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Abstract

This paper presents and experimentally verifies an effective method for simultaneous identification of excitations
and damages, which are two crucial factors in structural health monitoring and which often coexist in
practice. The unknowns are identified by minimizing a time-domain square distance between the measured
and the computed responses. Even though both damage and excitation are unknown, only damage parameters
are treated here as the optimization variables: given the damage, the excitation is uniquely determined from
the measured responses. As a result, all unknowns are of the same type, which allows standard optimization
algorithms to be used and obviates the need for two-step procedures. The sensitivity analysis is facilitated
by interpolating in each iteration the relation between structural responses and damage parameters. The
numerical costs are further decreased by the fast reanalysis approach of the virtual distortion method
(VDM), which is used to compute exact impulse responses of the damaged structure. The proposed
methodology is verified both numerically (using a multi-span frame) and experimentally (using a cantilever
beam). Stiffness-related damages and mass-related modifications are identified successfully together with
the three tested types of external excitation.

Keywords: Structural health monitoring, Load identification, Damage identification, Virtual distortion
method (VDM)

1. Introduction

Loads and damages are two important factors in structural health monitoring (SHM). The effectiveness of
the related monitoring techniques is crucial for maintaining structural integrity and can provide indispensable
evidence in forensic engineering. Over the recent years, the respective identification problems have become
widely researched fields and several robust methods have been proposed. However, the problems are almost
always treated as decoupled: either the external excitations are assumed to be known or to belong to a
well-defined class (and the damage is identified) or the structure is assumed to be known (to identify the
excitations). Although such an approach can be problematic in applications, where unknown damages and
unknown arbitrary excitations coexist, together influence the structural response and are both of interest, it
seems that the research on simultaneous identification of arbitrary excitations and damages is very limited.

Damage identification is the primary task of most of SHM systems. In general, there are two fundamental
groups of methods: high-frequency local NDT (non-destructive testing) methods and low-frequency global
SHM approaches. The NDT methods are used for local detection and precise identification of defects in
narrow inspection zones around the instrumentation; they rely on ultrasonic [1, 2] or statistical classification
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techniques [3]. These methods are usually costly in application, do not require structural modeling and
are outside the scope of this paper. Global SHM methods are aimed at remote identification of damages
via an automated analysis of global structural response; in order to be detectable, the damages must be
significant enough to affect the global response. In [4], the SHM methods are categorized into model-based
and pattern matching approaches. Others [5] single out modal methods [6], time domain methods [7] and
wavelet methods [8]. A part of the SHM methods rely on the assumption that the external loads are
well-defined and known, while others (like most of modal and time series methods) assume the excitation
to belong to a specified class with well-defined characteristics (e.g. ambient excitation or impulse load). As
a result, generalization to the case of an unknown arbitrary excitation is usually not possible.

Most of the techniques used for off-line load identification are reviewed in [9, 10, 11]. They are applied in
time domain [12, 13], frequency domain [14, 15] or sometimes wavelet domain [16]. Online load identification
is usually performed using observer techniques [17, 18], the Inverse Structural Filter (ISF) [19, 20] or Kalman
filter [21]. All these methods are model-based and rely on the accuracy of the available numerical model of
the monitored structure. Another group of load identification methods, like [8, 22], is based on computational
intelligence techniques and belong to the class of pattern recognition approaches; thus, they also require
a definite structure in order to build the load-response patterns for initial learning. Generalization to
structures with unknown damages does not seem to be straightforward and is, as a rule, not considered.

Therefore, if unknown arbitrary excitations and structural damages coexist, the related identification
problems are inherently coupled: it is in general not possible to solve them independently of each other.
Due to the essentially different natures of both types of unknowns, a two-step iteration procedure is often
adopted: the excitations and structural parameters are updated separately in each iteration, so that the
optimization process proceeds in an alternate manner. Chen and Li [23] propose a method based on
an iterative least-squares identification procedure, which requires each degree of freedom (DOF) of the
monitored structure to be instrumented. Zhu and Law [24] propose a method for simultaneous identification
of moving forces and damages in simply-supported beams, where the excitation models a moving vehicular
load. The required number of sensors is one less than the number of the beam elements. A method based on
sensitivity of structural responses is proposed and experimentally verified by Lu and Law [25]. The unknown
non-moving force is represented in the form of a sum of a constant and sinusoidal terms. The parameters of
the force (amplitudes and frequencies) are identified along the damage (modifications of element stiffnesses)
with a limited number of measurements.

