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Abstract This paper considers off-line identification of spa-
tial and temporal characteristics of a dynamic load, and is
focused on the case of a limited number of sensors. Both
elastic and elasto-plastic structural behaviours are taken into
account. The identification is performed off-line, based on
optimisation of modelled local structural responses, and —
in the case of limited number of sensors — identifies an ob-
servationally equivalent load, which in a given sense opti-
mally approximates the actual load. Compared to previous
researches this approach allows to identify general dynamic
loads of unknown locations, including multiple impacts and
moving loads, and gives more insight into the identification
process by distinguishing between the reconstructible and
unreconstructible load components. Additionally, the prob-
lem of optimum sensor location is discussed.

Keywords load identification · inverse dynamics · elasto-
plastic structures · black box · forensic engineering

1 Introduction

This paper considers a methodology for a posteriori identi-
fication of spatial and temporal characteristics of dynamic
loads. The motivation is the need for a general analysis tech-
nique for efficient reconstruction of the scenario of a sud-
den load (impact, collision etc.), to be applied in black-box
type systems. The methodology is based on off-line anal-
ysis of local structural response (strain, acceleration etc.)
and requires a dedicated sensors system to be distributed in
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the structure in order to measure and store the response. In
the elasto-plastic case the Virtual Distortion Method (VDM)
(Holnicki-Szulc and Gierliński 1995) is used, which is re-
stricted to the small deformation case. The paper expands
and builds upon the approach briefly outlined in Jankowski
et al (2007).

There is an ongoing research effort in the field, see Chan
et al (2001); Jacquelin et al (2003); Inoue et al (2001) for rel-
atively recent reviews. However, the structures are assumed
to be linear and the generality of the considered loads is
usually strictly limited to a single pointwise load with the
location known in advance (Wu et al 1998) or determined
in an additional non-linear optimisation (Fukunaga and Hu
2006). Moreover, the identification is usually additionally
simplified by assuming stationarity of the load. Law et al
(1997); Chan et al (2001) do consider moving force, but it
is assumed to have a constant velocity. A number of papers
deals with single pointwise impact loads only and disregards
all load characteristics (magnitude, evolution, duration etc.)
besides the location (Gaul and Hurlebaus 1997; Martin and
Doyle 1996). Papers that do consider multiple independent
loads, as Adams and Doyle (2002), still assume superfluous
number of sensors.

Compared to other researches, the approach discussed
here is aimed at the fully general case. In the so-called un-
derestimated case it allows to use a limited number of sen-
sors to identify general dynamic loads of unknown locations,
including simultaneous multiple impacts, freely moving and
diffuse loads. However, this is at the cost of the uniqueness
of identification, which can be attained only with additional
heuristic assumptions. This way an equivalent load is identi-
fied, which is observationally indistinguishable from the ac-
tual load and optimum in a given sense. The identification is
formulated analytically as a complex optimisation problem:
find the equivalent impact scenario that

1. minimises the potentially pre-conditioned mean-square
distance between simulated and measured dynamic re-
sponses in sensor locations and

2. is optimum according to given heuristic conditions.
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Since the identification accuracy is directly related to the
number and location of sensors, two complementary criteria
of correct sensor location are proposed, combined in a com-
pound criterion and illustrated in a numerical example. Mea-
surement noise, inevitable in real-world structures, is ac-
counted for. In the case of elasto-plastic structures gradients
of structural response are derived, which allow to apply any
general gradient-based optimisation approach to identify the
load.

2 Response to dynamic load

A prerequisite for the load identification methodology dis-
cussed here is the transfer function of the system being con-
sidered, i.e. the structural response to local impulse excita-
tions and plastic distortions. It can be either generated from a
numerical model or — at least partially — measured exper-
imentally, the latter being potentially more practical in case
of real-world complex structures.

2.1 Linear systems

Let the system being considered be linear and spatially dis-
cretised. Provided the system transfer function is known and
no excitation prior to time−∆T (i.e. zero initial conditions),
the response of the system in a given sensor location can be
expressed by means of a convolution integral as follows:

εα(t) =
∫ t

−∆T
BC

α(t− τ)T p(τ)dτ, (1)

where εα is the response of the system in the α-th sensor lo-
cation, vector p denotes the load evolution in all potentially
load-exposed degrees of freedom (DOFs), while BC

α is the
vector of the system transfer functions BC

αn relating the re-
sponse in the α-th sensor location to local impulse load in
the n-th potentially load-exposed DOF.

∆T is in (1) the maximum system response time (i.e.
the maximum propagation time of an elastic wave between
a load-exposed DOF and a sensor). Due to the intended lim-
ited number of sensors the considered system is rarely col-
located, thus ∆T > 0. The measurements and the identifica-
tion process may be triggered by a strong excitation (e.g. an
impact), which is picked up delayed at most ∆T , hence the
time shift is necessary.

In real-world applications only discretised responses are
known, hence (1) should be discretised with respect to time.
With the simplest quadrature rule it takes the following form

εα(t) =
t

∑
τ=−∆T

Bα(t− τ)T p(τ), (2)

where Bα is the discretised and accordingly rescaled system
transfer function Bα = ∆ tBC

α . Equation 2, rewritten for each
sensor location α and each measurement time instance t, can
be stated in the form of a general linear equation:

ε = Bp (3)

where ε is the vector of system responses in all sensor lo-
cations α and measurement time instances t = 0, . . .T , load
vector p represents the loading forces in all load-exposed
degrees of freedom and in all loading time instances τ =
−∆T, . . .T , while B is the system transfer matrix compound
of discretised Bα .

