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Abstract Load reconstruction and damage identification are
crucial problems in structural health monitoring. However,
it seems there is not much investigation on identification of
coexistent load and damage, although in practice they usu-
ally exist together. This paper presents a methodology to
solve this problem based on the Virtual Distortion Method.
A damaged structure is modeled by an equivalent intact struc-
ture subjected to the same loads and to virtual distortions
which model the damages. The measured structural response
is used to identify the loads, the distortions and to recover
the stress-strain relationship of the damaged elements. This
way both the damage type and extent are identified. The ap-
proach can be used off-line and online by repetitive appli-
cations in a moving time window. A numerical experiment
of a truss with 5% measurement error validates that the two
tested damage types (constant stiffness reduction and brea-
thing crack) can be identified along with the loads.
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1 Introduction

Identification of coexistent load and damage refers to the si-
multaneous reconstruction of an unknown external load and
damage (both type and size) of a damaged structure. Ac-
curate knowledge of external loads and structural damage
is crucial for maintaining safety and integrity of monitored
structures as well as for applications in forensic engineer-
ing. In recent years, both load and damage identifications
have become widely researched topics with several effec-
tive methods focusing on either one of them. However, in
real applications, unknown damage and unknown loads usu-
ally coexist and together influence the system response; the
damage can even progress with the external load. Though,
identification of coexistent load and damage seems to be an
unexplored area.

Relatively recent reviews of the techniques used for off-
line load reconstruction can be found in Inoue et al (2001);
Jacquelin et al (2003) and Uhl (2007). The most often used
approaches are model-based, operate in the time domain (Adams
and Doyle 2002; Jankowski 2009), frequency domain (Ödéen
and Lundberg 1991; Inoue et al 1991) or sometimes wavelet
domain (Doyle 1997) and basically reduce the reconstruc-
tion to the problem of off-line deconvolution of the mea-
sured structural response and the impulse response func-
tion which is estimated in advance. For online load iden-
tification, observer techniques of unknown input estimation
(Ha and Trinh 2004; Klinkov and Fritzen 2006), Kalman fil-
ter (Liu et al 2000) as well as the Inverse Structural Filter
(ISF) (Allen and Carne 2006, 2008) have been used. The
great majority of these methods take into account only lin-
ear systems; the relatively few papers that consider nonlin-
ear (Ha and Trinh 2004; Ma and Ho 2004) or elastoplastic
(Jankowski 2009) structures assume the model of the non-
linearity to be exactly known in advance. All these methods
require thus a precalibrated model of the monitored struc-
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ture with well-determined structural parameters, and seem
infeasible for load identification in systems with unknown
damages. Even if purely experimental data are used to build
the impulse response function, as in Suwała and Jankowski
(2008), the measured structure is assumed to be intact. An-
other group of load identification methods is based on com-
putational intelligence techniques. Mujica et al (2006) use
case-based reasoning for identification of the location of an
impact on an aircraft wing, while Briggs and Tse (1992)
use a similar technique to identify both impact location and
magnitude. Cao et al (1998) identify static loads acting on
an aircraft wing using an artificial neural networks. In gen-
eral, these and similar methods belong to the class of pattern
recognition methods and, in order to build initially the learn-
ing load-response patterns, also require a definite structure
that remains undamaged.

