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ABSTRACT 

The paper presents a methodology for an a posteriori identification of impact 
characteristics and its development. The motivation of the paper is the need for a 
general post-impact analysis technique for efficient identification of the cause and 
the scenario of a collision or a collapse. The proposed approach can be applied in a 
black box type systems for an accurate post-accident diagnosis [1, 2].

The methodology is based on analysis of local accelerations/strains developing 
during the impact, includes both elastic and elasto-plastic structural behaviour and 
can be reformulated to cover other general non-linear effects. It is fully applicable to 
all impact-exposed engineering structures, provided a dedicated sensors system is 
distributed in the structure to measure and store local response.

The  identification  itself  is  treated  as  an  inverse  problem and  thanks  to  the 
Virtual Distortion Method (VDM) [3] can be formulated analytically as a complex 
optimisation  problem:  find  the  impact  scenario  that  minimises  the  mean-square 
distance between simulated and measured dynamic responses in sensor locations. 
The significant computational effort of the problem is drastically reduced by the 
VDM approach, which makes possible an analytical sensitivity analysis and does 
not require actualisation of the global stiffness matrix  in the plastic yield phase. 
Compared  to  other  researches  [4, 5, 6]  this  formulation  comprises  simultaneous 
multiple impact and moving loads cases. Additionally, the paper proposes robust 
hybrid algorithms combining heuristic and gradient-based optimisation techniques, 
illustrated in a numerical example.  A similar approach has been used in parallel 
research on structural adaptation to impact loads [7].

VDM: STRUCTURAL DYNAMIC RESPONSE

The methodology is based on the Virtual Distortion Method (VDM), and is thus 
restricted  to  small  deformation  case.  Dynamics  of  an  elasto-plastic  structure  is 
described in  terms  of  so-called  dynamic  (or  impulse)  influence matrices,  which 
store structural response to local impulse excitations of Dirac type and can be either 
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generated  from a  numerical  model  or  measured  experimentally,  the  latter  being 
potentially more practical in case of real-world complex structures. The measurands 
can include local displacements and strains, which are easily measured with piezo 
transducers. Accelerations are also feasible, provided the response is discretised.

The load identification procedure relies on the provided matrices only, and as 
they retain full information about the modelled structure (including the boundary 
conditions) there is no need for additional modelling. Therefore, although this paper 
deals with modelled trusses, the concept is applicable to all types of structures.

Displacements and strains

The approach discretises the considered time interval into a finite number of 
time steps, which are denoted further on by t and τ. The displacement ui(t) in the i-th 
degree of freedom (DOF) of the analysed structure is a linear combination of the 
responses to all previous loading forces pn(τ) (occurring in DOFs n∈L) and plastic 
distortions (occurring in plastified elements ξ ∈Ξ), and can be expressed as follows:

u it =∑
τ =0

t

∑
n∈L

Di n
P t−τ pnτ ∑

τ=0

t

∑
ξ∈Ξ

Di ξ
ε t−τ  βξ τ . (1)

The Latin indices in Eq. (1) and thorough the paper denote degrees of freedom 
(DOFs), while the Greek indices are reserved for truss elements. The matrices  DP 

and  Dε are  the  above-mentioned  dynamic  influence  matrices  and  describe  the 
discretised  dynamic  response  of  the  structure  (displacements)  to  a  unit  impulse 
force and a unit plastic distortion applied in time step 0.  All measurands being a 
linear combination of the displacements can be represented in a similar way. As an 
example, the corresponding strain evolution  εα(t) can be represented using the so-
called strain-displacement matrix G, which relates displacements to strain field.

εα t =∑
i=1

N

Gαi ui t =∑
τ=0

t

∑
n∈L

Bα n
P

t−τ  pn τ∑
τ=0

t

∑
ξ ∈Ξ

Bαξ
ε

t−τ  βξ  τ. (2)

The dynamic influence matrices BP and Bε describe the strain evolution in time 
and can be either calculated or directly measured, e.g. with piezo transducers.