In principle, parametrization of the unknown force allows the parameters related to the damage and
excitation to be updated simultaneously in each iteration. Moreover, it can significantly improve conditioning
of the identification problem and reduce the number of required sensors. This is the approach pursued by
Zhang et al., which present in [26] a method for simultaneous identification of structural damage and
support excitation that is modeled using a finite series of Chebyshev polynomials; their amplitudes are
treated as the optimization variables along with the stiffness modification coefficients. Similarly, Hoshiya and
Maruyama [27] apply a weighted global iteration procedure and the extended Kalman filter for simultaneous
identification of a moving load and modal parameters of a simply supported beam. The load is parametrized
by its magnitude and velocity (a constant moving force) or static magnitude, velocity, damping and frequency
(a moving single DOF oscillator). In [28], Zhang et al. propose a method for simultaneous identification
of local damages and multiple moving masses. Thanks to the parametrization of the unknown loads, these
methods can treat all the unknowns in a unified manner and do not require two-step identification procedures.
A different approach, based on the virtual distortion method (VDM, [4, 7]), is proposed by Zhang et al. in
[29]. The damages are modeled by virtual distortions, which are equivalent to locally applied pseudo-loads
and are directly identified along with the unknown excitation forces using standard load identification
procedure. As a result, strain-stress relationships of the damaged elements can be recovered and used to
identify not only the extent but also the type of the damage, which thus need not be assumed in advance.
The cost is the large number of sensors, which cannot be smaller than the number of excitations plus the
number of virtual distortions that model the damages.

This paper proposes a new approach for simultaneous identification of structural damages (defined as
local modifications of structural stiffness and mass) and unknown arbitrary excitation forces. The approach
can be characterized as follows:
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• Damage parameters are the only optimization variables. The excitation is not treated as an independent
optimization variable: given damage parameters, it is uniquely determined from the measured structural
response. A limited number of sensors is thus required, which nevertheless must exceed the number of
the unknown excitations. Moreover, all the unknowns are of the same type, which obviates the need
for relatively cumbersome two-step optimization procedures and alternate updating of damage- and
excitation-related unknowns.

• Given the damage parameters, the exact impulse responses of the modified structure are obtained
through a fast reanalysis process based on the VDM. The number of full simulations of the modified
structure is thus significantly reduced.

• In each iteration, the structural response is interpolated based on few initially computed exact impulse-responses.
As a result, (1) the number of actual load identifications as well as the total number of iterations
are both decreased, which further reduces the computational cost, and (2) sensitivity analysis is
significantly facilitated, which is important especially in the case of ill-conditioning and numerical
regularization. Standard gradient- and Hessian-based optimization algorithms can be used.

Besides the above measures, a moving time window technique and parametrization of the time-history
of unknown excitations are employed in order to further reduce the computational cost and improve the
conditioning of the problem.

The next section reformulates the VDM into the form that suits the considered problem; for other
formulation in frequency domain see [30]. The proposed identification method is introduced in the third
section and verified in the numerical example and the experiment presented in the fourth and fifth sections.

2. Virtual distortion method (VDM)

The virtual distortion method (VDM) is a quick reanalysis method [31], applicable in static and dynamic
analysis of structures [7, 30]: given the response of the intact structure, the VDM allows the response of the
damaged structure to be quickly computed without a time-consuming full structural simulation.

Within the framework of the finite element method (FEM), the VDM models damages of a finite element
with the equivalent pseudo-loads that are applied in its degrees of freedom (DOFs). This is always possible,
as the effect of any modification of a finite element is transferred to the neighboring elements only through
its internal nodal forces. In particular, mass modifications are modeled via unequilibrated pseudo-loads. In
case of a stiffness-related damage, the equivalent pseudo-loads are equilibrated and can be more naturally
represented in the form of virtual distortions (intentionally introduced additional strains) of the affected
element. The intact structure is assumed to be linear, as any potential nonlinearities are modeled using the
VDM.

As a result, instead of a damaged structure subjected to an external excitation, the VDM considers the
intact linear structure subjected to certain pseudo-loads and the same external excitation. Both structures
are equivalent in terms of the displacement/acceleration response. Therefore, the response of the damaged
structure is represented by a sum of the responses of the intact structure to (1) the same external load and
(2) the imposed pseudo-loads (virtual distortions), see Eq. (14). The response is thus expressed solely in the
terms of certain local characteristics of the original unmodified structure, which can be either precomputed
or even directly measured [32]. As a result, time-consuming repeated updating and simulations of the finite
element (FE) model are avoided.

This paper considers only stiffness- and mass-related damages. The methodology can be straightforwardly
extended to include other damage patterns and physical nonlinearities like breathing cracks [28] or material
yielding [13, 7], but geometric linearity (assumption of small deformations) is required.

