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SUMMARY

This paper describes an effective method of substructure isolation for local structural health monitoring (SHM).
In practice, often only a small part of a larger structure is critical and needs monitoring. However, typical
low-frequency SHM methods require modeling and analysis of the global structure, which can be costly, time-
consuming and error-prone. The proposed approach is based on the virtual distortion method (VDM) and uses
force distortions to model fixed supports in the boundary nodes to isolate the considered substructure from
influences of the rest of the structure. Therefore, given an excitation of the substructure and the measured response
of the global structure, the response of the substructure treated as fixed supported can be computed. Local-only
monitoring is then possible using virtually any of the existing methods. However, consistently with the isolation
methodology, strain distortions are used here for modeling of damages of the isolated substructure. The discrete
adjoint variable method is used for the first time within the framework of the VDM in order to perform quick
analytical sensitivity analysis and improve the computational effectiveness of the damage identification by one
order of magnitude. A numerical experiment of a frame-truss is presented to validate the methodology at 5% rms
measurement error level. Copyright (©) 2002 John Wiley & Sons, Ltd.

KEY WORDS: Substructure isolation; Damage identification; Virtual Distortion Method; Structural health
monitoring, Adjoint variable method

1. INTRODUCTION

In recent years, Structural Health Monitoring (SHM) has become a widely researched field in civil
engineering, see e.g. [1, 2]. The primary task of an SHM system is damage detection and identification.
However, as science and technology develop, structures become larger and more complex, and it is
increasingly harder to pursue damage identification using standard global methods, which require
considering the monitored structure in its entirety. On the other hand, in many practical applications
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only small substructures are considered crucial, so that local monitoring for damages would be
sufficient as well as less expensive. Therefore, there is a need for methods, which would allow local-
only information to be extracted from measured response of the global structure, so that it can be used
for substructure monitoring and local damage identification.

The substructure isolation method proposed in this paper uses virtual force distortions in order to
numerically counter the influences of the rest of the structure on the monitored substructure (another
formulations are proposed in [3, 4, 5]). The force distortions are applied in such a way that all degrees
of freedom (DOFs) of the substructure boundary behave as fixed supported. In this way the considered
substructure is fully isolated from the global structure and, in response to local excitations, can be
treated as a new independent, simpler and smaller structure, so that its monitoring and analysis become
much easier.

The concept of using virtual (force and strain) distortions for modeling of structural modifications is
the core idea of the virtual distortion method (VDM) [6, 7, 8]. To date, force distortions have been used
to model mass-related modifications and environmental damping, while strain distortions have been
applied to model stiffness-related defects or modifications, structural damping [9], delamination [10]
and to identify unknown coexistent loads and damages [11]. In this paper, it is proposed to use
force distortions to model another kind of structural modification: fixed support. A series of such
modeled fixed supports, if placed in all boundary modes of the considered substructure, amounts
to the elimination of all influences of the rest of the structure and thus to complete substructure
isolation. In this way, local-only analysis and monitoring of the isolated substructure as well as damage
identification are made feasible.

Practical implementation of the substructure isolation approach considered here is relatively simple
due to its two important features:

1. Force distortions need not be impulsive, so that raw measurements, e.g. of an impulse hammer
can be directly used. This is in contrast to many earlier inverse methods, which (with the
exception of the model-free approach of [12]) require either a well-tuned numerical model of
the global structure [7] or troublesome ill-posed deconvolution of the measurement data [13].

2. When used for substructure isolation, force distortions need not to be applied exactly in its
boundary DOFs. In fact, all DOFs of the exterior global structure can be used for this purpose as
long as the respective influence matrix (which relates the boundary responses to the distortions)
is not rank-deficient. This is an extension to other distortion-based approaches, which require the
distortions to be applied exactly in all DOFs of the affected elements or nodes.

