
 

Explanation and modelling of angle-dependent 
scattering in polymer optical fibres 

Lukasz Jankowski 
Federal Institute for Materials Research and Testing (BAM) 

Unter den Eichen 87, D-12200 Berlin, Germany 
lukasz.jankowski@bam.de 

13th Int. Conf. on Plastic Optical Fibres 
27-30 September 2004, Nuremberg, Germany, pp. 195-202 

Summary 
Simulations and measurements of optical fibres suggest that the higher the illumination 
angle, the less is the scattering intensity. However, the geometric optic and raytracing 
analysis clearly give the opposite relation. Therefore the wave analysis is applied to 
scattering. As a result a ready-to-use formula for the scattering intensity in dependence 
on the illumination angle is obtained. Four numerical examples are reported, their 
results confirm the expected decrease in scattering with increasing illumination angle. 

1. Introduction 
Besides attenuation, important basic characteristics of optical fibres are their scattering 
properties, induced by non-uniformities of fibre’s refractive index and geometry. 
Scattering is present in all approaches to fibre modelling: 

 Within the wave optics framework it is represented by the power transfer 
between propagating modes [4,5,7-11]. 

 Raytracing models of the geometric optics include scattering in the form of 
periodic redirections of traced rays on its way through the modelled fibre [2,6]. 

 The angular dispersion model first proposed by Gloge [1] uses local mixing 
intensity coefficient to model continuous power transfer between neighbouring 
directions of propagation. 

The Gloge’s dispersion model [1] as well as some of the raytracing models [2] assume 
constant scattering intensity, independent of propagating angle. Others [3,6] suggest 
that at least in some fibres scattering is angle-dependent (it should be more intense for 
lower order modes than for higher order modes) and propose purely phenomenological 
curves of scattering intensity distribution. 

The angle-dependence of scattering also seems to be confirmed by far-field profile 
(FFP) measurements (Fig. 1, 2). Fig. 1 compares three FFPs of 10 m POF sample, 
laser-illuminated at 6°, 15° and 24° and normalised to 100 % height. Decreasing widths 
of the graph peaks suggest that the scattering intensity decreases with illumination 
angle. Fig. 2 compares normalised FFPs of 10 m samples of POF from two 
manufacturers, laser-illuminated at 6° and 24°. The ESKA fibre (solid line) at high 
illumination angle (24°) clearly shows much less scattering than the LUMINOUS fibre 
(dashed line). At low illumination angle (6°) the relation is opposite, the ESKA fibre 
shows slightly more scattering than the other fibre. The measurements suggest 
different, thus not constant, angle-dependence of scattering intensity in both fibres. 
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Fig. 1 Normalised FFPs of 10 m ESKA CK-40 
POF, illumination angles 6°, 15° and 24°. 

Fig. 2 Normalised FFPs of 10 m ESKA CK-40 
(solid line) and LUMINOUS TB-1000 (dashed line) 
POF, illumination angles 6° (left) and 24° (right). 

The decreasing scattering intensity with increasing illumination angle, although 
confirmed by measurements and simulations [see e.g. 6], seems to be hard to explain 
using geometric optics only, as this approach implicates generally the opposite relation. 
Rays launched at higher angles cover longer path within the fibre and undergo more 
reflections on the core-clad interface, thus (under the assumption of uniform distribution 
of perturbations within the core) they should be expected to get more scattered than the 
rays launched at lower angles. The same mechanism (longer path, more reflections) 
causes the increase in attenuation for higher illumination angles.  

Therefore explaining the contrary actual scattering dependence, if possible at all, would 
require elaborate and unrealistic shapes of refractive index perturbations. Thus the 
wave analysis is used for explanation. We will focus mostly on practical issues, 
restricting the mathematical details as far as possible. 

2. Fibre modes 
For describing fibre modes we will use the scalar wave equation and follow the analysis 
of Alexandrov and Ciraolo [12]. The scalar wave equation is a simplified version of the 
vector wave equation, valid in the case of small variations of refractive index [1]. It has 
the form: 

022  uknu , (1) 

where u denotes one of the transversal coordinates of the electric field, k is the free-
space wavenumber and n is the (unperturbed) refractive index of the fibre, defined by: 

 
 
 









(clad),  ,,         ,

(core),    ,0                ,

01

0

Rrnn

Rrn
rn  (2) 

where R is the radius of the core. Solving Eq. (1) by separation of variables in the 
cylindrical coordinate system (r,φ,z) and taking into account the obvious requirements 

(a) u/r exists and is continuous (b) u is bounded, two sets of solutions are obtained: a 
discrete (and maybe empty) set of guided modes and a continuous set of radiating 
modes. Modes of both kinds have the following form: 