2.1. Distortions of a finite element

For a finite element, the number and forms of its distortions can be analyzed using the eigenvalue problem
of its local stiffness matrix Ki, where i stands for the ith element. The matrix is positive semi-definite,
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hence the eigenvectors are of two kinds only: unit distortion vectors that correspond to positive eigenvalues
and unit rigid motion vectors that correspond to zero eigenvalues. The matrix Ki can be expressed in terms
of its positive eigenvalues λij and the corresponding eigenvectors φij ,

Ki =
∑
j

λijφijφ
T
ij . (1)

The eigenvector φij represents the jth unit distortion of the ith finite element and corresponds to the
following local nodal load:

nij = Kiφij = λijφij . (2)

Given the vector ui(t) of local nodal displacements, the corresponding total distortions κij(t) of the element
can be computed as

κij(t) = φT
ijui(t). (3)

For a 2D beam finite element, the local element stiffness matrix has three positive eigenvalues and three
corresponding eigenvectors: axial distortion, bending distortion and shear/bending distortion.

2.2. Decomposition of the global elastic forces

Let Li be the transformation matrix from the global co-ordinate system to the local co-ordinates of the
ith element, so that

ui(t) = Liu(t), (4)

where u(t) is the displacement vector expressed in global coordinates. The global stiffness matrix K of the
original undamaged structure can be assembled from local stiffness matrices as

K =
∑
i

LT
i KiLi. (5)

Thus, using Eqs. (1) to (4), the global elastic forces Ku(t) can be decomposed into a linear combination of
total distortions κij(t) and the local nodal loads nij :

Ku(t) =
∑
i

LT
i Kiui(t) =

∑
i,j

κij(t)L
T
i nij . (6)

2.3. Modeling the modifications

Let f(t) be an external excitation and denote by uL(t) and κL
ij(t) the corresponding response of the

unmodified structure. Using Eq. (6), the equation of motion can be stated as

MüL(t) + Cu̇L(t) +
∑
i,j

κL
ij(t)L

T
i nij = f(t). (7)

Let the modeled damages of the structure be classified as

• mass-related, described in terms of a certain unknown modification ∆M to the mass matrix, and

• stiffness-related, represented by uniform stiffness reductions of the affected finite elements and quantified
by the ratio µi between the original local stiffness matrix Ki and the modified matrix K̃i,

K̃i = µiKi. (8)

The same external excitation f(t) as in Eq. (7), if applied to the damaged structure, results in the response
u(t), as described by the following equation of motion:

(M + ∆M) ü(t) + Cu̇(t) +
∑
i

LT
i [Ki − (1 − µi)Ki]ui(t) = f(t), (9)
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where Eq. (6) is used and the modifications are assumed not to influence considerably the damping properties
of the structure. By moving the modification terms to the right-hand side and by Eq. (7), Eq. (9) can be
rearranged into the equivalent form:

Mü(t) + Cu̇(t) +
∑
i,j

κij(t)L
T
i nij = f(t) + p0(t) +

∑
i,j

κ0
ij(t)L

T
i nij , (10)

which is the equation of motion of the unmodified structure. In Eq. (10), the structural modifications are
modeled by the pseudo-load p0(t) and the virtual distortions κ0

ij(t), which are implicitly related to the
response and the modifications by

p0(t) = −∆Mü(t), (11a)

κ0
ij(t) = (1 − µi)κij(t). (11b)

Note that a virtual distortion κ0
ij(t) of a finite element can be identified with an additionally introduced

time-dependent distortion. For simulation purposes, it is modeled with the corresponding vector κ0
ij(t)L

T
i nij

of self-equilibrated forces and moments that are applied in the DOFs of the involved element. Mass
modifications are modeled by pseudo-loads p0(t), which are unequilibrated loads applied in the involved
DOFs.

2.4. Response of the damaged structure

Equation (10) confirms that structural damages and modifications can be modeled with the equivalent
pseudo-loads and virtual distortions imposed on the original unmodified structure. This structure is assumed
to satisfy Eq. (7) and so to be linear: potential nonlinearities, which can be for example related to the
material (like plasticity) or to other types of damages (like breathing cracks), can be modeled using the
same technique of virtual distortions, see [13, 28, 7]. Thus, the response of the damaged structure can
be modeled as the following the sum of the responses of the original unmodified structure to the external
excitation f(t), to the pseudo-loads p0(t) and to the virtual distortions κ0

ij(t):

ü(t) = üL(t) +

∫ t

0

B̈up(t− τ)p0(τ) dτ +
∑
i,j

∫ t

0

B̈uκ
ij (t− τ)κ0

ij(τ) dτ, (12a)

κij(t) = κL
ij(t) +

∫ t

0

Bκp
ij (t− τ)p0(τ) dτ +

∑
k,l

∫ t

0

Bκκ
ijkl(t− τ)κ0

kl(τ) dτ, (12b)

where the response to the pseudo-loads and virtual distortions are expressed through convolutions with
the respective impulse-response functions of the original unmodified structure: B̈up(t), which is the matrix
of acceleration responses in all DOFs to impulse excitations in all DOFs, B̈uκ

ij (t), which is the vector of

acceleration responses in all DOFs to an impulsive unit distortion φij (impulsive load LT
i nij), B

κp
ij (t), which

is the response vector of the jth distortion of the ith finite element to impulse excitations in all DOFs, and
Bκκ

ijkl(t), which is the response of the jth distortion of the ith finite element to an impulsive unit distortion

φkl (impulsive load LT
k nkl).

