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Abstract. The paper presents a novel methodology for robust post-accident reconstruction of spatial 
and temporal characteristics of the load. The methodology is based on analysis of local structural 
response,  and  identifies  an  observationally  equivalent  load,  which  in  a  given  sense  optimally 
approximates the real load. Compared to previous researches this approach allows to use a limited 
number of sensors to reconstruct general dynamic loads of unknown locations, including multiple 
impacts and moving loads. Additionally, the problem of optimum sensor location is studied.

Introduction

The  motivation  for  this  research  is  the  need  for  a  general  analysis  technique  for  efficient 
reconstruction of the scenario of a sudden load (e.g. impact, collision etc.), which could be used in a 
black box type systems. The methodology is based on analysis of local structural response and is 
applicable  to  all  impact-exposed engineering  structures,  provided a  dedicated  sensors  system is 
distributed in the structure in order to measure and store local response. 

The technique identifies the modally equivalent load, which is observationally indistinguishable 
from the real load and optimum in a given sense. The reconstruction is in fact a deconvolution 
problem and can be formulated analytically as a complex optimisation problem: find the equivalent 
impact  scenario  that  (i)  minimises  the  mean-square  distance  between  simulated  and  measured 
dynamic responses in sensor locations and (ii) is optimum in a given sense. The reconstruction 
quality is directly related to the number and location of sensors, hence a part of this paper proposes 
two complementary criteria of correct sensor location. 

Compared to previous researches [1,2] this approach allows to reconstruct with a highly limited 
number of sensors general dynamic loads of unknown locations, including simultaneous multiple 
impacts and moving loads.

Additionally, a simple numerical example illustrating the methodology is presented.

Problem Formulation

Linear Response to Dynamic Loading. Let the system being considered be linear and spatially 
discretised. Provided both the excitation and the system transfer function are known, response of the 
system in a given sensor location can be expressed by means of a convolution integral as follows:

t =∑n∫−ΔT

t
Bn t− pnd , (1)

where εα and pn represent respectively linear system response in the α-th location and loading in the 
n-th degree of freedom (DOF), Bαn is the system transfer function relating the response in the α-th 
location to a Dirac-type loading in a the n-th DOF, and ΔT is the maximum system response time 
(i.e. the maximum time of elastic wave propagation between a loading-exposed DOF and a sensor). 
Due to the intended limited number of sensors, the considered system is rarely collocated, hence 
ΔT>0 takes into account the maximum response time. Zero excitation is assumed prior to time –ΔT.

In  real-world  applications  continuous  responses  are  rarely  known,  hence  Eq. (1)  should  be 
discretised with respect to time to take the form of a linear equation:



=〈∑n ∑=−ΔT

t
Bnt− pn d ∣t=0, Δt , 2 Δt , , T Δt 〉=∑n

Bn pn, (2)

where εα and pn are respectively vector of responses in the α-th sensor location and vector of loading 
forces in the n-th DOF in all discretised time instances, T is the number of measurement time steps, 
and Bαn is the Toeplitz transfer matrix corresponding to the α-th sensor location and the n-th DOF.

Load Reconstruction. The idea behind the proposed load reconstruction scheme is basically the 
deconvolution: compare the measured (εM) and the modelled (ε) system responses and obtain the 
excitation by solving the resulting equation. In the continuous time case it leads to a system of A 
Fredholm integral equations of the first kind,



M
t =∑n=1

N

∫
−ΔT

t
Bnt− pnd  ,     =1,2, , A, (3)

where N is the number of potentially load-exposed DOFs, and in the discrete time case to

 M=B p, (4)

a large linear system, where the vectors εM and p contain all the measured discrete responses and all 
the discretised loading forces, and the block matrix B is composed of all Toeplitz matrices Bαn.

Notice  that  in  the  intended  practical  situation  A<N (fewer  sensors  than  potentially  loading-
exposed DOFs) both systems Eq. (3) and Eq. (4) are underdetermined. In the case of the discretised 
system  Eq. (4)  the  reason  is  twofold:  (i)  A<N and  (ii)  time  intervals  of  different  length 
(measurement T and reconstruction T+ΔT) being discretised with the same time step Δt.

