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Abstract A method for simultaneous identification of mov-
ing masses and damages of the supporting structure from
measured responses is presented. The interaction forces
between the masses and the structure are used as excitation.
Masses and damage extents are used as the optimization
variables; compared to the approaches based on iden-
tification of the interaction forces, it allows ill-conditioning
to be avoided and decreases the number of required sensors.
The virtual distortion method is used; the damaged structure
is modeled by the intact structure subjected to response-
coupled virtual distortions and moving forces. These are
related to the optimization variables via a linear system,
which allows the optimization variables of both kinds to
be treated in a unified way. A moving dynamic influence
matrix is introduced to reduce the numerical costs. The
adjoint variable method is used for fast sensitivity anal-
ysis. A numerical experiment of a three-span beam with
10% rms measurement error and three types of model errors
is presented.

This article is a substantially extended and revised version of a paper
presented at the WCSMO-8 in Lisbon in 2009.
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1 Introduction

Identification of structural damages and loads are crucial
problems in structural health monitoring (SHM), since accu-
rate knowledge of external loads and damages is important
for maintaining safety and integrity of monitored struc-
tures. Especially, identification of moving loads or masses is
important not only for assessment of pavements or bridges
but also in traffic studies, in design code calibration, for
traffic control, etc. Several techniques have been devel-
oped, which address both these identification problems
separately: either they identify the damage while assuming
load characteristics to be known or they identify the moving
load, but the structure is assumed to be undamaged. How-
ever, although in real applications unknown damages and
unknown moving loads can coexist and together influence
the response of the system, it seems that their simultaneous
identification is a relatively unexplored area.

Damage identification is the primary task of most of
structural health monitoring (SHM) systems. In general, all
existing methods can be divided into two groups: local and
global approaches. Local monitoring methods locate and
identify small defects in narrow inspection zones via ultra-
sonic testing (Staszewski 2003; Ostachowicz et al. 2009)
or statistical classification techniques (Silva et al. 2008;
Nair et al. 2006). These methods do not require structural
modeling and are outside the scope of this paper. Global
methods are used for identification of significant defects
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in large inspection zones that are usually the whole mon-
itored structures. In Kołakowski et al. (2006), the global
methods are further categorized as pattern-recognition and
model-based; the latter utilize deterministic model-updating
methods (Mottershead and Friswell 1993) and are often cou-
pled with quick reanalysis techniques (Kołakowski et al.
2008). The identification problem is often analyzed in the
frequency domain and solved using modal methods, which
detect, locate and identify damages via respective changes
of the related modal parameters; a comprehensive sum-
mary review can be found in Doebling et al. (1998). In
recent years, the wavelet analysis has become a popu-
lar tool (Peng and Chu 2004; Kim and Melhem 2004);
it is often used together with pattern-recognition methods
(Mujica et al. 2008). For non-stationary and moving loads,
the analysis is most often performed in the time domain via a
direct comparison of the simulated and measured responses.
Majumder and Manohar (2003, 2004) propose a method
for damage identification of linear and non-linear beams
excited by a moving oscillator; the beam and the oscilla-
tor are treated together as a single coupled and time-varying
system. Sieniawska et al. (2009) use a static substitute of the
equation of motion for identification of parameters of a lin-
ear structure from its responses to a moving load of a known
constant magnitude.

Identification of moving loads has been studied exten-
sively in the past two decades (Yu and Chan 2007). Direct
measurements of the dynamic axle loads of vehicles is
expensive, difficult and subject to bias. Therefore, tech-
niques of indirect identification from measured responses
have been studied, as they can be performed easier and at
lower costs. Chan, Law et al. have proposed four general
methods for indirect identification, which are the time-
domain method (TDM) (Law et al. 1997), the frequency-
time domain method (FTDM) (Law et al. 1999), Interpretive
Method I (IMI) (Chan and O’Connor 1990) and Interpre-
tive Method II (IMII) (Chan et al. 1999). All of them
require the parameters of the model of the bridge to be
known in advance. Each method has its merits and lim-
itations, which are compared in Chan et al. (2001). The
numerical ill-conditioning of the problem seems to be the
main factor that decreases the accuracy of the identification
results. To improve the accuracy, techniques based on the
singular value decomposition (SVD) have been investigated
and adopted for the inverse computation (Yu and Chan
2003). Other regularization methods have been also used,
e.g. Law et al. (2001) and Zhu and Law (2006) use the
Tikhonov regularization, while Law and Fang (2001) and
González et al. (2008) couple it with the dynamic pro-
gramming approach. However, finding the optimal value
of the regularization parameter is numerically costly and
requires long computational time. Moreover, the regulariza-
tion parameter turns out to be sensitive to the properties of

the vehicle and the bridge and hard to be precisely assigned;
see Pinkaew (2006) and Pinkaew and Asnachinda (2007),
where a method called the updated static component (USC)
technique is proposed, which extracts the static compo-
nent of the load and identifies iteratively only the dynamic
component in order to decrease the sensitivity of the regular-
ization parameter. The existing techniques are often based
on modal decomposition and can suffer from the truncation
error. As discussed in Law et al. (2004) and Zhu and Law
(2002), identification techniques based on the finite element
method can avoid the modal truncation error and allow the
identification to be applied to structures of a more complex
geometry in comparison with the methods based on the con-
tinuous system description. In general, all these methods
require a known and well-defined model of the structure
in order to build the load–response relation, even if some
of them allow for the identification of chosen additional
parameters besides the moving load, such as the prestress-
ing force (Law et al. 2008) or parameters of the vehicle
model (Jiang et al. 2004). The moving forces are usually
treated as the unknown variables instead of the masses; in
this way, the identification problem is linearized, but at the
cost of increased ill-conditioning and a larger number of
sensors. The number of the sensors must be then equal or
exceed the number of the moving forces in order to obtain a
unique solution, while the resulting ill-conditioning makes
regularization techniques necessary to obtain meaningful
solutions.