     2, exp,,  rjimzikzrn m , (3) 

where β is the relative wavenumber of the mode (kβ is the mode propagation constant), 

mZ due to the conservation condition and jm: RR is the radial component of the 
propagating mode. For notational clarity the following symbols will by used: 
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where V is a mode-independent waveguide parameter (often called waveguide’s 

normalised frequency). For a typical POF V4000, which corresponds to more than 106 

guided modes. A respective guided mode exists for given mZ and  2
0

2
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where J is the real Bessel functions of the first kind and K is the real modified Bessel 
function of the second kind. If Eq. (5) holds, then the radial component jm of the 
respective guided mode decays exponentially in the clad with r and takes the form: 
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A respective radiation mode exists for each mZ,  2
1, n , it extends oscillating into 

the clad and its radial component jm takes the form: 

 
 
       

 
 











,,

,0

,

                                       ,
,

11

0

Rr

Rr

rwYbrwJa

rwJ
rj

mmmm

m
m


  (7) 

where Y denotes the real Bessel function of the second kind and 
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(8) 

In principle there can exist also another type of guided modes that decay in the clad 
with r-|m|, but such modes will not occur in the numerical examples of this paper and thus 
are skipped here. Therefore, the formulae Eq. (3), Eq. (6) and Eq. (7) describe the 
modal fields of all guided modes present in the fibres analysed in this paper. 

3. Illumination, modal fields and output FFP 
Alexandrov and Ciraolo have proved in [12] that each finite-power field u(r,φ,z) 
propagating in a cylindrical fibre can be uniquely represented as a superposition of 
guided and radiation modes in the form 
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where  
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with um(r,z) being the Fourier coefficients of u(r,φ,z): 
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The function χm(τ) in Eq. (9) is for   ,2
1n  constant between the discontinuity points 

 m
m
k Pk  ..., ,1     being the solutions to Eq. (5), in which it has jumps  
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For  2
1, n  the function dχm(τ) is defined as: 
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Finally, the Parseval identity holds, too [12]: 
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The representation Eq. (9) can be used to find the excitations of modes in the fibre with 
uniformly laser-lighted input face. Let only the core area be lighted on the fibre input 
face by a plane wave with the direction of propagation contained in the x-z surface, 
uniformly polarized in y-axis direction and with incident angle α with the fibre axis. 
Assuming that the fields at the input face are approximately those at the boundary 
between two semi-infinite media of refractive indices 1 (air) and n0 (core), the field u at 
the input face can be computed from standard formulae for plane-wave refraction at a 
dielectric interface (Fig. 3). 
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Fig. 3 Refraction of a beam at the input face of an optical fibre. 

Neglecting the Fresnel refraction coefficients, normalising to keep constant the total 
power illuminating the fibre core and using the expansion to series of Bessel functions, 
the following expression for the field u in the core at z = 0 can be obtained: 
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Eq. (10) and Eq. (11) yield 
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and Eq. (14) allows writing the formula for the angle-dependent power launched into a 
guided mode: 
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Summing Eq. (17) over all guided modes gives the angle-dependent total power 
launched into guided modes of a fibre. Fig. 4 shows the part of the power launched into 
the guided modes (normalised sum over Eq. (17)) of two sample fibres in dependence 
on the illumination angle.  



 

 
Fig. 4 Relative power launched the guided modes in dependence on illumination angle  

for V = 8 (2R = 3.3 μm) and V = 20 (2R = 16.3 μm) waveguides. 

Fig. 4 clearly suggests that with increasing fibre radius R (or normalised frequency V) 
almost all power incident within the acceptance angle enters guided modes and so the 
limiting graph is step-like, see [5, chapter 20]. 

4. Non-uniformities of the refractive index and induced scattering 
In an ideal non-absorbing fibre the refractive index profile as well as the power 
distribution between modes are steady along the waveguide’s length. However, slight 
refractive index perturbations are inevitable in a real waveguide and give rise to the 
continuous power flow between modes, referred to as the scattering, mode mixing or 
coupling. We will follow the approach of Magnanini and Santosa [4] and expand their 
two-dimensional analysis of scattering in a slab waveguide to the three-dimensional 
case of an optical fibre.  

The refractive index n of an ideal fibre in Eq. (2) depends only on the radius r. The 
perturbed fibre has a refractive index np(r,φ,z), defined by the perturbation function 
d(r,φ,z) with a bounded support: 
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Decomposing the total field u in Eq. (1) to the sum of the incident and scattered fields 
and substituting np from Eq. (20) lead to a variant of the Helmholtz equation: 