Notice also that Eq. (3) and Eq. (4) tend to be ill-conditioned, which is mainly due to the inherent 
ill-conditioning  of  compact  integral  operators  of  the  first  kind,  which  cannot  have  a  bounded 
inverse [3]. A seemingly contradictory behaviour is the result: the finer the time discretisation Δt, 
the more ill-conditioned Eq. (4) is.  Moreover, ill-conditioning often arises also due to small  (or 
neglected) time shift ΔT, which results in almost triangular matrices Bαn with very small values on 
the diagonal. Therefore, a regularisation technique is usually a must [2,3,4].

Overdetermined systems

Objective function. If the system Eq. (4) is overdetermined, an exact solution may not exist, but a 
unique load p can be found to minimise the following objective function

f M  p=∥M M
−B p∥

2
, (5)

where M is a given preconditioner matrix. The optimum load p can be calculated either (i) directly 
by a time- and memory-costly singular value decomposition (SVD) to be (MB)+MεM,  where '+' 
exponent denotes the pseudoinverse, or (ii) by an iterative optimisation procedure described below.

For reasons of simplicity a unity preconditioner matrix M = I will be assumed further on. Taking 
into account possible regularisation, fI (p) can be rewritten as

f I  p=∑t=0

T

∑
=1

A

[

M
t−t ]

2
∥D p∥

2, (6)

where  δ >= 0  is  a  Tikhonov  regularisation  term  [2,3,4].  Due  to  Eq. (2)  the  derivative  of  the 
objective function fI with respect to pn(t) is expressible as

∂ f I  p

∂ pnt 
=−2∑

=t

T

∑
=1

A

[

M
−]Bn−t , (7)

where δ = 0 is assumed for notational simplicity.



Basic formulae. The objective function is easily verified to be quadratic and convex, hence it 
can be expanded around a given loading vector p as

f I  pd = f I  p∇ f I  p
T d

1
2

d T H d. (8)

Eq. (8) compared with with Eq. (6) and Eq. (7) leads to the two following basic formulae:

∇ f  p
T d=−2∑t=0

T

∑α∈Σ
εα
d 

t [ε α
M
t−εα

 p
t ] ,

d i
T H d j=2∑t=0

T

∑α∈Σ
ε α

d it ⋅εα
d jt  .

. (9)

Line optimisation. To avoid computing and inverting the Hessian of the objective function, 
which would be much more ill-conditioned than  B, optimisation has to consist of a series of line 
optimisations. Each one amounts to finding the minimum at a given loading p along the direction d, 
i.e. the minimum of fI(p+sd) with respect do s, which due to Eq. (8) is a convex quadratic function 
with the (easily calculable by Eq. (9)) minimum at

smin=−
∇ f I  p

T d

dT H d
. (10)

Conjugate gradient. Eq. (7) allows to find the steepest descent direction -grad fI. However, the 
steepest  descent  method  suffers  from slow  convergence.  The  objective  function  is  unbounded 
quadratic, thus perfectly suited for the conjugate gradient method: choosing in each optimisation 
step a direction  dn+1 conjugate to all previous directions  d0, ...,  dn leads by Eq. (10) directly to the 
minimum  in  the  subspace  generated  by  all  considered  directions.  Therefore,  starting  with  the 
steepest descent direction and making use of the conjugacy criterion di

THdj = 0,

d n1=−∇ f  pn1∑
i=0

n

ηn1, i d i,.where ηn1, i=
∇ f  pn1

T H d i

d i
T H d i

. (11)

Theoretically, there should stand in Eq. (11) ηn+1,i = 0 for i < n [5]. However, the limited accuracy of 
the  floating  point  arithmetic  leads  to  correction  terms  with  respect  to  all  previous  directions, 
Eq. (11) is thus a counterpart of the Gram-Schmidt orthogonalisation scheme.

Underdetermined systems

All known research, see e.g. [1,2], deals with the overdetermined case only, hence heavily limits the 
generality of the load being reconstructed, which is usually assumed to be a non-moving, single 
force  pinpointing  a  single  DOF.  The  location  of  the  affected  DOF  is  known  in  advance  or 
determined  in  a  second-stage  non-linear  optimisation.  However,  the  approach  of  this  paper 
addresses directly the general underdetermined case.

