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Abstract. The objective of this investigation was to develop rules for automatic categorization of concrete
quality using selected artificial intelligence methods based on machine learning. The range of tested
materials included concrete containing a new waste material - solid residue from coal combustion in
fluidized bed boilers (CFBC fly ash) used as additive. The rapid chloride permeability test - Nordtest
Method BUILD 492 method was used for determining chloride ions penetration in concrete. Performed
experimental tests on obtained chloride migration provided data for learning and testing of rules
discovered by machine learning techniques. It has been found that machine learning is a tool which can
be applied to determine concrete durability. The rules generated by computer programs AQ21 and WEKA
using J48 algorithm provided means for adequate categorization of plain concrete and concrete modified
with CFBC fly ash as materials of good and acceptable resistance to chloride penetration. 

Keywords: concrete durability; chloride ions migration; circulated fluidized bed combustion fly ash
(cfbc fly ash); machine learning; classification rules; database.

1. Introduction

Increasing the use of fly ash in cement and concrete industry can considerably enhance the environmental

friendliness of concrete production. Current practice for using fly ash as type II concrete additive

according to EN 206-1 standard, does not cover the use of solid by-products resulting from

advanced coal burning technologies, like Circulating Fluidized Bed Combustion (CFBC). This

‘clean coal technology’ for power production is used in several countries, e.g. Czech Republic,

Estonia, France, Germany, Japan, Poland, USA, (Nowak 2003), China (Fu et al. 2008). The solid

residue from coal combustion in fluidized bed boilers contains noncombustible mineral matter,

sorbent material and unburned carbon (Giergiczny 2006). Mainly because of high sulfur content,

high free lime content, high loss on ignition LOI and the lack of glassy phase CFBC ash does not

meet the requirements defined by European standard EN 450-1 or in ASTM C618-03 in order to be

used for cement or concrete production. The potential for using CFBC fly ash in concrete was

recently investigated and the adequate strength and frost durability was revealed for selected kinds

of CFBC fly ash used to replace 20% of cement mass in the binder (Glinicki and Zielinski 2009).

Moreover, the efficient methods for selection of adequate CFBC fly ash to provide the long term

durability of concrete are still required and possibility of 30-40% replacement is looked for.

zó zó l
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Modern computation methods that belong to the group of artificial intelligence soft methods could

aid in searching for relationships between the composition of concrete modified with CFBC ash, its

microstructure and technical properties, including durability in aggressive environments. Artificial

intelligence methods are successfully used in many civil engineering problems (Melhem and Cheng

2003, Alterman and Kasperkiewicz 2006, Kasperkiewicz and Alterman 2007). Kasperkiewicz and

Alterman concentrate on three basic concept: artificial neural networks, machine learning and

genetic algorithms. In all these approaches the user is not obliged to bother about the model of the

process or phenomenon, because the system itself gains adequate knowledge from the examined

examples. It can generate thereupon answers in the form of unknown values of the attributes, classification

of new examples of the same format or formulation of rules (hypotheses, generalisations) concerning the

process under consideration. More details are given in relation to the applied solutions of Fuzzy

ARTMAP and ML program AQ19. 

The objective of current research was to develop rules for automatic categorization of concrete

quality using machine learning techniques. The undertaken research was focused on the resistance

of concrete with fluidized bed fly ash to chloride ions aggression. Performed experimental tests on

chloride migration provided data for learning and testing of rules discovered by machine learning

techniques.

2. Laboratory tests

2.1 Materials and mixture proportions

The chloride migration coefficient in concrete specimens with different content of fluidized bed

fly ash was measured (Jó wiak-Nied wiedzka 2009). Ordinary Portland cement CEM I 32.5 R fromzó zó

Table 1 Chemical composition and physical properties of Portland cement CEM I, conventional fly ash and
fluidized bed fly ashes from combustion of hard and brown coal (Ma olepszy and Ko odziej 2009)

Chemical compounds PC type I
Conventional 

fly ash 

CFBC fly ash

From hard coal K From lignite T

SiO2 21.4 50.8 47.18 36.47

Fe2O3 3.5 8.6 6.8 4.4

Al2O3 5.7 23.9 25.62 28.4

TiO2 NA 1.11 1.08 3.84

CaO 64.1 4.0 5.84 15.95

MgO 2.1 2.8 0.15 1.65

SO3 2.1 0.8 3.62 3.8

Na2O 0.5 0.8 1.18 1.64

K2O 0.92 2.9 2.36 0.62

Cl− 0.029 0.02 0.1 0.03

CaOfree 0.9 0.6 0.3 1.4

Specific gravity [g/cm3] 3.15 2.16 2.68 2.75

Loss on ignition, 1000oC/1h 1.1 2.9 3.4 2.73

l l
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Ma ogoszcz cement plant, gravel fractions 2÷8 mm and 8÷16 mm, and sand fraction 0÷2 mm, were

used for composition of concrete specimens. Two kinds of fluidized fly ash were tested: from hard

coal combustion in the thermal-electric power station Katowice K and from brown coal - lignite in

the power plant Turów T. Chemical and physical properties of Portland cement type I and both

CFBC fly ashes are shown in Table 1. Solid residues from coal combustion in circulated fluidized

bed boilers are characterized by different mineral and phase compositions than conventional fly ash,

by angular shape of grains Fig. 1 and by lack of glassy phase.

Three chemical admixtures: a plasticizer (magnesium lignosulfonates), a high range water reducer

l

Fig. 1 The shape of ash particles from fluidized bed combustion of lignite (a) - 5000x and hard coal (b) 5000x,
and from conventional combustion of hard coal, 500x

Table 2 Composition of concrete mixes and compressive strength tested after 28 and 90 days

Concrete mix
Cement

Addition
Aggregate Water Plasticizer HRWR AEA f

c28 f
c90

T K

Content [kg/m3] [MPa]

Series B

B0 360 - - 1859 162 3.2 4.3 - 55.0 70.0

B15K 306 - 54 1854 162 3.2 3.2 - 56.2 64.3

B30K 252 - 108 1847 162 3.2 3.2 - 51.6 61.0

B15T 306 54 - 1850 162 3.2 4.7 - 60.3 70.4

B30T 252 108 - 1841 162 3.2 5.6 - 58.7 72.0

Series C

C0 380 - - 1822 171 3.4 2.7 0.4 46.3 49.8

C15K 323 - 57 1813 171 3.4 2.5 0.6 47.2 48.4

C30K 266 - 114 1803 171 3.4 3.4 0.6 46.8 56.4

C15T 323 57 - 1810 171 3.4 3.8 0.6 45.3 50.1

C30T 266 114 - 1800 171 3.4 4.8 0.6 46.3 47.7

Series D

D0 406 - - 1586 175 - 0.0 3.2 22.7 26.3

D20T 290 73 - 1431 151 - 2.0 2.9 21.0 23.3

D40T 217 145 - 1423 150 - 4.0 5.8 26.1 25.3

D20K 323 - 81 1593 167 - 2.2 3.2 38.3 41.8

D40K 244 - 162 1606 157 - 4.5 6.5 43.0 43.4

HRWR- high range water reducer, AEA- air-entraining admixture
0-no addition, T - fluidized fly ash from lignite, K - fluidized fly ash from hard coal 



396 Maria Marks, Daria Jó wiak-Nied wiedzka and Micha  A. Glinickizó zó l

(polycarboxylane ether) and an air-entraining admixture (synthetic surfactants) were used to achieve

approximately the same workability and porosity of fresh mix. Three concrete mixes were designed:

series B with water to binder ratio w/b = 0.45, air-entrained series C with w/b = 0.45 and series D

with w/b = 0.42. In Table 2 the mixture proportions of tested concretes and the compressive strength

of hardened concrete are shown.

The composition of concrete mixes was based on the experimental method with replacement of

cement mass by fluidized fly ash: 15% and 30% in series B and C, 20% and 40% in series D. The

specimens were cast in cubical moulds 150 mm and in cylinder moulds ø100 mm × 200 mm. Fresh

mixes were consolidated by vibration. After 48 hours the specimens were demoulded and cured in

high humidity conditions RH > 90%, at temperature 18÷20oC until the age of 28 days.

2.2 Testing procedure

The chloride penetration test for this study was based on the standard of Nordtest Build 492 -

Non-Steady State Migration Test (NT Build 492 1999). The principle of the test is to subject the

concrete to external electrical potential applied across a specimen and to force chloride ions to

migrate into it (Antoni et al. 2005). After the specified period of time, depending of the initial

current intensity, the specimen is split open and sprayed with silver nitrate solution, which reacts to

give white insoluble silver chloride on contact with chloride ions. This provides a simple physical

measurement of the depth Fig. 2 to which the sample has been penetrated. 

The conformity criteria for concretes according to Non-Steady State Migration Test (NT Build

492 1999) are based on the voltage magnitude, temperature of anolite measured on the beginning

and end of test and the depth of chloride ions penetration, are shown in Table 3 (Tang 1996). The

non-steady-state migration coefficient, Dnssm, is calculated from equation derived from the second

Fick’s law:

(1)

here:

Dnssm − non-steady-state migration coefficient, ×10−12 [m2/s],

U − absolute value of the applied voltage [V],

T − average value of the initial and final temperature in the anolyte solution [oC],

L − thickness of the specimen [mm],

x − average value of the penetration depths [mm],

t − test duration [h]. 

Dnssm

0.0239 273 T+( )L
U 2–( )t

------------------------------------------ x 0.0238
273 T+( )Lx

U 2–
----------------------------–⎝ ⎠

⎛ ⎞=

Table 3 Estimation of the chloride resistance to chloride ions penetration

Non-steady-state migration coefficient Resistance to chloride penetration

< 2 × 10−12 m2/s Very good

2 – 8 × 10−12 m2/s Good

8 – 16 × 10−12 m2/s Acceptable

> 16 × 10−12 m2/s Unacceptable
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2.3 Test results of chloride migration coefficient

Tables 4 and 5 present the values of chloride migration coefficient determined after 28 and 90

days of maturity period for concretes series B, C and D. 

The results show the same general trend in almost all concrete mixtures that values of Dnssm

Table 4 Results of tests of chloride ions penetration after 28 days, series B, C and D (mean values from 3 specimens)

Series
Depth of chloride penetration

[mm]
D

nssm

[× 10−12 m2/s]
Resistance to chloride

 penetration

B0 27.2 15.25 Acceptable

B15K 20.3 8.68 Acceptable

B30K 15.2 4.98 Good

B15T 17.9 6.40 Good

B30T 12.2 3.02 Good

C0 26.3 13.83 Acceptable

C15K 19.0 7.53 Good

C30K 18.7 6.57 Good

C15T 23.1 9.35 Acceptable

C30T 28.2 10.08 Acceptable

D0 23.3 10.60 Acceptable

D20T 22.5 7.83 Good

D40T 21.7 5.69 Good

D20K 19.4 6.19 Good

D40K 14.1 1.58 Very good

Table 5 Results of tests of chloride ions penetration after 90 days, series B, C and D (mean values from 3 specimens)

Series
Depth of chloride penetration 

[mm]
D

nssm

[× 10−12 m2/s]
Resistance to chloride

penetration

B0 20.5 9.29 Acceptable

B15K 18.0 6.29 Good

B30K 12.1 2.93 Good

B15T 14.0 4.81 Good

B30T 11.7 2.66 Good

C0 22.1 10.31 Acceptable

C15K 15.2 4.75 Good

C30K 15.1 4.19 Good

C15T 12.9 4.36 Good

C30T 18.7 4.67 Good

D0 26.6 10.3 Acceptable

D20T 22.7 5.68 Good

D40T 20.6 2.33 Good

D20K 18.9 4.58 Good

D40K 17.9 0.99 Very good
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decreased with increased FBCFA content because of the changes in concrete microstructure. The

concretes without FBCFA were the ones that showed the highest values of Dnssm only acceptable

resistance to chloride penetration according to criteria shown in Table 3. In all series of concrete

specimens the chloride migration coefficient tested after 90 days showed relative stabilization.

