
¯

PHYSICS OF FLUIDS 18, 038104 �2006�
Spherical cloud of point particles falling in a viscous fluid
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Statistical mechanics is applied to calculate ensemble-averaged particle and fluid velocity fields of
a spherical cloud of point particles sedimenting at a low Reynolds number. The analogy with the fall
of a liquid drop in another lighter fluid is discussed. © 2006 American Institute of Physics.
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This Brief Communication focuses on the motion of a
spherical drop of particles sedimenting at low Reynolds
numbers. This problem has been tackled by different
authors,1–3 using a point-particle model as it contains the
minimum physics needed to describe the interactions be-
tween particles. The cloud has also been interpreted as an
effective medium of excess mass2 and its fall has been re-
lated to the sedimentation of a spherical drop of fluid in an
otherwise lighter fluid, solved by Hadamard and
Rybczyński.4 Here, we analytically derive particle and fluid
motions by describing statistically a discrete system of par-
ticles. We link our results to the literature and compare with
the hydrodynamic continuum approach.

We consider N identical point forces F at positions
ri, i=1, . . . ,N, and immersed in an unbounded fluid of
viscosity �. The fluid is at rest at infinity �this defines the
reference frame of the study�. The velocity u�r� and pressure
p�r� of the fluid-flow satisfy the Stokes equations.4 The so-
lution is the sum of N Stokeslets,

u�r� = �
j=1

N

T�r − r j� · F , �1�

where T�r�= �I+ r̂r̂� / �8��r� stands for the Oseen tensor,4

r= �r�, r̂=r /r and I is the unit tensor. The velocity vi of a
point particle i located at ri is the sum of its velocity U0

when settling in isolation and of the Stokeslets generated by
the other point particles,

vi = U0 + �
j�i

N

T�ri − r j� · F . �2�

We introduce a standard statistical description5 by con-
sidering an ensemble of configurations of N point particles
distributed randomly inside a sphere of radius R. Using the
N-particle probability distribution function P�r1 , . . . ,rN�, we
average the velocities �1� and �2�,

u�r� = �
N � dr1 ¯� drNP�r1, . . . ,rN�T�r − ri� · F , �3�
i=1
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v�r� = U0 +

�
i=2

N � dr2 ¯� drNP�r,r2, . . . ,rN�T�r − ri� · F

� dr2 ¯� drNP�r,r2, . . . ,rN�
.

�4�

We assume that P is uniform inside the sphere,
P�r1 , . . . ,rN�=V −N, if ri�R for all i=1, . . . ,N. Otherwise
P�r1 , . . . ,rN�=0. The cloud volume is denoted by
V=4�R3 /3 and ri��ri�. Since the interactions between par-
ticles are pairwise,

ū�r� =
N

V�V
dr1T�r − r1� · F , �5�

v̄�r� = 	U0 +
N − 1

V �
V

dr2T�r − r2� · F if r � R ,

0 if r � R .

�6�

Using a similar statistical approach, Feuillebois6 found the
same expressions for the averaged fluid velocity ū�r� and
pointed out that it satisfies the same equations as the fluid
flow of a liquid drop of excess weight.

We now evaluate the ensemble-averaged flow fields,

ū�r� = 	
NF

4��R
· 
I −

2

5

r2

R2�I −
1

2
r̂r̂�
 if r � R ,

NF

8��R
· 
R

r
�I + r̂r̂� +

1

5

R3

r3 �I − 3r̂r̂�
 if r � R ,

�7�

v�r� = 	U0 +
N − 1

N
ū�r� if r � R ,

0 if r � R .

�8�

We recognize the Hadamard-Rybczyński expressions.4

The crucial feature in the previous equations is that par-
ticles fall relative to the fluid in which they are immersed.
The mean particle-velocity of the ensemble-averaged cloud

¯ ¯
is determined as V=�Vv�r�dr /V=U0+ �N−1�F /5��R. The
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mean fluid-velocity inside the cloud is Ū=�V dr ū�r� /V
=NF / �5��R�. If U0 is identified with the Stokes settling-
velocity F / �6��a� of a single sphere of radius a, the relative
slip in the mean is

S̄ =
V̄ − Ū

Ū
= �5R

6a
− 1� 1

N
, �9�

with V̄= �V̄� and Ū= �Ū�. Note that the slip becomes irrelevant
when N�R /a.

