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Abstract 

Torsional vibrations are in general rather troublesome to control from the viewpoint of proper control torque 

generation as well as because of difficulties of imposing the control torques on quickly rotating parts of the 

drive- or rotor-shaft systems. In this paper there is proposed an active control technique based on the linear 

actuators with the magneto-rheological fluid (MRF) connecting the drive system planetary gear housing with the 

immovable rigid support. Here, by means of the magneto-rheological fluid of adjustable viscosity control 

damping torques are generated. Such actuators can effectively suppress amplitudes of severe transient and 

steady-state rotational fluctuations of the gear housing position and in this way they are able to minimize 

dangerous oscillations of dynamic torques transmitted by successive shaft segments in the entire drive system. 

The general purpose of the considerations is to control torsional vibrations of the power-station coal-pulverizer 

drive system driven by means of the asynchronous motor and the single stage planetary gear. In the 

computational examples drive system transient torsional vibrations induced by the electromagnetic motor 

torques during start-ups as well as steady-state vibrations excited by the variable dynamic retarding torques 

generated by the coal pulverizer during nominal operation have been significantly attenuated. 

1   Introduction 

From among various kinds of vibrations occurring in drive systems of machines, mechanisms and vehicles 

the torsional ones are very important as naturally associated with their fundamental rotational motion. Torsional 

vibrations of drive trains are very dangerous for material fatigue of the most heavily affected and responsible 

elements of these mechanical systems. Thus, this problem has been considered for many years by many authors, 

not only in numerous research papers, but also in the monographic form, e.g. in [1]. Active vibration control of 

drive systems of rotating machines, mechanisms and vehicles creates new possibilities of improvement of their 

effective operation. Torsional vibrations are in general rather difficult to control not only from the viewpoint of 

proper control torque generation, but also from the point of view of a convenient technique of imposing the 

control torques on quickly rotating parts of the drive-systems and rotor machines. Unfortunately, one can find 

not so many published results of research in this field, beyond some attempts performed by active control of 

shaft torsional vibrations using piezo-electric actuators, [2]. But in such cases relatively small values of control 

torques can be generated and thus the piezo-electric actuators can be usually applied to low-power drive systems. 

Moreover, even if a relatively large number of the piezo-electric actuators are attached to the rotor-shafts of the 

entire drive system, as it follows e.g. from [2], only higher eigenmodes can be controlled, whereas control of the 

most important fundamental eigenmodes is often not sufficiently effective. At present, the rotary actuators in the 

form of torsional dampers usually are not able to generate sufficiently great retarding torque values required to 

control the high-power drive systems. In [3,4] there was proposed the semi-active control technique based on the 

actuators in the form of rotary dampers with the magneto-rheological fluid (MRF). In these actuators between 

the shaft and the inertial ring, which is freely rotating with a velocity close or equal to the system average 

rotational speed, the magneto-rheological fluid of adjustable viscosity is used. Such actuators generate control 

torques that are functions of the shaft actual rotational speed, which consist of the average component 

corresponding to the rigid body motion and of the fluctuating component caused by the torsional vibrations. In 
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an engineering practice, by means of this approach one can effectively attenuate torsional vibrations in rotating 

systems transmitting power values not exceeding 510 kW, which follows from [4].  

Thus, for drive systems of high-power machines, mechanisms and vehicles  in this paper there is proposed 

the active control technique based on the linear actuators with the magneto-rheological fluid (MRF) connecting 

the drive system planetary gear housing with the immovable rigid support. The control torques are generated by 

means of the magneto-rheological fluid of adjustable viscosity. They interact with reaction torques transmitted 

by the planetary gear housing due to torsional vibrations of the drive system. Such actuators can effectively 

suppress amplitudes of severe transient and steady-state rotational fluctuations of the gear housing position and 

in this way they are able to minimize dangerous oscillations of dynamic torques transmitted by successive shaft 

segments in the entire drive system.  

a) b) 

  

Figure1: Coal pulverizer drive system (a) and the damper with the linear MRF actuators (b) 

 

The general purpose of the considerations is to control torsional vibrations of the power-station coal-

pulverizer drive system driven by means of the asynchronous motor and the double stage planetary gear shown 

in Fig. 1a.  The planetary gear housing is visco-elastically connected with the immovable foundation by means 

of two or four linear actuators with the magneto-rheological fluid, as illustrated in Figs. 1a and 1b. The actuators 

support the gear housing at both ends of the proper reaction arm enabling it bounded rotational displacements 

around the drive system rotation axis. Using such suspension of the gear housing control forces generated by the 

linear actuators can be applied to the drive system in the form of control torques.  