The example of depth of chloride ions penetration in series B (B0 and B30T) tested after 28 days

is showed in Fig. 2.

The comparable tests results based on eight concrete mixtures was obtained. The ordinary

Portland cement replacement by ground fly ash varied from 0% to 70% in steps of 10%. For high

volume fly ash concrete better chloride resistance than in ordinary concrete has been achieved

(Sengul et al. 2005). 

3. Machine learning methods

Data mining can be defined as the process of discovering patterns in a dataset. By a dataset we

mean a database i.e., collection of logically related records. Each record can be called an example

or instance and each one is characterized by the values of a set of predetermined attributes. A few

different styles of learning appear in data mining applications but the most common is a

classification. The aim of the classification process is to learn a way of classifying unseen examples

based on the knowledge extracted from the provided set of classified examples. In order to extract

the knowledge from the provided dataset the attribute set characterizing the example has to be

divided into two groups: the class attribute or attributes and the non-class attributes. It is obvious

that for an unseen examples only non-class attributes are known, therefore the aim of data mining

algorithms is to build such a knowledge model that allows predicting the example class membership

based only on non-class attributes. The knowledge model is dependent on the way how

the classifier is constructed and it can be represented by decision trees (e.g. algorithm C4.5) or

classification rules (the AQ algorithms family). Regardless of the representation both types of

algorithms create hypotheses.

In order to evaluate the classifier i.e., to judge the hypotheses generated from the provided

training set we have to verify the classifier performance on the independent dataset which is called

testing set. Of course both sets of training data and test data should be representative samples of the

considered problem. The classifier predicts the class of each instance from the test set; if it is

Fig. 2 Example of the depth of chloride ions penetration in concrete series B, without FBCFA and with 30%
of FBCFA from lignite
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correct, that is counted as a success; if not it is an error. In order to measure the overall

performance of the classifier some quantitative analysis should be done.

The example of such a quantitative measure are a success rate usually called a classification

accuracy. This is the number of correct classifications of the instances from the test set divided by

the total number of these instances, its measure is expressed as a percentage.

In order to get a deeper understanding which types of errors are the most frequent the result

obtained from a test set is often displayed as a two-dimensional confusion matrix with a row and a

column for each class. Each matrix element shows the number of test examples for which the actual

class is the row and the predicted class is the column. Good results correspond to large numbers

down the main diagonal and small, ideally zero, off-diagonal elements. The sum of the numbers

down the main diagonal divided by the the total number of test examples determine classification

accuracy.

Lets consider what can be done when the number of data for training and testing is limited. The

simplest way is to reserve a certain number for testing and to use the remainder for training. Of

course, the selection should be done randomly. In practical terms, it is common to hold out one-

third of the data for testing and use the remaining two-thirds for training (Witten and Frank 2005).

The main disadvantage of this simple method is that this random selection may be not

representative. A more general way to mitigate any bias caused by the particular sample chosen for

holdout is to repeat the whole process, training and testing, several times with different random

samples. This process is called the k-fold cross-validation. In this technique a fixed number of folds

– k is arbitrary described. Then the data set U is split into k approximately equal portions

 (Krawiec and Stefanowski 2003). In each iteration i the set Ei is used for testing

and the remainder U \ Ei

 is used for training.

Overall classification accuracy is calculated as an average from the classification accuracy for

each iteration , i.e., is defined as

(2)

In order to generate rules describing the concrete resistance to chloride penetration several numerical

experiments were performed using program AQ21 and algorithm J48 from the WEKA workbench.

Algorithm AQ21, invented in the Machine Learning and Inference Laboratory of George Mason

University (Wojtusiak 2004) is based on covering approach alike most of the rule-based data mining

algorithms. Therefore, the AQ21 algorithm generates subsequent rules until all the examples

(sometimes not all) are covered. The idea of adding a new rule or a new term to existing rule is to

include as many instances of the desired class (positive examples) as possible and to exclude as

many instances of other classes (negative examples) as possible.

The second considered algorithm, J48, is available as a part of WEKA workbench, which was

developed at the University of Waikato in New Zealand (Witten and Frank 2005). Algorithm J48 is

an implementation of the last publicly available version of an algorithm C4.5 devised by J. Ross

Quinlan. Construction of decision trees is based on a simple divide and conquer approach, which is

well known in computer science. The main problem is connected with a selection of tests (splits of

attributes) which should be placed in the nodes. The test is good if it allows to shorten the way

from the root to the leaves representing classes. Decision trees can be converted to classification

rules with ease. 
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4. Seeking for the rules describing chloride ions penetration

4.1 Chloride ions penetration after 28 days

4.1.1 Results obtained from AQ21 

As the results of the experiments carried on the specimens with different contents of fluidized fly

ash, as shown in tables 2 and 4, the following database consisted of 15 records was introduced. This

database was used to determine the rules describing the concrete resistance to chloride penetration

after 28 days. The database with one nominal and 6 numerical attributes is presented in Table 6

(Marks et al. 2009).

where:

C1 – cement content, [kg/m3],

pfT – fluidized fly ash from brown coal content (power plant Turów), [kg/m3],

pfK – fluidized fly ash from hard coal content (power station Katowice), [kg/m3],

W – water content, [kg/m3],

A_fr – air content in fresh mix, [%], 

fc28 – compressive strength tested after 28 days, [MPa], 

Resistance – concrete resistance to chloride ions penetration (Acceptable, Good).

The last attribute – resistance - is a nominal one which takes on two possible values: Acceptable,

Good. In the considered database to the class [Resistance=Acceptable] belongs 6 examples and to

the class [Resistance=Good] belongs 9 examples.

The aim of an experiment is to generate the rules, which allow us to determine concrete resistance

to chloride ions penetration. As an training set all the instances from the database were considered.

The rules generated by an AQ21 algorithm are presented below

Table 6 The database

C1 pfT pfK W A_fr fc28 Resistance

360 0 0 162 2.1 55.0 Acceptable

306 0 54 162 1.8 56.2 Acceptable

252 0 108 162 1.3 51.6 Good

306 54 0 162 1.6 60.3 Good

252 108 0 162 1.6 58.7 Good

380 0 0 171 6.2 46.3 Acceptable

323 0 57 171 6.8 47.2 Good

266 0 114 171 5.8 46.8 Good

323 57 0 171 6.6 45.3 Acceptable

266 114 0 171 6.2 46.3 Acceptable

406 0 0 175 4.9 22.7 Acceptable

290 73 0 151 6.9 21.0 Good

217 145 0 150 7.8 26.1 Good

323 0 81 167 4.6 38.3 Good

244 0 162 157 4.6 43.0 Good
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[Resistance=Good] 

# Rule 1

<-- [pfK>=55] : p=5, n=0, q=0.556

# Rule 2

<-- [C1<=258] : p=4, n=0, q=0.444 

# Rule 3

<-- [pfT>=27 ] [W<=166] : p=4, n=0, q=0.444 (3)

[Resistance=Acceptable] 

# Rule 1

<-- [pfK<=55] [A_fr=1.7..6.75 ] : p=6, n=0, q=1

# Rule 2

<-- [pfK<=55] [fc28=44.15..57.45] : p=5, n=0, q=0.833 

where p denotes the number of positive examples covered by the rule, n denotes the number of

negative examples covered by the rule (i.e., the number of records from the other classes satisfying

the rule) and q denotes the quality of the rule.

The rules showed in Eq. (3) can be interpreted as follows but it should be underlined that the

presented rules concern concretes with the overall mass of cement and additions equal 360, 380 or

406 [kg/m3] (Table 2).

[Resistance is Good]

IF

[pfK >= 55]

OR

[C1 <= 258]

OR

[pfT >= 27] and [W <=166]

[Resistance is Acceptable]

IF

[pfK <= 55] and [A_fr = 1.7..6.75]

OR

[pfK <= 55] and [fc28 = 44.15..57.45]

In order to evaluate the classifier, i.e., to judge the hypotheses (classification rules, decision trees)

generated from the provided training set, we have to verify the classifier performance on the

independent testing set. When we have only one database consisting of a very small number of

records, the estimation of classification accuracy (measure of the overall performance of the

classifier) can be done using the n-fold cross validation, where n is the number of examples in the

database (Witten and Frank 2005). In this method each example in turn is left out, and the learning

method is trained on all the remaining examples. It is judged by its correctness on the remaining

example – one or zero for success or failure, respectively. The results from n judgments, one for

each member of the database, are averaged, and that average represents the classification accuracy

(Witten and Frank 2005). This method, named leave-one-out cross validation, is useful to the
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database of a very small number of records. It seems to offer a chance of squeezing the maximum

out of a small dataset and obtaining as accurate an estimate as possible. 

The results from n judgments may be displayed as a two-dimensional confusion matrix with a

row and a column for each class. Each confusion matrix element shows the number of test

examples for which the actual class is the row and the predicted class is the column. The numbers

of examples down main diagonal are predicted correctly. The classification accuracy is the sum of

numbers down the main diagonal divided by the total number of data set examples.

Applying the n-fold cross validation for n = 15 (number of examples in Table 6) we obtain a

confusion matrix in the following form:

The value of classification accuracy is equal to 53.3%.

4.1.2 Results obtained from J48 

In order to generate the rules, which allow us to determine the concrete resistance against chloride

ion penetration the J48 algorithm was also used. As the training set all the instances from the

database (Table 6) were considered. The decision tree generated by the J48 algorithm is presented in

Fig. 3.

where the first number in brackets denotes the number of examples from the training set covered by

a selected leaf, and the second number – just after the sign “/” – indicates the number of incorrectly

classified instances (negative examples). When there is only one number in brackets, then it

indicates the number of examples correctly classified (positive examples).

The obtained decision tree (Fig. 3) can be easily transformed into the following rules:

[Resistance=Good]

Rule1 [C1 <= 323] and [pfK <= 54] and [W <= 162]

Rule2 [C1 <= 323] and [pfK > 54] (4)

Acceptable Good Other

Acceptable 4 2 0

Good 4 4 1

Fig. 3 The decision tree generated by the J48 algorithm for chloride penetration after 28 days
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[Resistance=Acceptable]

Rule1 [C1 <= 323] and [pfK <= 54] and [W > 162]

Rule2 [C1 > 323]

Using the n-fold cross validation for J48 algorithm we obtain the confusion matrix in the following form:

and the classification accuracy equal 60%.

4.2 Chloride ions penetration after 90 days

4.2.1 Results obtained from AQ21 

In order to generate rules describing the concrete resistance to chloride penetration after 90 days a

database was used, that was very similar to the database shown in Table 6. The first five numerical

attributes are identical as in Table 6. The last numerical attribute fc90 determines compressive

strength tested after 90 days, [MPa]. In the considered database three examples belong to the class

[Resistance=Acceptable] and 12 examples belong to the class [Resistance=Good] (Table 7). 