Damage identification is the primary task of structural
health monitoring (SHM) systems. In general, there are two
fundamental groups of methods: high- and low-frequency.
High-frequency methods are used for local detection and
precise identification of defects in a narrow inspection zone,
see Silva et al (2008) for a time series approach or Staszewski
(2003) for ultrasonic testing. These methods do not require
structural modeling and are outside the scope of this pa-
per. Low-frequency methods are aimed at the identification
of significant defects in a non-local inspection zone, which
is often the whole structure. A vast number of existing ap-
proaches can be categorized with respect to various criteria.
Holnicki-Szulc (2008) differentiates between model-based
and pattern matching approaches, a comparison of two spe-
cific methods can be found in Kołakowski et al (2006). Yan
(2006) singles out the three general approaches as: (1) modal
methods, (2) time domain methods and (3) wavelet methods.
The modal methods detect, locate and identify damages by
the changes of the related modal parameters; see a summary
review in Doebling et al (1998). The time domain meth-
ods utilize either statistical concepts and time series models
(Nair et al 2006; Wei et al 2005) or deterministic model-
updating approaches, which are often coupled with quick
reanalysis techniques (Kołakowski et al 2008). The wavelet
analysis is usually used with pattern recognition methods
(Mujica et al 2005). A part of all these methods rely on
the assumption that the external loads are well-defined and
known. Others (like some modal and time series methods)
can be used without exact information about the loads, but
they are still confined to special conditions like ambient ex-
citation or free response of the monitored structure.

Therefore, in the case of coexistent load and damage, the
related identification problems are inherently coupled: it is
in general not possible to identify the unknown load inde-
pendently from the unknown damage. This paper proposes
a new and effective methodology for simultaneous identifi-
cation. It is based on the Virtual Distortion Method (VDM)

(Holnicki-Szulc 2008; Holnicki-Szulc and Gierliński 1995)
and models the damaged structure by an equivalent intact
structure (called distorted structure), which is subjected to
the same unknown load and certain virtual distortions that
model the damage. Both the load and the distortions are re-
constructed off-line or online (in a moving time window)
using the measured response. The computed distortions are
then used to recover the stress-strain relationships of the
damaged elements, which allows their damage type and ex-
tent to be identified.

The next section reviews briefly the VDM-related con-
cepts that are relevant to the considered problem. The third
section discusses the methodology in the case of off-line
identification, which is generalized to the online case in the
fourth section. The numerical example of the last section
tests the methodology with two stiffness-related damage types
(constant change of Young’s modulus and a breathing crack);
their types and extents are successfully estimated at the as-
sumed Gaussian measurement error level of 5% rms.

2 Virtual Distortion Method (VDM)

The Virtual Distortion Method is a quick reanalysis method
(Akgün et al 2001), applicable in both statics and dynamics
(Holnicki-Szulc 2008; Kołakowski et al 2008). The method
expresses the structural response of a damaged structure to
an external load in the form of a combination of the lin-
ear responses of the intact structure to the same load and
to certain virtual distortions that occur in the damaged ele-
ments (distorted structure). Both structures are equivalent in
terms of identical element strains and element forces. A vir-
tual distortion models the damage of an element and can
be identified with an additionally introduced strain; in the
case of a truss element and a stiffness-related damage it is
modeled by a pair of self-equilibrated forces which are ap-
plied axially at the nodes of the concerned element so that in
the static case it would be respectively elastically strained.
In the dynamic case the distortions and the corresponding
forces are time-dependent.

For the sake of notational simplicity only truss struc-
tures, stiffness-related damages and strain sensors are con-
sidered in this paper. Nevertheless, these simplifications are
inessential, since the methodology can be straightforwardly
extended to include other damage patterns as well as types
of structures and sensors. The generalizations to plates and
frames are discussed in Holnicki-Szulc and Gierliński (1995)
and Putresza and Kołakowski (2001). Damages related to
element masses can be modeled and identified in a sim-
ilar way via the related virtual forces, see Holnicki-Szulc
(2008) or Wikło and Holnicki-Szulc (2009a). Finally, strain
response is chosen here as notationally convenient, because
of its straightforward relation to the virtual distortions, see
(5b) below.
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2.1 Response of a damaged structure to a known load

With the assumption of zero initial conditions, the discretized
response εα(t) of the αth element in an externally loaded
damaged truss structure is modeled using the VDM as the
following sum of the linear and the residual parts:

εα(t) = εL
α (t)+ εR

α (t)