2.2 Elasto-plastic systems

The stated above description of system dynamics can be
extended to include the elasto-plastic system behaviour by
combining the computationally effective Virtual Distortion
Method (VDM) (Holnicki-Szulc and Gierliński 1995) with
the return-mapping algorithm (Simo and Hughes 1989), see
also Wikło and Holnicki-Szulc (2008). The small deforma-
tion restriction still applies and the extension is obviously
at the cost of the linearity. For notational simplicity only
trusses are considered here and εα(t) denotes in this sub-
section the strain in the α-th truss element, although with
inessential modifications the concept is applicable to other
types of structures and linear sensors (for frames and plates
see Putresza and Kołakowski (2001) or Holnicki-Szulc and
Gierliński (1995)). Trusses are however conceptually the sim-
plest to describe, since each element is associated with only
one (axial) plastic distortion state, while already three states
are necessary for a frame element (axial, pure bending and
bending/shear) and even more for other elements. Neverthe-
less, the governing equations remain basically the same, al-
though non-truss structures require more variables and are
hence notationally and computationally more demanding.

In the elasto-plastic case (2) has to take into account the
effect of the plastic distortions of the truss elements,

εα(t) =
t

∑
τ=−∆T

Bα(t− τ)T p(τ)+
t

∑
τ=−∆T

BP
α(t− τ)T β (τ), (4)

where vector β contains the discretised plastic distortions of
all truss elements and BP

α is the vector of the discrete sys-
tem transfer functions BP

αζ relating the response in the α-th
sensor location (i.e. the strain in the α-th element according
to the convention of this subsection) to the unit plastic dis-
tortion of the ζ -th truss element. According to VDM, plastic
distortion is to be identified with plastic strain and is mod-
elled by a pair of self-equilibrated forces, which are applied
at the nodes of the concerned element so that in the static
case it would be respectively (elastically) strained. In the dy-
namic case the distortions and the forces are time-dependent.
(4), as very similar to (1), seems to be linear, but it obviously
cannot be the case here. One of the reasons is the plastic dis-
tortion β being non-linearly dependent on the load p.

Only isotropic hardening plasticity is considered in the
following as a relatively basic example requiring only one
internal hardening variable Ψα(t), which denotes the total
plastic strain:

Ψα(t +∆ t) = Ψα(t)+ |∆βα(t +∆ t)|,
∆βα(t +∆ t) = βα(t +∆ t)−βα(t). (5)
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The yield criterion can be expressed in the case of isotropic
hardening via the total plastic strain as follows:

|σα(t +∆ t)|= σ∗α +
γα

1− γα
EαΨα(t +∆ t), (6)

where σ∗α , γα and Eα are respectively the initial plastic flow
stress, the hardening coefficient and Young’s modulus of the
α-th truss element. Other plasticity models can be relatively
easy obtained by increasing the number of internal variables,
see Simo and Hughes (1989).

To determine the set of elements yielding in each time
step and the actual amounts of plastic flows, the trial strain
ε tr

α(t + ∆ t) and the trial stress σ tr
α (t + ∆ t) have to be com-

puted by freezing the plastic flow and performing a purely
elastic step, which amounts to a temporary assumption β (t +
∆ t) := β (t) in (4):

ε tr
α (t +∆ t) = εα(t +∆ t)−BP

α(0)T ∆β (t +∆ t),
σ tr

α (t +∆ t) = Eα [ε tr
α(t +∆ t)−βα(t)] . (7)

The actual stress σα(t +∆ t) in the α-th element at time t +
∆ t can be expressed in two ways:

1. In terms of Young’s modulus and the actual values of the
strain and the plastic distortion as

σα(t +∆ t) = Eα [εα(t +∆ t)−βα(t +∆ t)] ,

which by (5) and (7) can be transformed to

σα(t +∆ t)

= Eα
[
ε tr

α(t +∆ t)+BP
α(0)T ∆β (t +∆ t)

]
(8)

−Eα [βα(t)+∆βα(t +∆ t)]

= σ tr
α (t +∆ t)+Eα ∑

ζ

[
BP

αζ (0)−δαζ

]
∆βζ (t +∆ t),

where δαζ is Kronecker’s delta.
2. Provided the element is yielding, the stress σα(t + ∆ t)

can be also obtained by multiplying the yield criterion
(6) by sgnσα(t +∆ t) and noticing that for isotropic hard-
ening the trial stress σ tr

α , the actual stress σα and the plas-
tic flow ∆βα are in each time step all of the same sign,

σα(t +∆ t) = σ∗α sgnσ tr
α (t +∆ t) (9)

+
γα

1− γα
Eα

[
Ψα(t) sgnσ tr

α (t +∆ t)+∆βα(t +∆ t)
]
.

Equations 8 and 9 combined together yield the following
linear set of equations for the plastic flow ∆βα(t +∆ t):

Eα ∑
ζ∈Yt+∆ t

[
BP

αζ (0)− δαζ

1− γα

]
∆βζ (t +∆ t) =−σ tr

α (t +∆ t)

+
[

σ∗
α +

γα
1− γα

EαΨα(t)
]

sgnσ tr
α (t +∆ t), (10)

which are valid only for the elements, which are actually
yielding {α,ζ} ∈ Yt+∆ t . The set Yt+∆ t has to be found itera-
tively by applying the yield criterion (6) to the trial stresses
σ tr

α (t + ∆ t) and, if necessary, to the stresses computed con-
secutively by (10) and (7).