As a training set all the instances from the database were considered. The rules generated by an

AQ21 algorithm are presented below:

[Resistance=Good] 

# Rule 1

<-- [C1<=341] : p=12, n=0, q=1

Acceptable Good

Acceptable 2 4

Good 2 7

Table 7 The database

C1 pfT pfK W A_fr fc90 Resistance

360 0 0 162 2.1 70.0 Acceptable

306 0 54 162 1.8 64.3 Good

252 0 108 162 1.3 61.0 Good

306 54 0 162 1.6 70.4 Good

252 108 0 162 1.6 66.3 Good

380 0 0 171 6.2 49.8 Acceptable

323 0 57 171 6.8 48.4 Good

266 0 114 171 5.8 56.4 Good

323 57 0 171 6.6 50.1 Good

266 114 0 171 6.2 47.7 Good

406 0 0 175 4.9 26.3 Acceptable

290 73 0 151 6.9 23.3 Good

217 145 0 150 7.8 25.3 Good

323 0 81 167 4.6 41.8 Good

244 0 162 157 4.6 43.4 Good
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# Rule 2

<-- [C1<=351] [fc90<=68.15] : p=11, n=0, q=0.987

[Resistance=Acceptable] 

# Rule 1

<-- [C1>=342] : p=3, n=0, q=1

In order to estimate the classification accuracy the n-fold cross validation was used for n =15. The

results of this method are described by the following confusion matrix: 

Here one example from Acceptable class is classified incorrectly to Good class, the remaining

examples are classified correctly and the classification accuracy is equal 93.3%. 

4.2.2 Results obtained from J48

In order to generate the rules, which allow us to determine concrete resistance against chloride ions

penetration the J48 algorithm was used also. As the training set all the instances from the database

(Table 7) were considered. The decision tree generated by an J48 algorithm is presented in Fig. 4.

When n-fold cross validation was used we obtain the following confusion matrix:

and the classification accuracy was equal 100%. 

5. Conclusions

The rules generated by computer programs AQ21 and WEKA using J48 algorithm have provided

means for automatic categorization of plain concretes and concretes modified with CFBC fly ash as

materials of good or acceptable resistance to chloride penetration. Due to a small number of tested

specimens the rules are applicable only to concrete mix compositions with similar binder content

and similar values of water to cement ratio.

The rules describing the concrete resistance to chloride penetration after 90 days, which were

determined by AQ21 algorithm as well by J48 algorithm, are similar. According to generated rules,

Acceptable Good

Acceptable 3 0

Good 1 11

Acceptable Good

Acceptable 3 0

Good 0 12

Fig. 4. The decision tree generated by the J48 algorithm for chloride penetration after 90 days
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resistance was qualified as acceptable for tested concrete without fluidized fly ash, whereas

resistance was good for the same concrete with replacement of cement mass from 15% to 40% by

fluidized fly ash from hard coal or brown coal. Therefore, application of CFBC fly ash improved

the resistance of concrete in respect to chloride penetration.

Application of AQ21 and WEKA programs provided similar estimation of the concrete resistance

to chloride ion penetration. Further tests are needed in order to enlarge the experimental data basis

and to cover larger variety of concrete compositions.
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Assessment of Scaling Durability of Concrete with CFBC
Ash by Automatic Classification Rules
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Abstract: The objective of this investigation was to develop rules for automatic assessment of concrete quality by using selected artificial
intelligence methods based on machine learning. The range of tested materials included concrete containing nonstandard waste material—the
solid residue from coal combustion in circulating fluidized bed combustion boilers (CFBC ash) used as an additive. Performed experimental
tests on the surface scaling resistance provided data for learning and verification of rules discovered by machine learning techniques. It has
been found that machine learning is a tool that can be applied to classify concrete durability. The rules generated by computer programs AQ21
and WEKA by using the J48 algorithm provided a means for adequate categorization of plain concrete and concrete modified with CFBC fly
ash as materials resistant or not resistant to the surface scaling. DOI: 10.1061/(ASCE)MT.1943-5533.0000464. © 2012 American Society of
Civil Engineers.

CE Database subject headings: Classification; Databases; Concrete; Durability; Fly ash.

Author keywords: Machine learning; Automatic classification rules; Database; Concrete durability; Scaling resistance; Circulated
fluidized bed combustion fly ash (CFBC fly ash).

Introduction

In Europe, approximately 50% of electricity is generated through
combustion of solid fuels, primarily hard coal and lignite and, to a
lesser extent, also through the combustion of oil shale. The conse-
quence of the above occurrence is the production of more than
160 Mt of combustion by-products of which 100 Mt can be attrib-
uted to the 27 states of the European Union (Szczygielski and
Hycnar 2009). The forecast for the next years predict the produc-
tion of 17 Mt of coal combustion products in Poland, fluidized bed
combustion ash—approximately 5 Mt. Fly ash is known to be a
valuable additive to concrete mixes, and it has also become a sig-
nificant factor in concrete technology to reduce the negative envi-
ronmental effect of concrete production. The most desired
advantage of using fly ash in concrete technology concerns an im-
provement of the mix workability, the long-term strength of con-
crete and its resistance to aggressive environments (Aïitcin 1998;
Gencel Brostow et al. 2011; Helmuth 1987; Khurana and

Saccone 2001). Commonly used pozzolan material is derived from
pulverized coal combustion systems. Other systems including
Fluidized Bed Combustion (FBC), which has the advantage of,
for example, lower thermal NOx emissions and greater fuel flexibil-
ity, also supplies fly ash. However, the fly ash collected from FBC
boilers have characteristics that place it outside of the standard re-
quirements in the European Union. According to the ASTM C618
standard, the American FBC fly ashes cannot be used in concrete
technology because of too high a sulfate content (Stevens et al.
2009). Current European practice for using fly ash as a type II con-
crete additive (inorganic addition, pozzolanic or latent hydraulic ad-
dition) according to theEN206-1 standard (EuropeanCommittee for
Standardization 2000), does not allow the use of solid by-products
resulting from advanced coal burning technologies, including circu-
lating fluidized bed combustion (CFBC). Also, the European stan-
dard EN 450-1 (European Committee for Standardization 2005)
does not anticipate to use the CFBC fly ash either for cement or
for concrete production. CFBC fly ash differs in physical and chemi-
cal properties from the traditionally used fly ashes (Table 1).

The solid residue from coal combustion in fluidized bed boilers
contains noncombustible mineral matter, sorbent material, and un-
burned carbon, because of a high sulfur content, high free lime con-
tent, high loss on ignition and the lack of glassy phase (Nowak
2003; Giergiczny and Pużak 2008; Goodarzi 2006; Fu et al.
2008; Glinicki and Zielinski 2009). Moreover, according to the
definition indicated by the European Standard, fly ash is a fine
powder of mainly spherical, glassy particles derived from burning
the pulverized coal, with or without cocombustion materials. The
positive effect of the spherical shape and smooth surface of fly ash
particles is primarily related to a reduction of the water demand
for a given mix workability (Helmuth 1987). In the case of CFBC
fly ash, grains are nonspherical and the glassy phase is not present,
so that this fly ash is beyond its scope (Glinicki and Zieliński 2008).
The potential of CFBC fly ash as an additive to concrete mix is not
well established. Limited experimental tests on concrete containing
CFBC fly ash as an additive revealed satisfactory strength and
durability of such concretes (Jóźwiak-Niedźwiedzka 2009). The
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test results of Glinicki and Zielinski (2009) revealed both long-term
strength and proper scaling resistance of concrete containing 20%
by mass of selected CFBC ash provided that the air-void character-
istics were adequate. Another result (Małolepszy and Kołodziej
2009) showed that substitution of cement by CFBC fly ash de-
creases the chloride ion diffusion coefficients. However, efficient
methods for selecting the appropriate type of CFBC ash to provide
the long-term durability of concrete are still not available.

Modern computation methods that belong to the group of artifi-
cial intelligence methods could aid in searching for relationships be-
tween the composition of concrete modified with CFBC ash, its
microstructure and technical properties, including durability in
aggressive environments. Artificial intelligencemethods, (AIM), in-
cluding artificial neural networks (ANN) and machine learning
(ML) are successfully used in many civil engineering problems.
Neural networks have been applied to the prediction of the mechani-
cal properties of cement, includingmaterials such as the compressive
strength of concrete (Ni and Wang 2000), strength of high-
performance concrete (Yeh 1998), compressive and splitting tensile
strengths of recycled aggregate concretes containing silica fume
(Topçu and Saridemir 2008), or the abrasive wear of concrete
(Gencel and Kocabas et al. 2011). Machine learning has been used
in classification and prediction problems such as estimating the re-
maining service life of bridge decks (Melhem and Cheng 2003), in
classification of plain concrete, and concrete modified with CFBC
fly ash as materials of good and acceptable resistance to chloride
penetration (Marks et al. 2009). In the paper by Alterman and Kas-
perkiewicz (2006), the authors proposed to combine artificial neural
networks and machine learning methods in one system to estimate
and predict various properties of concrete materials.

The aim of the present paper is to generate the rules describing
the scaling resistance of concrete modified with CFBC ash by using
selected machine learning algorithms. The rules generated by
selected algorithms provided a means for required classification
of modified concrete as materials resistant or not resistant to the
surface scaling.

Laboratory Tests

Materials and Mixture Proportions

Concrete specimens with a different CFBC ash content were manu-
factured by using ordinary Portland cement CEM I 32.5 R and two
kinds of CFBC ash: from hard coal combustion in the thermal-
electric power station Katowice (K) and from brown coal combus-
tion in the power plant Turów (T).

The chemical and physical properties of Portland cement
used and both CFBC fly ashes are shown in Table 2. Solid residues
from coal combustion in circulated fluidized bed boilers are

characterized by a different chemical composition than conven-
tional fly ash and by the angular shape of grains (Fig. 1) in contrast
to round-shape particles of conventional fly ash. The increased
content of SO3 and CaO in CFBC is evident.

Coarse aggregate fractions 2–8 mm and 8–16 mm and sand frac-
tion of 0–2 mm were used. Regular chemical admixtures were used
in sets as recommended by the manufacturers: high-range water
reducers, air-entraining admixtures and a plasticizer. The amount
of admixtures was changeable to achieve approximately the same
slump and the designed air-void content in the mix. Four series of
air-entrained concrete mixes were designed: series C with water to
binder ratio w∕b ¼ 0:45, series D, F with w∕b ¼ 0:42; and series G
with w∕b ¼ 0:44. In Table 3, the proportions of binder materials are
shown. Natural gravel aggregates were used in series C and D;
crushed basalt aggregates were used in series F and G.