The virtual distortion method (VDM) itself belongs to the class of fast reanalysis methods [14].
Given the response of the original unmodified structure to a given excitation, the VDM allows the effect
of localized structural modifications to be quickly computed without a repeated global simulation of
the entire structure. Instead, the influence of the modifications on the structural response is expressed
in the form of a convolution of virtual distortions with impulse-responses to excitations at the locations
of the considered modifications. These impulse-responses encode all the necessary information about
the influence of the modifications on the structural response, and are stored in the hence so-called
dynamic influence matrices. The virtual distortions are imposed on the unmodified structure in order
to model the modifications, and have to be computed by solving a convolution-type equation, which is
usually computationally much less expensive than updating the entire structural model and performing
a global simulation of the modified structure. An important advantage of the VDM is its ability
of analytical sensitivity analysis, which allows quick gradient-based optimization techniques to be
used in SHM-related inverse damage identification problems. However, up to now only the direct
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differentiation method of sensitivity analysis has been used [6, 7]. This paper introduces the adjoint
variable method [15] to the VDM, which allows the computational costs of identification to be reduced
by one order of magnitude.

The paper is structured as follows. The next section describes the use of force distortions for
modeling of arbitrarily placed fixed supports, while their application to substructure isolation is
discussed in the third section. The fourth section concisely refers the VDM-based approach to
identification of stiffness-related damages and introduces the adjoint variable method into this context.
The numerical example of the last section tests the methodology on a modeled frame-truss structure;
the feasibility of the approach is demonstrated at the assumed Gaussian measurement error level of
5% rms.

2. MODELING OF FIXED SUPPORTS

In agreement with the general approach of the VDM, the structural response of a modified structure
(i.e. the original structure with a number of fixed supports added) to an external load is expressed in
the form of a combination of the responses of the original structure to (1) the same load (measured
response) and to (2) certain virtual force distortions that act in all DOFs of the nodes with modeled
supports to model the support forces (called the residual response). The original structure with supports
modeled by distortions will be called the distorted structure. The assumptions of linearity and small
deformations are required in order to allow the responses to be linearly combined.

The force distortions can be computed using the condition that the modeled responses in the all
nodes with modeled fixed supports vanish. Thereupon, the responses of the considered sensors can
be computed by using the same principle of superposition of the measured response of the original
structure and the responses to the (already known) distortions.

2.1. Response of the distorted structure

Assume that the distorted structure is externally loaded, denote by a;(t) its discretized response
(displacement, velocity or acceleration) in the ith DOF and by ¢,(¢) the discretized response of the
ath sensor. With the zero initial conditions and discretized time, both responses can be expressed as
the following sums of the measured and the residual parts

a;i(t) = al'(t) + > Y Bt —1)f(r), (1)
j 7=0

calt) =N (t)+ Y Y Dot —7)f)(7), 2)
j =0

where 7 and j index only the DOFs of the nodes with modeled fixed supports, o indexes the sensors,
f7(t) denotes the virtual force distortion in the jth DOF, while BJ;(t) and Dg;(t) denote the system
impulse-responses (influence matrices), which relate the virtual force in the jth DOF to the responses
in the ¢th DOF and of the ath sensor, respectively. The measured responses of the original structure are
denoted by aM(t) and eM(¢). Equations 1 and 2, rewritten for the all considered values of the indices,
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take in the matrix notation the following form of two large linear systems
a=a"+ B’ 3)
e ="+ D, “4)

where, with proper ordering of the unknown distortions, B® and D° take the form of large block
matrices with Toeplitz blocks.

If the force distortions f° are assigned such values that they properly model the effects of the fixed
supports in the chosen nodes, then (4) can be directly used to compute the sensor measurements of the
modified structure. Since the responses in all DOFs of the fixed supported nodes vanish, thatis a = 0
in (3), the proper numerical values of the force distortions can be found by solving the following square
linear system:

Bf? = —aM. (5)

The solution to (5) can be computed using any of the direct of iterative methods, the latter may be more
effective in the cases of many time steps and a large matrix BY. In this paper, the solution is computed
directly using the pseudoinverse matrix as

0 = — [B°] " aM, ©6)
which, upon substitution into (4), yields the following formula for the modeled sensor measurements:
e=eM-D°[BY]"aM. (7)

In practice the matrix B is usually ill-conditioned, hence its pseudoinverse has to be regularized. In
this paper, the truncated singular value decomposition (TSVD) is used.

2.2. Application-oriented formulation

Given an external excitation, the responses e and aM are measured experimentally by the considered
sensors (indexed by «) and by additional dedicated sensors placed in the degrees of freedom of the
nodes with modeled fixed supports, respectively. Equation 7 can be then used to compute the response
of the modified structure, provided the corresponding system impulse-responses D% (t) and B?j (t) are
both known.