In order to develop sufficiently reliable control algorithms for the considered drive system, the theoretical 

investigations are performed by means of its two structural mechanical models: the hybrid one and the classical 

finite element (FEM) model as well as using sensitivity analysis of the responses with respect to the linear 

actuator control characteristics. The electrical vibrations are investigated here in order to determine in a possibly 

accurate way the electromagnetic driving torque produced by the asynchronous motor, which is particularly 

essential for reliable active vibration control. For this purpose there is applied the proper electrical model of the 

asynchronous motor in the form of Park’s circuit-type ordinary differential equations coupled with the motion 

equations of both abovementioned mechanical models of the coal pulverizer drive system. Thus, these models 

can be called the electro-mechanical models. In the computational examples there are going to be effectively 

suppressed the transient torsional vibrations  of the drive system induced by the electromagnetic motor torques 

during start-ups as well as the steady-state vibrations excited by the variable dynamic retarding torques generated 

by the coal pulverizer working tool during nominal operation.  

2   Assumptions for the mechanical models and formulation of the problem 

In the considered drive system of the coal pulverizer power is transmitted from the asynchronous motor to 

the driven machine tool by means of the three elastic couplings, double-stage planetary reduction gear, two 

torque-meters, electro-magnetic overload coupling and by the shaft segments. As mentioned above, the planetary 

gear housing is visco-elastically connected with the foundation by means of two or four linear magneto-

rheological actuators of controllable damping properties and adjustable stiffness, which enable us to properly 

tune-up the drive train to the natural frequency values. The considered real drive system is presented in Fig. 1a. 

Its corresponding  mechanical model is shown in Fig. 2.  

In order to perform a theoretical investigation of the semi-active control applied for this mechanical system, 

a reliable and computationally efficient simulation models are required. In this paper dynamic investigations of 

the entire drive system are performed by means of two structural models consisting of torsionally deformable 

one-dimensional beam-type finite elements and rigid bodies. These are the discrete-continuous (hybrid) model  



 

 
Figure2: Mechanical model of the coal pulverizer drive system  

and the classical finite element model. Both models are characterized by the identical structure resulting in the 

same division into cylindrical beam elements representing successive drive train components, which can be 

illustrated in common Fig. 2. These models are employed here for eigenvalue analyses as well as for numerical 

simulations of torsional vibrations of the drive train. In the hybrid model successive cylindrical segments of the 

stepped rotor-shaft are substituted by the cylindrical macro-elements of continuously distributed inertial-visco-

elastic properties, as presented in Fig. 2. However, in the finite element model these continuous macro-elements 

have been discretized with a proper mesh density assuring a sufficient accuracy of results. Since in the real drive 

system the electric motor coils and coupling disks are attached along some rotor-shaft segments by means of 

shrink-fit connections, the entire inertia of such components is increased, whereas usually the shaft cross-

sections only are affected by elastic deformations due to transmitted loadings. Thus, the corresponding visco-

elastic macro-elements in the hybrid model and the discretized finite elements in the FEM model must be 

characterized by the geometric cross-sectional polar moments of inertia JEi responsible for their elastic and 

inertial properties as well as by the separate layers of the polar moments of inertia JIi responsible for their inertial 

properties only, i=1,2,…,n, where n is the total number of macro-elements in the considered hybrid model. In the 

proposed hybrid and FEM model of the coal pulverizer drive system inertias of the gear wheels, gear housing 

with the reaction arm, coupling disks and others are represented by rigid bodies attached to the appropriate 

macro-element extreme cross-sections, which should assure a reasonable accuracy for practical purposes. The 

time- and response-dependent external active and passive torques are continuously distributed along the 

respective macro-elements or imposed in the concentrated form to the given macro-element cross-sections. 

Similarly as in [3,4], angular displacements i(x,t) with respect to the shaft rotation with the average angular 

velocity  of cross-sections of each visco-elastic macro-element in the hybrid model are governed by the 

hyperbolic partial differential equations of the wave type, where x is the spatial co-ordinate and t denotes time. 