The concrete mix design was based on the experimental method
with replacement of cement mass by CFBC ash: 15 and 30% in
series C, 20 and 40% in series D, 20, 30, 40% in series F and
30% in series G. The specimens were cast in 150-mm cubical
molds and in cylinder molds ϕ100 mm × 200 mm. Fresh mixes
were consolidated by vibration. After 48 h, the specimens (because
of elongated setting time) were demoulded and cured in high humid
conditions RH > 90%, at a temperature of 18–20°C until the age of
28 days. Properties of fresh mix and the compressive strength of
concrete at 28 days are given in Table 4. The compressive strength

Table 1. Chemical Requirements for Fly Ash According to ASTM C618 and EN 450-1 and the Actual Characteristics of CFBC Fly Ash

Constituent

ASTM C618 EN 450 CFBC fly ash

F C Type II concrete additive From hard coal From lignite

ΣSiO2, Al2O3, Fe2O3, min, % 70 50 70 79.6 69.27

SO3, max, % 5 5 3 3.62 3.8

Na2O max% 1.5 max% 1.5 max% 5 (Na2Oeq) 1.18 1.64

CaO free, max, % — — 2.5 0.3 1.4

Moisture content, max, % 3 3 — — —
Cl� content, max, % — — 0.1 0.1 0.03

Loss on ignition 1;000°C∕1 h, max, % 6–12 6 5 3.4 2.73

Table 2. Chemical Composition and Physical Properties of Portland
Cement CEM I, Pulverized Fuel Fly Ash, and CFBC Ashes from
Combustion of Hard and Brown Coal

Chemical
compounds PC type I

Pulverized
fuel fly ash

CFBC ash

From hard
coal K

From
lignite T

SiO2 19.6 50.8 47.18 36.47

Fe2O3 3.1 8.6 7.84 4.37

Al2O3 5.7 23.9 26.62 28.35

TiO2 — 1.11 1.08 3.84

CaO 62.1 4 5.84 15.95

MgO 2.1 2.8 0.18 1.65

SO3 3.11 0.8 3.62 3.8

Na2O 0.5 0.8 1.18 1.64

K2O 0.92 2.9 2.36 0.62

Cl� 0.029 0.02 0.1 0.03

CaOfree 0.9 0.6 0.34 1.4

Specific gravity

[g∕cm3]

3.15 2.16 2.68 2.75

Loss on ignition,

1;000°C∕1 h

1.1 2.9 3.4 2.73
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of concrete containing CFBC ash was similar to the strength of the
reference concrete. The observed differences in the compressive
strength of concrete within each series can be primarily attributed
to the air content variability.

Testing Procedure

Frost salt scaling testswere performed according to aEuropean Stan-
dard procedure (EuropeanCommittee for Standardization 2006) that
was established following the Swedish standards 137244 (SS 1995).
The upper horizontal surface of the specimens (the cut surface) was
exposed to freezing and thawing; whereas, the remaining surfaces
were isolated against humidity and heat transfer. After 28 days of
curing, the top exposed surface was covered with 3%NaCl solution.
Standard cooling and thawing cycles were applied. The temperature
in the saline solution layer on the top of specimens was recorded
every hour with the digital thermometer LB-711 system working

with 6 surface probes. The scaled material was collected and
weighed after a given number of freeze-thaw cycles, and the results
expressed as mass per unit area have been recorded. The mean mass
of scaledmaterial after 28 (m28) and 56 (m56) cycles is used for evalu-
ating the scaling resistance, according to the criteria presented in
Table 5 and according to Swedish standard (SS 1995). For concrete
paving flags evaluated by using European Standard procedure EN
1339 (EuropeanCommittee for Standardization 2003), the allowable
limit of mass of scaled material is 1 kg∕m2 after 28 cycles.

Air-void parameters in hardened concrete were determined by
using a computer-driven image analysis system described in
Glinicki and Zieliński (2008). The automatic measurement pro-
cedure was designed to comply with the requirements imposed
by ASTM C457 (ASTM 1991) and the European Standard EN

Fig. 1. The shape of ash particles: (a) from pulverized coal combustion, magnification 10,000 (reprinted with permission from Giergiczny and Pużak
2008); (b) from fluidized bed combustion of hard coal—Katowice, magnification 4,000 (image by authors); (c) from fluidized bed combustion of
brown coal—Turów, magnification 5,000 (image by authors)

Table 3. Proportions of Binder Materials in Concrete Mixes

Concrete mix

Cement

CFBC ash

Water Plasticizer HRWR AEAT K

Content [kg∕m3]

Series C C0 380 — — 171 3.4 2.7 0.4

C15K 323 — 57 171 3.4 2.5 0.6

C30K 266 — 114 171 3.4 3.4 0.6

C15T 323 57 — 171 3.4 3.8 0.6

C30T 266 114 — 171 3.4 4.8 0.6

Series D D0 406 — — 175 — 0.0 3.2

D20T 290 73 — 151 — 2.0 2.9

D40T 217 145 — 150 — 4.0 5.8

D20K 323 — 81 167 — 2.2 3.2

D40K 244 — 162 157 — 4.5 6.5

Series F F0 360 — — 150 — 1.8 0.36

F20K 288 — 72 150 — 2.16 1.44

F30K 252 — 108 150 — 2.88 2.16

F40K 216 — 144 150 — 3.6 2.88

Series G G0 354 — — 156 — 3.2 0.05

G30K 246 — 105 155 — 7.4 0.4

G30T 246 105 — 155 — 8.8 0.11

Note: HRWR—high-range water reducer, AEA—air-entraining admixture,
T—from lignite combustion, K—from hard coal combustion.

Table 4. Properties of Fresh Mix and the Compressive Strength of
Concrete

Concrete mix
Slump Air content

Cube compressive
strength

at 28 days
[mm] [%] [MPa]

Series C w∕b ¼ 0:45 C0 115 6.2 46.3

C15K 95 6.8 47.2

C30K 120 5.8 46.8

C15T 135 6.6 45.3

C30T 115 6.2 46.3

Series D w∕b ¼ 0:42 D0 130 4.9 22.7a

D20T 150 6.9 21.0a

D40T 150 7.8 26.1a

D20K 150 4.6 38.3a

D40K 240 4.6 43.0a

Series F w∕b ¼ 0:42 F0 30 7.6 49.7

F20K 30 7.0 56.4

F30K 20 6.6 55.8

F40K 40 6.6 54.3

Series G w∕b ¼ 0:44 G0 90 7.1 62.5

G30K 40 6.1 65.3

G30T 80 4.7 66.8
aReduced compressive strength at 28 days of curing was because of high
content of air-voids in the hardened concrete. The results of the total air-
void content A_hr are further given in the database table.
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480-11 (European Committee for Standardization 2008). Results of
measurements were available as a set of standard parameters for air-
void structure characterization: spacing factor �L (mm), specific sur-
face αð1∕mmÞ, air content A (%), denoted as A_hr in section 4,
content of air voids with a diameter less than 0.3 mm A300 (%).

Test Results of Scaling Resistance of Concrete

Values of the mass of scaled material determined after 28 and 56
cycles of freezing and thawing in presence of 3% NaCl solution for
concretes series C, D, F, G and the results of evaluation of the
surface scaling resistance according to the Borås method and to
the European standard procedure EN 1339 are given in Table 6.

A general tendency to decrease the frost salt scaling resistance
with AN increasing content of CFBC ash is observed. A more
detailed analysis of material composition effect on the frost salt
scaling of concrete was undertaken by using machine learning
methods.

Machine Learning Methods

Data mining can be defined as the process of discovering patterns in
a dataset. By a dataset a database is meant i.e., collection of
logically related records. Each record can be called an example
or instance and each one is characterized by the values of predeter-
mined attributes. Four basically different types of learning appear
in data mining applications: classification, association, clustering,

and numeric prediction (Witten and Frank 2005). The most
common of them is classification. The aim of the classification pro-
cess is to learn a way of classifying unseen examples on the basis
of the knowledge extracted from the provided set of classified ex-
amples. To extract the knowledge from the provided dataset, the
attribute set characterizing the example has to be divided into
two groups: the class attribute and the nonclass attributes. For un-
seen examples, only nonclass attributes are known, therefore, the
aim of data mining algorithms is to build such a knowledge model
that allows predicting the example class membership only on the
basis of nonclass attributes. The knowledge model is dependent on
the way of how the classifier is constructed, and it can be repre-
sented by decision trees (e.g., algorithm C4.5, Quinlan 1993) or
classification rules (the AQ algorithms family, Michalski 1983).
Regardless of the representation, both types of algorithms create
hypotheses.

To evaluate the classifier i.e., to judge the hypotheses generated
from the provided training set it is necessary to verify the classifier
performance on the independent dataset, which is called the testing
set. It is also important to ensure that both the training data and
the test data are representative for the considered problem. The
classifier predicts the class of each instance from the test set; if
it is correct, that is counted as a success; if not it is an error. To
measure the overall performance of the classifier, some quantitative
analysis needs to be performed.

The example of such a measure resulting from quantitative
analysis is a success rate, which is usually called a classification
accuracy. This is the number of correct classifications of the instan-
ces from the test set divided by the total number of these instances
expressed as a percentage.

To get a deeper understanding of what types of errors are the
most frequent, the result obtained from a test set is often displayed
as a two-dimensional confusion matrix with a row and a column for
each class. Each matrix element shows the number of test examples
for which the actual class is the row and the predicted class is the
column. Good results correspond to large numbers down the main
diagonal and small, ideally zero, for the elements off the diagonal.

Table 5. Criteria of the Surface Scaling Resistance Evaluation

Scaling resistance Requirements

Very good m56 < 0:10 kg∕m2

Good m56 < 0:20 kg∕m2

or m56 < 0:50 kg∕m2 and m56∕m28 < 2

Admissible m56 < 1:00 kg∕m2 and m56∕m28 < 2

Inadmissible m56 > 1:00 kg∕m2 or m56∕m28 > 2

Table 6. Results of Tests of Scaling Resistance of Concrete after 28 and 56 Cycles, Series C, D, F, G and the Results of Evaluation of Scaling Resistance
according to Assumed Criteria

Series

Mass of scaled material Evaluation of frost salt scaling resistance according to

After 28 cycles [kg∕m2] After 56 cycles [kg∕m2] SS 137244:1995 EN 1339:2003

C0 0.04 0.17 Good Resistant

C15K 0.19 0.58 Inadmissible Resistant

C30K 1.22 1.50 Inadmissible Nonresistant

C15T 0.23 0.56 Inadmissible Resistant

C30T 0.90 1.30 Inadmissible Resistant

D0 0.08 0.11 Good Resistant

D20T 0.10 0.15 Good Resistant

D40T 0.50 0.67 Admissible Resistant

D20K 0.20 0.36 Good Resistant

D40K 1.20 1.41 Inadmissible Nonresistant

F0 0.04 0.09 Very good Resistant

F20K 0.25 0.52 Inadmissible Resistant

F30K 0.31 0.85 Inadmissible Resistant

F40K 0.88 1.52 Inadmissible Resistant

G0 0.81 0.83 Admissible Resistant

G30K 1.94 2.03 Inadmissible Nonresistant

G30T 1.32 1.36 Inadmissible Nonresistant
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The sum of the numbers down the main diagonal divided by the
total number of test examples determine classification accuracy.

Let’s consider what can be done when the number of data for
training and testing is limited. The simplest way to handle this sit-
uation is to reserve a certain number of examples for testing and to
use the remainder for training. Of course, the selection should be
done randomly. In practical terms, it is common to hold out one-
third of the data for testing and use the remaining two-thirds for
training (Witten and Frank 2005). The primary disadvantage of this
simple method is that this random selection may be not
representative. A more general way to mitigate any bias caused
by the particular sample chosen for holdout is to repeat the whole
process, training and testing, several times with different random
samples. The random selection repeated many times can be treated
as the basis of an statistical technique called cross-validation. In the
k-fold cross-validation, the data set U is split into k approximately
equal portions (U ¼ E1∪ � � �∪Ek) (Krawiec and Stefanowski
2003; Witten and Frank 2005). At each iteration i, the set Ei is used
for testing, and the remainder UmathordEi is used for training.
Overall, classification accuracy is calculated as an average from
the classification accuracy for each iteration.