= εL
α (t)+

t

∑
τ=0

∑
β

Dε
αβ (t − τ)ε0

β (τ),
(1)

where εL
α (t) denotes the linear response of the intact struc-

ture to the same load, ε0
β (t) is the virtual distortion in the

β th damaged element and Dε
αβ (t) is the discretized system

transfer function (dynamic influence matrix according to the
VDM terminology), which is the discretized strain response
of the αth element of the intact structure to an impulse vir-
tual distortion in the β th element. Here and henceforth, the
summations indexed by α or β extend over all potentially
damaged elements. Note that this formulation requires the
assumption of small deformations in order to allow the re-
sponses to be linearly combined. In modeling the stresses of
the damaged elements, the virtual distortion has to be sub-
tracted from the total strain,

σα(t) = Eα
[
εα(t)− ε0

α(t)
]
, (2)

where Eα denotes the original Young’s modulus of the un-
damaged α th element.

2.2 Virtual distortions vs. damage

The virtual distortion ε0
α(t) occurs in the αth element and

models its stiffness-related defect, which is expressed in terms
of the (possibly time-dependent) modified effective stiffness
Êα(t) or the corresponding stiffness modification coefficient
µα(t),

µα(t) =
Êα(t)

Eα
. (3)

The distortion can be related to the stiffness modification co-
efficient by the already mentioned postulate of the equality
of the element forces,

f̂α(t) = Êα(t)Aα εα(t),

fα(t) = Aα σα(t) = Aα Eα
[
εα(t)− ε0

α(t)
]
,

(4)

in the damaged and distorted structures, respectively. In (4),
Aα denotes the cross-sectional area of the αth element and
is assumed to be invariant (otherwise the response is influ-
enced by the respective change of mass, which has to be

modeled by virtual forces, see Holnicki-Szulc (2008)). The
force equality requirement yields

µα(t) =
εα(t)− ε0

α(t)
εα(t)

, (5a)

which is equivalent to

ε0
α(t) = [1−µα(t)]εα(t). (5b)

Given identified distortions and strains, the actual stiff-
ness modification coefficient µα(t) can be directly computed
by (5a). Conversely, if µα(t) is given a priori, as in a numer-
ical simulation of the response, then in order to determine
the corresponding virtual distortion, the strain relation (1)
has to be substituted into the right-hand side of (5b), which
yields

∑
β

[
δαβ − [1−µα(t)]Dε

αβ (t)
]

ε0
β (t)

= [1−µα(t)]

[
εL

α (t)+
t−∆ t

∑
τ=0

∑
β

Dε
αβ (t − τ)ε0

β (τ)

]
, (6)

where δαβ denotes Kronecker’s delta. Equation 6 is a system
of linear equations, which should be solved iteratively in the
successive time steps. Note that in the case of a non-constant
stiffness modification (e.g. a breathing crack with two differ-
ent values of stiffness used in tension and in compression),
the coefficient µα(t) can depend on the actual value of the
strain εα(t), so that (6) cannot be used directly. In such a
case, the proper values of µα(t) should be determined (pos-
sibly iteratively) by

1. taking a trial step using the previously determined val-
ues µα(t) := µα(t −∆ t),

2. verifying compliance of the computed strains with the
assumed values of µα(t) and,

3. if necessary, updating them and repeating the computa-
tions.

A similar procedure is used in Wikło and Holnicki-Szulc
(2009b); Jankowski (2009) in the related case of a plastically
yielding element and a bilinear constitutive law.

3 Off-line identification

In this section, the initial conditions are assumed to be zero,
which makes (1) valid. The case of known nonzero initial
conditions is discussed in the next section.
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3.1 Response of a damaged structure to an unknown load

According to (1), the response of a damaged structure is
a combination of the original linear response of the undam-
aged structure and of its responses to the virtual distortions,
which model the damage. The linear response depends on
the unknown load, which has to be identified. Therefore, the
response of the damaged structure can be expressed directly
in terms of the unknowns of both types as