However, in the intended practical applications to isolation of local substructures in large and
complex real-world structures, the model of the entire structure cannot be assumed to be available
and so the exact impulse-responses cannot be assumed to be known. Nevertheless, it can be possible
to measure experimentally the responses B;;(t) and D,;(t) of the structure to given non-impulsive
excitations f;(t) in all j-indexed DOFs of the nodes considered for fixed supports. Although the
impulse-responses BY;(t) and DY () could be then obtained by a deconvolution, it would amount
to solving a number of linear equations of the first kind with compact integral operators, which is a
necessarily ill-posed problem [16]. Therefore, it is proposed here to use directly the experimentally
measured responses Bj;(t), Daj(t) and f;(t), by expressing the virtual force f2(t) as the following
combination of the experimentally used non-impulsive excitation f;(¢) with a series of combination
coefficients c¢;(t),

T—1
) =" fit—1)e;(7), ®)
7=0
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where T is the considered number of the time steps. The formulas (1) and (2) for the system responses,
instead of the unknown impulse-responses, can be then formulated using the experimentally measured
responses as

ailt) = a0+ 30 3 Byt - r)es (o), ©)
7=0

J

ealt) :gy(t)+zipaj(t—7)cj(7). (10)

J

Since the experimental excitations f;(¢) are non-impulsive, the upper summation limits in (9) and (10)
had to be extended from ¢ to 7" — 1 and can be set back to ¢ only if f;(¢t) = 0 forall j and all ¢ < 0. As
before, both equations can be stated in the matrix form,

a=a" + Bec, (11)
e =eM 4+ Dc, (12)

and used to compute the responses of the considered sensors using purely experimental data as
e=e"-DB"aV, (13)

where BT is the (regularized) pseudoinverse of the matrix B. The Toeplitz block structure of the
matrices B and D is illustrated in Figure 4.

3. SUBSTRUCTURE ISOLATION

A series of properly placed modeled fixed support can be used to isolate numerically a substructure
from the rest of the global structure by eliminating all external influences. Given a substructure, the
modeled fixed supports have to be placed in all nodes of its boundary, so that all responses of the related
degrees of freedom vanish. The isolated substructure behaves then as fixed supported and responses by
(13) to local excitations only.

In the discussed above case of arbitrarily placed fixed supports, the virtual force distortions had
to be applied in all degrees of freedom of all nodes with modeled fixed supports. However, when
the approach is applied to substructure isolation and local monitoring, only the local response of the
considered substructure matters and all sensors are placed either on its boundary (to measure a(t)) or
in its interior (to measure M(t)). Therefore, since the response of the rest of the global structure is of
no interest, the virtual force distortions can be applied in principle anywhere outside the substructure,
that is external degrees of freedom of the global structure can be also used for this purpose, besides
the degrees of freedom of the substructure boundary. It should be only required that the placement of
the distortions allows the substructure boundary to be constrained, which can be expressed in the form
of the requirement that the influence matrix B (constructed of the experimentally measured i-indexed
responses of the boundary degrees of freedom to the experimentally used non-impulsive excitations
f;(t)) is not rank-deficient. It is a considerable simplification with practical consequences, since in
real-world structures not all degrees of freedom of the boundary of the considered substructure can be
expected to be accessible for experimental excitation.
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4. LOCAL DAMAGE MONITORING

Virtual distortions are the core idea of the VDM [6, 7, 8], which uses them for modeling and
identification of structural damages. For reasons of notational simplicity, the concept is referred here
only for elastic trusses and stiffness-related damages, although it is applicable in a similar way to other
types of structures and damage patterns [6, 17], provided the damage preserves the linearity of the
structure, which is required for the isolation process. The quick sensitivity analysis with the adjoint
variable method is introduced in the last subsection.

4.1. Virtual strain distortions

Using the approach of the VDM, the damaged isolated substructure is modeled by the distorted isolated
substructure (the intact isolated system subjected to the same excitation and certain virtual distortions),
which is equivalent in terms of identical strains and internal forces. Stiffness-related damages are
modeled by virtual strain distortions, that is by additionally introduced strains. In the case of a truss
element, the virtual strain distortion is modeled by a pair of self-equilibrated forces applied axially at
its nodes so that in the static case the element is respectively elastically strained. In the dynamic case
the distortions and the corresponding forces are time-dependent.