In the reference frame moving with V̄, particles circulate
along toroidal closed trajectories inside the whole volume of
the ensemble-averaged cloud. The fluid also performs closed
toroidal circulations but the consequence of the gravitational
slip is that it only occurs inside a core V� having a smaller

radius r0=R�1−4S̄, provided that S̄�1/4. The core as a
whole moves with the same velocity as the ensemble-
averaged cloud, since the mean velocity �V�dr ū�r� /V� of
the fluid inside the core volume V�=4�r0

3 /3 is just equal to

V̄. In the region between the core and cloud boundary, the
fluid lags behind the cloud.

Such core region of closed fluid-streamlines lying inside
the boundary of an individual cloud was also found by
Nitsche and Batchelor2 within a hydrodynamic continuum
approach �see their Fig. 2�. This result is in fact following
from Batchelor’s calculation of the low-Reynolds-number
flow generated by a pure-fluid drop rising in a suspension
where the drop was found to carry with it a circulating
“halo” of pure fluid.7 In the present context, Nitsche and
Batchelor2 approximated the sphere containing both particles
and fluid by a drop of effective fluid of excess weight settling
in the pure fluid. They recovered the Hadamard-Rybczyński
solution for the motion of both effective and pure fluids. To
obtain the particle motion, they considered that, inside the
drop, particles fall relative to the effective fluid �the mixture
of fluid and particles�, with a slip equal to U0 �i.e., the rela-

tive slip S̄ equal to 5R /6aN�. Their estimate is improved by
the present result �9�. Our statistical description applies to an
arbitrary number of particles. Both our and Batchelor-
Nitsche results hold only in the dilute limit as we use the
point-particle model.

We would like also to comment that modification of the
Oseen tensor would lead to modification of the motion of the
system in an arbitrary way. When the distance between point
particles approaches zero, their velocities tend to infinity,
owing to the divergent nature of the Oseen tensor. Obviously,
this does not happen for spheres and this is why some au-
thors have modified the model for close interparticle dis-
tances. Nitsche and Batchelor2 introduced an artificial short-
range repulsive pairwise force. Machu et al.3 discussed a
model with a cutoff length � below which interactions are
switched off: T��r�=T�r� if r��, and T��r�=0 for r��.
Integration of Eq. �6� with the modified Oseen tensor results

in V̄�−U0= �1−5/8�2��3 /20−�+2���V̄−U0�. As expected,
elimination of close interactions between point particles
leads to a decrease of their mean velocity. However, a correct
Downloaded 14 Apr 2006 to 148.81.55.252. Redistribution subject to 
description of hard spheres would also require a different
statistical description.

We now examine how accurately the ensemble-averaged

velocity V̄ is approximated by the mean velocity of an indi-
vidual spherical cloud V=�i=1

N vi /N, with vi given by �2�. In
this numerical computation, N point particles are uniformly
distributed inside a sphere of radius R=1 owing to a random
number generator. Velocity distributions for N=20 and
N=1000 are presented in Fig. 1. Mean velocities are com-
puted in the reference frame moving with U0, and normal-
ized by the ensemble-averaged cloud velocity in this frame;

�V−U0� / �V̄−U0� equals to 1.0009±0.0011 for N=20 and to
1.00018±0.00011 for N=1000, in agreement with the ana-
lytical result. For N=20, the factor N−1 is reproduced as
19.017±0.020. For small N, the distribution of velocities is
positively skewed. This is caused by configurations which
contain very close pairs having large velocities. For small N,
this greatly affects the mean velocity as the weight of a
single pair is significant. Note that the dispersion of veloci-
ties around the mean is very small even for numbers of par-
ticles as small as N=20.

In this work, random static distributions of particles
were assumed. The important issues are whether this static
distribution persists and whether the cloud boundary remains
spherical as the cloud sediments and flows. These issues
have been discussed in Refs. 2 and 3, but they are not settled
definitively and will be examined in the future.
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FIG. 1. Distribution of normalized velocities for 4500 clouds made of
N=20 �left� and N=1000 �right� point particles.
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