To generate rules describing the scaling resistance of concrete,
several numerical experiments were performed by using program
AQ21 (Wojtusiak 2004) and algorithm J48 from the WEKAwork-
bench (Witten and Frank 2005). Algorithm AQ21, invented in the
Machine Learning and Inference Laboratory of George Mason
University, is based on the covering approach alike most of the
rule-based data mining algorithms. Therefore, the AQ21 algorithm
generates subsequent rules until all the examples (sometimes not
all) are covered. The idea of adding a new rule or a new term
to existing rule is to include as many instances of the desired class
(positive examples) as possible and to exclude as many instances of
other classes (negative examples) as possible.

The second considered algorithm, J48, is available as a part of
the WEKA workbench, which was developed at the University of
Waikato in New Zealand. The algorithm J48 is an implementation
of the last publicly available version of an algorithm C4.5 devised
by J. Ross Quinlan (Quinlan 1993). Construction of decision trees
is based on a simple divide and conquer approach, which is well
known in computer science. The primary problem is connected to a
selection of tests (splits of attributes), which should be placed in the
nodes. The test is good if it allows shortening of the way from the
root to the leaves representing classes.

Application of program AQ21 and algorithm J48 from work-
bench WEKA provided the means for automatic classification of
plain concretes and concretes modified with CFBC fly ash as
materials of good or acceptable resistance to chloride penetration
(Marks et al. 2009).

Search for the Rules by Describing Surface Scaling
Resistance of Concrete

Generation of Rules by Using Criteria Defined in
EN 1339

As a result of the experiments carried out on the specimens with
different contents of fluidized fly ash, as shown in Tables 3 and 6,
the following database consisting of 17 records was created. This
database was used to determine the rules describing the scaling
resistance of concrete after 28 cycles. The database with one nomi-
nal and 6 numerical attributes is presented in Table 7.

The attributes A_hr and �L are standard parameters describing
the air-void microstructure of concrete according to EN 480-11

(EN 480-11 2008). The last attribute—resistance—is a nominal
one that takes on two possible values: yes, no. In the considered
database, 13 examples belonged to the [Resistance = YES]
class and 4 examples belonged to the [Resistance =
NO] class.

The aim of an experiment is to generate the set of rules which
allow the determination of the surface scaling resistance of
concrete. As a training set, all the instances from the database
were considered. The rules generated by an AQ21 algorithm are
presented next:

[Resistance = YES]
Rule 1

½pfK ≤ 110� and ½A_hr ≥ 4:13�∶ p ¼ 11; n ¼ 0;

q ¼ 0:846
ð1a Þ

Rule 2

½pfK ≤ 152� and ½�L ≤ 0:255�∶ p ¼ 10; n ¼ 0; q ¼ 0:769

ð1b Þ

[Resistance = NO]
Rule 1

½C1 ≤ 294� and ½A_hr ≤ 4:58�∶ p ¼ 3; n ¼ 0; q ¼ 0:75

ð1c Þ

Rule 2

½C1 ¼ 230::248�∶ p ¼ 3; n ¼ 0; q ¼ 0:75 ð1d Þ

Table 7. Database Containing Attributes of Concrete with CFBC Ash
Additions

Record
number C1 pfT pfK w∕b A_hr L Resistance

1 380 0 0 0.45 4.46 0.38 YES

2 323 0 57 0.45 4.83 0.28 YES

3 266 0 114 0.45 4.33 0.35 NO

4 323 57 0 0.45 4.7 0.34 YES

5 266 114 0 0.45 6.88 0.24 YES

6 406 0 0 0.42 10.08 0.07 YES

7 323 0 81 0.42 5.94 0.12 YES

8 290 73 0 0.42 18.41 0.05 YES

9 244 0 162 0.42 6.07 0.14 NO

10 217 145 0 0.42 16.56 0.08 YES

11 360 0 0 0.42 6.25 0.13 YES

12 288 0 72 0.42 6.25 0.13 YES

13 252 0 108 0.42 7.08 0.14 YES

14 216 0 144 0.42 6.03 0.18 YES

15 354 0 0 0.44 3.7 0.17 YES

16 246 0 105 0.44 2 0.27 NO

17 246 105 0 0.44 3.8 0.56 NO

Note: where: C1—cement content, [kg∕m3], pfT—the content of CFBC
ash from brown coal content (power plant Turów), [kg∕m3], pfK—the con-
tent of CFBC ash from hard coal content (power station Katowice),
[kg∕m3], w∕b—water-to-binder ratio, A_hr—air content in the hardened
concrete measured on polished sections by using microscopic image ana-
lysis, [%], L—air voids spacing factor, which characterizes the spatial dis-
tribution of bubbles generated by the air entrainment [mm], Resistance—
result of evaluation of the scaling resistance of concrete according to EN
1339 (YES, NO).
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where p = of positive examples in the training set covered by
the rule; n = number of negative examples covered by the rule
(i.e., the number of records from the other classes satisfying the
rule); and q = quality of the rule, defined as:

q ¼ cov1∕2 × consig1∕2

where

cov ¼ p
P

and consig ¼
�

p
pþ n

� P
Pþ N

�
×
Pþ N
N

are measures of the rule: coverage and consistency gain, respec-
tively. In this equation, P and N are the numbers of positive and
negative examples in the training data for that class, respectively
(for the [Resistance = YES] class P ¼ 13, N ¼ 4 and for the
[Resistance = NO] class P ¼ 4, N ¼ 13).

The rules shown in Eqs. (1a)–(1d) can be interpreted as
described next.

The concrete is expected to be scaling resistant if

pfK ≤ 110 and A hr ≥ 4:13 or

pfK ≤ 152 and L ≤ 0:255

The concrete will be nonscaling resistant if

C1 ≤ 294 and A hr ≤ 4:58 or

230 ≤ C1 ≤ 248

However, it should be emphasized that the presented rules are
only applicable to concrete with the defined overall mass of cement
and coal ash additions as given in Table 3.

To estimate the classification accuracy, the k-fold cross-
validation was used, where k is the number of examples in the
database. In this method, each example in turn is left out, and
the learning method is trained on all the remaining examples.
The results of k judgments, one for each member of the database,
are averaged, and that average represents the classification accuracy
(Witten and Frank 2005). This method, named leave-one-out cross-
validation, is useful to the database of a small number of records. It
seems to offer a chance of squeezing the maximum out of a small
dataset and obtaining as accurate an estimate as possible.

The results of k judgments may be displayed as a two-
dimensional confusion matrix with a row and a column for each
class. Each confusion matrix element shows the number of test
examples for which the actual class is the row and the predicted
class is the column. The numbers of examples down the main
diagonal are predicted correctly. The classification accuracy is
the sum of numbers down the main diagonal divided by the total
number of data set examples.

Applying the k-fold cross-validation for k ¼ 17 (number of
examples in Table 6), the confusion matrix is obtained as shown
in Table 8.

The value of classification accuracy is equal to 76.5%. It is
inferred from that value that the use of a classifier will provide
fairly reliable results.

Generation of Rules by Using Criteria Defined in
SS 137244

The scaling resistance criteria defined in Table 5 depend on the
mass of scaled material at the surface of concrete specimens after
56 cycles and the ratio of scaled material after 56 cycles to scaled
material after 28 cycles. The classes of the scaling resistance of
concrete determined by using this method are given in Table 6.
Because of a small number of data (only 17 records), the classifi-
cation was simplified by introducing only two classes of the surface
scaling resistance (YES and NO). The class “YES” was assigned to
cover the following categories of resistance: very good, good, and
admissible. The class “NO” was equivalent to inadmissible frost
salt scaling resistance. Table 9 provides the database generated
by using those criteria along with other parameters, (C1, pfT,
pfK, w∕b, A_hr and �L) previously discussed.

The last attribute—resistance—is a nominal one and can only
take two possible values: yes or no. In the considered database,
7 records belonged to the [Resistance = YES] class, and 10 records
belonged to the [Resistance = NO] class.

To generate the rules, which allow us to determine the scaling
resistance of concrete, the J48 algorithm was also used. As a train-
ing set, all the instances from the database were considered. The
decision tree generated by an J48 algorithm is presented in Fig. 2
in which the number in brackets denotes the number of examples
correctly classified (positive examples).

The obtained decision tree (Fig. 2) can be easily transformed
into the following rules:

[Resistance = YES]
Rule1 [C1 ≤ 323] and [½�L ≤ 0:12�∶ p ¼ 3, n ¼ 0
Rule2 ½C1 > 323�∶ p ¼ 4, n ¼ 0
[Resistance = NO]
Rule1 [C1 ≤ 323] and ½�L > 0:12�∶ p ¼ 10, n ¼ 0
Applying the k-fold cross-validation for k ¼ 17 (value of

parameter k is the number of examples), the result was obtained
on the test set displayed as a two-dimensional confusion matrix
for both classes as shown in Table 10.

Table 8. Confusion Matrix

Actual class

Predicted class

Yes No

Yes 11 2

No 2 2

Table 9. Database Containing Attributes of Concrete with CFBC Ash
Additions

Record
number C1 pfT pfK w∕b A_hr �L Resistance

1 380 0 0 0.45 4.46 0.38 Yes

2 323 0 57 0.45 4.83 0.28 No

3 266 0 114 0.45 4.33 0.35 No

4 323 57 0 0.45 4.7 0.34 No

5 266 114 0 0.45 6.88 0.24 No

6 406 0 0 0.42 10.08 0.07 Yes

7 323 0 81 0.42 5.94 0.12 Yes

8 290 73 0 0.42 18.41 0.05 Yes

9 244 0 162 0.42 6.07 0.14 No

10 217 145 0 0.42 16.56 0.08 Yes

11 360 0 0 0.42 6.25 0.13 Yes

12 288 0 72 0.42 6.25 0.13 No

13 252 0 108 0.42 7.08 0.14 No

14 216 0 144 0.42 6.03 0.18 No

15 354 0 0 0.44 3.7 0.17 Yes

16 246 0 105 0.44 2 0.27 No

17 246 105 0 0.44 3.8 0.56 No
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The value of classification accuracy is equal to 70.6%, so it is
predicted correctly. Obtained rules show the significance of cement
content and air-void characteristics.