εα(t) =
t

∑
τ=0

∑
i

Dp
αi(t − τ)pi(τ)+

t

∑
τ=0

∑
β

Dε
αβ (t − τ)ε0

β (τ),

(7)

where pi(t) is the unknown discretized load in the ith po-
tentially load-exposed degree of freedom (DOF) and Dp

αi(t)
denotes the discretized strain response in the αth element
of the intact structure to an impulse force in the ith DOF.
Here and henceforth, the i-indexed summation extends over
all load-exposed DOFs. Equation 7, rewritten for all consid-
ered time steps t and for all sensor locations α , can be stated
in the form of a single large linear equation as

εεε = Dpp+Dε εεε0 =
[

Dp Dε ]
[

p
εεε0

]
= Dz, (8)

where the vector z collects together the vectors p and εεε0,
which contain respectively all discretized loads in all poten-
tially load-exposed DOFs and all discretized virtual distor-
tions in all damaged elements. The corresponding system
transfer matrices are denoted by D, Dε and Dp. By a proper
ordering of the elements of z, the matrix D can take the re-
arranged form of a large block matrix composed of Toeplitz
matrices, which relate discretized sensor responses to unit
excitations and to unit distortions, see an example in Fig-
ure 2.

3.2 Identification of load and virtual distortions

According to (7) or (8), information about the unknown load
and damage is reflected in the response. The identification
amounts basically to the comparison of the computed re-
sponse εεε to the measured response εεεM in order to solve the
resulting equation,

εεεM = Dz, (9a)

which is a large linear system. To guarantee the uniqueness
of the solution, there should be at least as many indepen-
dent sensors as the total number of potentially load-exposed
DOFs and damaged elements. In practice, it requires previ-
ous information on the potential locations of the damages
and loads. Equation 9 can be solved quickly e.g. by the
conjugate gradient method (Dahlquist and Björck 2008; No-
cedal and Wright 1999).

3.2.1 Numerical remarks

The system (9a) is dense, and the numbers of equations and
unknowns are both proportional to the number of time steps:
If the total number of load-exposed DOFs and damages is nz,
the number of sensors is ns and nt time steps are considered,
then the dimension of D is nsnt × nznt . Hence, in the cases
of a dense time discretization or a longer sampling time, the
system can become prohibitively large and thus computa-
tionally hardly manageable. To reduce the numerical costs,
one can utilize the piecewise continuity of distortions and
loads. In practice, the time discretization is chosen to be
dense enough so that a force or a virtual distortion does not
change rapidly and can be effectively approximated e.g. by
splines, wavelets or load shape functions (Zhang et al 2008).
Equation 9a takes then the following form:

εεεM ≈ DNααα , (9b)

where z ≈ Nααα and the approximating unknowns ααα are far
fewer in number then the original unknowns z.

In practical situations, the linear system (9) tends to be
ill-conditioned, hence a small disturbance of εεεM (e.g. an in-
evitable measurement error) may cause a large error in the
identified loads and distortions. In most of the cases the ill-
conditioning is inherent and can be attributed to the fact
that compact integral operators of the first kind cannot have
a bounded inverse (Kress 1989). As an apparently contra-
dictory result, the finer the time discretization, the worse the
ill-conditioning. Therefore, it is necessary to numerically
regularize the solution; common techniques are the trun-
cated singular value decomposition (TSVD) or the Tikhonov
method, see Jacquelin et al (2003); Hansen (2002) or Kress
(1989).

3.3 Damage identification

The distortions and the load, identified by (9), can be used
by (7) and (2) to recover the stress-strain relationship in the
damaged elements and to identify the damage type and ex-
tent. In this paper, two types of damages are considered, both
expressible in terms of a single stiffness reduction coeffi-
cient:

– Constant reduction of stiffness (e.g. related to corrosion),

µα(t) = µcrs
α < 1. (10a)

– Breathing crack model with a reduced stiffness value
used in tension,

µα(t) =
{

1 if εα(t)< 0 (compression),
µbc

α if εα(t)≥ 0 (tension),
(10b)

where µbc
α < 1. Such a model, although simple, is ad-

equate for low-frequency structural health monitoring
(Friswell and Penny 2002).
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Other types of stiffness-related phenomena, like buckling,
can be treated in a similar way.