3 Load identification

Load identification amounts basically to a deconvolution:
compare the measured εM and the modelled ε system re-
sponses, and obtain the excitation by solving the resulting
system of equations. For a linear system it leads to either
a system of several Volterra integral equations of the first
kind (the continuous time case), see (1),

εM
α (t) =

∫ t

−∆T
BC

α(t− τ)T p(τ), (11)

or, in the discrete time case, to a large system of linear equa-
tions, see (3),

εM = Bp. (12)

An elasto-plastic system, see (4), yields the following set of
non-linear equations

εM
α (t) =

t

∑
τ=−∆T

Bα(t− τ)T p(τ)+
t

∑
τ=−∆T

BP
α(t− τ)T β (τ). (13)

In all cases the unknown is the load vector p.
Equation 12 is a large linear system, with the vectors εM

and p containing respectively the measured discretised sys-
tem response and the discretised loading forces, while B is
the system transfer matrix. By a proper reordering of the
vectors εM and p, the matrix B can take the rearranged form
of a large block matrix composed of Toeplitz matrices re-
lating discretised sensor responses to unit excitations in all
potentially load-exposed DOFs, see an example in Figure 6.

Note that in the intended practical situations the linear
system (12) is usually underdetermined, i.e. there are sig-
nificantly fewer equations than unknowns being sought. The
reason is twofold: (i) there are significantly fewer sensors
than potentially load-exposed DOFs; (ii) time intervals of
different length (measurement T and reconstruction T +∆T )
are discretised with the same time step ∆ t. More precisely,
let A be the number of sensors, N the number of potentially
load-exposed DOFs, T the length of the reconstruction time
interval and ∆ t the time discretisation. Then in the linear sys-
tem (12) there are AT/∆ t equations (related to the measure-
ments) and N(T +∆T )/∆ t unknowns (related to the load be-
ing identified). Moreover, even with sufficiently many sen-
sors and equations, a specific topology of the mechanical
system being modelled can decrease the rank of the matrix
B and make it underdetermined.

Both the continuous (11) and the discrete (12) tend to
be ill-conditioned. This is mainly due to the inherent ill-
conditioning of compact integral operators of the first kind,
which cannot have a bounded inverse (Kress 1989). A seem-
ingly contradictory behaviour is the result: the finer the time
discretisation ∆ t, the more ill-conditioned (12) is. More-
over, the ill-conditioning of (12) may arise also due to sys-
tem non-collocation and small or neglected time shift ∆T ,
which results in the block matrix B including almost trian-
gular Toeplitz matrices with very small values near the diag-
onal. Therefore, a regularisation technique is usually a must
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(Jacquelin et al 2003; Kress 1989; Hansen 2002; Tikhonov
and Arsenin 1977).

Note also that the linear system (12) can be easily pre-
conditioned by substituting εM ← MεM and B ← MB to
take effectively the form MεM = MBp, provided the ma-
trix M is of appropriate dimensions. Preconditioning may
be desired in order to weight the response of different sen-
sors or to speed up the optimisation-based identification pro-
cess (Nocedal and Wright 1999). For reasons of notational
simplicity no preconditioning (or an identity preconditioner
matrix M = I) is assumed further on.

Real-world measurements are always discrete, hence the
continuous time case is dropped from the following as im-
practical. The next two parts deal with the over- and under-
determined discrete linear cases, while the third part consid-
ers the elasto-plastic case.

3.1 Overdetermined linear systems

If the system (12) is overdetermined, a unique generalised
load can be found to minimise its residuum. The direct way
to find it would be to use the pseudoinverse B+, which can be
obtained e.g. via the singular value decomposition (SVD) of
the matrix B. Moreover, the use of SVD would allow direct
truncating too small singular values, which is a common reg-
ularisation technique. However, as matrix B is usually very
large, a quicker and less memory-consuming way may be to
use iterative methods to minimise the residuum of (12), pos-
sibly coupled with the Tikhonov regularisation term (Hansen
2002; Tikhonov and Arsenin 1977; Jacquelin et al 2003).

3.1.1 Objective function

The system (12) can be solved via the least-squares approach
(Dahlquist and Bjørck 2006) using the following objective
function:

f (p) =
∥∥εM−Bp

∥∥2 +δ ‖Dp‖2 , (14)

where ‖Dp‖2 is a Tikhonov regularisation term and δ ≥ 0
may be assigned a specific numerical value e.g. by means of
the L-curve technique (Kress 1989; Hansen 2002; Tikhonov
and Arsenin 1977; Jacquelin et al 2003). Taking into account
(2) and (3), the objective function can be thus rewritten as

f (p) = ∑
α

T

∑
t=0

[
εM

α (t)− εα(t)
]2 +δ ‖Dp‖2 , (15)

while its derivatives can be expressed as

∂ f (p)
∂ pn(t)

= δ
∂ ‖Dp‖2

∂ pn(t)
(16)

−2∑
α

T

∑
τ=

max(0,t)

[
εM

α (τ)− εα(τ)
]

Bαn(τ− t),

where pn(t) and Bαn are respectively elements of the vectors
p(t) and Bα , and

∂ ‖Dp‖2

∂ pi
= 2

[
DT Dp

]
i . (17)

Note that the formulae (15) and (16), as well as (19) be-
low, make use of the special form of the system matrix B
in order to spare the numerical costs by one order of mag-
nitude. However, they hold for the assumed identity precon-
ditioner matrix M = I only, and in other cases have to be
replaced by their general counterparts.

The objective function (14) is convex and quadratic, thus
it can be exactly expanded around a given load vector p as

f (p+d) = f (p)+∇ f (p)T d+
1
2

dT Hd, (18)

where H = ∇2 f is the positive semidefinite Hessian of f .
Equation 18 compared with (15) yields the two following
basic formulae:

∇ f (p)T d = 2δpT DT Dd

−2∑α ∑T
t=0 ε(d)

α

[
εM

α (t)− ε(p)
α (t)

]
,

dT
i Hd j = 2δdT

i DT Dd j +2∑α ∑T
t=0 ε(di)

α (t)ε(d j)
α (t),

(19)

where ε(d)
α denotes the response in the α-th sensor location

to the excitation d.