In the case of unknown excitations and unknown struc-
tural damages, the related identification problems are inher-
ently coupled: both factors together influence the structural
response and cannot be identified independently from each
other. Hoshiya and Maruyama (1987) apply a weighted
global iteration procedure and the extended Kalman filter
for simultaneous identification of a moving force and modal
parameters of a simply supported beam. Lu and Law (2007)
identify damage and parameters of a non-moving impulsive
or sinusoidal force excitations in a two-step identification
process using a limited number of measurements. Zhang
et al. (2009a) present a method for simultaneous iden-
tification of structural physical parameters and an unknown
support excitation. However, in the case of an unknown
moving load, the coupled vehicle–bridge system is a time-
varying system with characteristics that can be significantly
different from those of the bridge alone (Kim et al. 2003).
As a result, the interaction between the bridge and the vehi-
cle has to be accounted for in the identification process. Zhu
and Law (2007) propose a method for simultaneous iden-
tification of moving loads and damages using a two-step
approach that separately adjusts the loads and the damage
factors in each iteration of the optimization process; the
number of sensors is one less than the number of the beam
elements.
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An earlier paper by the authors (Zhang et al. 2010)
addressed simultaneous identification of damages and non-
moving excitation forces in truss structures; a moving force
could be identified only by a simultaneous identification
of all load-time histories in all involved degrees of free-
dom (DOFs). Here, simultaneous identification is addressed
in the case of moving loading masses. Both papers use
the virtual distortion method (VDM, Holnicki-Szulc and
Gierliński 1995) to model the structural damages. The for-
mulation of the current paper is no longer restricted to truss
structures and addresses also modeling of the time-varying
coupled system of moving masses and the supporting struc-
ture. In the research on moving load identification, the
moving forces are usually treated as the unknown vari-
ables. Similarly, in the above-mentioned earlier paper, the
unknown damages were characterized in terms of the time
histories of the virtual distortions. As a result, no damage
model was necessary: the damages of unknown types could
be identified via an analysis of the computed strain-stress
relationships of the damaged elements. Here, in contrast,
the damage extents and the moving masses are used as
the unknowns. This choice yields a far smaller number
of optimization variables, dramatically improves the con-
ditioning of the identification process and decreases the
number of sensors that are required for a unique solu-
tion. Damage is modeled in terms of stiffness reduction
of the damaged elements, which seems to be typical for
global methods of structural health monitoring (Dems and
Mróz 2001). Given the identified masses, the correspond-
ing moving loads can be computed straightforwardly, since
the forces and the distortions are related to the optimization
variables via a simple linear system. In this way, the opti-
mization variables related to the masses and to the damages
are treated in a unified way, so that all standard optimization
algorithms can be directly used. The numerical costs are
considerably reduced by using the concept of the moving
dynamic influence matrix, which is defined as a collec-
tion of the structural impulse–responses with respect to
the time-dependent positions of the moving masses. For
given values of the variables, the moving dynamic influence
matrix allows the response of the system to be computed
quickly without a full numerical simulation and a repeti-
tive assembly of the time-variant mass matrix in each time
step. A fast sensitivity analysis is proposed based on the
adjoint variable method. This paper is a completely rewrit-
ten and substantially extended version a paper presented at
the WCSMO-8 (Zhang et al. 2009b). The material exten-
sions include the exact continuous-time formulation, which
is no longer limited to frame structures, and the sensitivity
analysis.

The three following sections describe the direct prob-
lems of, respectively, modeling of damage via the virtual
distortions, modeling of moving masses using the dynamic

influence matrix and the coupled modeling of moving
masses and damage. The fifth section discusses the inverse
identification problem. The sixth section tests the approach
in a numerical example using a three-span frame structure,
simulated measurement error at the level of 10% rms and
three concurrent types of model errors. The approach and
the results are discussed in the seventh section.

2 Modeling of damage

For modeling of damage the Virtual Distortion Method
(VDM) is used, which is a quick reanalysis method
applicable for static and dynamic analysis of structures
(Kołakowski et al. 2008; Holnicki-Szulc and Gierliński
1995). Structural modifications, including damages, and
physical nonlinearities like material yielding, are modeled
in terms of the related response-coupled virtual distortions,
which are additional strains imposed on the involved ele-
ments of the original structure (equivalent to certain locally
applied pseudo-loads).

The damaged structure is thus modeled by the origi-
nal undamaged structure subjected to the virtual distortions
(distorted structure). The virtual distortions are related to
the damage parameters by the requirement that both struc-
tures are equivalent in the terms of element forces, which
yields a system of linear integral equations with the virtual
distortions as the unknowns, (20). As the original structure
is assumed to be linear, the response of the distorted struc-
ture to an external excitation can be expressed as the sum of
the responses of the original undamaged structure to (a) the
same excitation and to (b) the virtual distortions, (18). In
this way, the response of the distorted/damaged structure is
expressed solely in the terms of certain characteristics of the
original undamaged structure, which eliminates the need for
repeated updating and simulations of the finite element (FE)
model.

For the sake of notational simplicity, reduction of elem-
ent stiffness is the only damage type considered here. How-
ever, the methodology can be straightforwardly extended to
include other damage patterns like breathing cracks (Zhang
et al. 2010) and mass-related modifications as well as plas-
tic yielding of the structural elements (Holnicki-Szulc 2008;
Kołakowski et al. 2008; Jankowski 2009), provided the
assumption of small deformations is satisfied.

2.1 Equation of motion and global pseudo-load

The basic relations between damage extent, pseudo-loads,
virtual distortions and the response of the damaged structure
can be deduced in general terms of the FE method. Let the
damage extent of the i th finite element be quantified by the
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proportion ratio μi between its original stiffness matrix Ki

and the modified stiffness matrix K̃i ,

K̃i = μi Ki , (1)

where Ki and K̃i are expressed in global DOFs. The
stiffness matrix of the entire damaged structure can be
expressed as

K̃ =
∑

i

μi Ki . (2)

The equation of motion of the damaged structure subjected
to an external excitation f(t),

Mü(t) + Cu̇(t) + K̃u(t) = f(t), (3)

where u(t) denotes the displacement response of the struc-
ture, can be therefore transformed into the equation of
motion of the distorted structure, that is the original undam-
aged structure subjected to the same external excitation f(t)
and a certain response-coupled pseudo-load p0(t),

Mü(t) + Cu̇(t) + Ku(t) = f(t) + p0(t), (4)

where the pseudo-load p0(t) models the damage and is
related to the damage extents by

p0(t) =
∑

i

(1 − μi ) Ki u(t). (5)

2.2 Local pseudo-loads

The stiffness matrix of the i th element, Ki , is formulated in
the global DOFs. It can be related to the local DOFs by

Ki = LT
i TT

i Ke,i Ti Li , (6)

where Ke,i is the stiffness matrix of the i th element
expressed in its local coordinates, Li is the localization
matrix linking the global DOFs to the local DOFs and Ti is
the transformation matrix from the global to the local coor-
dinate system. In a similar way, the vector ue,i (t) of the
nodal displacements of the i th element in its local coordi-
nate system can be related to the global displacement vector
u(t) by

ue,i (t) = Ti Li u(t). (7)

Equations (6) and (7) can be substituted in (5). As a
result, the global pseudo-load p0(t) is expressed in the terms
of element-specific local pseudo-loads p0

e,i (t),

p0(t) =
∑

i

LT
i TT

i p0
e,i (t), (8)

where p0
e,i (t) is expressed in the local DOFs as

p0
e,i (t) = (1 − μi )Ke,i ue,i (t). (9)

Since the term Ke,i ue,i (t) represents the local nodal loads
pe,i (t), there is a straightforward relation between the local
nodal loads and the local pseudo-loads:

p0
e,i (t) = (1 − μi ) pe,i (t). (10)

Note that (10) is an implicit equation, since the pseudo-load
is coupled with the response, that is the nodal loads pe,i (t)
on the right-hand side depend on the load p0

e,i (t).