For each potentially damaged element, the stress-strain
relationship is recovered in the form of a time sequence of
pairs (εα(t),σα(t)). Given these pairs, the extent of the dam-
age can be identified by square best-fitting of the theoretical
curves separately for each considered damage type,

µcrs
α =

1
Eα

∑t εα(t)σα(t)
∑t ε2

α(t)
,

µbc
α =

1
Eα

∑t εα(t)σα(t)
∑t ε2

α(t)
1εα (t)>0,

(11)

and choosing the damage type that fits the stress-strain rela-
tionship better, i.e. minimizes the least-square distance

∑t [σα(t)−µα(t)Eα εα(t)]
2

∑t σ2
α(t)

(12)

where µα(t) is defined by (10).

4 Online identification

The main task of identifying the coexistent external load
and damage is to solve (9), which is basically a discretized
deconvolution problem. The quality of the solution and the
computational effort depend mainly on the matrix D or, for
(9b), DN. When the sampling time is long, both these matri-
ces can be prohibitively large, and each direct solution will
be time-consuming and prone to numerical errors. More-
over, (9) can be used only for off-line identification. There-
fore, repetitive identification in a moving time window is
proposed here in order to eliminate the drawbacks and to
enable the online identification. The method utilizes the su-
perposition theorem of linear elastic structures.

4.1 Response of a damaged structure

The damaged structure, including the nonlinear case of a
breathing crack, is converted by the VDM into a linear dis-
torted structure. This is indicated by (7), which assumes
zero initial conditions. Let the sampling time interval be di-
vided into several possibly overlapping time sections. The
response of the distorted structure in the nth section can be
expressed by the following modified version of (7):

ε(n)α (t) = ε̄(n)α (t)+
t

∑
τ=0

∑
i

Dp
α i(t − τ)p(n)i (τ)

+
t

∑
τ=0

∑
β

Dε
αβ (t − τ)ε0(n)

β (τ),
(13)

which takes into account also the free vibrations ε̄(n)α (t) of
the undamaged structure caused by the nonzero initial con-
ditions at the beginning of the section. The index (n) denotes
the number of the section.

4.2 Identification

The strains computed by Equation 13 can be compared to
the measured strains and stated in the form of a single linear
equation similar to (9),

εεεM(n)− ε̄εε(n) = B(n)z(n), (14)

where B(n) is the matrix D (or, using approximations, DN)
reduced according to the length of the nth section. Equa-
tion 14 covers only one time section and is thus much smaller
and easier to solve than (9).

The initial conditions of each time section and the corre-
sponding free vibrations can be computed straightforwardly,
provided the loads and the virtual distortions in the previous
sections are already identified. Equation 14 can be thus used
online, in successive time sections, to obtain iteratively all
the unknown loads and virtual distortions in the whole con-
sidered time interval.

As observed in practice, the identified loads tend to drift
away from the exact solution, which causes a lower accuracy
near the end of the time section. A practical way to improve
the accuracy is to consider partly overlapping time sections,
so that less accurate results from the previous section can be
improved in the next time section.

5 Numerical example

5.1 Structure

Figure 1 shows the modeled truss structure. It is 2.5 m long,
the elements are 10 mm2 in cross-section, 0.5 m or 0.5

√
2 m

long, and made of steel with density 7800 kg/m3 and Young’s
modulus 210 GPa. Each node weighs 0.13 kg. The two left
hand side corner nodes of the bottom plane are deprived all
DOFs, while the two opposite right hand side corner nodes
are deprived of the vertical DOFs and are free to move in the
horizontal plane only.