If the small deformation case is assumed, the strain response ¢,(t) of the ath sensor to a force
excitation of the distorted isolated substructure can be expressed in the form similar to (10) as

ety =ch(t)+ > Y Hog(t — 1)eh(r), (14)

B 1=0

where €L (¢) denotes the response of the same sensor to the same excitation in the intact isolated
substructure (called the linear response) and 5% (t) denotes the virtual distortion that is imposed on the
[th element in order to model its stiffness-related damage. The influence matrix, that is the discretized
impulse-response of the intact isolated substructure, is denoted by H? B(t) and, if necessary, can be
replaced using experimentally measured responses by a convolution similar to (8) and (13).

4.2. Stiffness modification coefficients

Let u,, denote the stiffness modification coefficient of the ath element of the substructure, that is the
ratio of its modified Young’s modulus to the original modulus:

=

= (15)
The virtual strain distortions s%(t) in (14) can be related the to stiffness modification coefficients by
the requirement of equality of the element forces in the damaged and distorted isolated substructures,
which can be stated as

EgAaeq(t) = Eada [£0(t) — 0 (1)] (16)

where A, denotes the cross-sectional area of the ath element and is assumed to be invariant (otherwise
the mass of the element is affected, which has to be modeled with a separate force distortion).
Equations 15 and 16 yield together

en(t) = [1 = pa(t)] ea(t). (17)
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Equation 14, substituted into (17), yields the following linear system:

D [bap — (1= pa) HY5(0)] €5(t) = (1 = pa)et () + (1 = ) z_j > Bag(t —1)eh(r), (18)
s =0 B

where 6,3 denotes Kronecker’s delta and the unknowns are the force distortions 5% (t). Equation 18
can be solved iteratively with respect to time steps ¢ = 0,1...,7 — 1; upon the solution, the response
D (t) of the distorted isolated substructure can be computed directly by (14).

4.3. Damage identification and sensitivity analysis

Given the measured response ¢ (¢) and a}(t) of the damaged global structure to an external load, the
response ¢, (t) of the damaged isolated substructure can be computed by (13) and compared to the
response 2 (¢) modeled by (14) in order to construct the following objective function:

T ) I AC] da(t) = ealt) — £2(0), (19)

o t=0

which depends on the stiffness modification coefficients /i, via the modeled response 2 (¢). The
objective function I’ measures the discrepancy between the measured response of the damaged isolated
substructure (more precisely, the response computed based on the measurements of the damaged global
structure) and the response modeled for given modification coefficients fi.

Identification of the damage amounts to minimization of the objective function F', and can
be performed quickly using gradient-based optimization algorithms, provided the gradient can be
computed at a reasonable cost. By the direct substitution of the differentiated (14) into the differentiated
objective function (19), the derivative of the objective function is expressed in terms of the derivatives
of the virtual distortions,

~—

36% (r

OF T-1 t 0
a—M:—ZZda(t)ZZHaﬁ(t—T) P (20)

t=0 « =0 p3

Up to now [6, 7], the gradient of the objective function has been computed by the direct differentiation
method, that is by iterative solution of the differentiated (18),

09 (¢ t—1 90 (+
> [bas = (1= o) HO5(0)] 8’;( NN —pa) Y > Hop(t—7) aff ! e
B v =0 g ¥

and by substitution of the obtained derivatives of the virtual distortions into (20). Equation 21 has to
be solved separately for every considered stiffness modification coefficient. Therefore, with the direct
method, the time complexity of the sensitivity analysis is linear with respect to the number of the
potentially damaged elements.