2.3 Virtual distortions

For a truss structure with simple one-dimensional elements,
the pseudo-load that models the damage of an element is
a pair of self-equilibrated axial forces applied at its nodes;
it corresponds to a single axial distortion state. In elements
of other types, more distortion states can occur. For each
element, their number and shapes can be analyzed via the
eigenvalue problem of the local stiffness matrix Ke,i . The
matrix is positive semi-definite, hence its eigenvectors are of
two kinds only: rigid motion vectors that correspond to zero
eigenvalues and distortion vectors that correspond to posi-
tive eigenvalues. The matrix Ke,i can be expressed in the
terms of its positive eigenvalues λi j and the corresponding
distortion vectors ϕi j as

Ke,i =
∑

j

λi j ϕi j ϕT
i j . (11)

The eigenvector ϕi j represents the j th local unit distortion.
The corresponding vector of the nodal loads is

Ke,iϕi j = λi jϕi j . (12)

Using (9), (11) and (12), the local pseudo-load can be
expressed in terms of a combination of the local virtual
distortions,

p0
e,i (t) = Ke,i

∑

j

κ0
i j (t)ϕi j , (13)

where κ0
i j (t)ϕi j is the j th virtual distortion of the i th

element and

κ0
i j (t) = (1 − μi )ϕT

i j ue,i (t) (14)

is the combination coefficient of the corresponding j th local
unit distortion ϕi j . The local nodal loads can be expressed
in similar terms as

pe,i (t) = Ke,i

∑

j

κi j (t)ϕi j , (15)
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where the combination coefficient is given by

κi j (t) = ϕT
i j ue,i (t). (16)

Therefore, a relation similar to (10) is yielded:

κ0
i j (t) = (1 − μi ) κi j (t). (17)

For a 2D beam element, the local stiffness matrix has
three positive eigenvalues and three corresponding distor-
tion vectors. Apart from the pure axial distortion (the same
as in a truss element), there occur also a pure bending and a
bending/shear distortion (Świercz et al. 2008), see Fig. 1.

2.4 The response

With the assumption of zero initial conditions, the response
yα(t) of the αth sensor (linear sensor of any type, e.g. strain
sensor, accelerometer, etc.), in an externally excited dam-
aged structure is modeled by the VDM as the following sum
of the linear and the residual parts

yα(t) = yL
α (t) +

∑

i, j

∫ t

0
Dκ

αi j (t − τ)κ0
i j (τ ) dτ, (18)

where yL
α (t) denotes the response of the original undam-

aged structure to the same external excitation, and κ0
i j (t)

describes the j th virtual distortion of the i th element. The
function Dκ

αi j (t) denotes the impulse–response of the orig-
inal undamaged structure, and in the scope of the VDM it
is called the dynamic inf luence matrix; it is the response
of the αth sensor to an impulse unit distortion ϕi j of the
i th element. Such an impulse distortion is the excitation
that is equivalent to a local impulsive load Ke,iϕi j . In case
yα(t) is acceleration, the impulse–response may contain an
impulsive component at t = 0. The formulation requires the

M

L L
2M

T=

T

M

MM

NN

Fig. 1 Three distortion states of a beam element

assumption of small deformations, so that the responses can
be linearly combined.

Equation (18) can be used to compute the response yα(t),
provided the virtual distortions κ0

i j (t) are known. In order to
compute them, the distortion response κi j (t) of the damaged
structure, (16), is expressed in a similar way to (18),

κi j (t) = κL
i j (t) +

∑

k,l

∫ t

0
Dκκ

i jkl(t − τ)κ0
kl(τ ) dτ, (19)

where Dκκ
i jkl(t) is the corresponding impulse–response func-

tion (dynamic influence matrix) of the original undamaged
structure. Equation (19), if substituted in (17), yields the
following integral equation:

(1 − μi )κ
L
i j (t) = κ0

i j (t) − (1 − μi )

×
∑

k,l

∫ t

0
Dκκ

i jkl(t − τ)κ0
kl(τ ) dτ (20)

that, if collected for all damaged elements i and distor-
tions j , is a system of Volterra integral equations of the
second kind, which is always well-posed and thus uniquely
solvable (Kress 1989).

3 Modeling of moving masses

Moving masses in a bridge–vehicle system not only excite
the supporting structure via their gravities but also mod-
ify its inertial properties. Here, similar as in the case of
structural damages, moving masses are modeled via the
corresponding moving pseudo-loads that include their grav-
ities and the inertial effects. The structural response can
be quickly computed via the convolution of the pseudo-
loads with the pre-computed structural impulse–response;
in this way, repeated numerical integration of the equation
of motion as well as updating the mass matrix in each time
step are both avoided.

3.1 Pseudo-loads

Consider nm masses m1, . . . , mnm moving at constant
velocities v1, . . . , vnm on a flat supporting structure of
length L (the undamaged bridge); Fig. 2 illustrates the con-
sidered setup using a simply supported beam in the role of
the bridge. Each mass is assumed to attach to the bridge at
its current position, which for the mass mi is xi = xi,0 +vi t ,
where xi,0 denotes the initial position and vi denotes the
velocity.
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Fig. 2 A sample supporting system and the moving masses

The bridge is modeled as a discrete finite element struc-
ture. The moving masses and the bridge are collectively
considered a single system, which is exposed to moving
external loads of the constant gravities of the masses; the
global excitation vector is computed in each time step using
the shape functions of the finite elements that currently
carry the masses. The system mass matrix is continuously
re-assembled with respect to the current positions of the
masses. The equation of motion of the system can be thus
written as

[M + �M(t)] üL(t) + Cu̇L(t) + KuL(t)

=
nm∑

i=1

mi g bi (t), (21)

where M, C and K are the mass, damping and stiffness
matrices of the undamaged bridge. The matrix �M(t)
models the effects of the attached masses,

�M(t) =
nm∑

i=1

mi bi (t)bT
i (t), (22)

and bi (t) denotes the time-dependent global load alloca-
tion vector of the i th mass. The vector bi (t) vanishes if the
mass is outside the bridge; otherwise, it is computed using
the shape functions of the finite element that currently car-
ries the mass. The dynamic response of the bridge can be
obtained by a numerical integration of (21), provided the
velocities of the masses are well below the critical speed
(Bajer and Dyniewicz 2009).

In accordance with the general idea of the VDM, the
time-dependent matrix �M(t) in (21) is moved to the
right-hand side to obtain:

MüL(t) + Cu̇L(t) + KuL(t) =
nm∑

i=1

pi (t)bi (t), (23)

which is the equation of motion of the bridge alone sub-
jected to the moving pseudo-loads pi (t) that act at the
positions of the moving masses and represent both their
gravities and the inertial effects:

pi (t) = mi
[
g − ai (t)

]
, (24)

where the vertical acceleration of the i th mass ai (t) couples
the pseudo-load pi (t) back to the structural response,

ai (t) = bT
i (t)üL(t). (25)

3.2 Moving dynamic influence matrix

The dependence of the vertical accelerations of the mov-
ing masses on the pseudo-loads pi (t) can be expressed
explicitly by using in (25) the impulse–response matrix Ḧ(t)
that describes acceleration responses of the bridge to unit
impulse excitations:

ai (t) = bT
i (t)

∫ t

0
Ḧ(t − τ)

nm∑

j=1

p j (τ )b j (τ ) dτ

=
nm∑

j=1

∫ t

0
Dmm

i j (t, τ )p j (τ ) dτ, (26)

where the convolution kernel Dmm
i j (t, τ ) represents the ver-

tical acceleration of the i th mass at time t as a result of
an impulsive excitation applied at time τ at the respective
location of the j th mass,

Dmm
i j (t, τ ) = bT

i (t)Ḧ(t − τ)b j (τ ). (27)