Mutual connections of the successive macro-elements creating the stepped shaft as well as their interactions with 

the rigid bodies are described by equations of boundary conditions. These equations contain geometrical 

conditions of conformity for rotational displacements of the extreme cross sections for x=Li=l1+l2+...+li-1 of the 

adjacent (i-1)-th and the i-th elastic macro-elements:  
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The second group of boundary conditions are dynamic ones, which contain equations of equilibrium for 

external and control torques as well as for inertial, elastic and external damping moments. For example, the 

dynamic boundary condition describing a simple connection of the mentioned adjacent (i-1)-th and the i-th 

elastic macro-elements has the following form:  
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where I0i is the mass polar moment of inertia of the rigid body, if any, attached in the considered cross-section, τ 

denotes the retardation time in the Voigt model of material damping, Gi denotes the Kirchhhoff’s modulus of the 

rotor-shaft material.  

The elastically supported planetary gear in the drive system hybrid model has been also described by the 

boundary conditions. This gear model is schematically illustrated in Fig. 3. Since in the performed 

considerations the lower range of vibration frequencies is going to be investigated, in the proposed models the 

gear mesh flexibilities responsible for rather higher frequency dynamic effects have been neglected. Thus, for the 

planetary gear stage located between the k-1-th and the k–th beam macro-element the proper geometric boundary 



 

 

 

 

 

 

 

 

Figure 3: Modeling of the elastically supported planetary gear  

 

condition follows from the Willis’ formula, [1] 
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where k-1(Lk,t) corresponds to the rotational displacement of the sun gear, k(Lk,t) corresponds to the rotational 

displacement of the carrier, R(t) denotes the angular displacement of the elastically supported gear housing and 

rR,  rS are the radii of the ring and sun gear wheels, respectively. Dynamic behavior of such a planetary gear is 

described by the following equations of equilibrium  
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where I0S, I0C and I0R denote respectively the mass moments of inertia of the rigid bodies representing the sun 

gear, carrier and the gear housing together with the ring wheel and the reaction arm, K0 is the adjustable gear 

housing support rotational stiffness and C0(t) denotes the variable control viscosity coefficient dependent on the 

current properties of the magneto-rheological fluid in the linear actuators. Analogous relationships describing the 

planetary gear in the finite element model can be derived by means of the Lagrange equations.  

In order to perform an analysis of natural elastic vibrations, all the forcing and viscous terms in the motion 

equations and boundary condition (2c) have been omitted. An application of the analytical solution of variable 

separation  leads to the following characteristic equation for the considered eigenvalue problem:  

C()D=0,                                                                              (3)  

where C() is the real characteristic matrix and D denotes the vector of unknown constant coefficients in the 

analytical local eigenfuctions of each i-th macro-element. Thus, the determination of natural frequencies reduces 

to the search for values of , for which the characteristic determinant of matrix C is equal to zero. Then, the 

torsional eigenmode functions are obtained by solving equation (3).  

Similarly as in [3,4], the solution for forced vibration analysis has been obtained using the analytical - 

computational approach. Solving the differential eigenvalue problem (1)÷(3) and an application of the Fourier 

solution in the form of series in the orthogonal eigenfunctions lead to the set of uncoupled modal equations for 

time coordinates m(t). The damping torque -C0(t)R(t) standing in Equation (2c) can be regarded as the 

response-dependent control external excitation. Then, by a transformation of it into the space of modal 

coordinates m(t) and upon a proper rearrangement of the modal independent equations, the following set of 

coupled modal equations is yielded:  
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The symbols M0, K0 and D0 denote, respectively, the constant diagonal modal mass, stiffness and damping 

matrices. The full matrix DC(C0(t)) plays here a role of the semi-active control matrix and the symbol F(t,ŕ(t)) 

denotes the response dependent external excitation vector due to the electromagnetic torque generated by the 



 

electric motor and due to the retarding torque produced by the driven coal pulverizer. The Lagrange coordinate 

vector r(t) consists of the unknown time functions m(t) in the Fourier solutions, m=1,2,… . The number of 

equations (4) corresponds to the number of the torsional eigenmodes taken into consideration in the range of 

frequency of interest. These equations are mutually coupled by the out-of-diagonal terms in matrix D regarded as 

external excitations expanded in series in the base of orthogonal analytical eigenfunctions. A fast convergence of 

the applied Fourier solution enables us to reduce the appropriate number of the modal equations to solve in order 

to obtain a sufficient accuracy of results in the given range of frequency. Here, it is necessary to solve only 6÷10 

coupled modal equations (4), contrary to the classical one-dimensional rod finite element formulation leading in 

general to a relatively large number of motion equations in the generalized coordinates.  