This paper introduces the adjoint variable method [15] into the VDM, which requires only a
single solution of the adjoint equation (equal in size to (21)) and thus makes the numerical costs
of the sensitivity analysis small and practically constant, irrespective of the number of the stiffness
modification coefficients. In order to eliminate from (20) the explicit dependence on the derivatives
of the distortions, (21) is first multiplied by the adjoint variable A (¢) and summed with respect to ¢
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and «. After interchanging the order of summation, it yields

T-1

T 0
=3 AW+ DD [halt) Zl—uﬁ ZAB 7)Bga(r — 1) 822(?. (22)

t=0 t=0 «

By interchanging the order of summation in (20) and adding the result to (22), the following formula
is obtained:

T-1
ZA S+ > [ Xald) Zl—uﬂ ZAﬁ (1) H o (7 — 1)
t=0

t=0 «
(23)
0290 (t)
- S dst | %R0,
=t P Hry
The adjoint variable A, (¢) can be assigned such values that the terms in the square brackets vanish. As
the result,
Z Ay ( (24)
au v t=0
where the adjoint variable satisfies
5 S — (1 ) S 0 M) = 3 3 da(r) B — 1)
8 =t B 25)
T—1
+Y (L—pp) D As(r)Hf(r—1).
B T=t+1
Equation 25 can be solved iteratively, backward with respect to time, fort = 7' — 1,...,1,0. Note

that for the sensitivity analysis only a single solution of (25) is necessary, irrespective of the number of
potential damages.

5. NUMERICAL EXAMPLE

A plain frame-truss structure shown in Figure 1(a) was taken as an example to test the application of the
proposed methodology of substructure isolation and local damage monitoring. The structure consists
of two parts: the top is a stiff frame which neglects axial distortions, the bottom consists of its two
supports which are 11-element trusses. The right truss is the considered substructure.

The entire structure is 6 m wide and 6 m high, originally made of steel with density 7800 kg/m? and
Young’s modulus 210 GPa. The cross-sections of the truss bars and the frame beams are 63 cm? and
120 cm?, respectively. The inertia moments of all frame beams is 9330 cm?. The Rayleigh damping
model is assumed with both damping ratios equal to 1%.

The global structure consists of 31 elements, its damage was simulated by reducing their stiffnesses.
The assumed damage extents (that is the stiffness reduction ratios ., see (15)) are shown in Figure 2,
the first 11 of them relate to the considered substructure. It has been assumed that all damage extents
are unknown, but only the first 11 are to be identified.
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A SUBSTRUCTURE ISOLATION METHOD FOR LOCAL SHM 9

Sensor placement is shown in Figure 1(b). Three acceleration sensors (denoted by by, by and bs)
were placed in the three degrees of freedom of the substructure boundary, so that they can be used for
the isolation. The strain sensors 1, 2 and 3 were placed in the interior of the substructure, so that they
can be used for its local monitoring and identification of the damage.

5.1. Response of the isolated substructure

The model of the isolated undamaged substructure was assumed to be available, so that it could serve
as the reference for damage identification (in practice, the model would have to be identified before
the damage occurs, using the same isolation method). Natural frequencies of the intact substructure
are listed in Table I. The sampling frequency was chosen to be 10000 Hz in order to guarantee that
the sampled data contain all the necessary dynamic information about the substructure. The total
considered time was 7" = 10 ms, and has been discretized into 100 time steps of At = 0.1 ms.

In order to compute by (13) the sensor responses of the isolated damaged substructure, which is
shown in Figure 1(c), two previous steps were necessary.

First, the entire structure was excited successively at the locations of the boundary sensors (that is in
all boundary degrees of freedom). Their responses and the responses of the interior strain sensors were
then used to construct the matrices B and D, respectively. The excitations used to this end are denoted
by fe1, feo and f.3, they simulate modal hammer excitations and are shown in Figure 3(abc) together
with the corresponding responses of the boundary and interior sensors. The matrices B and D have the
block Toeplitz structure, which is illustrated in Figure 4. Note that only the responses are required for
the isolation process; the excitations are plotted here for illustrative purposes only, but are not used in
the computations.

Second, given the matrices B and D, the response of the isolated damaged substructure to any
test excitation can be computed by (13) using the response vectors e and aM of the entire damaged
structure. The test excitation used in this numerical example simulates a longitudinal piezo-excitation
and acts at the location of sensor 1. The excitation is plotted in Figure 3(d), besides the recorded
responses of the boundary sensors (b1, by and b3) and of the interior sensors (1, 2 and 3), which
are used to construct the response vectors a™ and eM, respectively. Note that, in this step, both the
computed response € and the test excitation are necessary for the purposes of substructure monitoring
and damage identification.