Conclusions

The classifiers generated by computer programs AQ21 and WEKA
by using the J48 algorithm have provided a simple automatic
classification of the scaling resistance of the plain concretes and
concretes modified with CFBC ash according to the introduced cri-
teria. It has been found that both air-void microstructure parameters
and the content of cement and CFBC ash play a significant role in
providing the required concrete scaling resistance. The classifiers
were evaluated by using the k-fold cross-validation, where k was
the number of instances in the data set. The obtained values of the
classification accuracy on both data sets, determined according to
SS 137244 and EN 1339 standard, was respectively 70.6 and
76.5%. These values seem to be sufficient to acknowledge the
correctness of the classifiers. Moreover, both classifiers have an
additional and very useful property. They are able not only to
predict a proper value of the class attribute for unseen examples,
but their knowledge is represented in a clear way, which is under-
standable for an expert. The relationship between the attributes and
decision class, which is expressed in an explicit way, can be used
for the design of new concrete mixes. Because of a small number
of tested specimens, the rules are applicable only to concrete mix
compositions of similar binder content and similar values of water-
to-binder ratio. Further tests are needed to enlarge the experimental
database and to cover a broader range of concrete compositions.
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Abstract: The aim of the study was to generate rules for the prediction of the chloride resistance of
concrete modified with high calcium fly ash using machine learning methods. The rapid chloride
permeability test, according to the Nordtest Method Build 492, was used for determining the
chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement
of Portland cement. The results of the performed tests were used as the training set to generate rules
describing the relation between material composition and the chloride resistance. Multiple methods
for rule generation were applied and compared. The rules generated by algorithm J48 from the
Weka workbench provided the means for adequate classification of plain concretes and concretes
modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to
chloride penetration.

Keywords: chloride penetration; concrete; durability; high calcium fly ash; machine learning

1. Introduction

The increased use of high calcium fly ash (HCFA) for partial replacement of Portland cement in
concrete could result in a number of environmental benefits (reduced consumption of cement clinker,
reduced CO2 emissions during cement production, saving natural resources, reduced landfill space
and storage costs). The resources of high calcium fly ash are large, it is produced as a by-product of
power generation in brown coal burning plants. However, this type of ash is usually characterized
by low silica content, a high content of free lime and an increased content of sulfur compounds. It
could be used in concrete following the requirements of ASTM (American Society for Testing and
Materials) C618 Class C, but in Europe, it does not meet the requirements defined in standard EN
450-1. At present, HCFA is not in common use in European countries in spite of positive examples
of its suitability provided by Greek and Turkish researchers. It was shown [1] that in the case of
cement replacement with HCFA, the compressive strength of concrete was increased if the content
of active silica in the fly ash was higher than that in the cement. Similar results were obtained
earlier by Naik, et al. [2]: partial replacement of cement by fine-grained HCFA resulted in the
same or better compressive strength of concrete; the results for drying shrinkage were also positive.
The optimization of fineness coupled with the adjustment of water content were found as the key
parameters of the effective utilization of high calcium fly ashes for strength maximization of cement
mortars [3]. The application of HCFA as a partial cement replacement in mortar beams stimulated
self-healing of cracks and particularly of microcracks [4]. It was also found that concrete specimens
incorporating HCFA exposed to long-term chloride ponding experiments exhibited significantly
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lower total chloride content for all depths from the surface [5]. The key factors for the adequate
performance of HCFA in concrete seem to be both the composition and the gradation of fly ash.

The assessment of concrete resistance to chloride ingress is fundamental for the durability of
reinforced concrete structures exposed to deicing salt and the marine environment [6]. Numerous
papers on chloride penetration resistance of concrete modified with standard siliceous fly ash were
recently reviewed in [7]. The addition of fly ash is generally found (and confirmed in [8]) to reduce
chloride permeability and also to increase the chloride binding capacity of concrete. Despite lower
chloride threshold values, the addition of fly ash was found to provide better corrosion protection
to steel reinforcements. There is a need to extend such a study to include high calcium fly ash. For
rational use of HCFA in structural concrete, there is also a need to propose tools for the prediction of
the chloride penetration resistance of concrete.

The prediction of the engineering properties of composite materials is usually based on
experimental test results with a reference to the observed material microstructure. The relevant
material characteristics can be extracted from an experimental dataset using various artificial
intelligence methods, developed for the last two decades for various engineering applications [9,10].
Artificial neural networks were successfully applied for the prediction of the compressive strength of
concrete containing silica fume [11] or coal ash [12]. Moreover, the application of neural networks and
optimization technologies created the possibility to search for the optimum mixture of concrete: the
mixture with the lowest cost and required performance, such as strength and slump [13]. Machine
learning methods were also tested on the classification of concrete modified by fluidized bed fly ash as
materials of adequate resistance to chloride penetration [14] and resistance to surface scaling [15]. The
application of machine learning for the prediction of the scaling resistance of concrete modified with
high calcium fly ash is described in [16]. The authors of [17,18] proposed to combine artificial neural
networks and machine learning methods in one system to estimate and predict various properties of
concrete materials.

The aim of this study is to generate rules using a machine learning algorithm to evaluate
the chloride resistance of concrete modified with high calcium fly ash. The rules are generated
using selected attributes from a database created by storing the experimental results of the chloride
migration coefficient determined for three concrete series.

2. Composition of Concrete Mixes and Test Results of the Chloride Migration Coefficient

The chloride migration coefficient in concrete specimens with different contents of high calcium
fly ash was experimentally measured. Concrete mixes were prepared with high calcium fly ash
used for replacement of 15% or 30% of the cement mass. Experimental tests were performed on
several mixes. For concrete manufacturing, two types of Portland cement, CEM I 42.5R (with 10%
C3A content) or CEM I 42.5 HSR NA (with 2% C3A content), siliceous sand fraction 0÷ 2 mm and
amphibolite as a coarse aggregate (two fractions 2÷ 8 mm and 8÷ 16 mm) were used. The following
admixtures were used: a high range water reducer (based on polycarboxylate ethers) and a plasticizer
(lignosufonate). Because of the expected variability of ash properties, three lots of high calcium
fly ash were tested from different deliveries from the power plant, namely S1, 16 March 2010, S2,
19 May 2010, and S3, 28 June 2010. The chemical composition of HCFA is given in Table 1. For
HCFA beneficiation, a grinding process was applied during 10–28 minutes in a ball mill. The physical
properties of ash before and after grinding are given in Table 2 [19]. HCFA was used as an additive
to concrete mix in unprocessed form (as collected) and after grinding.

The Nordtest Method Build 492—Non-Steady State Migration Test [20] was used to determine
the chloride migration coefficient. The principle of the test is to subject the concrete specimen to
external electrical potential applied across it and to force chloride ions to migrate into the concrete.
The specimens are then split open and sprayed with silver nitrate solution, which reacts to give white
insoluble silver chloride on contact with chloride ions. This provides a possibility to measure the
depth to which a sample has been penetrated. The non-steady-state migration coefficient, Dnssm,
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is determined on the basis of Fick’s second law. This coefficient is dependent on the voltage
magnitude, the temperature of the anolyte measured at the beginning and the end of test and the
depth of chloride ions’ penetration. The criteria for evaluating the resistance of concrete against
chloride penetration proposed by L. Tang [21] are shown in Table 3.

Table 1. The chemical composition of high calcium fly ashes from Bełchatów power plant in
Poland, determined using the XRF (X-ray fluorescence) method. Fly ash sampling date and bath
designation [19].

Component
Fly Ash Sampling Date and Batch Designation
16.03.2010 19.05.2010 28.06.2010

S1 S2 S3

LOI 2.56% 3.43% 1.85%
SiO2 33.62% 35.41% 40.17%

Al2O3 19.27% 21.86% 24.02%
Fe2O3 5.39% 6.11% 5.93%
CaO 31.32% 25.58% 22.37%
MgO 1.85% 1.49% 1.27%
SO3 4.50% 4.22% 3.07%
K2O 0.11% 0.13% 0.20%

Na2O 0.31% 0.16% 0.15%
P2O5 0.17% 0.16% 0.33%
TiO2 1.21% 1.22% 1.01%

Mn2O3 0.07% 0.06% 0.06%
SrO 0.20% 0.17% 0.16%
ZnO 0.02% 0.02% 0.02%

CaO f ree 2.87% 1.24% 1.46%

Table 2. Physical properties of high calcium fly ashes before and after processing [19].

Batch Fly Ash Designation Density (g/cm3)
Fineness: The Residue Specific Surface

on Sieve 45 µm (%) by Blaine (cm2/g)

S1
S1: unprocessed 2.62 38.0 2860

S110: ground 10 min 2.77 23.0 3500
S128: ground 28 min 2.75 10.5 3870

S2 S2: unprocessed 2.58 35.4 4400
S215: ground 15 min 2.70 13.3 6510

S3 S3: unprocessed 2.64 55.6 1900
S320: ground 20 min 2.71 20.0 4060

Table 3. Criteria for the classification of the concrete resistance to chloride ions’ penetration [21].

Chloride Migration Coefficient Dnssm Resistance to Chloride Penetration

<2 × 10−12 m2/s Very good
2–8 × 10−12 m2/s Good
8–16 × 10−12 m2/s Acceptable
>16 × 10−12 m2/s Unacceptable
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Experimental tests revealed a decrease of the chloride migration coefficient with the increase
in the HCFA amount added to the mix. The most significant reduction of Dnssm by 36%–75% and
54%–89% after 28 and 90 days of curing, respectively, was obtained when using ground HCFA to
substitute 30% of binder mass. With a such reduction of Dnssm, the level of chloride resistance changed
from acceptable to good or from unacceptable to acceptable, [22]. For a few mixes prepared with a
water-to-binder ratio of 0.60, a change of Dnssm did not increase the level of chloride penetration
resistance. Sieving through a 0.125-mm mesh size sieve was found to improve HCFA performance:
it significantly reduced the value of Dnssm, which was most evident after 90 days of curing. No clear
relationship could be found between Dnssm and the water-to-binder ratio or the compressive strength
of concrete.

The resistance against chloride ingress of concrete containing low calcium fly ash was previously
tested by Baert, et al. [23], and at 28 days, the chloride migration coefficient was increased with
increasing fly ash content. However at later ages (3, 6 or 12 months), due to the pozzolanic reaction,
the Dnssm coefficient was lower for all concrete mixes with siliceous fly ash. The effects of blast
furnace slag on the chloride migration coefficient summarized by Gjorv [6] were clearly favorable,
even at the age of 14 days. After 28 days of water curing, the increasing amounts of slag up to 80%
replacement resulted in the reduced apparent chloride diffusion coefficient from 11 × 10−12 down
to 2 × 10−12 m/s2. The comparison with the obtained results on HCFA in concrete reveals almost
comparable efficiency as blast furnace slag. This could be attributed to both pozzolanic and hydraulic
activity of HCFA. The hydraulic properties of these fly ashes should be related to reactive aluminate
phases and their hydration and also to the formation of ettringite in the initial phase of hydration [24].
A high hydraulic and pozzolanic activity index after a prolonged hydration and hardening process
is connected with hydraulic phases, mainly belite and gehlenite, as well as with the reactivity of the
glassy phase. The complexity of the phenomena involved in chloride ion penetration in concrete
containing such a mineral addition of pozzolanic and hydraulic activity justifies an application of
machine learning techniques to reveal the possible governing rules.

In Table 4, the database containing data on the composition of the concrete mixes, the specific
surface of fly ash obtained by the Blaine method and the chloride migration coefficient determined
after 28 days of curing is presented. The estimation of the concrete resistance to chloride penetration,
based on the values of the diffusion coefficients according to the criterion presented in Table 3, is
placed in the last column of Table 4.