Equation (26) can be substituted in (24), which can be then
stated in the following standard form:

mi g = pi (t) + mi

nm∑

j=1

∫ t

0
Dmm

i j (t, τ )p j (τ ) dτ (28)

that, if collected for all moving masses, constitutes a sys-
tem of linear integral equations with the pseudo-loads pi (t)
as the unknowns, which is analogical to (20). The kernel
of the respective matrix integral operator, Dmm

i j (t, τ ), is
expressed with respect to the changing positions of the mov-
ing masses and thus ceases to be a difference kernel; notice
that an impulsive component occurs on its diagonal. The
kernel, or its discrete version (Section 4.3), is the proposed
in this paper moving dynamic inf luence matrix. As it does
not depend on the masses, it needs to be computed only
once for a certain bridge and given velocities of the masses.
Thereupon, in the coupled bridge–moving mass analysis,
the pseudo-loads pi (t) that model the masses can be quickly
found by solving (a discrete version of) (28). In this way,
it is possible to avoid the repeated assembling of the sys-
tem mass matrix in each time step, as required by (21).
As described in the following sections, this is an important
advantage in moving mass identification.
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3.3 The response

Given the pseudo-loads pi (t) and zero initial conditions,
the response yα(t) of the αth linear sensor placed in the
structure that is excited by the considered moving masses
is modeled, as in (18) and (26), in the following way:

yL
α (t) =

nm∑

i=1

∫ t

0
Dm

αi (t, τ )pi (τ ) dτ, (29)

where Dm
αi (t, τ ) denotes the impulse–response of the struc-

ture, that is the response of the αth sensor at time t to the
unit impulsive excitation at time τ at the respective location
of the i th mass, which, in case yL

α (t) is acceleration, may
contain an impulsive component.

4 Coupled modeling of moving masses and damage

4.1 Virtual distortions and pseudo-loads

As shown in the preceding sections, damage and moving
masses can be separately modeled using virtual distortions
and pseudo-loads. Since these are both coupled to the
response, in case of a damaged structure excited by mov-
ing masses they influence each other and cannot be used
independently. In such a case, a coupled analysis is neces-
sary. First, the distortion and the acceleration responses of
the structure are stated in the following form:

ai (t) =
nm∑

j=1

∫ t

0
Dmm

i j (t, τ )p j (τ ) dτ

+
∑

j,k

∫ t

0
Dmκ

i jk (t, τ )κ0
jk(τ ) dτ, (30)

κi j (t) =
nm∑

k=1

∫ t

0
Dκm

i jk (t, τ )pk(τ ) dτ

+
∑

k,l

∫ t

0
Dκκ

i jkl(t − τ)κ0
kl(τ ) dτ, (31)

which is similar to (19) and (26) but takes account of
the mutual dependence of the distortions and accelerations,
which is expressed via the respective impulse–responses
(dynamic influence matrices): Dmκ

i jk (t, τ ), which is the ver-
tical acceleration of the i th mass at time t to an impulse
unit distortion ϕ jk of the j th element applied at time τ , and
Dκm

i jk (t, τ ), which is the j th distortion of the i th element at
time t as a result of an impulse excitation applied at time τ at

the respective location of the kth mass. Using (17) and (24),
the following system of linear integral equations is yielded:

mi g = pi (t) + mi

nm∑

j=1

∫ t

0
Dmm

i j (t, τ )p j (τ ) dτ

+ mi

∑

j,k

∫ t

0
Dmκ

i jk (t, τ )κ0
jk(τ ) dτ, (32)

0 = (1 − μi )

nm∑

k=1

∫ t

0
Dκm

i jk (t, τ )pk(τ ) dτ − κ0
i j (t)

+ (1 − μi )
∑

k,l

∫ t

0
Dκκ

i jkl(t − τ)κ0
kl(τ ) dτ, (33)

with the pseudo-loads pi (t) and the virtual distortions κ0
i j (t)

as the unknowns. Notice that the masses mi and the damage
extents μi , which are to be identified, occur in the kernel
of the respective matrix integral operator only in the form
of constant scaling factors, so that for a given structure the
kernel has to be computed only once and does not have to
be recomputed during the identification process.

4.2 Response of a damaged structure to moving masses

By solving (32) and (33), the pseudo-loads and the virtual
distortions are obtained. The response of the αth sensor can
be then computed as follows, see (18) and (29),

yα(t) =
nm∑

i=1

∫ t

0
Dm

αi (t, τ )pi (τ ) dτ

+
∑

i, j

∫ t

0
Dκ

αi j (t − τ)κ0
i j (τ ) dτ. (34)

4.3 Discretization

In applications, the responses are usually either measured
or obtained through numerical simulations and thus dis-
crete. Therefore, in practice only the discrete counterparts
of (30) to (34) are used. The discrete response of the dam-
aged structure subjected to moving loads is then expressed
as

y = Dmp + Dκκ0, (35)

where the vectors y, κ0 and p collect, for all time steps, the
discrete responses (of all considered sensors), the discrete
virtual distortions (of all potentially damaged elements) and
the pseudo-loads; thus, they are respectively of lengths nant,
ndnt and nmnt, where nt is the number of the time steps,
na is the number of the sensors, nd is the total number of



914 Q. Zhang et al.

the considered virtual distortions and nm is the number of
the moving masses. The matrices Dm and Dκ are the dis-
crete counterparts of the corresponding integral operators
in (34) and take the forms of block matrices of respective
dimensions with lower-triangular nt × nt blocks, which in
case of Dκ are Toeplitz, as the corresponding operator has
a difference kernel. Similarly, the discrete accelerations a
and the discrete distortions κ depend on the discrete pseudo-
load p and the discrete virtual distortions κ0 in the following
way:

[
a
κ

]
=

[
Dmm Dmκ

Dκm Dκκ

] [
p
κ0

]
, (36)

which is an aggregated discrete version of (30) and (31).
Finally, the integral equations (32) and (33), if similarly
discretized, become the following large linear system

[
I + mDmm mDmκ

(I − μ)Dκm (I − μ)Dκκ − I

] [
p
κ0

]
=

[
mg
0

]
, (37)

where m and μ are block diagonal matrices of respective
dimensions with diagonal blocks mi Int×nt and μi Int×nt ,
and g is the vector of appropriate length of Earth’s gravi-
ties g. Equation (37) can be also deduced directly from (36),
given the following aggregated versions of (17) and (24):

p = m (g − a) , (38)

κ0 = (I − μ) κ . (39)

The building blocks of (35) to (37) are the matrices D(·)
and D(·)(·). These matrices store all the necessary informa-
tion about the dynamics of the structure and are independent
of the moving masses and the damage. Thus, given specific
values of the masses mi and the damage extents μi , the sys-
tem (37) can be quickly assembled without any numerical
simulations and then solved to obtain the pseudo-loads and
the virtual distortions, which can be then used in (35) to
compute the response of the damaged structure excited by
the moving masses.