Figure 5 shows the computed response € of the isolated damaged substructure (dotted lines) and
compares it to the response obtained directly from its theoretical model (solid lines), which is assumed
to be unknown for monitoring purposes. The responses are virtually undistinguishable, which testifies
the successful isolation of the concerned substructure. The damage extents are identified by comparing
these responses to the reference response of the undamaged isolated substructure, which is also plotted
in Figure 5 (dashed line).

5.2. Damage identification

The damage extents of the elements of the substructure have been identified by minimizing the
objective function (19). In this section, no measurement error is taken into account and the computed
responses are assumed to be accurate. Figure 6 compares the identified and the actual (assumed)
damage extents.

Note that, because the concerned substructure was numerically isolated from the global structure,
there were only 11 unknown parameters that needed to be identified instead of 31 parameters related to
all elements of the entire structure. In cases of large and complex real-world structures this reduction
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will be much larger and more significant. The isolation process decreases therefore the numerical cost
of the optimization and, in this way, increases the chances to obtain high accuracy of the damage
identification.

5.3. Influence of measurement error

In practice, the measurement error is unavoidable. Its effect on the identification accuracy is tested in
this section by polluting the simulated responses with numerically generated uncorrelated Gaussian
noise at the 5% rms level.

In order to test the influence of the measurement error on the accuracy of the identified damages,
five different cases have been considered, see Table II. The cases include the noise pollution of all
involved structural responses (al, e and eM), of the force excitation used for damage identification,
and an additional initial data denoising using built-in Matlab function “wden” with standard settings.
In Table II, the symbols s and f collectively denote the sensor responses and the force excitation,
respectively. The subscripts mark the level of the simulated error, while the superscript “w” is used to
denote that the signal has been denoised before processing. As an example, Figure 7 plots the noise-
polluted and denoised excitation and responses corresponding to the noise-free plots of Figure 3(d).

The responses of the isolated damaged substructure are computed based on the noise-polluted and
denoised measurements (cases s5y and sgo, ) and compared in Figure 8 with the responses obtained
using the noise-free measurements. The damage extents corresponding to all five considered cases have
been identified, the results are shown in Figure 9. Despite the simulated measurement error at 5% rms
level, the damage extents are in all tested cases identified relatively accurately. Moreover, the initial
denoising of the measurements have improved the identification accuracy.

6. CONCLUSIONS

This paper presents an efficient and implementation-ready method for local structural health
monitoring that can be applied for damage identification of chosen simple, small substructures of large
and complex global structures.

The considered substructure is isolated from the entire structure by placing modeled fixed supports
in all nodes of their mutual boundary. The influence of the rest of the structure is filtered out using
experimental data only, no numerical modeling is required for the isolation process. In this way local-
only, substructure-pertinent information can be extracted from the measured response of the entire
structure. The computed response of the isolated substructure can be then used for its local-only
analysis and damage identification using a variety of existing methods. The computational cost of
such a local analysis is significantly reduced in comparison to the cost of the analysis of the entire
structure.

Consistently with the isolation methodology, strain distortions and the Virtual Distortion Method
(VDM) are applied for modeling of damages of the isolated substructure. Quick analytical sensitivity
analysis and damage identification are made possible by introducing for the first time the discrete
adjoint method into the VDM.

The isolation method in the proposed form is limited to linear damages. This does not appear to be a
significant restriction of its applicability, since most of the practical damages in civil engineering seem
to be linear. However, a generalization to nonlinear cases is going to be investigated in further research.

Copyright © 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1-6
Prepared using stcauth.cls



A SUBSTRUCTURE ISOLATION METHOD FOR LOCAL SHM 11

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the Key Project of Natural Science Foundation of China
#50538020, of the Project of National Key Technology R&D Program (China) #2006BAJ0O3B0S and of Polish
Research Project PILOT no. to be provided later.

REFERENCES

. Ou J. Research and practice of smart sensor networks and health monitoring systems for civil infrastructures in mainland

China. Bulletin of National Natural Science Foundation of China 2005; 19(1):8-12.