The  elasto-plastic  physical  properties  are  described  by  a  piecewise  linear 
relation. The stress σα(t) in a plastified element α in time t can be expressed in terms 
of the current value of the plastic distortion  βα(t) as well as in terms of the yield 
level σ* = Eα ε* and the hardening coefficient γα

σα t =Eα [ εαt −βαt ] ,          σα t ∓σ x
=Eα γα [ εαt ∓εα

x ] , (3)

where the sign depends on the stress sign. Combined together they yield 

βαt =1−γα[ εαt ∓εα
x ] , (4)
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where the strain  εα(t) is  expressed by Eq. (2).  Eq. (4)  rewritten  for  all  plastified 
elements α can be transformed into a set of linear equations in unknowns βα(t) and 
solved, time step by time step. Moreover, if the elements of the matrices BP and Bε 

vanish in time step 0, the distortion βα(t) occurs only on the left hand side and thus 
can be directly computed in each time step, if the yield stress level is exceeded.

Accelerations

The nodal velocities can be expressed by direct differentiation of Eq. (1). In an 
obvious analogy to a continuous-time system

u̇ it =
1
Δt

∑
n∈L

Di n
P
0 pnt 

1
Δt

∑
n∈L

Di ξ
ε
0 βξ t 

∑
τ=0

t

∑
n∈L

Ḋi n
P t−τ  pn τ∑

τ=0

t

∑
ξ ∈Ξ

Ḋi ξ
ε t−τ βξ τ .

(5)

A  further  differentiation  would  result  in  two  troublesome  components:  the 
derivatives of the acting force ∂pn(t)/∂t and of the plastic distortion ∂βα(t)/∂t. A more 
convenient  formula  can  be  obtained  by mixing  the  VDM formulation  with  the 
Newmark's  integration  scheme [8].  In each time  step the  displacements  and the 
velocities  can  be  calculated  using  the  formulae  Eq. (1)  and  Eq. (5),  but  the 
accelerations using the Newmark's constant integration parameters a0, a2 and a3:

ü it =a0 [u it −ui t−1]−a2u̇ it−1−a3 üi t−1 . (6)

Therefore, if the discretised response is considered, the acceleration  ü nt  is by 
Eq. (6), Eq. (5) and Eq. (1) a linear combination of acting forces  pn(τ) and plastic 
distortions  βα(τ),  the  combination  coefficients  can  be  calculated  iteratively  and 
expressed in a way similar to Eq. (1):

ü it =∑
τ =0

t

∑
n∈L

Ai n
P
t−τ  pn τ∑

τ=0

t

∑
ξ ∈Ξ

Ai ξ
ε
t−τ  βξ  τ. (7)

VDM: IMPACT FORCE RECONSTRUCTION

The identification task is formulated as an inverse problem and amounts to the 
minimisation of the objective function, which is a weighted sum of the mean-square 
distances between measured and modelled strains and accelerations.

Objective function

The identification aim is to determine the time evolution of the loading forces 
pn(t) that minimises the discrepancy between the measured and calculated structural 
behaviour. As both local strains and accelerations can be relatively easily measured, 
the objective function is composed of two weighted terms:

3



f  p =

∑
t=0

T

∑
α∈Σ

[ εα
M t −εα t ]

2

∑
t=0

T

∑
α∈Σ

[ εα
M t ]

2


∑
t=0

T

∑
i∈A

[ü i
M t − üit ]

2

∑
t=0

T

∑
i∈A

[ üi
M t ]

2
. (8)

Both terms  represent  scaled  mean-square distances:  the first  between locally 
measured and calculated strains, while the second between locally measured and 
calculated accelerations. The weighting denominators are necessary to balance the 
influence of both components. The set of elements with strain gauges is denoted 
by Σ, A denotes the the set of nodes with accelerometers.

Gradients

At the current stage of the research calculations of the gradient in the plastic 
case would involve a huge number of O(T 

3) components, where T is the number of 
time steps. Therefore, this paper is limited to the case of elastic structures only.