For the assumed analogous linear finite element model the mathematical description of its motion has the 

classical form of a set of coupled ordinary differential equations  
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where s(t) denotes the vector of generalized co-ordinates sj(t), M, C and K are respectively the mass, damping 

and stiffness matrices and F denotes the time – and system response – dependent external excitation vector. By 

means of Eqs. (5) numerical simulations of the forced torsional vibrations for the passive and controlled system 

can be carried out. In order to determine natural frequencies and eigenvectors for the FEM model of this drive 

system it is necessary to reduce (5) into the form of standard eigenvalue problem. It is to notice here, that the 

dynamic responses and their control are going to be investigated in the space of modal functions in the case of 

the hybrid model and in the domain of generalized co-ordinates in the case of the FEM model application.  

3. Modeling of the electrical external excitation generated by the asynchronous motor  

The torsional vibrations of the drive system usually result in significant fluctuation of rotational speed of the 

rotor of the driving electric motor. Such oscillation of the angular velocity superimposed on the average rotor 

rotational speed cause more or less severe perturbation of the electro-magnetic flux and thus additional 

oscillation of the electric currents in the motor windings. Then, the generated electromagnetic torque is also 

characterized by additional variable in time components which induce torsional vibrations of the drive system. 

According to the above, the mechanical vibrations of the drive system become coupled with the electrical 

vibrations of the currents in the motor windings. Thus, in order to develop a proper control algorithm for the 

given vibrating drive system the electromagnetic external excitation produced by the motor should be described 

possibly accurately and thus the electromechanical coupling between the electric motor and the torsional train 

ought to be taken into consideration. According to the above, apart of the sufficiently realistic mechanical 

models of the vibrating object, it is also necessary to introduce a proper mathematical model of the electric 

motor. In the considered case of the symmetrical three-phase asynchronous motor electric current oscillations in 

its windings are described by six voltage equations, which can be found e.g. in [5]. They can be transformed into 

the system of four Park’s equations  
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where U denotes the power supply voltage, f0 is the electric network frequency, L1, L2’ are the stator coil 

inductance and the equivalent rotor coil inductance, respectively, M denotes the relative rotor-to-stator coil 

inductance, R1, R2’ are the stator coil resistance and the equivalent rotor coil resistance, respectively, p is the 

number of pairs of the motor magnetic poles, =(t) denotes the rotation angle between the rotor and the stator, 

(t) is the current rotor angular velocity including the average and vibratory component and i
q
, =,, are the 

electric currents in the rotor for q=r and the stator for q=s reduced to the electric field equivalent axes  and , 

[5]. Then, the electromagnetic torque generated by such a motor can expressed by the following formula: 
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From the system of voltage equations (6) as well as from formula (7) it follows that the coupling between the 

electric and the mechanical system is non-linear in character, which leads to complicated analytical description 

resulting in a rather complicated computer implementation. Thus, this electromechanical coupling has been 

realized here by means of the step-by-step numerical extrapolation technique, which for relatively small direct 

integration steps for equations (4) and (5) results in very effective, stable and reliable results of computer 

simulation.  

4. Computational example 

In the computational examples there are investigated start-ups and following after them steady-state 

operation of the considered drive system of the real coal pulverizer. This system presented in Fig. 1a is 

accelerated from a standstill to the nominal operating conditions characterized by the rated retarding torque 

Mn=143 Nm at the constant rotational speed 1465 rpm of the motor shaft. The reduction planetary gear ratio is 

equal to 4.25. In order to imitate the operation of the coal pulverizer in a possibly realistic way, the retarding 

torque produced by the machine working tool has been assumed as linearly proportional to the current shaft 

rotational speed with a superimposed step-wise fluctuation component of also velocity-dependent amplitude  
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where n denotes the nominal angular velocity, r (t) is the current angular velocity of the working tool, h 

denotes the step fluctuation ratio, r (t) is the working tool current phase angle and z denotes the frequency 

parameter of the retarding torque oscillation. It is to remark that function (8) describing the assumed retarding 

torque consists of the average component expressing a mean resistance of the comminuted coal of a given 

average density and of the fluctuating one, which represents rapid changes of the braking moment caused by a 

non-homogeneous structure of the pulverized material. Here, for temporary negative values of the retarding 

torque Mr(t) is assumed to be equal to zero. The electromagnetic torque (7) generated by the asynchronous motor 

is assumed to be uniformly distributed along the mechanical model elements corresponding to the motor rotor. 