5 Identification

Given the measured response yM of the damaged struc-
ture to unknown moving masses, there are two general
approaches to identify the unknown damage and the masses.
The first approach treats the pseudo-load p and the vir-
tual distortions κ0 as independent unknowns. The following
version of (35),

yM = Dmp + Dκκ0, (40)

is solved with respect to the unknown p and κ0, which
are then used in (36) in order to compute the correspond-
ing accelerations a and distortions κ . Finally, the unknown
masses and damages are estimated via least-square fitting of
(38) and (39). An advantage of the approach is the linearity
of the problem of solving (40). Moreover, the virtual dis-
tortions of a damaged element are all treated as independent
from each other and in all time steps, hence exactly the same
approach can be used to identify stiffness-related damages
of unknown types (not only a simple stiffness reduction),
as demonstrated in Zhang et al. (2010) using a truss struc-
ture. However, the problem of solving (40) is a well-known
ill-conditioned problem (Hansen 2002), and thus extremely
sensitive to measurement errors. Moreover, since all the
elements of the vectors p and κ0 are treated as indepen-
dent unknowns, the number of the sensors has to be equal
or greater than the total number of the unknown moving
masses and the considered virtual distortions, so that the
location of the damage has to be known a priori.

Therefore, this paper pursues a more practical paramet-
ric approach that treats the masses mi and the damage
extents μi as independent unknowns, which are used to
determine the pseudo-load p, the virtual distortions κ0 and
finally the response y. In this way, the number of unknowns
is significantly reduced and thus fewer sensors are nec-
essary and the results are more stable; however, it is at
the cost of assuming the damages to be of known types,
such as the constant stiffness reduction that is considered in
this paper.

5.1 Objective function and the optimization variables

Basically, the inverse problem of identification of unknown
masses and damage extents is stated here as an optimization
problem of minimization of the normalized mean-square
distance between the measured structural response yM and
the computed response y, where the optimization vari-
ables are mi and μi . However, these variables have very
different magnitudes, which can seriously impair the accu-
racy of many optimization procedures: the damage extents
μi belong to the interval [0, 1], but the masses mi might
be as large as several tens of thousands of kilograms.
Moreover, while the damage extents have a natural initial
value of 1 (no damage), there is no such a straightforward
value for the moving masses. Thus, initial approximations
of the masses (called the trial masses) are computed by
assuming the bridge to be undamaged and approximating
the pseudo-loads with the moving gravities of the masses,
that is by solving in the least-square sense the following
overdetermined system:

yM = Dmmtrg, (41)



Simultaneous identification of moving masses and structural damage 915

where mtr is the diagonal matrix of the same structure as
m in (37) and (38), but includes the trial masses mtr

i on
the diagonal. Given the trial masses, the optimization prob-
lem can be stated in the following dimensionless variables
μ�

i (i = 1, . . . , nm + ne, where ne is the number of the
potentially damaged elements):

μ�
i =

⎧
⎪⎨

⎪⎩

mi

mtr
i

if i = 1, . . . , nm,

μi−nm if i = nm + 1, . . . , nm + ne,

(42)

which all have the natural initial value of 1 and are all of
the same magnitude. Therefore, the proposed optimization
problem is stated in the following form:

minimize f (μ�
1, . . . , μ

�
nm+ne

) = 1

2

‖yM − y‖2

‖yM‖2
,

subject to μ�
i ≥ 0, i = 1, . . . , nm + ne,

(43)

where y is the response computed for the assumed values of
the optimization variables via (42), (37) and (35).

5.2 Sensitivity analysis

The identification process amounts to the minimization of
the objective function given in (43) and can be quickly
performed using gradient-based optimization algorithms,
provided the gradient can be computed at a reasonable cost.
The formulation based on (37) and (35) allows the discrete
adjoint method to be used (Haftka and Gürdal 1992), which
is quicker by one order of magnitude in comparison to the
standard direct differentiation method (Papadimitriou and
Giannakoglou 2008).

For notational simplicity, (35) and (37) and their first
derivatives with respect to the variable μ�

i are stated in the
following simple aggregate forms:

Ax = b, (44)

Axi = bi − Ai x, (45)

y = Dx, (46)

yi = Dxi , (47)

where

A =
[

I + mDmm mDmκ

(I − μ)Dκm (I − μ)Dκκ − I

]
, (48)

b = [
mg 0

]T
, (49)

D = [
Dm Dκ

]
, (50)

x = [
p κ0

]T
. (51)

The objective function is directly differentiated to obtain

fi = −
(
yM − y

)T

∥∥yM
∥∥2

Dxi , (52)

which includes the first derivatives xi of the optimization
variables. The direct differentiation method computes it by
solving (45); for the full gradient, the solution has to be
repeated nm + ne times, that is once for each optimization
variable μ�

i . The discrete adjoint method adds to (52) the
scalar product of the adjoint vector λ with (45) and collects
together the terms including xi to obtain

fi = λT(
Ai x − bi

) +
(

λTA −
(
yM − y

)T

∥∥yM
∥∥2

D

)
xi . (53)

In this way, the first derivative of the objective function is
stated as

fi = λT(
Ai x − bi

)
, (54)

where the adjoint vector λ is computed at the cost of only a
single solution of the adjoint equation

ATλ = DT

(
yM − y

)
∥∥yM

∥∥2
. (55)

5.3 Remarks

In principle, if a small number of the time steps is used,
the system matrix in (37) is of moderate dimensions and
its inverse can be computed and used directly. However, in
off-line identification, in the case of a dense time discretiza-
tion or a longer sampling time, the system can become
prohibitively large and computationally hardly manageable
in a direct way. In such cases, the system matrix, which
is a block matrix composed of lower triangular matrices,
can be rearranged into the lower triangular block form that
can be exploited by a specialized linear solver (like block
forward-substitution or dynamic programming (Adams and
Doyle 2002; Uhl 2007)) to reduce the numerical costs of the
solution. Despite the inherent ill-conditioning of the sys-
tem, application of such a solver is facilitated by the fact
that both the matrix and the right-hand side vector are com-
puted based on the FE model of the structure, and so they
include only numerical errors, which are usually several
orders of magnitude smaller than measurement errors. On
the other hand, the left-hand side vector of (40) contains the
measurement data and hence it can be contaminated with
significant measurements errors. Thus, the results of any
identification procedure based on a solution of (40) may
suffer from instability, even if a regularization procedure
is used.
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Furthermore, given the FE model of the undamaged
structure, the proposed method can be used online by repet-
itive applications in a moving time window (Zhang et al.
2010), that is by replacing the measured structural response
yM in (43) with yM(n) − ȳ(n), where yM(n) is the response
measured in the nth time window and ȳ(n) is the free vibra-
tion response of the undamaged structure caused by nonzero
initial conditions at the beginning of the window. These ini-
tial conditions and the corresponding free vibrations can be
computed using the FE model of the undamaged structure,
provided the moving masses and the virtual distortions in
the previous windows are already identified.

If the system parameters are known, the virtual distor-
tions in (35) vanish, and the proposed method can be also
used for identification of the moving masses only.

6 Numerical example

In this section, a multi-span frame structure is used to vali-
date the proposed method for simultaneous identification of
moving masses and damage. Measurement error and three
types of model errors are taken into account in order to test
the robustness of the method.

6.1 Structure and moving masses

Figure 3 shows the model of the considered three-span
frame structure. It is made of steel with Young’s modulus
2.15 × 1011 N/m2 and a density of 7.8 × 103 kg/m3; it
has a uniform mass distribution of 15.3 × 103 kg/m and a
simplified rectangular cross-section of b × h = 0.89 m ×
2.21 m, so that the second moment of area is 0.8 m4. It is
200 m long; each of the two side spans is 50 m long. Each
of the two piers is 20 m high and has the second moment of
area of 0.16 m4.