The derivative of the objective function  f with respect to each unknown force 
pn τ can be expressed in terms of the corresponding derivatives of εαt  and ü it :

∂ f  p

∂ pnτ 
=−2[∑t=0

T

∑
α∈Σ

[ εα
M
t ]

2]
−1

∑
t=0

T

∑
α∈Σ

[ εα
M
t −εαt ]

∂εα t 

∂ pn τ

−2[∑t=0

T

∑
i∈A

[ üi
M
t ]

2]
−1

∑
t=0

T

∑
i∈A

[ üi
M
t −üi t ]

∂ ü it 

∂ pnτ 
,

(9)

which in the elastic case ( βα τ≡0) are easily calculated by Eq. (2) and Eq. (7)

∂ εαt 

∂ pnτ 
=Bαn

P
t−τ⋅1{τt } ,          

∂ ü it 

∂ pnτ 
=Aαn

P
t−τ ⋅1{τt } . (10)

EFFICIENT OPTIMISATION ALGORITHM

Force reconstruction is not straightforward due to the large number of unknowns 
pn(τ) (number of time steps x number of optimised DOFs, 3,200 in the numerical 
example considered below). Nevertheless, a thorough analysis of the form of the 
objective function leads to an efficient optimisation procedure [9]. Further speed-up 
can be achieved by representing the space-time (i.e. n-τ) distribution of acting forces 
pn(τ) in the form of a linear combination of normalised atomic distributions:

pnτ =∑
m ,κ

cm, κ⋅hm, κn , τ ,          ∀
m, κ [∑n ,τ

hm ,κ n , τ =1]. (11)

The general accurate case is equivalent to the assumption  hm ,κ n, τ =1{n=m ,κ=τ }. 
The derivatives of the objective function f with respect to the coefficients cm,κ can be 
easily calculated by Eq. (2), Eq. (7), Eq. (9) and the chain rule.
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Basic formulae

The calculated strains Eq. (2) and accelerations Eq. (7) are linear combinations 
of the acting forces pn(τ) and hence of the coefficients cm,κ. Therefore, the objective 
function f Eq. (8) is a convex quadratic function of cm,κ and can be exactly expanded 
around a given coefficient vector c=<cm,κ>

f cd = f c∇ f cT d
1
2

d T H d , (12)

where H is the (constant, positive semidefinite) Hessian of f with respect to cm,κ. The 
following formulae  can  be  derived  using  Eq. (11),  Eq. (12)  and the  linearity  of 
calculated strains and accelerations (Eq. (2), Eq. (7)):

∇ f cT d=−2C1∑
t=0

T

∑
α∈Σ

εα
d t  [εα

M t −εα
ct ]−2C2∑

t=0

T

∑
i∈A

ü i
d  t [ üi

M  t−üi
ct ] ,

d i
T H d j=2C1∑

t=0

T

∑
α∈Σ

εα
dit ⋅εα

d jt 2C2∑
t=0

T

∑
i∈A

üi
di t ⋅ü i

d j t  ,
(13)

where C1 and C2 denote the weighting coefficients (inverse of the denominators in 
Eq. (8));  εα

ct ,  üi
c  t denote the strains and accelerations calculated with Eq. (2) 

and Eq. (7) for the loading defined by the coefficient vector c=<cm,κ> and Eq. (11).

Line optimisation

Even for  simple  structures  the  Hessian  occurring  in  Eq. (12)  is  too  large to 
compute and invert it directly, which would be necessary to find the minimum in 
one step only. Therefore, a series of line optimisations has to be performed; each 
step amounts to finding at a given point c the line minimum along a direction d, i.e. 
the value of  s that minimises  f(c+s·d), which is a convex quadratic function. The 
summands in Eq. (12) can be directly calculated using the formulae Eq. (13). Thus

smin=−
∇ f cT d

d T H d
. (14)