Load decomposition. Matrix B of Eq. (4) has a unique singular value decomposition (SVD) [6],

B=U Σ V T, (12)

where U and V are (square) unitary matrices (UTU = I and VTV = I) and Σ is a diagonal matrix. Let 
P be  the  linear  space  of  all  possible  load  configurations,  and  let  V1 and  V2 denote  the  two 
component  matrices  of  V = [V1 V2],  where the  number  of columns of  V1 equals  the number  of 
positive singular values of B. Notice that the columns of V1 and V2 are orthonormal vectors in P and 
span two orthogonal and complimentary linear subspaces  P1 and  P2,  P = P1 x P2. Due to Eq. (12) 
BV2 = 0,  i.e. the linear operator  B projects  P onto  P1 to transform it later orthonormally via  U. 



Therefore,  P1 is  the  reconstructible subspace  of  P with  respect  to  B, while  P2 is  the 
unreconstructible subspace of P (with respect to B). In other words, each load can be decomposed 
into a sum of two orthogonal components, the first pR being a linear combination m1 of columns of 
V1 and fully reconstructible from the (exact) measurements, which retain no information concerning 
the second component being a linear combination of columns of V2:

p=V 1 m1V 2 m2= pRV 2 m2 ,
B p=B p R=U Σ m1.

, (13)

Reconstructible  load  component. Given  the  measurements  εM,  the  corresponding 
reconstructible load component pR can be found either using the standard pseudoinverse of B,

pR=V Σ  U T


M, (14)

where  Σ + is the transposed diagonal matrix containing reciprocals of the corresponding positive 
singular  values  and  zeros,  or  by  the  iterative  optimisation  technique  described  above  for  the 
overdetermined systems. The latter approach is quicker, as it does not require performing the SVD, 
but  it  renders  estimation  of  the  irreconstructible  load  component  impossible  (since  it  requires 
knowledge of V2).  Nevertheless,  the  quickness argument  becomes  less  important  in the  case of 
multiple load reconstructions: the SVD has to be calculated only once. 

Notice that due to strong ill-conditioning of  B, some of the diagonal elements  Σ + can be very 
large and may have to be reduced or zeroed, which is a way to regularise the solution [2,4].

Unreconstructible load component. According to Eq. (13) any linear combination of columns 
of  V2 added to the reconstructible load component does not change the response of the sensors. 
Hence the all loadings of the form 

p=p RV 2 m2, (15)

where m2 is a vector of arbitrary coefficients, are admissible solutions to Eq. (4). Further choice of 
the  optimum loading  must  be  therefore  based  on  additional  criteria,  not  related  to  the 
measurements εM.  It  can  be based on an  a priori knowledge of  expected  characteristics  of  the 
loading: from all admissible loadings Eq. (15) choose the one that minimises a given norm D (e.g. 
the derivative D1 with respect to time and/or space to obtain smooth loadings), i.e. minimise

g D m2=∥D  pRV 2 m2∥
2
. (16)

Notice that (i) if D = I, then the gD is minimised by m2 = 0 and pR is the optimum, and (ii) gD  is a 
quadratic function of m2, hence the optimum loading pD depends linearly on pR and εM,

pD=[ I−V 2V 2
T DT D V 2 

−1
V 2

T DT D] pR=X D 
M. (17)

Optimal Sensor Location

Optimality criteria. If the number of potentially load-exposed DOFs N exceeds considerably the 
number of available sensors  A, which is intended in this paper, the question of optimum sensor 
location arises. There is not much theoretical investigation into the problem. Mackiewicz at al. [7] 
propose to locate the sensors to minimise the ill-conditioning of the reconstruction process. This can 
be here quantified  as the task of finding the  sensor location  π,  which minimises  the following 
standard measure of ill-conditioning of the corresponding matrix Bπ:

q1=log [max B / min B ]. (18)



In Eq. (18) π is a location of all A sensors thorough the structure, hence it can be represented as an 
A-element subset of {1, 2, ..., Amax}, where  Amax is the number of all possible locations of a single 
sensor. σmax and σmin are the maximum and minimum singular values of the corresponding matrix Bπ.