However, the retarding torque (8) is imposed in a concentrated form to the rigid body representing inertia of the 

coal pulverizer working tool, Fig. 2.   

The qualitative dynamic properties of the considered drive system have been determined first in the form of 

an eigenvalue analysis by solving equation (3). In Fig. 4 there are depicted the lowest for this system first four 

eigenfunctions together with the corresponding natural frequency values obtained for the classical rigid support 

of the gear housing with the foundation. All these eigenforms are contained in the frequency range 0÷200 Hz 

which is fundamental from the viewpoint of an effective control of the most severe torsional vibrations. In this 

figure the modal displacement of the rigid body representing the gear housing is depicted by means of the 

vertical bar located at the gear stage position corresponding to the length abscissa 1.25 m. It is to notice that for  
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f4= 145.418  [Hz] 

 
drive train length [m] 



 

Figure 4: Eigenfuctions with the corresponding natural frequencies of the drive system with a rigid support of 

the gear housing 

the assumed gear housing rigid support this modal angular displacement is equal to zero in all four cases of 

eigenfunctions, Fig. 4. From shapes of these eigenfunctions it follows that beyond the first one of frequency f1 = 

4.883 Hz all remaining ones are hardly excited by the driving motor and by the retarding torques generated by 

the coal pulverizer working tool as well as an influence of the mentioned three elastic couplings in the drive train 

on its eigenforms is very significant. The next eigenfunctions are characterized by much higher natural 

frequencies exceeding 760 Hz and they seem to be of secondary importance from the viewpoint of the 

investigated here dynamic processes.  

In Fig. 5 in there are presented analogous eigenfunctions of the considered drive system with elastically 

supported gear housing by means of the two magneto-rheological dampers, which have the rotational suspension 

stiffness of K0 =0.7910
4
 Nm/rad. In the mentioned frequency range 0÷200 Hz the number of these eigenforms 

has increased to five. Here, the elastic support of the gear housing results in a slight decrease of the natural 

frequency values corresponding to the first three eigenforms. The fourth eigenform of frequency f4 = 92.248 Hz 

is the “new” one introduced by the applied elastic rotational foundation of the gear housing characterized by its 

relatively high modal displacement equal ca. 0.75, Fig. 5. All these eigenfunctions have non-zero values of the 

gear housing modal displacement, which enables us to introduce additional controllable absolute housing-to-

foundation damping into the coal pulverizer drive system. It is to emphasize that all eigenfunctions presented in 

Figs. 4 and 5 respectively almost overlay with the corresponding plots of eigenvectors obtained using the FEM 

model of this drive system consisting of 215 two-node rod elements, where the respective differences of 

successive natural frequencies did not exceed 0.1 %.  
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Figure 5: Eigenfuctions with the corresponding natural frequencies of the drive system with an elastic support of 

the gear housing 

 

The transient and steady-state torsional vibrations of the coal pulverizer drive system are excited here by the 

electromagnetic torque generated by the asynchronous motor and determined using formula (7) during numerical 

simulations of the start-up and nominal operation process regarding the torsional vibrations of the mechanical 

system as mutually coupled with the oscillations of the electrical currents in the motor windings. In the first 

example the retarding torque described by (8) was assumed for h=1 and z=1, which denotes its two step-wise 

changes per one working tool revolution with an amplitude equal to the average retarding torque value. The time 

history plots of the driving and retarding torques normalized by the rated torque Mn during the start-up and the 

beginning of nominal operation are illustrated in Fig. 6a by the black and grey lines, respectively. The 

corresponding time histories of the motor rotor and the driven machine tool rotational speeds are presented in 

Fig. 6b also by the black and grey lines, respectively. From these plots it follows that the drive system of the 



 

entire mass moment of inertia reduced on the motor shaft equal to 0.78 kgm
2
 has been accelerated from its stand-

still to the nominal rotational speed in ca. 1 s. In Fig. 6c there is presented the system dynamic response in the 

form of time-history  

a) 

 

b) 

 

c)  
time  [s] 

Figure 6: Time histories of the passive system dynamic response obtained for k=1 in (8). 

a) 

 
b)  

time  [s] time  [s] 

Figure 7: Time histories of the dynamic response obtained for the passive system for k=0.425 in (8). 