2. Kotakowski P. Structural Health Monitoring — a Review with the Emphasis on Low-Frequency Methods. Engineering
Transactions 2007; 55(3):1-37.
3. Hou J, Ou J. Isolated Substructure Model Updating Method Based on Local Impulse Response. submitted to Engineering
Mechanics (in Chinese) 2009.
4. Hou J, Ou J. Isolated Substructure Model Updating Method Based on Local Mode. submitted to Chinese Journal of
Theoretical and Applied Mechanics (in Chinese) 2009.
5. Hou J, Ou J. Isolated Substructure Model Updating Method Based on Local Time Series. Journal of Vibration Engineering
(in Chinese) 2009; in press.
6. Holnicki-Szulc J. (ed.) Smart Technologies for Safety Engineering. John Wiley & Sons Ltd, Chichester, 2008.
7. Kotakowski P, Wikto M, Holnicki-Szulc J. The virtual distortion method — a versatile reanalysis tool for structures and
systems. Structural and Multidisciplinary Optimization 2008; 36(3):217-234.
8. Holnicki-Szulc J, Gierliniski J. Structural Analysis, Design and Control by the Virtual Distortion Method. John Wiley &
Sons Ltd, Chichester, 1995.
9. Mréz M, Holnicki-Szulc J. Remodelling of vibrating systems via frequency-domain-based virtual distortion method.
Mechanics 2005; 24(2):124-129.
10. Orlowska A, Kotakowski P, Holnicki-Szulc J. Modelling and identification of delamination in double-layer beams by the
virtual distortion method. Computers & Structures 2008; 86(23-24):2203-2214.
11. Zhang Q, Jankowski £, Duan Z. Identification of coexistent load and damage. Structural and Multidisciplinary Optimization
2009; in review.
12. Suwata G, Jankowski £. A model-less method for added mass identification. Solid State Phenomena 2009; 147-149:570—
575.
13. Inoue H, Harrigan JJ, Reid SR. Review of inverse analysis for indirect measurement of impact force. Applied Mechanics
Reviews 2001; 54(6):503-524.
14. Akgiin MA, Garcelon JH, Haftka RT. Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-
Woodbury formulas. International Journal for Numerical Methods in Engineering 2001; 50(7):1587-1606.
15. Kleiber M, Antunez H, Kowalczyk P. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element
Computations. John Wiley & Sons Ltd, Chichester, 1997.
16. Kress R. Linear integral equations. Springer, New York, 1989.
17. Putresza JT, Kotakowski P. Sensitivity analysis of frame structures — Virtual Distortion Method approach. International
Journal for Numerical Methods in Engineering 2001; 50(6):1307-1329.
Copyright © 2002 John Wiley & Sons, Ltd. J. Struct. Control 2002; 00:1-6

Prepared using stcauth.cls



12 TABLES

Table I. The first 8 natural frequencies of the intact isolated substructure
No. Ist 2nd 3rd 4th Sth 6th 7th 8th
Eigenfrequency [Hz] 2142 4572 6389 8044 10904 1160.5 13369 1397.0
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Table II. Five considered cases of noise pollution

case 1 case 2 case 3 case 4 case 5

so% and foo,  Ss% and foy,  spo and foo,  Sse and fsy, S5 and fio,
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Figure 1. Global structure, sensor placement and isolated substructure
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Figure 2. Assumed actual damage extents (stiffness reduction ratios) of the global structure
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Figure 3. Simulated excitations and the corresponding responses of the entire structure: (abc) Excitations in
the boundary DOFs of the substructure, necessary to construct the matrices B and D; (d) Test excitation of
the substructure at the location of sensor 1, necessary to obtain a™, ™ and to compute &
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Figure 4. The block Toeplitz structure of the matrix B used in the numerical example
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Figure 5. Responses of the damaged isolated substructure to the test excitation at the location of the interior
sensors 1, 2 and 3: (solid) computed directly using the assumed damage extents; (dotted) computed by (13);
(dashed) reference response of the undamaged isolated substructure
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Figure 6. Comparison of the identified and actual damage extents (no simulation of measurement error)
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Figure 8. Responses of the damaged isolated substructure to the test excitation, computed using simulated
measurements: accurate, noise-polluted and denoised
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Figure 9. Comparison of the damage extents: actual and identified in the five tested cases of noise pollution
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