3.1.2 Line optimisation

The iterative optimisation method used here consist of a se-
ries of line optimisations. Each one amounts to finding the
minimum of f at a given load p along a given direction d,
i.e. the minimum of f (p+ sd) with respect to s. Due to (18)
this is a convex quadratic function with the minimum

smin =−∇ f (p)T d
dT Hd

, (20)

which is directly calculable by (19).

3.1.3 Conjugate gradient

Given a load p, the minimum along each optimisation direc-
tion d can be directly calculated by (20). However, first the
optimisation direction d has to be chosen.

Equations 16 and 17 allow to calculate directly the steep-
est descent direction −∇ f (p). The objective function is un-
bounded quadratic, thus perfectly suited for the conjugate
gradient method: choosing in the (n+1)-th optimisation step
the direction dn+1 conjugate to all previous optimisation di-
rections d0, . . . ,dn yields by (20) directly the minimum in
the subspace spanned by all considered directions span(d0, . . . ,dn).
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Table 1 Optimisation algorithm for the overdetermined case

Initial calculations:

1) initialise p0 := 0, ε(p0) := 0, n := 0
The loop:

2) calculate dn :=−∇ f (pn), ε(dn)

3) conj. direction for(i = 0;i < n,++i)
(3a) η :=−dT

n Hdi
(3b) dn := pn +η di
(3c) ε(dn) := ε(dn) +η ε(di)

4) normalise (4a) D :=
√

dT
n Hdn

(4b) dn := dn/D
(4c) ε(dn) := ε(dn)/D

5) line minimum s :=−∇ f (pn)T dn
6) store dn, ε(dn)

7) update (7a) pn+1 := pn + sdn
(7b) ε(pn+1) := ε(pn) + sε(dn)

(7c) n := n+1

Therefore, starting with the steepest descent direction and
making use of the conjugacy criterion dT

i Hd j = 0,

dn+1 =−∇ f (pn+1)+
n

∑
i=0

ηn+1,idi, (21)

where

ηn+1,i =
∇ f (pn+1)T Hdi

dT
i Hdi

,

which is basically Gram-Schmidt orthogonalisation scheme.
The calculations start with the steepest descent direction,
hence in exact arithmetic ηn+1,i = 0 for i = 0,1, . . . ,n− 1,
which is a useful property of the conjugate gradient method,
see e.g. Nocedal and Wright (1999). However, the limited
accuracy of the floating point arithmetic makes all the cor-
rection terms necessary.

3.1.4 The algorithm

The algorithm for the overdetermined case is presented in
Table 1. The most expensive operations are the calculations
of the gradient and of the corresponding response (step 2).
Moreover, at large step numbers n, it is quicker to calculate
the response ε(dn) directly by (2) than to superpose the stored
responses (step 3c).

3.2 Underdetermined linear systems

All known research, see e.g. Inoue et al (2001); Chan et al
(2001); Jacquelin et al (2003) for reviews and analysis, deals
with the overdetermined case only. However, in real-world
applications the number of sensors is limited by practical
reasons. Therefore, in the overdetermined case the general-
ity of the load being identified must be significantly limited.
As mentioned in the introduction, the load has been usually

assumed to be a single stationary (or moving at a constant
velocity) pointwise force, while its location is assumed to
be known in advance or determined by a second-stage non-
linear optimisation: freely moving, diffuse or multiple loads
are excluded. The approach proposed in this subsection ad-
dresses the general underdetermined case directly, although
at the cost of the identification uniqueness. This allows to
take into account all general loading patterns.

Generally, with an underdetermined system (12), the un-
known load p can be identified in two ways, which differ in
accuracy and numerical costs per single identification (time,
memory etc.). The information lost in measurement in an
underdetermined system can be completed by heuristic as-
sumptions only, hence they play an important role in both
methods.

– The more accurate approach requires singular value de-
composition (SVD) of the matrix B, which is numeri-
cally costly, but one-time only. Thereupon, given a mea-
sured response vector εM , two complementary compo-
nents of the corresponding load can be relatively quickly
identified: the reconstructible component (based on the
measurements εM) and the unreconstructible component
(based on the heuristic assumptions).

– The less accurate approach makes no distinction between
both load components and identifies them simultaneously.
The system (12) is first transformed to a larger overde-
termined system using heuristic (and in fact regularis-
ing) assumptions and then solved using the iterative ap-
proach presented above for overdetermined systems. The
numerically costly singular value decomposition of the
obtained augmented system is hence not required, but at
the expense of higher numerical cost per single identifi-
cation. This approach is generally less accurate, since the
heuristic assumptions influence both reconstructible and
unreconstructible components of the load being identi-
fied, while the former component can — and thus should
— be identified on the basis of the measurements εM

only. The solution of the augmented system by SVD is
possible, but prohibitive in terms of the numerical costs
due to its size.

3.2.1 Load decomposition

The matrix B of (12) has a singular value decomposition
(SVD),

B = UΣVT , (22)

where U, V are square unitary matrices, i.e. UT U = UUT =
I, VT V = VVT = I. Their dimensions equal respectively the
number of equations and the number of unknowns. The ma-
trix Σ is a rectangular diagonal matrix of appropriate dimen-
sions, its diagonal values are called singular values of B and
are customary ordered non-increasing. The SVD decompo-
sition (22) is unique up to the permutation of the singular
values (Dahlquist and Bjørck 2006).