In  underdetermined  systems  considered  here  arises  also  the  problem  of  the  reconstruction 
accuracy, which for a given loading can be quantified as the distance between the loading and its 
reconstructible component. Thus, if V1π and V2π denote the matrices V1 and V2 calculated for a given 
sensor location π, then a measure of reconstruction accuracy with respect to a given set of loadings 
{p1, p2, ..., pM} (which should be well-suited to loadings expected in reality) can be defined as

q2 =∑i=1

M

∥ I−V 1 V 1

T  pi∥
2

= ∑i=1

M

∥V 2 V 2

T p i∥
2
. (19)

These criteria tend to be negatively correlated. Therefore, they have to be combined, possibly by 
considering the reconstruction accuracy, but with a limited number of columns of V2π (i.e. the modal 
loadings being superposed) to keep the ill-conditioning bounded.

Numerical example. 

Fig. 1 shows the 10 element,  1 m long frame structure used in the numerical example.  Loading 
forces  can  occur  only  vertically  in  any/all  of  the  10 nodes.  The  measurement  time  interval  is 
T = 10 ms, discretised into 100 time steps, the time shift is  ΔT = 0.5 ms, hence the reconstruction 
time interval is 10.5 ms long (105 time steps). Three or four sensors can be located in any of the 10 
elements (A equals 3 or 4). The sensors model simple piezo-patches and hence measure the local 
curvature (the difference between the two neighbouring rotational  DOFs). The matrix  B is thus 
300 x 1050 or 400 x 1050.
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Fig. 1 Frame structure used in the numerical example 
(steel, 200 GPa, 7800 kg/m3, φ = 1 cm, l = 1 m)

Fig. 2 Correlation plot for sensor location criteria 
(crosses – 3 sensors, circles – 4 sensors)
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Fig. 3 Best and worst sensor locations:
3 sensors: (a) q1 best; (b) q1 worst, q2 best; (c) q2 worst
4 sensors: (d) q1 best; (e) q1 worst, q2 best; (f) q2 worst

Fig. 4 One of 168 identical in shape loadings
used for calculating criterion q2

vertical axis denotes the force

The diagram in Fig. 2 illustrates the correlation between the sensor location criteria q1 and q2, each 
dot corresponds to one sensor location; Fig. 3 shows the calculated best and worst locations. The 



criterion q2 has been calculated with respect to a set of 168 simple impact loadings, one half being 
distributed uniformly and the other half randomly in time (-0.5 – 10 ms) and space (1 – 10 DOF). 
Fig. 4 shows (in time and space) the force evolution, which has been shifted in time and space to 
form all 168 test loadings. Fig. 2 shows strong negative correlation between q1 and q2 (ρ = -0.66), 
which is also confirmed in Fig. 3: the worst sensor locations with respect to q1 are the best wrt q2. 
The  q2-best  locations may seem astonishing unless realized that they are the locations with the 
largest responses of piezo-patch sensors (local curvature). 

The reconstructible components of the test loading shown in Fig. 4 are calculated wrt the q2-best 
and q1-best locations of four sensors and shown respectively in Fig. 5 and Fig. 6. The former is far 
more accurate, but also much more prone to measurement errors. A real-world criterion for sensor 
location should thus partially trade reconstruction accuracy for better conditioning, rejecting the 
modal loadings (columns of V2) conditioned below the expected noise level.
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Fig. 5 Reconstructible load component, 
four sensors, q2-best sensor location

Fig. 6 Reconstructible load component, 
four sensors, q1-best sensor location

Conclusions and Further Steps

A robust methodology for a posteriori reconstruction of loading forces is described. Its novelty lies 
in  the limitation  of  the number  of  sensors necessary to  reconstruct  a  general  dynamic  loading, 
including multiple and moving load cases. Potential application area are black box type systems.

The research is ongoing to investigate further the problem of optimum sensor location and to 
include the case of small plastic deformations. Experimental verification is also being prepared.
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