dukuknu scatscat
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The scattered field has to satisfy some form of radiation conditions guaranteeing its 
uniqueness. As their exact form is not known even in the two-dimensional case [4], we 
will use, as in [4, 12], the solution that makes physical sense, based on the requirement 
that the waves are bounded and outgoing in the sense specified in [12]. The solution to 
Eq. (19) (assumed to be unique) can be written in the form 
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with the operator T defined as 
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and g(r,φ,z;ρ,η,ξ) being the Green’s function of a homogenous fibre, found in [12] to be: 
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Eq. (19) and Eq. (20) are satisfied by the von Neumann series [4, 13]: 
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As Magnanini and Santosa did in [4] in the two-dimensional case, we will use in the 
further computations the Born approximation, i.e. only the first term of series Eq. (23): 
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Eq. (10), Eq. (11) and the orthogonality of   Zmimexp  allow obtaining the scattered 

field and excitations of guided modes after the perturbation, i.e. for z  z0: 
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If assumed that the incident field consists of exactly one guided mode, i.e. that 
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where 2
00   , then Eq. (25) can be rewritten for z  z0 in the following form: 
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Eq. (27), given the form of refractive index perturbations d(r,φ,z), together with the 
Parseval identity Eq. (14) and under the Born approximation Eq. (24) may be used to 
compute the power transfer coefficients between modes caused by the refractive index 
perturbations. If Eq. (26) represents the incident field, then the relative scattered power 
in LPmk mode after the perturbation equals 
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Using Eq. (17) for the excitation of guided modes the total scattered power in 
dependence on the illumination angle α can be written down as 
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Eq. (29) is used in the next part to investigate on numerical examples the  
angle-dependence of scattering. 

5. Numerical examples 
Given the refractive index perturbation function d(r,φ,z), formulae Eq. (27) to Eq. (29) 
can be used to investigate the angular dependence the total scattered power. For 
numerical computations a finite sum of simple single perturbations can be used: 
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where the point (ρl,ηl,ξl) is the centre of a single perturbation, Al is its amplitude and Sl 

defines its e
-1-radius. The best candidate for the distance function  would be the 

Euclidean metric 
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but this form would make the integral Eq. (27) not symbolically integrable and 
considerably increase its computation time. So the following function was used instead, 
a modified version of Eq. (31): 
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where cos(η0-η1) was approximated for (η0-η1)(-π,π] with the saw function 1-2|η0-η1|/π, 
what equals the effect of keeping the Euclidean metric Eq. (31) but modifying slightly 
the perturbation function Eq. (30). Substituting Eq(30) and Eq. (32) into Eq. (27) and 

changing the order of integration over  yield: 
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First and third integrals of Eq. (33) can be computed analytically: 
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where (a,b) is the error function: 
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The remaining one-dimensional integral over [0,R0) has to be computed numerically. 
Using Eq. (34) it is easy to compute numerically the total scattered power tsp(α) Eq. (29) 
for a given illumination angle α. As it turned out to be highly dependent on the location 
and size of the waveguide perturbations, the results had to be averaged for several 
randomly drawn perturbations. The following perturbation properties were assumed: 

 Only the fibre’s core is perturbed, so R0=R in Eq. (34). 

 The perturbation centre (ρl,ηl,ξl) is uniformly distributed within the core. 

 The perturbation amplitude Al ~ N(0,A) (was modelled with a random variable of 
normal distribution with the mean 0 and the standard deviation A). Eq. (34) 
depends linearly on the perturbation amplitude, thus its exact value does not 
matter, all numerical computations were done with the constant value A = 0.01. 

 The perturbation size Sl ~ Sχ1 (was modelled with a random variable of chi-square 
distribution with one degree of freedom and the mean S). 

 The perturbed fragment of the fibre has the length z0 = 10R. 
The computations were done  

 a single perturbation (L=1 in Eq. (30)),  

 two perturbation sizes (S=0.05R and S=0.25R)  
and were repeated for two sample fibres (V=8, which corresponds to 17 guided modes 
and the diameter 2R=3.3 μm, and V=20 (105 guided modes, 2R = 16.3 μm)). In each case 
800 (for the V=8 fibre) or 400 (for the V=20 fibre) computations were made and 
averaged to obtain all scattering coefficients  kmkmrsp ,;, 00  (see Eq. (28)).  

Fig. 5 plots the normalised total scattered power tsp(α)/tsp(0) (Eq. (29)) in dependence 
on the illumination angle α for both investigated fibres and perturbation sizes. On all four 
examples the strong decrease of total scattered power with increasing illumination angle 
is confirmed. 



 

 
Fig. 5 Normalised total scattered power in dependence on the illumination angle  

for two sample waveguides and two sample perturbation sizes. 

6. Conclusions 
In this paper the wave analysis of Magnanini and Santosa [4] of scattering mechanisms 
in 2D slab waveguides was expanded to real cylindrical 3D fibres using the approach of 
Alexandrov and Ciraolo [12]. As a result the direct formula Eq. (29) for the total 
scattered power in dependence on the illumination angle was obtained and used in four 
numerical examples. Their results clearly confirm that the higher illumination angle, the 
less is the scattering intensity, in accordance with measurements and simulations but 
contrary to the explanation offered by the raytracing model. 
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