Three moving masses m1 = 71.2 × 103 kg, m2 =
60 × 103 kg and m3 = 53 × 103 kg pass over the struc-
ture with constant velocities of v1 = 34 m/s, v2 = 34 m/s
and v3 = −30 m/s. The initial positions of the masses are
x1,0 = −3 m, x2,0 = 0 m and x3,0 = 200 m. Three strain
sensors are employed: s1 at the location of 65.2 m, s2 at
95.2 m and s3 at 145.2 m, as shown in Fig. 3. The sensors

50 m100 m50 m

y

o xm1 m2

v2v1

s1 s2

v3

s3

m3

e21

e22 e24

e23

Fig. 3 Damaged three-span frame structure and three moving masses

are placed at the bottom surface of the beam, so that the
distance to the neutral axis is 0.5h = 1.105 m.

6.2 Measurement and model errors

Measurement errors of the simulated measurement data yM

are modeled by adding an uncorrelated Gaussian noise at
kn rms level, that is

yM ← yM + knη

√
‖yM‖2

nant
, (56)

where η is a column vector of the same length as yM (that is,
nant), whose elements are random numbers independently
drawn from N(0, 1). Altogether, three noise levels are used:
kn ∈ {0%, 5%, 10%}.

The influence of model error is tested below by using
a different FE model of the structure for identification
purposes than for the generation of the simulated measure-
ments. For identification purposes, the beam is divided into
20 elements of 10 m each; each of the two piers is divided
into two elements of 10 m (the original mesh). These values
are chosen based on Law et al. (2004), where it is tested that
a minimum of eight finite elements have to be used to model
a single-span bridge deck for moving force identification.
As described above, the moving masses are assumed to
attach directly to the beam. This model is modified in
order to generate the simulated measurements. The three
following types of modifications are considered:

– Type I, which is modification of the stiffness of all
the elements. More precisely, uncorrelated Gaussian
modifications with mean −2% and standard deviation
5% are used, as due to both aging and initial model
inaccuracies.

– Type II: a mass-spring vehicle model is used instead of
the simple moving mass, see Fig. 4.

– Type III: a four times finer FE mesh is used, that is each
of the 10 m elements is further divided into four equal
elements of 2.5 m.

ki,ci

mi

e23

e24e22

e21

m3

s3

v3

s2s1

v1 v2

m2m1 xo

y

50 m 100 m 50 m

Fig. 4 Type III model error: a mass-spring vehicle model is used
instead of a simple moving mass
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Fig. 5 Responses of the undamaged system simulated using different meshes and vehicle models: sensors s1, s2 and s3

For Type II model error, the parameters of the mass-spring
vehicle model are chosen as in Au et al. (2004); Sheng
et al. (2006): the stiffness is 286 × 106 N/m and the damp-
ing is 2.8 × 106 Ns/m. Figure 5 compares the responses
obtained using the original undamaged structure, as well as
the same structure with Type III model error and with Type
II+III model errors. For a flat beam considered in this paper,
the discrepancies between the responses obtained from the
mass-spring vehicle model and those from the simple mass
model are small. Similarly, noticeable effects of element
mesh, like Type III model error, occur only at the times
when the vehicles pass directly over the sensors: the finer
mesh better reflects the local high-frequency components of
the response. These local vibrations decrease soon after the
vehicle passes by the sensor. Therefore, in order to improve
the accuracy and decrease the influence of Type III model
error, the local vibrations can be removed from the measure-
ments by modifying the original objective function in (43)
as follows:

f
(
μ�

1, . . . , μ
�
nm+ne

) = 1

2

∥∥(diag w)
(
yM − y

)∥∥2

∥∥(diag w)yM
∥∥2

, (57)

where w is a binary weighting vector, which contains only
1s with the exception of the time steps at which the vehi-
cles are within a certain distance from any of the sensors
(±2.5 m is used in this paper).

6.3 Identification cases

The following six cases are discussed to test the method
proposed in this paper:

1. The structure is assumed to be undamaged. Only
the moving masses are identified. Measurement error
is simulated at 5% rms level. No model error is
assumed.

2. Two pier elements (nos. 21 and 23) are damaged with
the damage extents μ21 = 0.4 and μ23 = 0.7. The
moving masses and the damage extents are identified
simultaneously. The damage location is limited to the
four pier elements of the original mesh, so that four
stiffness modification coefficients are used in optimiza-
tion, besides the three variables related to the masses. In
this way, the exact number of the damaged elements and
their locations are treated as unknown and also iden-
tified. Measurement error at 5% rms level and no model
error are used.

3. As in Case 2, but Type I model error is additionally
simulated, see Fig. 6 (left). The damage extents listed
above in Case 2 relate to the element stiffnesses in the
modified model, so the to-be-identified damage extents
in Case 3 are slightly different, as they include the
model error besides the damage.

Fig. 6 Stiffness reduction levels of the elements: (left) original mesh (Type I model error); (right) fine mesh (Type I+III model error)
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Fig. 7 Simulated strain responses of the damaged and the intact sys-
tems in identification Cases 1 and 2. Simulated measurement noise at
5% rms level

4. As in Case 2, but model error Type II+III is used, that
is the finer mesh and the mass-spring vehicle model
are used to generate the simulated measurements, and

no measurement error is considered. Identification of
masses and damages is performed via (43), that is using
all the responses without removing the local vibrations.

5. As in Case 4, but local vibrations are removed from the
responses via (57) and measurement error is simulated
at 5% rms level.

6. As in Case 5, but model error I+II+III is used, see
Fig. 6 (right) for the stiffness modifications, and mea-
surement error is simulated at 10% rms level. Local
vibrations are removed from the responses via (57).

In all cases, the dynamic responses of the sensors are cal-
culated using the Newmark integration method with the
parameters α = 0.25 and β = 0.5. The integration time
step equals 0.01 s (100 Hz sampling frequency). A total of
200 time steps is used, so that the sampling time interval is
2 s. The simulated noise-contaminated sensor responses in
Cases 1 and 2 are shown in Fig. 7.

The following subsections discuss the identification in
the six mentioned cases. The mass identification results are
assessed by their relative accuracy, while the damage iden-
tification results are more naturally assessed in terms of
their absolute accuracy (percentage points).
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Fig. 8 Case 1, three sensors. Moving load identification by a direct
solution of (40): (top left) L-curve, noise-free measurements; (top
right) L-curve, 5% rms measurement noise; (bottom left) computed
pseudo-loads, noise-free measurements; (bottom right) computed

pseudo-loads, 5% rms measurement noise. L is the matrix of the first
differences. “estimate i” and “actual i” denote the i th estimated and
actual pseudo-loads
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Table 1 Case 1

Identified masses and relative
identification errors

Via (40), three sensors Via (43), single sensor

Noise free 5% noise Noise free 5% noise

Actual Identified Error Identified Error Trial Identified Error Trial Identified Error