The permeability of concrete is known to be dependent largely on the water-to-cement ratio,
(w/c). However the definition of w/c is not unambiguous when using supplementary cementitious
materials. Following the EN 206 standard, the effect of active mineral additions on w/c is quantified
using the k-efficiency factor: the content of the additive (a) is multiplied with a k-value, and the
water to cement ratio (w/c) is replaced by (w/c)eq = w/(c + k · a). The efficiency k factor approach
is adequate to address the mix design for compressive strength when using the additives of the
established efficiency. Even in such a case, like siliceous fly ash, the efficiency factors are not the same
for durability performance and for the compressive strength [25]. The compiled fly ash efficiency
data [6,26] revealed a much higher efficiency coefficient k in relation to the compressive strength than
the value given in EN 206, even reaching the value of two in relation to the resistance to chloride
attack. For nonstandard fly ashes and coal combustion products from so-called clean coal technology,
the efficiency factors are not established [27]. Therefore, it is not possible to describe all of the effects
of the nonstandard fly ashes, including HCFA, on concrete performance when exposed to various
environmental factors with only one efficiency coefficient. In order to avoid an unambiguous (w/c)
definition, the content of water in the mix is used as a descriptor in the machine learning database.
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Table 4. The database of the composition of concrete mixes and the properties of hardened concretes.

Concrete Mix
Content (kg/m3) Specific Surface Chloride Migration Category of

Cement CEM I 42.5 High Calcium Fly Ash Aggregate Water of Fly Ash Coefficient Resistance to
10% C3A 2% C3A (cm2/g) ( × 10−12 m2/s) Chloride Penetration

mix C1 C2 S1 S110 S128 S2 S215 S3 S320 K016 w surf Dnssm resistance

R_38 359 0 0 0 0 0 0 0 0 1945 156 0 10.13 acceptable
R_39 305 0 137 0 0 0 0 0 0 1848 153 2860 7.88 good
R_41 250 0 268 0 0 0 0 0 0 1741 152 2860 3.76 good
R_42 323 0 0 0 0 0 0 0 0 1938 174 0 23.73 unacceptable
R_43 272 0 120 0 0 0 0 0 0 1837 169 2860 12.36 acceptable
R_44 226 0 241 0 0 0 0 0 0 1768 169 2860 8.10 acceptable
R_47 310 0 0 139 0 0 0 0 0 1892 140 3500 5.44 good
R_48 257 0 0 275 0 0 0 0 0 1802 142 3500 3.42 good
R_49 275 0 0 121 0 0 0 0 0 1872 160 3500 17.79 unacceptable
R_50 228 0 0 244 0 0 0 0 0 1800 159 3500 10.37 acceptable
R_51 306 0 0 0 137 0 0 0 0 1852 153 3870 6.37 good
R_52 255 0 0 0 273 0 0 0 0 1780 153 3870 3.85 good
R_53 277 0 0 0 122 0 0 0 0 1871 175 3870 12.22 acceptable
R_54 228 0 0 0 244 0 0 0 0 1784 173 3870 5.52 good
R_75 0 366 0 0 0 0 0 0 0 1997 143 0 11.96 acceptable
R_76 0 312 140 0 0 0 0 0 0 1901 142 2860 6.34 good
R_77 0 251 270 0 0 0 0 0 0 1765 140 2860 4.04 good
R_78 0 328 0 0 0 0 0 0 0 1982 165 0 21.91 unacceptable
R_79 0 278 123 0 0 0 0 0 0 1894 159 2860 10.30 acceptable
R_80 0 226 242 0 0 0 0 0 0 1790 157 2860 7.88 good
R_81 0 304 0 0 0 136 0 0 0 1861 133 4400 5.04 good
R_82 0 277 0 0 0 122 0 0 0 1889 158 4400 7.76 good

R_116 340 0 0 0 0 0 0 0 0 1841 170 0 20.79 unacceptable
R_125 296 0 0 0 0 0 0 75 0 1836 174 1900 8.17 acceptable
R_118 237 0 0 0 0 0 0 145 0 1767 172 1900 10.95 acceptable
R_117 295 0 0 0 0 0 0 0 74 1826 174 4060 12.00 acceptable
R_119 239 0 0 0 0 0 0 0 147 1781 171 4060 5.17 good
R_107 308 0 0 0 0 0 0 0 0 1846 186 0 26.00 unacceptable
R_102 265 0 0 0 0 0 0 67 0 1834 189 1900 22.80 unacceptable
R_103 218 0 0 0 0 0 0 134 0 1814 189 1900 20.86 unacceptable
R_105 265 0 0 0 0 0 0 0 67 1839 189 4060 12.10 acceptable
R_104 219 0 0 0 0 0 0 0 135 1820 190 4060 7.59 good
R_120 0 343 0 0 0 0 0 0 0 1862 172 0 23.09 unacceptable
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Table 4. Cont.

Concrete Mix
Content (kg/m3) Specific Surface Chloride Migration Category of

Cement CEM I 42.5 High Calcium Fly Ash Aggregate Water of Fly Ash Coefficient Resistance to
10% C3A 2% C3A (cm2/g) ( × 10−12 m2/s) Chloride Penetration

mix C1 C2 S1 S110 S128 S2 S215 S3 S320 K016 w surf Dnssm resistance

R_126 0 290 0 0 0 0 0 73 0 1793 170 1900 22.87 unacceptable
R_122 0 239 0 0 0 0 0 146 0 1779 171 1900 21.85 unacceptable
R_121 0 295 0 0 0 0 0 0 74 1824 173 4060 19.61 unacceptable
R_123 0 240 0 0 0 0 0 0 147 1786 171 4060 17.65 unacceptable
R_106 0 312 0 0 0 0 0 0 0 1869 189 0 28.50 unacceptable
R_111 0 265 0 0 0 0 0 67 0 1836 187 1900 31.63 unacceptable
R_112 0 222 0 0 0 0 0 136 0 1840 191 1900 27.44 unacceptable
R_110 0 265 0 0 0 0 0 0 67 1840 187 4060 25.42 unacceptable
R_108 0 223 0 0 0 0 0 0 137 1852 192 4060 23.04 unacceptable
A_0 350 0 0 0 0 0 0 0 0 1890 158 0 14.38 acceptable

A_15 298 0 133 0 0 0 0 0 0 1800 158 2860 7.91 good
B_15 298 0 0 133 0 0 0 0 0 1800 158 3500 6.39 good
C_15 298 0 0 0 133 0 0 0 0 1800 158 3870 5.52 good
A_30 245 0 263 0 0 0 0 0 0 1710 158 2860 5.43 good
B_30 245 0 0 263 0 0 0 0 0 1710 158 3500 1.63 very good
C_30 245 0 0 0 263 0 0 0 0 1710 158 3870 1.52 very good
D_15 298 0 0 0 0 133 0 0 0 1800 158 4400 3.06 good
E_15 298 0 0 0 0 0 133 0 0 1800 158 6510 2.06 good
H_0 0 350 0 0 0 0 0 0 0 1880 175 0 37.04 unacceptable

H_15M 0 298 0 0 0 0 0 0 75 1847 175 4060 34.48 unacceptable
H_15S 0 298 0 0 0 0 0 75 0 1847 175 1900 33.03 unacceptable
H_30M 0 245 0 0 0 0 0 0 150 1813 175 4060 27.41 unacceptable
H_30S 0 245 0 0 0 0 0 150 0 1813 175 1900 27.59 unacceptable

The database presented in Table 4 is a general database, which can be transformed into a “working database” by column selection.
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3. Machine Learning Methods Used in the Prediction of the Engineering Properties of
Composite Materials

3.1. Introduction to Machine Learning

Determining the relationship between material composition and the chloride resistance of
concrete is a difficult and time-consuming process, even in the case of a small dataset, as presented
in Table 4. For the considered dataset, it requires simultaneous analysis of 12 attributes (columns)
for over 50 examples (rows). This task can be done manually; however, using a computer
system to support data exploration is much more efficient. The branch of artificial intelligence
concerned with applying algorithms that let computers evolve patterns using empirical data is called
machine learning.

The aim of machine learning is to automatically learn to recognize complex patterns and make
intelligent decisions based on the dataset. By a dataset, we mean a collection of logically-related
records: a database. Each record can be called an instance or example, and each one is characterized
by the values of predetermined attributes. The difficulty lies in the fact that the set of all possible
behaviors given all possible inputs is too large to be covered by the set of observed examples (training
data). Hence, the learner must generalize from the given examples, so as to be able to produce a useful
output in new cases.

Patterns recognition associated usually with classification is the most popular example of
utilizing machine learning. However machine learning or, more general, statistical algorithms can
support the knowledge discovery at different stages from outlier detection and attribute (features)
selection to knowledge modeling and model validation.

3.2. Feature Selection

Feature selection, also known as attribute selection or feature reduction, is the technique of
selecting a subset of relevant features for building robust learning models. By removing most
irrelevant and redundant attributes from the data, feature selection helps improve the performance
of learning models by: speeding up the learning process and alleviating the effect of the curse
of dimensionality. Moreover, the irrelevant attributes degrade the performance of state-of-the-art
decision tree and rule learners [28].

3.3. Classification

As was written earlier in Section 3.1, classification is the most common type of machine
learning application. The goal of the classification process is to find a way of classifying unseen
examples based on the knowledge extracted from the provided set of classified instances. Extracting
the knowledge from the provided dataset requires the attribute set characterizing the example
to be divided into two groups: the class attribute and the non-class attributes. For unseen
instances, only non-class attributes are known; hence, the aim of data mining algorithms is to
create such a knowledge model that allows predicting the example class membership based only
on non-class attributes.

The knowledge model depends on the way the classifier is constructed, and it can be represented
by classification rules (the algorithm AQ21 [29]), decision trees (e.g., algorithm C4.5, [30]) or many
other representations. Regardless of the representation, both classification rules and decision trees
algorithms create hypotheses.

In the considered problem, the chloride resistance of concrete (class attribute) depending on
the material composition and some predictions of the concrete (non-class attributes) is searched.
We concentrated on the most popular representative of decision tree classifiers„ the J48 algorithm,
the open-source implementation of the last publicly-available version of a C4.5 method developed by
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J. Ross Quinlan [30]. This algorithm was compared to selected algorithms available in Weka [28] in
Section 4.2.

3.4. Classifier Evaluation

So as to evaluate the classifier, i.e., to judge the hypotheses generated from the provided training
set, we have to verify the classifier performance on the independent dataset, which is called the
testing set. The classifier predicts the class of each instance from the test set; if it is correct, it is
counted as a success; if not it, is an error. The measure of the overall performance of the classifier
is the classification accuracy. This is the number of correct classifications of the instances from the
test set divided by the total number of these instances, expressed as a percentage. The greater the
classification accuracy, the better is the classifier.

In order to get a deeper understanding of which types of errors are the most frequent, the result
obtained from a test set is often displayed as a two-dimensional confusion matrix with a row and a
column for each class. Each matrix element shows the number of test examples, for which the actual
class is the row and the predicted class is the column. Good results correspond to large numbers
down the main diagonal and small, ideally zero, for the elements off the diagonal. The sum of
the numbers down the main diagonal divided by the total number of test examples determine the
classification accuracy.

Let’s consider what can be done when the number of data for training and testing is limited.
The simplest way to handle this situation is to reserve a certain number of examples for testing and
to use the remainder for training. Of course, the selection should be done randomly. The main
disadvantage of this simple method is that this random selection may not be representative.
A more general way to mitigate any bias caused by the particular sample chosen for hold out is
to repeat the whole process, training and testing, several times with different random samples.
The random selection repeated many times can be treated as the basis of a statistical technique
called cross-validation. In the k-fold cross-validation, the dataset U is split into k approximately
equal portions (U = E1

⋃
...