 

plots of the dynamic torques transmitted by the drive system shaft segments in which the torque-meters are 

installed, where by the black line the result registered between the driving motor and the reduction planetary gear 

is plotted and by the grey line there is plotted the analogous result registered between the gear stage and the 

driven machine tool, see Fig. 2. From Fig. 6 it follows that upon the passage through the very severe transient 

excitation generated by the asynchronous motor the system starts to regularly oscillate according to the low-

frequency fluctuation of the retarding torque with amplitudes remaining close to the quasi-static level. It is worth 

noting that the considered drive system is almost not sensitive to the typical transient excitation by the 

asynchronous motor of the network frequency 50 Hz, which can be explained by the positive influence of the 

three elastic couplings in the system resulting in the abovementioned hardly excited the third eigenfunction of 

the natural frequency 51.42 Hz shown in Fig. 4.  

From all eigenfunctions presented in Fig. 4 for the system with the rigidly suspended gear housing as well as 

from numerous numerical simulations it follows that the considered drive system is particularly sensitive to low-

frequency oscillations induced by fluctuation of the retarding torque generated by the pulverizer working tool, 

where the maximum dynamic response has been obtained for regular loading characterized by the fluctuation 

parameter k=0.425 in (8), which results in the excitation frequency equal to one half of the first system natural 

frequency f1 = 4.883  [Hz]. This remarkable fact can be explained by the mentioned above non-linear electro-

mechanical coupling effect resulting in such a sub-harmonic resonance. The simulation results obtained for this 

case are presented in the same way as above in Fig. 7 for the time-histories of the torques generated by the 

electric motor and the driven machine tool, Fig. 7a, as well as for the dynamic torques transmitted by the same 

shafts segments at the both torque-meter locations, Fig. 7b. Here, due to the systematically repeated jumps of the 

retarding torque the maximum amplitudes of the dynamic torques transmitted by the investigated input and 

output shafts are respectively almost 4 and 15 times greater than the rated torque, which is very dangerous for 

their fatigue durability and trouble-less operation. Moreover, apart from the strong dynamic torque fluctuation in 

the shafts, the induced by the considered electro-mechanical coupling very severe oscillation of the 

electromagnetic motor torque during the steady-state operation is also worth noting, Fig. 7a.  



 

4.   Control concepts of the transient and steady-state torsional vibrations 

The first attempt to minimize the amplitudes of the transient and steady-state torsional vibrations occurring 

during start-ups and nominal operation of the coal pulverizer has been performed by using optimal constant 

values of the MRF actuator damping coefficients for the system with the visco-elastic support of the planetary 

gear housing. Since the investigated electro-mechanical object becomes non-linear in character, the applied e.g. 

in [3,4] methods of searching for the optimal constant damping coefficient values based on the frequency 

response functions can not be used here for this purpose. Thus, a search for the optimal constant damping 

coefficient values corresponding to the constant control voltages applied to the MRF actuators must have been 

reduced to numerous computational experiments in the form of numerical simulations carried out for the 

resonant operation conditions, i.e. for k=0.425 in (8), and for non-resonant working conditions, i.e. for k=1, of 

the considered drive system. Here, the fundamental criterion for the optimal constant C0 in (2c), (4) and (5) are 

the minimal ‘peak-to-peak’ time-histories of the dynamic torques transmitted by the investigated input and  

output shafts. In Figs. 8a and 8b there are presented the time history plots of the dynamic torques transmitted by 

the mentioned shafts for the obtained in this way constant optimal damping coefficient C0=1125 Ns/m per one 

MRF actuator, respectively for k=0.425 and for k=1. From the presented in these figures plots it follows that an 

elastic support of the planetary gear housing together with the constant damping coefficients of the MRF 

actuators result in  41% smaller steady-state vibration amplitudes in the case of resonant operation and in 

remarkable, i.e. ca. 47%, attenuation of the transient vibrations during start-up in non-resonant conditions, where 

the following after it dynamic torque amplitudes in nominal working conditions remained on approximately the 

same quasi-static level, see Figs. 6c and 7c. In order to achieve a stronger suppression of torsional vibration 

amplitudes the semi-active control based on the closed-loop principle is  required for this drive system.   
a) 

 
b)  

time  [s] time  [s] 

Figure 8: Time histories of the dynamic torques obtained for the optimal constant damping coefficient for the 

resonant (a) and non-resonant operation (b) of the drive system. 