The system (12) is usually very ill-conditioned, which
is indicated by its singular values (diagonal elements of Σ )
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spanning across several orders of magnitude. A regularisa-
tion is then a must, which — given the SVD (22) — may be
performed straightforward by zeroing too small singular val-
ues, i.e. the values below the threshold level defined by the
expected relative measurement accuracy ε ≥ 0, see Jacquelin
et al (2003); Hansen (2002); Tikhonov and Arsenin (1977).
This way modified diagonal and system matrices Σ ε , Bε are
obtained and (22) takes the following regularised form

Bε = UΣ ε VT . (23)

Note that at ε = 0 all singular values are preserved: B0 = B.
Let P be the linear space of all possible loads p. Let Vε

1
and Vε

2 denote the two matrices composing together the ma-
trix V = [Vε

1 Vε
2], where the number of columns of Vε

1 equals
the number of positive singular values of Bε , i.e. the num-
ber of positive diagonal values of Σ ε . The matrix V is uni-
tary, thus the columns of Vε

1 and Vε
2 are mutually orthonor-

mal vectors, constitute an orthonormal basis in P and hence
span two orthogonal and complementary linear subspaces
Pε

1 and Pε
2:

P = Pε
1×Pε

2, Pε
1 = spanVε

1, Pε
2 = spanVε

2. (24)

Due to (23) Pε
2 = kerBε , i.e.

Bε Vε
2 = 0, (25)

and hence the regularised system transfer matrix Bε is a lin-
ear measurement operator, which effectively: (i) transforms
P orthonormally, (ii) projects it onto Pε

1, losing a part of
the load information, (iii) rescales along the basis directions
by Σ ε , and finally (iv) transforms again orthonormally via U.
Therefore, with respect to Bε , Pε

1 is the reconstructible sub-
space and Pε

2 is the unreconstructible subspace of P. In other
words, given the relative measurement accuracy ε ≥ 0, each
load p can be uniquely decomposed into a sum of two or-
thogonal components,

p = VVT p = Vε
1Vε

1
T p+Vε

2Vε
2

T p
= Vε

1 m1 +Vε
2 m2 = pε

R +Vε
2 m2,

(26)

where

1. the first component pε
R = Vε

1Vε
1

T p = Vε
1 m1 is a linear

combination of columns of Vε
1, and hence fully recon-

structible from the noisy measurements εM = Bp, while
2. the second component Vε

2 m2 is a linear combination of
columns of Vε

2, and hence unreconstructible, since all
respective information is lost due to (25) in the noisy
measurement process represented by the linear opera-
tor Bε (because Bε Vε

2 m2 = 0) and is hence not retained
above the required relative degree of accuracy ε ≥ 0 in
the noisy measurements Bε p.

3.2.2 Reconstructible load component

Given the noisy measurements εM and the regularised sys-
tem matrix Bε , the unique reconstructible load component
pε

R = Vε
1mε

1 can be found either

– directly by the standard pseudoinverse Bε + of the regu-
larised system matrix Bε ,

pε
R = Bε +εM = VΣ ε +UT εM, (27)

where the diagonal matrix Σ ε + is obtained from Σ ε by
transposition and replacement of all non-zero elements
by their reciprocals, or

– by solving the system εM = Bε Vε
1mε

1, which can be done
e.g. by the conjugate gradient technique described above
for the overdetermined systems, used to minimise the
residual

f1(m1) :=
∥∥εM−Bε Vε

1m1
∥∥2

. (28)

Since Bε is already regularised, no Tikhonov regularisa-
tion term δ is necessary. Note that the regularisation of
the system matrix perturbs its structure, hence instead of
the optimised formulae (15), (16) and (19) their general
counterparts have to be used.

3.2.3 Unreconstructible load component

Assume, given the noisy measurements εM and the relative
accuracy ε ≥ 0, that the corresponding regularised recon-
structible load component pε

R has already been calculated.
According to (25), any linear combination of columns of Vε

2
added to pε

R does not change the (noisy) system response εM .
Therefore, all loads of the form

p = pε
R +Vε

2m2, (29)

where m2 is a vector of arbitrary coefficients, are measur-
ably indistinguishable and thus admissible regularised solu-
tions to (12). The choice of a particular vector of coefficients
m2 and the corresponding load p must be hence based on
additional criteria, which are intrinsically heuristic and for-
mulate a priori assumptions concerning anticipated charac-
teristics of the load. These can be its non-negativity, norm-
minimality, smoothness etc. The latter two can be obtained
by choosing m2 such that the corresponding load (29) min-
imises the following objective function

f2(m2) := ‖D(pε
R +Vε

2m2)‖2
, (30)

where D is an a priori given matrix (the identity, the first
derivative D1 with respect to time and/or space etc.). Notice
that:

1. Due to (24), pε
R is perpendicular to span(Vε

2). Hence, if
D = I, then f2(m2) is minimised by m2 = 0 and pε

R is the
optimum load itself.
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2. Since f2(m2) is a quadratic function, the f2-optimum
load depends linearly on pε

R and, due to (27), on the mea-
surements εM:

p =
[

I−Vε
2

(
Vε

2
T DT DVε

2

)−1
Vε

2
T DT D

]
pε

R. (31)

A scrupulous analysis would reveal that in (29) and (30) up-
per bounds should be put on the moduli of the elements of
m2 that corresponds to the columns of Vε

2 not belonging to
V0

2. These columns represent the loads that do influence the
measurement εM , although below the noise threshold ε .

3.2.4 Single-stage load identification

Instead of separate, successive identifications of the recon-
structible and unreconstructible load components, the load
can be identified in one stage only — however, at the cost
of the accuracy. The objective functions f1(m1) of (28) and
f2(m2) of (30) resemble the components of the general ob-
jective function f (p), (14), which is used in the overdeter-
mined case. Hence, instead of successive separate optimi-
sations of f1(m1) and f2(m2), both functions may be opti-
mised simultaneously, as in f (p), weighted by an appropri-
ate coefficient δ > 0:

fδ (p) :=
∥∥εM−Bp

∥∥2 +δ
∥∥Dp

∥∥2
. (32)

As the second term plays also the role of a regularisation
term, there is no need to use the regularised system matrix
Bε , and hence no need for numerically costly (although one-
time only) singular value decomposition. The minimisation
of the compound objective function fδ can be performed
relatively quickly by the conjugate gradient technique de-
scribed earlier.