Equations (12) can be used to compute the response of the modified structure, provided the pseudo-loads
and virtual distortions are known. However, Eqs. (11) state them in an implicit way, and so they cannot be
used for a direct computation. Hence, Eqs. (12) are substituted in Eqs. (11) to obtain the following system
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of Volterra integral equations:

−∆MüL(t) = p0(t) + ∆M

∫ t

0

B̈up(t− τ)p0(τ) dτ

+ ∆M
∑
i,j

∫ t

0

B̈uκ
ij (t− τ)κ0

ij(τ) dτ,
(13a)

(1 − µi)κ
L
ij(t) = κ0

ij(t) − (1 − µi)

∫ t

0

Bκp
ij (t− τ)p0(τ) dτ

− (1 − µi)
∑
k,l

∫ t

0

Bκκ
ijkl(t− τ)κ0

kl(τ) dτ,
(13b)

where, apart from the unknowns p0(t) and κ0
ij(t), all the other terms are known. For modifications small

enough, Eqs. (13) are of the second kind and thus uniquely solvable [33]. Notice that, according to Eq. (11a),
the pseudo-loads vanish in all DOFs that are not directly related to the mass modifications ∆M. Similarly,
due to Eq. (11b), the virtual distortions are non-zero only in the modified finite elements. As a result,
the dimension of the system Eq. (13) is significantly reduced, which makes numerical computations more
feasible.

Equations (13) yield the pseudo-loads and virtual distortions, which are used in Eqs. (12) to compute the
response of the modified structure. Alternatively, if the response of only a limited number of linear sensors
(accelerometers, strain sensors, etc.) is required, the following formula can be used:

h(t) = hL(t) +

∫ t

0

Bhp(t− τ)p0(τ) dτ +
∑
i,j

∫ t

0

Bhκ
ij (t− τ)κ0

ij(τ) dτ, (14)

which relates the vector h(t) of the sensor responses in the modified structure to the corresponding responses
hL(t) in the unmodified structure and to the pseudo-loads and virtual distortions that model the damage,
see Eq. (10). Their effect is modeled using the corresponding impulse-responses Bhp(t) and Bhκ

ij (t) of the
unmodified structure.

2.5. Discretization and solution

In practice, all the responses are either obtained via numerical simulations or measured and thus discrete.
Therefore, the discrete counterparts of Eqs. (13) and (14) will be usually used. In the matrix notation, they
take respectively the following forms of large linear equations:[

−∆MüL

(1 − µ)κL

]
=

[
I + ∆MB̈up ∆MB̈uκ

−(1 − µ)Bκp I− (1 − µ)Bκκ

] [
p0

κ0

]
, (15)

h = hL +
[
Bhp Bhκ

] [ p0

κ0

]
, (16)

where the vectors üL, κL, h, hL, p0 and κ0 are the discrete counterparts of the respective functions,
collected for all involved DOFs, distortions and sensors; the matrices B̈up, B̈uκ, Bκp, Bκκ, Bhp and Bhκ

are the discrete counterparts of the respective Volterra matrix convolution operators, also collected for all
involved DOFs, distortions and sensors; µ is a block diagonal matrix of the respective dimension with the
stiffness modification coefficients µi on the block diagonals.

For each assumed damage scenario, quantified by the mass and stiffness modifications ∆M and µi, the
equivalent pseudo-loads p0 and virtual distortions κ0 are obtained by solving Eq. (15). As it is a discretized
version of a Volterra integral equation, it is usually significantly ill-conditioned and requires numerical
regularization. Direct techniques (like the Tikhonov regularization) can be convenient for small problems,
while iterative methods (like the conjugate gradient least squares, CGLS) are applicable for larger problems,
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see [10, 34, 35]. Alternatively, the coefficient matrix can be rearranged into a lower triangular block matrix
and solved stepwise by a block forward substitution. Besides the damage parameters ∆M and µi, both
equations contain only characteristics of the original undamaged structure. These characteristics can be
sometimes directly measured [32], but more often they are pre-computed using a parametric numerical
model of the undamaged structure (e.g. a FE model). In the latter case, the right-hand side of Eq. (15)
contains results of numerical simulations not laden with measurement errors, which significantly reduces
the negative effects of ill-conditioning. Solved Eq. (15), the response of sensors placed in the damaged
structure is computed using Eq. (16). To this end, the solution is multiplied by a matrix, which (as a
discrete counterpart of a convolution operator) acts as a smoothing operator that alleviates the effects of
a potential under-regularization. As a result, the computed discrete response h of the damaged structure
often turns out in practice to be stable for a wide range of regularization parameters.