⋃
Ek) [31]. In each iteration i, the set Ei is used for testing, and the

remainder U \ Ei is used for training. Overall classification accuracy is calculated as an average from
the classification accuracy for each iteration.

When we have only one database consisting of a very small number of records, the estimation
of classification accuracy (the measure of the overall performance of the classifier) can be done using
the n-fold cross-validation, where n is the number of examples in the database. In this method, called
leave-one-out cross-validation, each example in turn is left out, and the learning method is trained
on all of the remaining examples. It is judged by its correctness on the remaining example, one or
zero for success or failure, respectively. The results from n judgments, one for each member of the
database, are averaged, and that average represents the classification accuracy [28].

4. Searching for the Rules Describing the Chloride Resistance of Concrete Modified with HCFA

4.1. Feature Selection

In Table 4, the dataset with 12 attributes is presented. It is clear that for database with a few
dozens of instances, this number of attributes is too large. Some attributes can be eliminated, but it is
important to eliminate the most irrelevant attributes.

Therefore, we decided to evaluate a subset of attributes using the best first and exhaustive
approaches to feature selection. The best first method searches the space of attributes by greedy
hill climbing augmented with backtracking facility. In both cases, the CfsSubsetEvaluator, provided
by Weka, was used to assess the predictive ability of each attribute individually and the degree of
redundancy among them, preferring sets of attributes that are highly correlated with the class, but
have low inter-correlation. Both methods of searching (best first and exhaustive) resulted in selection
of C1, S128, w and surf attributes as a percent of tests, as presented in Table 5.
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Table 5. Attribute selection cross-validation results.

Attribute C1 C2 S1 S110 S128 S2 S215 S3 S320 K016 w surf

Best First 100% 0% 0% 0% 32% 0% 0% 0% 0% 0% 100% 100%
Exhaustive Search 98% 0% 0% 0% 32% 0% 0% 0% 0% 0% 100% 100%

Therefore, in order to generate rules describing the chloride resistance of concrete modified with
high calcium fly ash, the subset of attributes (C1, cement content with 10 percent of C3A content
(kg/m3), S128, high calcium fly ash ground 28 minutes content (kg/m3), w, water content (kg/m3),
surf, specific surface of fly ash obtained by the Blaine method (cm2/g), and resistance, concrete
resistance to chloride penetration (acceptable, good, unacceptable)) from the database (Table 4) is
used. The shrunken database containing 56 records, each one described by four numerical and one
nominal attributes, is presented in Table 6. The last attribute, resistance, denotes a class and can take
one of three values (good, acceptable or unacceptable). Since the class “very good” representation is
not sufficient (only two examples), we decided to assign them to the “good” class, which now covers
22 examples.

Table 6. The database.

Number C1 S128 w surf resistance

1 359 0 156 0 acceptable
2 305 0 153 2860 good
3 250 0 152 2860 good
4 323 0 174 0 unacceptable
5 272 0 169 2860 acceptable
6 226 0 169 2860 acceptable
7 310 0 140 3500 good
8 257 0 142 3500 good
9 275 0 160 3500 unacceptable

10 228 0 159 3500 acceptable
11 306 137 153 3870 good
12 255 273 153 3870 good
13 277 122 175 3870 acceptable
14 228 244 173 3870 good
15 0 0 143 0 acceptable
16 0 0 142 2860 good
17 0 0 140 2860 good
18 0 0 165 0 unacceptable
19 0 0 159 2860 acceptable
20 0 0 157 2860 good
21 0 0 133 4400 good
22 0 0 158 4400 good
23 340 0 170 0 unacceptable
24 296 0 174 1900 acceptable
25 237 0 172 1900 acceptable
26 295 0 174 4060 acceptable
27 239 0 171 4060 good
28 308 0 186 0 unacceptable
29 265 0 189 1900 unacceptable
30 218 0 189 1900 unacceptable
31 265 0 189 4060 acceptable
32 219 0 190 4060 good
33 0 0 172 0 unacceptable
34 0 0 170 1900 unacceptable
35 0 0 171 1900 unacceptable
36 0 0 173 4060 unacceptable
37 0 0 171 4060 unacceptable
38 0 0 189 0 unacceptable
39 0 0 187 1900 unacceptable
40 0 0 191 1900 unacceptable
41 0 0 187 4060 unacceptable
42 0 0 192 4060 unacceptable
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Table 6. Cont.

Number C1 S128 w surf resistance

43 350 0 158 0 acceptable
44 298 0 158 2860 good
45 298 0 158 3500 good
46 298 133 158 3870 good
47 245 0 158 2860 good
48 245 0 158 3500 good
49 245 263 158 3870 good
50 298 0 158 4400 good
51 298 0 158 6510 good
52 0 0 175 0 unacceptable
53 0 0 175 4060 unacceptable
54 0 0 175 1900 unacceptable
55 0 0 175 4060 unacceptable
56 0 0 175 1900 unacceptable

4.2. Classification

As was mentioned in Section 3.3, the chloride resistance of concrete depending on material
composition can be searched using one of many software suites available on the market, and we
decided to utilize the Weka workbench. The Weka workbench provides over one hundred algorithms
supporting classification. They belong to different types, like: Bayesian classifiers, rule classifiers,
tree classifiers or meta classifiers. In our research, we decided to determine the chloride resistance
of concrete using the selected 20 algorithms belonging to three different types of algorithms. As
a training set, all of the instances from the database (Table 6) were considered. The classification
accuracy was evaluated using leave-one-out cross-validation. The obtained results are collected in
Table 7.

Table 7. Results obtained for different classifiers from the Weka workbench.

Number Classifier Accuracy

Bayesian Classifiers
1 BayesNet 66.07
2 ComplementNaiveBayes 62.50
3 NaiveBayes 73.21

Tree Classifiers
4 BFTree 73.21
5 DecisionStump 73.21
6 FT 78.57
7 LADTree 82.14
8 J48 89.29
9 LMT 82.14

10 NBTree 78.57
11 REPTree 64.29
12 SimpleCart 71.43

Rule Classifiers
13 ConjunctiveRule 71.43
14 DecisionTable 71.43
15 DTNB 80.36
16 JRip 62.50
17 NNge 76.79
18 OneR 71.43
19 PART 76.79
20 Ridor 66.07

The best accuracy equaling almost 90% was obtained using the J48 algorithm. The decision tree
generated by the J48 algorithm is presented in Figure 1, where the first number in brackets denotes

8723



Materials 2015, 8, 8714–8727

the number of examples from the training set covered by a selected leaf, and the second number, just
after the sign “/”, indicates the number of incorrectly-classified instances (negative examples).

Figure 1. The decision tree for resistance to chloride penetration generated by the J48 algorithm.

The obtained decision tree can be easily transformed into the following rules:

[resistance = good]
Rule 1 [w ≤158] and [surf >0]: p = 19, n = 0,
Rule 2 [w >158] and [surf >3500] and [218 < C1 ≤ 250]: p = 3, n = 0.

[resistance = acceptable]
Rule 1 [w ≤158] and [surf = 0]: p = 3, n = 0,
Rule 2 [w >158] and [C1 >218] and [0 < surf ≤ 3500]: p = 7, n = 2,
Rule 3 [w >158] and [C1 >250] and [surf >3500]: p = 3, n = 0.

[resistance = unacceptable]

Rule 1 [w >158] and [C1 ≤218]: p = 18, n = 1,
Rule 2 [w >158] and [C1 >218] and [surf = 0]: p = 3, n = 0,

where p denotes the number of positive examples covered by the rule (i.e., the number of records
from this class satisfying the rule) and n denotes the number of negative examples covered by the
rule (i.e., the number of records from the other classes satisfying the rule).

The obtained decision rules determine the conditions concretes have to fulfill to provide
appropriate resistance against chloride penetration.

The good class characterizes:

• concretes with water content below 158 kg/m3 (w ≤ 158) where 15% or 30% of cement mass
(C1 or C2) was replaced with high calcium fly ash (surf > 0),

• concretes with water content above 158 kg/m3 (w > 158) where 30% of cement C1 mass
(218 < C1 ≤ 250) was replaced by high calcium fly ash S1 ground for 28 minutes or fly ash
S3 ground for 20 minutes (surf > 3500).

The acceptable class characterizes:

• concretes without high calcium fly ash (surf = 0) with water content below 158 kg/m3,
• concretes with water content above 158 kg/m3 (w > 158) where 15% or 30% of cement C1

mass (C1 > 218) was replaced by unprocessed high calcium fly ash S1, S3 or S1 ground for 10
minutes (surf ≤ 3500),
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• concretes with water content above 158 kg/m3 (w > 158) where 15% of cement C1 mass
(C1 > 250) was replaced by high calcium fly ash S1 ground for 28 minutes or fly ash S3 ground
for 20 minutes (surf > 3500),

The unacceptable class characterizes:

• concretes with water content above 158 kg/m3 (w > 158) and with a content of cement C1 below
218 kg/m3 (C1 ≤ 218), that is concretes containing cement C2 with or without high calcium fly
ash, as well as concretes where 30% of cement C1 mass was replaced by unprocessed high
calcium fly ash S3,

• concretes without high calcium fly ash (surf = 0) with water content above 158 kg/m3

(w > 158).

Using the leave-one-out method (n = 56), we obtained a classification accuracy equal 89.3%. The
result obtained from a test set is often displayed as a two-dimensional confusion matrix with a row
and a column for each class. Each matrix element shows the number of test examples for which the
actual class is the row and the predicted class is the column. The sum of the numbers down the
main diagonal divided by the total number of test examples determine the classification accuracy.
The confusion matrix of the solved problem is determined in the form presented in Table 8.

Table 8. The confusion matrix for leave-one-out validation.

good acceptable unacceptable

good 22 0 0
acceptable 0 9 3

unacceptable 0 3 19

Such a result can be considered satisfactory with respect to the limited number of records in
the database.

5. Conclusions

The rules generated by algorithm J48 from the Weka workbench provided a means for the
adequate classification of plain concretes and concretes modified with high calcium fly ash as
materials of good, acceptable and unacceptable resistance to chloride penetration.

According to the generated rules, it is found that if the content of water in mixes is small
enough (in investigated concretes, w ≤ 158 L/m3), then concretes modified with high calcium fly
ash are qualified as materials of good resistance to chloride penetration, whereas concretes without
high calcium fly ash are qualified as materials of acceptable resistance. For greater content of
water (w > 158 L/m3), concretes using cement of low C3A with or without high calcium fly ash are
characterized by unacceptable resistance to chloride penetration. However, when using cement of
high C3A, the replacement 15% or 30% of cement mass by high calcium fly ash, particularly by ground
fly ash, improves the resistance of concretes to chloride penetration.

It is found that both the specific surface of fly ash and the content of water and cement play a
significant role in providing the required concrete resistance. The classifier was evaluated using the
leave-one-out method. The obtained classification accuracy was equal to 89.3%. This value seems
to be sufficient to acknowledge the correctness of the classifier. Due to a small number of tested
specimens, the rules are applicable only to concrete mix compositions of similar binder content.
Further tests are needed in order to enlarge the experimental database and to cover a broader range
of concrete compositions.
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