(103 kg) (103 kg) (%) (103 kg) (%) (103 kg) (103 kg) (%) (103 kg) (103 kg) (%)

m1 71.2 70.56 0.90 56.62 20.48 69.82 71.2013 0.0018 68.30 71.42 0.31

m2 60.0 60.23 0.38 62.08 3.47 58.98 60.0003 0.0005 59.04 59.17 1.38

m3 53.0 52.72 0.53 53.16 0.30 43.45 52.9995 0.0010 41.33 53.81 1.53

6.4 Moving mass identification (Case 1)

First, the moving masses are identified using a direct solu-
tion of (40), where the virtual distortions κ0 are assumed to
vanish. For a unique solution, at least three sensors are nec-
essary. The pseudo-loads p are computed separately for the
noise-free and the noise-contaminated measurements, see
Fig. 8. The truncated singular value decomposition (TSVD)
is used. The corresponding regularization levels (the num-
ber k of the truncated singular values) were determined
using the L-curve technique (Jacquelin et al. 2003), that
is by weighing in the log-log scale the residual of (40) vs.
the norm of the first differences of the pseudo-load ‖Lp‖.
The L-curves are depicted in Fig. 8 (top) and attest that
the (40) is seriously ill-conditioned. Moreover, consistently
large values of the regularizing term ‖Lp‖ suggest that it
is impossible to get accurate results even at the optimal
regularization level. In the noise-free case, the optimum
regularization level is k = 29. The corresponding com-
puted pseudo-load is shown in Fig. 8 (bottom left); the
end part diverges suddenly from the actual mass-equivalent
pseudo-force. With noise contamination, the pseudo-load is
computed at the optimal value of k = 269 and shown in
Fig. 8 (bottom right); both the front and the end parts diverge
largely from the actual values. Table 1 lists the masses iden-
tified using (24), where the accelerations are computed via
(36). The errors confirm that the result can be very sensitive
to the disturbances of the measured response.

Fig. 9 Case 1, single sensor s1. Pseudo-loads, actual and identified
by (43); “estva i” and “actva i” denote the i th estimated and actual
pseudo-load

In comparison, the identification via (43) turns out to be
robust to noise. Moreover, the masses are accurately iden-
tified using a single sensor only (s1), the results are listed
in Table 1. The initial trial values of the moving masses are
computed via (41); in each optimization step, the pseudo-
load p is calculated fast using the moving dynamic influence
matrix Dmm by (37), which reduces to [I + mDmm]p =
mg. The objective function is optimized using the func-
tion ’fmincon’, which is a part of the Matlab optimiza-
tion toolbox. The pseudo-loads identified using the noise-
contaminated measurements are compared with the actual
pseudo-loads in Fig. 9; the results are very satisfactory
under 5% rms noise pollution, especially in comparison to
Fig. 8 (bottom right).

6.5 Simultaneous identification of moving masses and
damages (Cases 2–6)

The damage is limited to the two piers, that is to the respec-
tive four finite elements of the original mesh. Together with
the three moving masses (mass modification coefficients),
seven variables have to be identified by minimizing the
objective function (43) or (57). Responses of only two sen-
sors are used for that purpose (s1 and s3); the initial trial
mass values are estimated via (41).

The identification results in Case 2 (5% measurement
noise, no model error) are shown in Table 2. The three
moving masses and four potential damages are identified

Table 2 Case 2

Actual Trial Identified Error (%)

m1 (103 kg) 71.2 94.36 68.88 3.26

m2 (103 kg) 60.0 46.27 60.63 1.05

m3 (103 kg) 53.0 60.52 52.24 1.43

μ21 0.40 – 0.38 2.23

μ22 1.00 – 1.00 0.00

μ23 0.70 – 0.68 2.27

μ24 1.00 – 0.96 3.80

Masses and damage extents identified via (43)
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Table 3 Cases 3–5

Masses and damage extents
identified via (43) (Cases 3–4)
or (57) (Case 5)

Case 3 Case 4 Case 5

Actual Identified Error (%) Actual Identified Error (%) Actual Identified Error (%)

m1 (103 kg) 71.2 66.71 6.31 71.2 95.00 33.42 71.2 73.72 3.54

m2 (103 kg) 60.0 60.88 1.47 60.0 45.84 23.60 60.0 56.45 5.91

m3 (103 kg) 53.0 51.87 2.14 53.0 62.04 17.06 53.0 52.27 1.38

μ21 0.398 0.343 5.52 0.40 0.529 12.86 0.40 0.356 4.36

μ22 1.012 1.000 1.22 1.00 0.997 0.27 1.00 1.000 0.00

μ23 0.666 0.635 3.06 0.70 0.997 29.73 0.70 0.637 6.33

μ24 0.977 0.967 0.98 1.00 1.000 0.00 1.00 0.963 3.75

accurately. As only two damages were actually assumed,
the optimization allowed their number and location (limited
to the four considered pier elements) to be identified as well.
The results are relatively insensitive to the measurement
error.

The identification results in Cases 3–5 are shown in
Table 3. The results confirm that the model error of Type I
influences the accuracy of damage identification (Case 3),
but both the damage and moving masses can be identified
with acceptable accuracy even with an additional measure-
ment error. For the model error of Type III (finer mesh),
coupled with Type II (mass-spring vehicle model), the direct
use of the simulated measurements in (43) results in poor
accuracy even without any measurement error (Case 4).
However, simple filtering of the local vibrations via (57)
dramatically improves the accuracy to the level attained
with Type I model error (Case 5, 5% measurement error
included). These results suggest that in practice (57) should
be always preferred over (43).

In the last test (Case 6), all three types of model errors
are used together with the measurement error at 10% rms
level. The identification is performed via (57). The results
are listed in Table 4, where each actual damage extent is
computed as an average of the damage extents of the four
involved elements of the finer mesh. Given all the simulated
errors, the results are of acceptable accuracy, which is not
significantly worse than in the previously tested cases.

Table 4 Case 6

Actual Trial Identified Error (%)

m1 (103 kg) 71.2 98.71 77.58 8.96

m2 (103 kg) 60.0 46.75 56.34 6.11

m3 (103 kg) 53.0 62.78 53.23 0.43

μ21 0.382 – 0.379 0.29

μ22 0.970 – 1.000 3.03

μ23 0.692 – 0.647 4.47

μ24 0.936 – 0.980 4.36

Masses and damage extents identified via (57)

7 Discussion

Section 2 discusses the VDM-based approach to modeling
of damages. Although pseudo-loads could be directly used
to model the damages via (10), the advantage of virtual
distortions and modeling via (17) lies in

1. a smaller number of the distortions of an element in
comparison to the number of its DOFs;

2. the intuitiveness of the relation between the stiffness
modification and the corresponding virtual distortions,
which is especially apparent in the case of a truss
element;

3. natural gradation of importance of the virtual distor-
tions, which is related to the order of the distortion
(the magnitude of the corresponding eigenvalue) and
to the excitation. Simulation or common engineering
sense can be often used to determine which distortions
of an element are dominant in its response and which
are insignificant and can be thus neglected.