It is assumed that the structure is loaded by a vertical
moving force, which (as indicated in Figure 1) is transferred
to the upper five nodes of the structure via a system of rigid
beams. Two damages are assumed to occur in the elements
no. 21 and 32, and are marked by the dashed lines. Seven
sensors are placed on elements no. 1, 4, 15, 17, 21, 23 and
24, which are marked by shorter parallel solid lines. The
total considered time interval is T = 48 ms, and has been
discretized into 240 time steps of ∆ t = 0.2 ms each. The full
system transfer matrix D is hence 1687×1687 in dimension.
It has been generated numerically using the Newmark inte-
gration scheme. Figure 2 illustrates schematically the struc-
ture of the matrix: block rows correspond to the sensors, first
five block columns to the potentially load-exposed DOFs,
last two block columns to the damaged elements and since
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Fig. 1 Truss structure modelled
in the numerical example
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Fig. 2 Structure of the full system transfer matrix D

there are a total of 240 time steps, each block is a 241×241
lower triangular Toeplitz matrix.

5.2 Actual load and damages

Figure 3 (top left) depicts the evolution of the assumed ac-
tual load, which is to be identified in the following with the
discussed approaches. The load simulates a time-dependent
force moving at a constant velocity 41.667 m/s along the
structure. The top right figure plots the corresponding nodal
loads. The computed exact responses of the considered strain
sensors in the case of the undamaged structure are plotted in
the bottom left figure. In order to test the damage identifica-
tion, two damage types have been considered:

1. Constant stiffness reduction (csr) in the element no. 32:
Young’s modulus is reduced by 70%,

µ32(t) = 0.3.

Table 1 Dimensions of the linear systems (9)

off-line case online case

full (D) 1687×1687 847×847
approximated (DN) 1687×126 847×98

2. Breathing 40% crack (bc) in the element no. 21: Young’s
modulus is reduced when the element is in tension,

µ21(t) =
{

1 if ε21(t)≤ 0,
0.6 if ε21(t)> 0.

The computed exact response of the corresponding damaged
structure is plotted in Figure 3 (bottom right). The response
has been contaminated with numerically generated uncorre-
lated Gaussian noise at the 5% rms level, which simulates
the measurement error. By comparison with the response of
the undamaged structure (bottom left figure) note the rela-
tively small influence of the considered damages.

5.3 Identification

Both online and off-line identification schemes have been
tested. For the online identification, the time interval of the
total length of 240 time steps (48 ms) has been divided into
three sections of 120 time steps with the overlapping parts
of 60 time steps. The identification by (9b) has been also
performed with both loads and distortions approximated by
the load shape functions, which are constructed from stan-
dard shape functions of a frame element (Zhang et al 2008).
In the off-line case eighteen approximating functions have
been used, while in the online case for each of the three sec-
tions fourteen functions have been used. Table 1 lists the
dimensions of the resulting matrices D or DN of the linear
systems (9).

Since the system matrices can be ill-conditioned, TSVD-
regularized solutions have been computed. The regulariza-
tion level has been defined by the number k of the truncated
singular values, which in each case has been determined us-
ing the L-curve technique, that is by weighting in the log-
log scale the residual against the norm of the first differ-
ences of the solution, see e.g. Jacquelin et al (2003). In the
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Fig. 3 Assumed actual load and the corresponding computed exact responses of the seven considered strain sensors: (top left) Assumed actual load;
(top right) Corresponding equivalent nodal loads; (bottom left) Response of the undamaged structure; (bottom right) Response of the damaged
structure contaminated with 5% rms Gaussian measurement error

full off-line case, the corner of the L-curve corresponds to
k ≈ 350, see Figure 4 (left). It has been hence assumed that
k = 357, that is all singular values less than 0.1% of the max-
imum singular value have been discarded. For the full online
case k = 194 has been chosen in a similar way, which cor-
responds to the singular value truncation level of 0.2%. The
L-curves corresponding to the approximated cases, shown
in Figure 4 (right) for the off-line case, consist of only the
lower branches, which testifies the well-conditioning of the
approximated problems. Here a low value of k = 5 has been
chosen to guarantee the reliability.