 

The dynamic responses obtained for the considered drive system are characterized by a severe domination of 

the first eigenform with a very weakly remarkable influence of the third eigenform and by a completely 

negligible influence of the remaining ones. Thus, in order to effectively suppress vibration amplitudes it is 

necessary to apply the analogous model-based approach as in [6] leading to elimination or at least minimization 

of the first mode external excitation Q1(t), which can be expressed by means of the following formula  

,0)()()( R0C11  ttCatQ where  ,)()()( R1E11 tMatTatQ rrel   
j

jj tt )()( RR
    (9) 

and aC1, aE1, aR1 are the proper modal weighting coefficients for the system first eigenform, the MRF actuator 

resultant damping coefficient C0(t) consists of a constant value and a variable, response-dependent component, 

the forcing functions Tel(t) and Mr(r(t)) have been respectively defined by (7) and (8) and  is the correction 

coefficient moderating the control function magnitudes for all eigenmodes taken into consideration. In practice, 

the theoretical expression (9) describing the first mode external excitation Q1(t) can be approximated with a 

reasonable accuracy by the being easily measured ‘on-line’ reaction torque occurring in the planetary gear 

housing visco-elastic support. Then, the variable damping coefficient C0(t) can be determined and upon proper 

“smoothing-out” of the extremely high and small extreme peaks it can be substituted into equations (4) or (5) in 

order to simulate the system dynamic response. Here, the effectiveness of the semi-active control essentially 

depends on the correction coefficient  related to the gear housing modal displacements Rj and rRS ratio in (2a). 

The simulation results obtained for the most effective control and assuming realistic performances of the applied 

MR actuators [7] are presented in Figs. 9 and 10. In Fig. 9 there are demonstrated the analogous as before time-

histories of the dynamic torques transmitted by the input and output shafts for the system in the resonant (Fig. 

9a) and non-resonant (Fig. 9b) operation conditions. Fig. 10 illustrates the comparison between the rotational 

speed time-histories of the motor rotor and the driven machine tool obtained for the passive (Fig. 10a) and 

controlled (Fig. 10b) system. From the above plots it follows that by means of the semi-active control it was 

possible to significantly attenuate the torsional vibration amplitudes for the resonant operation both during the 

start-up and steady state process, where the dynamic torque fluctuations have been minimized to almost 25% of 

the respective passive system magnitudes, as shown in Fig. 7b. However, in the case of non-resonant operation 

the effects of the semi-active control are quite spectacular for the steady-state vibrations only, while the transient 



 

components observed in Fig. 9b during the start-up became even more severe in comparison with the respective 

dynamic torque time-histories presented in Figs. 6c and 8b for the passive system and the optimal constant 

damping coefficient. 
a) 

 
b)  
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Figure 9: Time histories of the dynamic torques obtained using the semi-active control for the resonant (a) and 

non-resonant operation (b) of the drive system. 
a) 

  

b)  
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Figure 10: Time histories of the rotational speeds of the motor rotor and the driven machine tool obtained for 

the passive (a) and for the semi-actively controlled (b) drive system in resonant operation conditions. 

Conclusions 

In the paper a control of transient and steady-state torsional vibrations of the coal pulverizer drive system 

driven by the asynchronous motor and the planetary reduction gear has been performed by means of the linear 

dampers with the magneto-rheological fluid (MRF). Here, the control dampers are able to suppress the torsional 

vibrations by an introduction of mechanical energy dissipation during relative rotational motion between the 

planetary gear housing and the immovable foundation. As it follows from the numerical simulations carried out 

by means of two various electro-mechanical models, such actuators can effectively reduce the transient and 

steady-state torsional vibrations of the drive system not only using semi-active control in the form of closed-loop 

principle but also for the selected optimal constant damping coefficient of the magneto-rheological fluid.  

In the next step of research in this field the results of theoretical investigations are going to be experimentally 

verified by the use of the being currently under construction real coal pulverizer drive system described above. 

Moreover, the semi-active control will be focused on stochastic external loadings imposed to the driven machine.  
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