Besides damage extents, this paper treats moving masses
as the optimization variables. In other research on mov-
ing load identification, the interaction forces between the
structure and the masses are usually used as the unknowns.
In these approaches, the forces-time histories in each time
step are in general assumed to be independent, so that, in
order to ensure a unique solution, the number of sensors
must not be smaller than the number of the moving masses.
Since such an identification is equivalent to a deconvolu-
tion, it is usually highly ill-conditioned and a numerical
regularization is required. The regularization makes use
of a priori assumptions about force-time histories, which
usually concern their magnitude or smoothness (Tikhonov
regularization) or limit the dimensionality of the solution
space via a low-dimensional approximation. These assump-
tions are rather numerical than physical and so they cannot
provide for missing sensors. By contrast, if the masses are
treated as optimization variables, the forces-time histories
in all time steps are coupled to the structural response and
so cease to be independent. This kind of an assumption is
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physical and so the number of sensors can be decreased, as
illustrated in the numerical example in Section 6.4, where
a single sensor is used to identify accurately three mov-
ing masses, see Table 1, Figs. 8 and 9. In Section 6.5,
two sensors are used to identify accurately seven unknowns
(three masses and four damage extents), even despite the
three concurrently used types of model errors and 10%
measurement error.

It should be noted that before any practical application
in bridge traffic monitoring, more research will have to be
performed, e.g. to test multi-DOF vehicle models, more
advanced bridge models and to confirm the locality of the
effects of mesh-related model errors. Optimization of sensor
number and placement is also an important problem, which
affects the accuracy and resolution in most global methods
of structural health monitoring.

8 Conclusion

Based on the virtual distortion method (VDM), this paper
presents an effective method for simultaneous identification
of moving masses and structural damage, which treats the
masses and damage extents as the optimization variables.
By an analogy to the dynamic influence matrix known in
the VDM, the paper introduces the concept of the moving
dynamic influence matrix, which allows the numerical costs
of identification to be significantly reduced: the response
of the system can be computed quickly without the need
for numerical simulations and a repeated assembly of the
time-variant mass matrix in each time step. A fast sensitivity
analysis of the identification problem is used based on the
adjoint method. The approach is tested numerically: four
damages and three moving masses are identified using two
sensors only. The identification error does not exceed 9%
(4% on average), despite 10% simulated measurement error
and three concurrently used types of model error.

The research is ongoing to investigate the ultimate accu-
racy and resolution of the method, as well as to introduce
more advanced bridge and vehicle models.
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Świercz A, Kołakowski P, Holnicki-Szulc J (2008) Damage iden-
tification in skeletal structures using the virtual distortion method
in frequency domain. Mech Syst Signal Process 22(8):1826–
1839. doi:10.1016/j.ymssp.2008.03.009

Uhl T (2007) The inverse identification problem and its techni-
cal application. Arch Appl Mech 77(5):325–337. doi:10.1007/
s00419-006-0086-9

Yu L, Chan T (2003) Moving force identification based on the
frequency-time domain method. J Sound Vib 261(2):329–349.
doi:10.1016/S0022-460X(02)00991-4

Yu L, Chan T (2007) Recent research on identification of moving
loads on bridges. J Sound Vib 305(1–2):3–21. doi:10.1016/j.jsv.
2007.03.057

Zhang K, Law S, Duan Z (2009a) Condition assessment of structures
under unknown support excitation. Earthquake Engineering and
Engineering Vibration 8(1):103–114. doi:10.1007/s11803-009-
9003-x

Zhang Q, Jankowski Ł, Duan Z (2009b) Simultaneous identification
of moving mass and structural damage. In: Proceedings of the 8th
world congress on structural and multidisciplinary optimization,
Lisbon, Portugal

Zhang Q, Jankowski Ł, Duan Z (2010) Identification of coexis-
tent load and damage. Struct Multidisc Optim 41(2):243–253.
doi:10.1007/s00158-009-0421-1

Zhu X, Law S (2002) Practical aspects in moving load iden-
tification. J Sound Vib 258(1):123–146. doi:10.1006/jsvi.2002.
5103

Zhu X, Law S (2006) Moving load identification on multi-
span continuous bridges with elastic bearings. Mech Syst
Signal Process 20(7):1759–1782. doi:10.1016/j.ymssp.2005.06.
004

Zhu X, Law S (2007) Damage detection in simply supported con-
crete bridge structure under moving vehicular loads. J Vib Acoust
129(1):58–65. doi:10.1115/1.2202150

http://dx.doi.org/10.1006/jsvi.2000.3118
http://dx.doi.org/10.1006/jsvi.2000.3118
http://dx.doi.org/10.1006/jsvi.1996.0774
http://dx.doi.org/10.1006/jsvi.1996.0774
http://dx.doi.org/10.1115/1.2802487
http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:2(136)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:2(136)
http://dx.doi.org/10.1016/j.engstruct.2004.03.017
http://dx.doi.org/10.1115/1.2793134
http://dx.doi.org/10.1016/j.ymssp.2006.11.004
http://dx.doi.org/10.1016/S0022-460X(02)01555-9
http://dx.doi.org/10.1016/j.compstruc.2003.08.007
http://dx.doi.org/10.1016/j.compstruc.2003.08.007
http://dx.doi.org/10.1006/jsvi.1993.1340
http://dx.doi.org/10.1006/jsvi.1993.1340
http://dx.doi.org/10.1177/1475921708090560
http://dx.doi.org/10.1016/j.jsv.2005.06.016
http://dx.doi.org/10.1016/j.ymssp.2008.10.011
http://dx.doi.org/10.1016/j.ymssp.2008.10.011
http://dx.doi.org/10.1007/s11831-008-9025-y
http://dx.doi.org/10.1016/S0888-3270(03)00075-X
http://dx.doi.org/10.1016/S0888-3270(03)00075-X
http://dx.doi.org/10.1016/j.engstruct.2006.02.012
http://dx.doi.org/10.1016/j.engstruct.2006.02.012
http://dx.doi.org/10.1016/j.engstruct.2006.11.017
http://dx.doi.org/10.1016/j.jsv.2008.05.032
http://dx.doi.org/10.1177/1475921708090561
http://dx.doi.org/10.1177/1475921708090561
http://dx.doi.org/10.1016/j.ymssp.2008.03.009
http://dx.doi.org/10.1007/s00419-006-0086-9
http://dx.doi.org/10.1007/s00419-006-0086-9
http://dx.doi.org/10.1016/S0022-460X(02)00991-4
http://dx.doi.org/10.1016/j.jsv.2007.03.057
http://dx.doi.org/10.1016/j.jsv.2007.03.057
http://dx.doi.org/10.1007/s11803-009-9003-x
http://dx.doi.org/10.1007/s11803-009-9003-x
http://dx.doi.org/10.1007/s00158-009-0421-1
http://dx.doi.org/10.1006/jsvi.2002.5103
http://dx.doi.org/10.1006/jsvi.2002.5103
http://dx.doi.org/10.1016/j.ymssp.2005.06.004
http://dx.doi.org/10.1016/j.ymssp.2005.06.004
http://dx.doi.org/10.1115/1.2202150

	Simultaneous identification of moving masses and structural damage
	Abstract
	Introduction
	Modeling of damage
	Equation of motion and global pseudo-load
	Local pseudo-loads
	Virtual distortions
	The response

	Modeling of moving masses
	Pseudo-loads
	Moving dynamic influence matrix
	The response

	Coupled modeling of moving masses and damage
	Virtual distortions and pseudo-loads
	Response of a damaged structure to moving masses
	Discretization

	Identification
	Objective function and the optimization variables
	Sensitivity analysis
	Remarks

	Numerical example
	Structure and moving masses
	Measurement and model errors
	Identification cases
	Moving mass identification (Case 1)
	Simultaneous identification of moving masses and damages (Cases 2–6)

	Discussion
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