This one-stage approach makes no distinction between
the reconstructible and the unreconstructible load compo-
nents and retrieves them simultaneously. Therefore, it is gen-
erally less accurate, since the heuristic assumptions influ-
ence both components of the identified load, while the two-
stage approach described in the preceding subsection prop-
erly identifies the reconstructible component on the basis of
the measurements εM only.

3.3 Elasto-plastic systems

The approaches described before rely on the linearity of the
system equation (12). The elasto-plastic case of (13) has to
be treated separately. In general, three cases are possible:

1. Strongly overdetermined system, possible in the case of
a very limited load area: The number of sensors exceeds
or equals the total number of potentially load-exposed
DOFs and potentially plastified truss elements. The ap-
proach described before for overdetermined linear sys-
tems is straightforwardly applicable with both loads p
and plastic distortions β treated as independent unknowns.

2. Overdetermined system: The number of sensors exceeds
or equals the number of potentially load-exposed DOFs.
The unique evolution of the load can be identified, al-
though the approaches of the preceding sections are not
applicable, since the system is not linear.

3. Underdetermined system: Fewer sensors than potentially
load-exposed DOFs. In general, the gradient-based op-
timisation approach presented below identifies a non-
unique load, which is observationally indistinguishable
from the actual load. Besides Tikhonov regularisation,
other problem-specific regularising techniques can be used
to additionally constrain the solution.

Notice that, even with sufficiently many sensors, a specific
topology of the structure can make the system singular and
effectively underdetermined.

In the overdetermined elasto-plastic case (13) can be, in
general, uniquely solved by minimising the objective func-
tion (15) with any gradient-based optimisation algorithm.
However, the modelled system response ε(t) is no longer
a linear function of the load p(t) and the derivatives instead
of (16) take the following form:

∂ f (p)
∂ pn(t)

= δ
∂ ‖Dp‖2

∂ pn(t)
(33)

−2∑
α

T

∑
τ=

max(0,t)

[
εM

α (τ)− εα(τ)
] ∂εα(τ)

∂ pn(t)
.

The first derivative is computable by (17), while the second,
for t ≤ τ , by (4) and (5), is
∂εα(τ)
∂ pn(t)

= Bαn(τ− t)+
τ

∑
κ=t

∑
ζ

BP
αζ (τ−κ)

κ

∑
ν=t

∂∆βζ (ν)
∂ pn(t)

.

The derivatives of the plastic flow ∆βζ (ν) with respect to the
load pn(t) have to be computed prior to the derivatives of the
objective function (33) by iteratively solving the following
linear sets of equations, which are obtained by differentiat-
ing (10), and making use of (5) to compute the derivatives
of the total plastic strain:

Eα ∑
ζ∈Yt

[
BP

αζ (0)− δαζ

1− γα

] ∂∆βζ (t)
∂ pn(t)

=−Eα Bαn(0),

Eα ∑
ζ∈Yν+∆ t

[
BP

αζ (0)− δαζ

1− γα

] ∂∆βζ (ν +∆ t)
∂ pn(t)

= −∂σ tr
α (ν +∆ t)
∂ pn(t)

+
γα

1− γα
Eα

ν

∑
ι=t

∂∆βα(ι)
∂ pn(t)

sgn∆βα(ι) sgnσ tr
α (ν +∆ t),

where, by (7) and (4), the derivative of the trial stress is
∂σ tr

α (ν +∆ t)
∂ pn(t)

= Eα Bαn(ν +∆ t− t)

+Eα
ν+∆ t

∑
κ=t

∑
ζ

[
BP

αζ (ν +∆ t−κ)−δκναζ

]min(κ,ν)

∑
ι=t

∂∆βζ (ι)
∂ pn(t)

,

where δκναζ denotes Kronecker’s delta.
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4 Optimum sensor location and identification accuracy

In the load identification strategies described above crucial
is the problem of accuracy. Due to masking by measurement
noise and possible underdetermination, a part of the infor-
mation about the load is completely lost in the measurement
process and not retained in the measured data. The corre-
sponding part of the load is unreconstructible: it can be as-
sumed using some purely heuristic criteria, but there is no
way to identify or estimate it from the measurement. There-
fore, there are no specific (non-heuristic) a posteriori accu-
racy measures.

However, inaccuracy is associated with the unreconstruct-
ible load subspace, which directly depends on sensor loca-
tion. It can be thus a priori minimised by a proper distri-
bution of available sensors with respect to some optimal-
ity criteria. This seems to be a relatively unexplored prob-
lem. Mackiewicz et al (1996) study a related problem of
static mode identification and propose to locate the sensors
to ensure well-conditioning of the identification process and
weak influence of interfering modes. Jacquelin et al (2005)
study a single sensor single force reconstruction problem
and observe a relation between its conditioning and certain
characteristics of the frequency response function (alternate
succession of resonances and antiresonances), which in multi-
sensor and multi-force cases can be potentially used to des-
ignate a finite and limited-size set of candidate sensor loca-
tions to choose from based on other more specific optimality
criteria. This section introduces two such estimates of re-
construction accuracy, which are based either on the dimen-
sion of the unreconstructible load subspace (via a correlated
feature of conditioning) or on its coincidence with a given
set of expected or typical loads. Since these criteria tend to
be negatively correlated, a third, compound criterion is pro-
posed, which can be thus seen as a single a priori measure
of reconstruction accuracy. However, only linear systems are
considered. The problem of optimum sensor location in case
of elasto-plastic systems requires further study.

A sensor location is denoted by π and can be represented
by a non-empty subset of {1,2, . . . ,Amax}, where Amax is the
number of all possible locations of a single sensor through-
out the structure.