Notice that, as Eqs. (15) and (16) contain only characteristics of the original undamaged structure, no
modifications and no time-consuming repeated simulations of the structural model are necessary to account
for the damages or modifications. This is an important advantage of the VDM-based structural reanalysis,
which allows the identification of loads and damages to be performed quickly.

3. Identification of loads and damages

3.1. The direct problem

Equations (13) and (14), or their discrete counterparts Eqs. (15) and (16), can be used to compute the
response of the damaged structure, provided that the external excitation f(t) is known or, more exactly, that
the corresponding responses üL(t) and κL(t) of the unmodified structure are known. In order to deal with
the case of an unknown external excitation, it is initially assumed that the external excitation is impulsive,
and the approach is used to compute the corresponding impulse-responses of the damaged structure. As
the considered model of the damage preserves the linearity of the structure, the response of the damaged
structure to any external excitation f(t) can be computed as the following convolution:

y(t;µ⋆) =

∫ t

0

h(t, τ ;µ⋆)f(τ) dτ, (17)

where the vector µ⋆ collects all the damage parameters (mass- and stiffness-related, as defined in Eq. (24)
below), the vector y(t;µ⋆) collects the sensor responses, and the convolution kernel h(t, τ ;µ⋆) is the
corresponding matrix of impulse-responses, which is stated here in the non-difference form to account for
the possibility of moving loads (as in Sect. 4). The discretized version of Eq. (17) is expressed in the form

y(µ⋆) = H(µ⋆)f , (18)

where the matrix H(µ⋆) is the discrete counterpart of the integral operator in Eq. (17) and, with a proper
ordering of the unknowns, takes the form of a block matrix with lower-triangular blocks, which are Toeplitz
matrices in case of stationary loads. The vectors y(µ⋆) and f collect for all time steps respectively all the
sensor responses and all the excitations. Notice that both the response and the convolution kernel explicitly
depend on the vector µ⋆ of the damage parameters.

3.2. The inverse problem

If the damage of the structure is known, the external load can be identified by deconvolving the measured
structural response yM(t) with respect to the known impulse-response. In practice, it is equivalent to solving
the discrete linear equation

yM = H(µ⋆)f(µ⋆), (19)

which is basically feasible, provided the number of excitations does not exceed the number of sensors.
However, if the damage is unknown, the impulse-response is also unknown and the identification problem
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has to be formulated as a general minimization problem of the following objective function:

F (f ,µ⋆) =
1

2

∥yM −H(µ⋆)f(µ⋆)∥2

∥yM∥2
. (20)

Such an objective function depends simultaneously on excitations and structural parameters, which are two
sets of unknowns with very different types, magnitudes and numbers. A standard optimization algorithm
would treat all unknowns in the same way, which may lead to instabilities and significant inaccuracies. Thus,
in the literature, either the types of the unknowns are unified before the optimization [26, 28] or a two-step
optimization scheme is used to alternate between the unknowns of both types [24, 25]. Here, it is noted that,
given the damage parameters, the corresponding excitation can be directly computed by a direct solution
of Eq. (19),

f(µ⋆) = H+(µ⋆)yM, (21)

where the superscript “+” denotes the pseudo-inverse, which formally accounts for the possible overdeterminacy
of Eq. (19) and numerical regularization. Thus, the two-step approach is simplified into a standard problem
of minimization of

F (µ⋆) =
1

2

∥yM − y(µ⋆)∥2

∥yM∥2
, (22)

where the only unknowns are the damage parameters and

y(µ⋆) = H(µ⋆)H+(µ⋆)yM (23)

is the structural response estimated for the given damage parameters. Notice that the number of sensors
must exceed the number of unknown excitations, otherwise the difference between the estimated and the
measured responses would be entirely due to the ill-conditioning of Eq. (19) and would not contain any
meaningful information about the damage.

However, even among the structural parameters, there still remains a considerable difference: a part
of the optimization variables is related to mass modifications and form ∆M, while the other part consists
of the dimensionless stiffness reduction coefficients µ, see Eq. (8). The magnitudes can be very disparate,
which usually adversely affects the convergence and accuracy of the optimization process. In this case,
the optimization can be improved by normalizing the mass-related variables, which are usually additional
masses mi, with respect to their initially estimated trial values mtr

i . The trial values can be arbitrarily chosen
based on the engineering experience. As a result, a set of normalized optimization variables of comparable
magnitudes can be used, see also Eq. (8),

µ⋆
i =

{
mi/m

tr
i if i = 1, . . . , nm,

µi−nm if i = nm + 1, . . . , nm + ne,
(24)

where nm and ne are the numbers of mass- and stiffness-related damages respectively.
Note also that the computational cost of solving Eq. (19), and thus of all further operations involving

the pseudo-inverse H+(µ⋆), can be significantly reduced by employing a projection method [33]. The
measurement time step is usually small and so the exact force time-history can be approximated by splines,
wavelets, load shape functions [28], etc. Equation (19) takes then the following form:

yM ≈ H(µ⋆)Nα(µ⋆), (25)

where f(µ⋆) ≈ Nα(µ⋆) and the approximating functions form the columns of the matrix N. In this way,
the unknown approximation coefficients α(µ⋆) can be much fewer in number than the original unknowns f .

