rates 
and initial temperatures, Figs 1-2. In Fig. 1 experimental results are reported for TRIP 600 and TRIP 1000 
at room temperature for different strain rates. For TRIP 1000 a Lüders’  band propagation is also observed 
corresponding to a plateau of stress at the beginning of loading, Fig. 1-b.  
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Fig. 1. Experimental results for TRIP 600 and TRIP 1000 steels at room temperature and different strain rates 
 

The influence of the temperature on the behaviour of the materials studied is shown in Fig. 2. It is observed a 
strong dependency of the strain hardening with temperature 
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Fig.2 Experimental results in quasi-static loading at different temperatures for (a) TRIP 600 and (b) TRIP 1000 

 
It is also observed during experiments, due to high stress levels and large ductilit y, a substantial increase of 

temperature, Fig. 3-a. This observation is also true for the quasi-static loading, 13s10 −−>ε& , where the 
temperature increase near the necking zone is close to K100T ≈∆ . Thus, the process of phase 
transformation is reduced for quasi-static loading and does not exist in the case of dynamic loading. On the 
contrary for low temperature, phase transformation is observed reducing strain hardening Fig 2-a-b. An 
analytical approach is proposed to describe the temperature increase along the specimen. Analytical 
predictions are compared with experimental results, Fig. 3-a. 
  

 

 
 

 

void 
X 

A B C D 

 (b) 

Fig.3  (a) Analytical predictions of RK model and comparison with experimental results in the case of TRIP 1000 steel (b) Definition of failure 
during tension test due to necking appearance 

 
4. Analysis of the perforation process for  high strength steels 

 
The perforation tests have revealed that the failure mode of the steel sheets is due to ductile hole enlargement 
with presence of petalli ng, Fig. 4, more accentuated in the case of TRIP 1000 due to the reduced thickness 
of the plates in comparison with TRIP 600, Fig. 5. The experimental observations in terms on number of 
petals have been compared with the analytical predictions reported in [4] and a good agreement has been 
found between them.  
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Fig.4 Sequence of the perforation process of TRIP 1000 steel sheet for V0 = 4.4 m/s and T0 = 300 K. 

 

 
Fig.5 Failure mode of the steel sheets for V0 = 4.4 m/s and T0 = 300 K. (a) TRIP 600 (b) TRIP 1000 

 
The balli stic limit in the case of room temperature for both steels has been found close to s/m5.3Vbl ≈ . This 

value is reduced in the case of higher temperatures, for example K373T0 = , due to the thermal softening of 

the material and considerably augmented for low temperature, K173T0 = , due to the transformation of the 
austenitic phase into martensite. 
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Jánski L., 172
Jia W.P., 188
Jiang Q.H., 210
Jin Y., 354
John A., 10, 18, 58
Jurczak G., 96
Ju D.Y., 188, 434

Kaczmarek M., 4, 32, 80
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