4.1 Conditioning

The conditioning criterion is formalised here as the task of
finding the sensor location π , which minimises the follow-
ing measure of ill-conditioning of the corresponding system
matrix Bπ

q1(π) = log
σmax(Bπ)

σmedian(Bπ)
, (34)

where σmax(Bπ) and σmedian(Bπ) are the maximum and the
median singular values of Bπ .

Note that the matrix condition number, which is the stan-
dard measure of conditioning of a matrix, involves the mini-
mum singular value instead of the median used in (34). How-
ever, with inaccurate floating-point computer arithmetic the
median is more reliable, since for strongly ill-conditioned
matrices the calculated minimum singular value usually lies
at a predefined cut-off level, defined by the accuracy of the
arithmetic used.

4.2 Utility

In underdetermined systems along the ill-conditioning and
nonuniqueness of solution arises also a related problem of
the accuracy of identification. The identification process may
be very well-conditioned, but it is of no use, if identified
loads differ much from actual loads. For a given load the
accuracy of identification can be quantified as a distance be-
tween the load and its reconstructible component.

Therefore, since actual loads are unknown, the utility of
sensor location can be defined with respect to a given set of
(expected or typical) unit loads {p1,p1, . . . ,pM} as the mean
square distance between the loads and their reconstructible
components, see (26):

q2(π) =
1
M

M

∑
i=1

∥∥(
I−V1π VT

1π
)

pi
∥∥2 =

1
M

M

∑
i=1

∥∥V2π VT
2π pi

∥∥2
,

(35)

where V1π and V2π denote the matrices V1 and V2 calcu-
lated for a given sensor location π . Note that practical use-
fulness of q2 depends on the set of unit loads {p1, . . . ,pM},
which should be well-suited to the loads expected in the in-
vestigated system.

4.3 Compound criterion

The conditioning and the utility criteria tend to be negatively
correlated, see the numerical example in Figure 2. Moreover,
criterion q2 assumes no measurement noise, which can sig-
nificantly diminish the accuracy of identification. Therefore,
for practical reasons the ultimate criterion has to weight ac-
curacy against conditioning, taking into account the relative
measurement noise level ε . This can be achieved by mea-
suring the accuracy of the identification process performed
with the regularised system matrix Bε instead of the original
matrix B:

qε
2(π) =

1
M

M

∑
i=1

∥∥∥Vε
2πVε

2π
T pi

∥∥∥
2
. (36)

5 Numerical example

5.1 Structure

Figure 1 shows the modelled truss structure. It is 6 m long,
the elements are 10 mm2 in cross-section, 0.5 m or 0.5

√
2 m
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Fig. 1 Truss structure modelled in the numerical example

long, and made of steel with density 7800 kg/m3, Young’s
modulus 200 GPa and — used in the elasto-plastic case only
— initial plastic flow stress 50 MPa with hardening coeffi-
cient 0.01. The two left hand side corner nodes of the bottom
plane were deprived of all degrees of freedom, while the two
opposite right hand side corner nodes were deprived of the
vertical degree of freedom and are free to move in the hori-
zontal plane only.

Loading forces can occur only vertically in any/all of
the 12 upper nodes of the structure. This assumption al-
lows to depict evolution of loads in time-space in the conve-
nient and illustrative form of a 2D graph. The measurement
time interval is T = 10 ms, and has been discretised into
100 time steps of ∆ t = 0.1 ms each. The time shift is ∆T =
1 ms, and hence the reconstruction time interval is T +∆T =
11 ms long (110 time steps). A total of A strain sensors,
A ∈ {1,2, . . . ,11}, can be located in any of the eleven up-
per elements, which join the twelve potentially load-exposed
nodes. The system transfer matrix B is hence 100A× 1320
and thus underdetermined. It has been generated using the
Newmark integration scheme.

5.2 Sensor locations

For each of 2047 possible sensor locations π (non-empty
subsets of the eleven strain sensors), both sensor location
criteria q1 and q2, defined by (34) and (35), have been com-
puted. Figure 2 plots q2 versus q1 to illustrate the negative
correlation; each dot corresponds to one sensor location π .
A clear arrangement in groups corresponding to the num-
ber of sensors A can be seen: the more sensors, the worse
(larger) is the conditioning q1 and the better (smaller) the
accuracy q2. Within the individual groups a slight positive
correlation can be observed, although this is not always the
case (Jankowski et al 2007).

The criterion q2 has been calculated with respect to an ar-
bitrary set of 144 simple impact unit loads pi. Each unit
load acts 1.9 ms (19 time steps) in three neighbouring load-
exposed DOFs, see Figure 3. This simple load pattern has
been replicated and on a regular grid basis uniformly dis-
tributed in time and space (over the considered 110 ms in-
terval and the 12 potentially load-exposed DOFs) to form all
of the unit loads pi.

A measurement noise level of 5% rms has been assumed.
Table 2 lists the best and the worst locations of three, four
and five sensors computed with respect to the compound cri-
terion q5%

2 , (36). The best locations seem to distribute the
sensors evenly, while the worst locations group the sensors
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Fig. 2 Correlation plot for sensor location criteria q1 and q2
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Fig. 3 Load pattern replicated 144 times and distributed in time and
space to form all unit loads used for calculating criterion q2

Table 2 Five best and worst locations of three, four and five sensors
with respect to q5%

2 (each “o” denotes one sensor)

three sensors four sensors five sensors

-o-o- - - - -o- -o-o-o- - -o- oo- - -o-o- -o
-o-o- - - - - -o -o-o- - -o-o- o- -o-o- - -oo

q5%
2 -best -o- - -o- - -o- -o-o-o- - - -o -o-o- -o- -oo

-o- - - - -o-o- -o-o- - - - -oo oo- -o-o- -o-
-o- -o- - - -o- -o-o- - - -o-o -o- -o-o- -oo
- - - - - - - -ooo - - - - - - -oooo - - - - - -ooooo
ooo- - - - - - - - oooo- - - - - - - ooooo- - - - - -

q5%
2 -worst -ooo- - - - - - - - - - - - -oooo- - - - - -ooooo-

- - - - - -ooo- - - - - - -oooo- - - - - -ooooo- -
- - - - -ooo- - - -oooo- - - - - - - - - - -o-oooo

together near the supports. In a comparable result obtained
for a cantilever beam, the worst locations were grouped near
the free end of the beam, while the more evenly distributed
best locations preferred the fixed end (Jankowski et al 2007).