3.3. Interpolation of structural responses and optimization

According to the above description, the main task in each optimization step is to estimate the system
response Eq. (23). It requires the impulse-response matrix and its pseudo-inverse to be calculated, which
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is computationally expensive. Moreover, the pseudo-inverse depends on the damage parameters in a
non-obvious way, which makes the sensitivity analysis of y(µ⋆) hard to perform. Hence, a zero-order
optimization approach based on interpolation of the structural response is used.

In each optimization step, the key procedure is to interpolate the relation between the structural response
y(µ⋆ + ∆µ⋆) and the increment of the damage parameters ∆µ⋆ using a linear combination of certain basis
functions, which can be then used for a fast estimation of the response with regard to any given damage
parameters. In practice, the function being interpolated is smooth, hence second-order polynomials are
used. It is also assumed that the damage parameters influence the response independently from each other,
which allows the number of interpolation points to be significantly reduced along with the computational
cost of the interpolation. Thus, the ith element of the discrete response vector is interpolated in the vicinity
of the point µ⋆ as follows:

yi(µ
⋆ + ∆µ⋆) ≈ ỹi(µ

⋆ + ∆µ⋆) = yi(µ
⋆) +

∑
j

aij∆µ⋆
j +

∑
j

bij(∆µ⋆
j )2, (26)

where ∆µ⋆ = [∆µ⋆
1, . . . ,∆µ⋆

nm+ne
] is the modification vector. The interpolation coefficients aij and bij are

computed, separately for each i and j, in the standard way by solving[
∆ν⋆j1 (∆ν⋆j1)2

∆ν⋆j2 (∆ν⋆j2)2

] [
aij
bij

]
=

[
yi(µ

⋆ + ∆ν⋆j1êj) − yi(µ
⋆)

yi(µ
⋆ + ∆ν⋆j2êj) − yi(µ

⋆)

]
, (27)

where êj denotes the unit vector colinear with the jth axis, while ∆ν⋆j1 and ∆ν⋆j2 are the interpolation steps
along the same direction. The quadratic interpolation requires two steps in each direction and so a total
of 1 + 2nm + 2ne interpolation points. Although this is not a small number, it is typical for zero-order
optimization methods, which generally require repeated computations of the objective function in order
to estimate its sensitivity with respect to the optimization variables. Here, the response and the objective
function are characterized in a non-local way, and so the number of optimization steps is significantly reduced
to just a few, as illustrated in the numerical and experimental examples below.

Equation (26) is substituted in Eq. (22). The resulting interpolation of the objective function,

F (µ⋆ + ∆µ⋆) ≈ F̃ (µ⋆ + ∆µ⋆) =
1

2

∑
i

[
yMi − ỹi(µ

⋆ + ∆µ⋆)
]2∑

i

(
yMi

)2 , (28)

is a fourth-order polynomial, and so its first- and second-order derivatives can be easily computed and used
in the optimization process, for example

∂F̃ (µ⋆ + ∆µ⋆)

∂∆µ⋆
k

=

∑
i

[
yMi − ỹi(µ

⋆ + ∆µ⋆)
]

(−aik − 2bik∆µ⋆
k)∑

i

(
yMi

)2 . (29)

Notice that local and global accuracy of the interpolation can be weighted between by decreasing and
increasing the interpolation steps. Larger interpolation steps result in a more wide distribution of the
interpolation points (within predefined bounds on the damage parameters) and thus in an interpolation
that captures more global characteristics of the objective function. Conversely, small interpolation steps
yield an interpolation that is locally accurate. Thus, in the optimization process, the interpolation steps
should be reduced as the search point approaches the minimum, which is implemented here by halving them
in each iteration. Moreover, the accuracy of the interpolation can be verified at each iteration by comparing
the interpolated and actual values of the objective function. If the accuracy is too low, an upper bound on
the optimization step length can be introduced and controlled as in the Levenberg-Marquardt algorithm or
other typical trust region approaches [36]. A schematic description of the general computational framework
is shown in Fig. 1.
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Figure 1: Simultaneous identification of excitations and damages. A schematic description of the general computational
framework

k10

k3

k2

m

m

k1

m

Figure 2: Numerical example. Ten-story building model

4. Numerical example

A numerical model of a ten-story building, Fig. 2, is used to verify the proposed method of simultaneous
identification of excitations and damages. An idealized 10-DOF shear building model consisting of lumped
masses and massless springs is used. The mass of each story is 4 × 105 kg and the shear stiffness of each
story is 2 × 108 kN/m.