Note that the computational cost of a single identifica-
tion depends mainly on the singular value decomposition
(SVD) of the system matrix, which for an m×n matrix (m ≥
n) is of order O(mn2) (Dahlquist and Björck 2008). Hence,
as seen in Table 1, the cost can be significantly reduced (al-
most two orders of magnitude) by using the approximations.
The reduction due to the repetitive smaller identifications in
the online case, which use the same system matrix and hence
require only single decomposition, is less pronounced (be-
low one order of magnitude). In the case of several repeti-
tive identifications, both off-line and online, the numerically
costly SVD has to be computed only once, and thus the to-
tal cost of a single identification is smaller by one order of
magnitude.

5.3.1 Load identification

The actual equivalent nodal loads and the loads identified in
the four considered cases are compared in Figure 5. If it is
known (or told from the characteristic orderliness of the re-
sults) that the loads correspond to a moving load, then the
actual moving force can be also constructed; the results are
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Fig. 6 Reconstructed moving load in the four considered cases (off-
line full matrix, off-line approximated, online full matrix and online
approximated)

shown in Figure 6. Note that although the identified loads
have some obvious oscillations because of the noise con-
tamination, they could be reconstructed with good accuracy,
partly thanks to the proper level of singular value truncation
of the system matrix. Approximation of the loads and the
damage-related distortions by the load shape functions, be-
sides reducing the numerical costs, helps to filter the noise
to a certain degree while preserving the accuracy.

5.3.2 Damage identification

For each of the damaged elements, the best-fitting extents
of the damages of both types (µcsr

α and µbc
α ) have been com-

puted by (11) and used to identify the damage type by choos-
ing the smaller fit value of (12). The results are listed in Ta-
bles 2, 3 and 4. Figure 7 plots the actual, raw identified and
fitted stress-strain relationships.

In general, the damage type could be properly identi-
fied by choosing the one that fits the stress-strain relation-
ship better, i.e. minimizes the fit (12). However, in online
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(right) approximated matrix
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Fig. 5 Identified equivalent nodal loads: (top left) off-line, full matrix (no approximations); (top right) off-line, approximated; (bottom left) online,
full matrix (no approximations); (bottom right) online, approximated

Table 3 Online (full matrix) identification of damage extent (11) and damage type (by smaller fit (12)) for elements no. 21 and 32. Column
“tension” lists the percentage of the time steps in tension

time section I time section II time section III mean actual

extent fit (12) tension extent fit (12) tension extent fit (12) tension value value

µcsr
21 =0.6514 0.1351 µcsr

21 =0.9468 0.0273 µcsr
21 =0.9980 0.0049 — —

µbc
21=0.5964 0.0343

70.0%
µbc

21=0.5826 0.0064
20.8%

µbc
21=0.4086 0.0048

10.8%
µbc

21=0.529 µbc
21=0.6

µcsr
32 =0.2814 0.1547 µcsr

32 =0.2726 0.0354 µcsr
32 =0.2657 0.0866 µcsr

32 =0.273 µcsr
32 =0.3

µbc
32=0.2851 0.1627

89.2%
µbc

32=0.2725 0.0399
85.8%

µbc
32=0.2507 0.7394

38.3%
— —

Table 4 Online approximated identification of damage extent (11) and damage type (by smaller fit (12)) for elements no. 21 and 32. Column
“tension” lists the percentage of the time steps in tension

time section I time section II time section III mean actual

extent fit (12) tension extent fit (12) tension extent fit (12) tension value value