5.3 Actual load

Figure 4 depicts the evolution of the assumed actual load,
which is to be identified in the following with the discussed
approaches. The load occurs vertically in the vicinity of the
fourth upper level node and starts moving towards right.
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Fig. 4 Assumed actual load (vertical forces in 12 upper level nodes)
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Fig. 5 Elastic case, computed exact responses of eleven considered
strain sensors (upper elements 1 to 11)

5.4 Elastic case

Figure 5 plots the computed exact responses of all eleven
considered sensors. The bold lines mark the responses of the
four q5%

2 -best located sensors (no. 2, 4, 6 and 10), which
have been used for reconstruction. Figure 6 illustrates the
structure of the corresponding system transfer matrix B: row
blocks correspond to the four sensors, column blocks to the
eleven potentially load-exposed degrees of freedom and since
there are 100 reconstruction and 110 loading time steps, each
block is a 100×110 Toeplitz matrix. Figure 7 plots the first
150 singular values of the matrix across the orders of magni-
tude and compares them with the singular values computed
for the q5%

2 -worst location. Even in the q5%
2 -best case only

the first 87 singular vectors stay above the 5% noise limit,
become the matrix V5%

1 and represent loads constituting an
orthonormal basis in the space of the reconstructible loads.
Examples are shown in Figure 8. Notice the increasing os-
cillations: the consecutive singular vectors introduce more
and more high frequency components. The unreconstruct-
ible subspace V 5%

2 of noise-sensitive loads is thus spanned
only by high frequency loads, and the reconstructible load
p5%

R is generally of lower (time-space) frequency than the ac-

Fig. 6 Elastic case, q5%
2 -best location of four sensors: structure of sys-

tem transfer matrix
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Fig. 7 Elastic case, first 150 singular values of system transfer matrix
plotted across orders of magnitude, q5%

2 -best (continuous) and q5%
2 -

worst (dashed) locations of four sensors

tual load p, since the high frequency unreconstructible com-
ponents are cut off in the regularisation process.

The responses of the four q5%
2 -best sensors have been

contaminated with numerically generated Gaussian noise at
the 5% rms level and used to obtain by (27) the reconstruct-
ible component p5%

R , which is shown in Figure 9 (top left).
Full heuristic identification has been performed by (31) with
the heuristic assumption weighting smoothness w.r.t time
against smoothness w.r.t. space (degrees of freedom) by

D =
[
(1−µ) D1

time
µ D1

dof

]
. (37)

Figure 9 (top right) plots the result computed for µ = 0.38
(the value found with the L-curve method), while the two
bottom figures illustrate the sensitivity of the results to the
weighting parameter µ . For comparison, Figure 10 shows
the results of the single-stage load reconstruction by (32)
with the weighting parameter δ determined by the L-curve
method (left figure) and the reconstructible component com-
puted at the q5%

2 -worst sensor location {8, 9, 10, 11} (right
figure).

5.5 Elasto-plastic case

In the elasto-plastic case the actual load plastifies 17 ele-
ments out of the total of 107, including seven elements po-
tentially equipped with strain sensors (upper elements no. 4
to 10). Figure 11 (top left) plots the computed exact strains
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Fig. 8 Elastic case, loads corresponding to 1st to 3rd and 6th (top left to bottom right) singular vectors computed for q5%
2 -best location of four

sensors

of all eleven upper elements, the differences to the purely
elastic case (Figure 5) are clearly visible.

A load, which is observationally indistinguishable from
the actual load, can be found by solving (13). This equation
is non-linear with respect to the load, hence the decomposi-
tion and regularisation technique of the elastic system can-
not be used. Therefore, the residuum of (13) has been min-
imised with the gradient-based approach described above
and the Levenberg-Marquardt optimisation method with the
zero load as the starting point. Since the considered case is
underdetermined, the solution is non-unique and has been
additionally constrained by requiring its non-negativity. The
objective function (15) implemented the non-negativity re-
quirement by using an exterior quadratic penalty function
instead of the Tikhonov regularisation term.

The result of the identification with the q5%
2 -best location

of four sensors is shown in Figure 11 (top right), 5% rms
Gaussian noise has been used. The effect of the noise is il-
lustrated by the figures in the bottom line, which show the
results of the identification with and without the noise at the
q5%

2 -best location of five sensors. The bottom right figure
confirms also the existence of local minima of the objective
function: the identified load is a local minimum only, since
the global minimum is defined by the actual load, Figure 4.

6 Conclusions

This paper describes a methodology for impact load identi-
fication in elastic and elasto-plastic structures. It aims at re-
liable identification of general loads, including moving and
simultaneous multiple load cases, with a limited number of
sensors. The identification is based on optimisation of local
responses, in the elastic case makes use of the decomposi-
tion of the load into reconstructible and unreconstructible
components, and can be stored in a black-box system for
a posteriori reconstruction of accident scenario.

The research is ongoing to limit the considerable numer-
ical effort required for identification and further investigate
the problem of optimum sensor location. Efficiency of re-
lated numerical algorithms for load identification in case of
elasto-plastic structures is a subject of an upcoming paper.
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