An additional mass of 1× 105 kg is located on the second floor. Five randomly selected floors (2th, 4th,
5th, 7th and 9th) are damaged with the respective stiffness reduction ratios µ2 = 0.4, µ4 = 0.7, µ5 = 0.9,
µ7 = 0.6 and µ9 = 0.8. Two acceleration transducers are placed on the 1st and 2nd floor. Earthquake
wave “taft” (Fig. 3) is used as the excitation applied on the support of the structure. The corresponding
dynamic responses of the two sensors are computed using the Newmark integration method with the standard
parameters α = 0.25 and β = 0.5. The integration step equals 0.01 s, thus the sampling frequency is 100 Hz.
A total of 1600 time steps are used, which corresponds to the sampling time interval of 16 s. The simulated
sensor responses are shown in Fig. 4.

In order to verify the VDM-based reanalysis method, discrete impulse responses of the damaged system
have been computed using the VDM via Eq. (15) and Eq. (16). The responses have been computed with
respect to impulsive excitations applied at the support and compared to the impulse responses computed
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Figure 3: Numerical example. Comparison of the actual and identified excitations
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Figure 4: Numerical example. Simulated responses of the damaged and intact systems

using a directly updated FE model of the damaged structure. The relative root mean square errors were at
the level of numerical errors (10−10 to 10−9), which attests the accuracy of the VDM-based approach.

For identification purposes, it is assumed that the stiffness of all the stories can be damaged, so that
ten stiffness reduction coefficients are used in optimization, besides the unknown additional mass and the
excitation. Altogether, there are 11 damage parameters and the time-history of the earthquake wave that
need to be identified. The measured data is contaminated with a numerically generated uncorrelated
Gaussian noise at 5% rms level. The optimization is performed using the zero-order interpolation approach
described in Sect. 3.3. The trial mass value is set as 2 × 105 kg. The initial values of all the optimization
variables are set to be 1, that is, the optimization starts from the intact structure with the trial mass. The
stiffness-related damage parameters belong to the interval (0, 1], while the mass-related parameter is only
bounded from below by 0. Thus, the initial interpolation steps are set for all the variables as ∆ν⋆i1 = −0.45
and ∆ν⋆i2 = −0.9. These values are halved in each successive iteration.

Fig. 5 shows the identified damage parameters. With 5% noise pollution, both damage extents and their
locations are identified precisely. The fast convergence of the interpolation-based optimization algorithm
is illustrated in Fig. 6, which plots the values of the eleven optimization variables in all iterations. Fig. 3
compares the actual excitation to the identified loads; the accuracy is acceptable. To reduce the numerical
costs and improve the numerical conditioning of the identification, the identification of the excitation is
carried out efficiently in a moving time window [28]. All the 1600 time steps are divided into 8 sections
of 200 time steps with the overlapping parts of 100 time steps. In each section, the excitation has been
approximated, as described in Eq. (25), by a linear combination of forty two load shape functions, which
are constructed from standard shape functions of a frame element.

The program is implemented using Matlab and a standard PC desktop computer. To asses the efficiency
of the proposed numerical procedures, two additional tests are carried out:

1. The whole identification takes 34 s. Without the VDM and without the interpolation of the structural
response, the computation time increases to 52 s.
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Figure 5: Numerical example. Comparison of the identification results
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Figure 6: Numerical example. The optimization variables in successive optimization steps: µ1 to µ10 are the stiffness-related
parameters, while µ⋆

1 is the normalized mass-related parameter, see Eq. (24)

2. Computation of the excitation via Eq. (23) takes 0.15 s and is the most time-consuming operation.
Without the technique of the moving time window and without the approximation by the load shape
functions, the computation time increases to 8 s.

5. Experimental verification

5.1. The structure

The experimental setup is shown in Fig. 7. The specimen, an aluminum cantilever beam, has the length
of 136.15 cm, and a rectangular cross-section 2.7 cm × 0.31 cm. The fixed end is clamped to a stable frame.
Young’s modulus of the beam is 70 GPa, and the density is 2700 kg/m3. The beam is slender, thus the
gravity is considered in its FE model, as well as the influence of the piezoelectric actuator and strain sensors.
A segment of the beam is damaged by cutting even notches, see Fig. 7, on the length of 10.23 cm near the
fixed end. The stiffness of the damaged segment is decreased to 42% of the original stiffness, while the mass
is left nearly unchanged. Moreover, an additional mass block with the weight of 60 g is screwed on the beam
near the free end.