µcsr
21 =0.7323 0.0699 µcsr

21 =0.9530 0.0203 µcsr
21 =0.9992 0.0014 — —

µbc
21=0.5965 0.0019

70.8%
µbc

21=0.5928 0.0007
21.7%

µbc
21=0.5009 0.0013

12.5%
µbc

21=0.563 µbc
21=0.6

µcsr
32 =0.2821 0.0114 µcsr

32 =0.2721 0.0179 µcsr
32 =0.2750 0.0709 µcsr

32 =0.276 µcsr
32 =0.3

µbc
32=0.2821 0.0118

95.0%
µbc

32=0.2706 0.0875
85.0%

µbc
32=0.2558 0.5318

41.7%
— —



9

-15 -10 -5 0 5 10-4

-3

-2

-1

0

1

2

-15 -10 -5 0 5 10 -15 -10 -5 0 5 10 -15 -10 -5 0 5 10

-20 0 20 40 60-2

-1

0

1

2

3

4

-20 0 20 40 60 -20 0 20 40 60 -20 0 20 40 60

 

 

 

 identified
 fitted
 actual

 

 

 

 identified
 fitted
 actual

 

 

 

 identified
 fitted
 actual

 

 

 

 identified
 fitted
 actual

Strain [10-6]

St
re

ss
 [1

06 ]

 

 

 identified
 fitted
 actual

 

 

 identified
 fitted
 actual

 

 

 identified
 fitted
 actual

 

 

 identified
 fitted
 actual

Fig. 7 Actual, raw identified and fitted stress-strain relationships for elements no. 21 (breathing crack, first row) and 32 (constant stiffness reduc-
tion, second row): (first column) off-line, full matrix; (second column) off-line approximated; (third column) online, full matrix; (fourth column)
online approximated

Table 2 Off-line identification of damage extent (11) and damage type
(by smaller fit (12)) for elements no. 21 and 32

full matrix approximated actual

extent fit (12) extent fit (12) value

µcsr
21 =0.9046 0.0424 µcsr

21 =0.9048 0.0363 —
µbc

21=0.5950 0.0068 µbc
21=0.5972 0.0008 µbc

21=0.6

µcsr
32 =0.2741 0.0360 µcsr

32 =0.2765 0.0464 µcsr
32 =0.3

µbc
32=0.2699 0.2480 µbc

32=0.2706 0.1247 —

identification with short time sections, a damaged element
may happen to be almost only in tension during a whole
time section (as e.g. element no. 32 in time section I). In
such a case the damage type cannot be reliably estimated in
that specific section, since for distinguishing between both
tested damage types compression data are necessary. Simi-
larly, if an element with a damage of a breathing crack type
is in compression almost the whole time section (as element
no. 21 in time section III), a reliable differentiation between
a marginal reduction of stiffness and a breathing crack is im-
possible. Nevertheless, these shortcomings are unavoidable;
the proper damage type in such cases can be inferred only
from the identification results in successive time sections.

Because of the noise influence, the recovered strain-stress
relationships of the damaged elements take the form of a set
of discrete points which are scattered around the actual re-
lationships (Figure 7). The damage extents can be estimated

by least-square fitting. It should be noted that the identifica-
tion accuracy varies a little between the time sections in the
online identification case due to random Gaussian measure-
ment error. However, all the tested identification schemes
(off-line and online, with and without approximations) have
yielded satisfactory results, which is especially important
provided the considerably smaller numerical cost (by two
to three orders of magnitude) of the online approximated
method.

6 Conclusions

This paper proposes an effective methodology for identifi-
cation of coexistent loads and damages, including damage
types and extents. A practical long-term objective is moni-
toring of critical and impact loads for applications in foren-
sic engineering and in Adaptive Impact Absorption systems
(AIA) (Wikło and Holnicki-Szulc 2009b).

The methodology is based on the Virtual Distortion Method
(VDM) and identifies damages of an arbitrary type via the
recovered stress-strain relationships of the damaged elements.
The method is applicable both off-line and online by a mov-
ing time window. The numerical costs can be considerably
reduced by approximating the unknown loads and damage-
related distortions with load shape functions.

A drawback of the method is the necessity of an a priori
information on the locations of the loads and the damages
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in order to keep the number of sensors reasonably small.
In practical applications this information can be partly pro-
vided by a dedicated external system, e.g. ELGRID (Kokot
and Holnicki-Szulc 2005). However, in the further research
this drawback is also going to be addressed directly.
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