5.2. Excitations and measurements

The excitation is applied using an Amplified Piezo Actuator (APA, a solid-state long-stroke linear
actuator), which is fixed on the beam in such a way that it can be assumed to apply a pure moment
load. The dynamic structural responses are measured using three piezoelectric patches, which are glued to
the beam to measure the structural strain. The sampling frequency is chosen to be 2500 Hz in order to
guarantee that no important dynamic information is lost in the sampling process. Three kinds of dynamic
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Figure 8: Experimental example. (left) excitations, (right) responses; (top) Case 1: continuous excitation, (middle) Case 2:
triangular excitation, (bottom) Case 3: quasi-rectangular excitation

excitations, see Fig. 8 (left), are designed and separately applied. The measurement time interval is 0.24 s,
so that there are 600 time steps.

5.3. Simultaneous identification of loads and damages

It is assumed that there are two potential unknown stiffness-related damages: µ1 of the beam segment
between sensor 1 and the damaged segment, and µ2 of the damaged segment. Therefore, three damage
parameters (two stiffness-related and one mass-related) and one excitation are unknown and need to be
identified. The optimization variable related to the mass is normalized with respect to the trial value, see
Eq. (24). The estimation based on the intact structure and direct identification of the pseudo-loads yields a
negative value, possibly due to the significant effects of the damages, so the unit value of 1 kg has been used
as the trial mass value. In the first optimization iteration, the initial values of the three normalized damage
parameters are set as (1, 1, 0), which means that the optimization starts from the intact structure. The
interpolation steps in the first iteration are (−0.45,−0.9) for the stiffness-related parameters and (0.45, 0.9)
for the mass-related parameter; these values are halve in each successive iteration.

Table 1 lists the identified damage parameters for the three considered cases, which differ by the applied
excitations. As in the numerical example, mass identification results are assessed by their relative accuracy,
while the identified stiffness reduction ratios are assessed by their absolute accuracy (percentage points).
The stiffness reduction ratios are identified precisely: the errors are less than 5.7% (and 3% on average)
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Table 1: Experimental example. Identification results

Case 1 Case 2 Case 3

actual identified error (%) identified error (%) identified error (%)

µ1 1.00 0.972 2.83 0.979 2.06 1.028 2.83
µ2 0.42 0.416 0.43 0.477 5.69 0.46 4.00
m (103 kg) 0.06 0.058 2.67 0.058 3.83 0.059 2.33

1 3 5 7 9
0.4

0.6

0.8

1.0

1.2

1.4

Iterations

 case 1   case 2
 case 3   actual

 

 
 

 

1 3 5 7 9
0.0

0.2

0.4

0.6

0.8

1.0
 case 1   case 2
 case 3   actual

Iterations
 

 

 
  

1 3 5 7 9
0.00

0.03

0.06

0.09

0.12

 

 case 1  case 2
 case 3  actual

m
[k
g]

 

 

Iterations

Figure 9: Experimental example. Damage parameters in successive optimization steps

under all three kinds of excitation; the damage location (limited to the two considered beam segments) can
be judged by the identified damage extent. The additional mass is also identified accurately (up to 3.9%
relative error). The values of the damage parameters in all iterations are plotted in Fig. 9, which confirms
that the results can be quickly achieved in just a few iterations.

The identification of the excitation is performed, as in the numerical example, in a moving time window.
In all three cases, 600 time steps are divided into eleven sections of 100 time steps with the overlapping
parts of 50 time steps. In each section, the excitation is identified by using an approximation by twenty
load shape functions and Eq. (25). The final identified excitations are plotted in Fig. 10. The continuous
and triangular excitations are identified properly, while the identification accuracy for the quasi-rectangular
excitation is slightly worse, as the amplitude is a little overestimated.

6. Conclusions

This paper has proposed and experimentally verified a methodology for simultaneous identification of
unknown excitations and damages. Contrary to other approaches, damage-related parameters are treated as
the only optimization variables, while the corresponding unknown excitation is uniquely determined based
on the measured response. As a result, there is no type difference among the optimization variables, which
allows standard optimization approaches to be used. In each optimization step, the structural response
is interpolated with respect to the damage parameters, which increases the computational efficiency and
facilitates sensitivity analysis. The impulse responses of the modified structure are quickly computed using
the virtual distortion method (VDM).

The methodology is verified experimentally using an aluminum cantilever beam. Three sensors are used
to identify three structural parameters and an unknown excitation. The identification error depends on the
time-history of the excitation; in all tested cases it is less than 2.9% (for the two stiffness-related parameters)
or 8.2% (for the mass-related parameter).

The research is ongoing to include other types of damages as well as to consider online identification.
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Figure 10: Experimental example. Comparison of the actual and identified excitations: (top left) Case 1; (top right) Case 2;
(bottom) Case 3
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