Conjugate directions

The steepest descent method assumes d=−∇ f c  at each optimisation step, but 
it  suffers  from  slow  convergence.  However,  the  objective  function  f is  an 
unbounded quadratic form, hence choosing in each step a direction  dn+1 conjugate 
with all  previous directions d0, ...,  dn leads by Eq. (14) directly to the minimum in 
the whole subspace generated by all considered directions. Therefore, starting with 
the steepest descent direction and making use of the conjugacy criterion di

THdj = 0,

d n1=−∇ f cn1∑
i=0

n

ηi d i , where ηi=
∇ f cn1

T H d i

d i
T H d i

. (15)
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The algorithm

The most expensive in the algorithm below are the calculations of the gradient 
and of the corresponding initial response. Moreover, at large step numbers  n, it is 
faster to calculate the final response directly than to superpose the stored responses.

Initial calculations:
initialise: c0=0 and εα

c0t=0, ü i
c0t =0

calculate d 0=−∇ f  p0 and εα

d 0t , ü i

d 0t 

normalise: D=d 0
T H d 0

 and d 0=d 0/D, εα
d 0t =εα

d 0 t/ D, ü i
d 0t =üi

d 0t/ D

calculate the line minimum s=−∇ f c0
T d 0

store d 0 and εα

d 0t , ü i

d 0t 

The loop:
update: cn1=cns⋅d n and εα

cn1t =εα
c

n

ts⋅εα

d
n

t , ü i

cn1t =ü i
c

n

t s⋅üi

d
n

t 

calculate d n1=−∇ f  cn1 and εα
d n1t , ü i

d n1 t 
conjugate direction: for (i = 0; i <= n; ++i)

η=−d n1
T H d i

d n1=d n1η⋅d i and εα
d n1t =εα

d n1 t η⋅εα
d

i

t, ü i

d n1 t =ü i
d n1 t η⋅üi

d
i

t 

normalise:
D=d n1

T H d n1
 and d n1=d n1/D,εα

d n1t =εα
d n1 t / D,ü i

d n1 t =ü i
d n1 t / D

calculate the line minimum s=−∇ f cn1
T d n1

store d n1 and εα
d n1t , ü i

d n1 t 

NUMBER OF SENSORS AND FURTHER SPEED-UP

Several ideas to speed-up the optimisation process and reduce the number of 
sensors  can  be  considered.  They can  be  either  purely  numeric  or  can  rely  on 
heuristics  derived  from engineering  common  sense  and/or  post-accident  on-site 
inspection (number and size of impact areas, possible impact locations etc.).

The time complexity of each algorithm step is O(C S T 2), where C is the number 
of distributions being superposed (coefficients cm,κ), S is the number of sensors and 
T is the number of time steps. An obvious idea is to divide a long time interval into 
several (not too short) subintervals and to perform the optimisation for each of them 
separately, assuming the loading identified in the preceding subintervals is accurate. 
Another idea can utilise the fact that impact is a short and localised event, hence 
most  of the acting forces  and the coefficients  cm,κ are zero.  Thus,  to  reduce the 
number of unknowns C the identification can be split into phases: initial phases use 
a limited number of fuzzy atomic distributions (possibly including space search) to 
identify impact areas, followed by phases of localised, more accurate identification.

Minimisation of the objective function  f corresponds to solving a large-scale 
linear system. To guarantee the uniqueness of the solution the unknowns shall not 
exceed in number the equations,  provided the system is not singular. Hence, the 
number of distributions being superposed  C shall not exceed the total number of 
measurements εα

M
t  and ü n

M
t  (time steps x the number of sensors). Otherwise there 

would  exist  a  subspace  of  feasible  solutions,  which  would  result  in  the  same 
structural  response  in  sensor  locations.  Measurement  noise,  inevitable  in  a  real 
system, may increase the required number of sensors.
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Thus a restriction of the search in space and/or time can reduce both the number 
of necessary sensors and the optimisation time. Moreover, the objective function 
can be modified to include a measure of variation of identified force evolutions as 
in [4]; this would significantly reduce the number of necessary sensors but make the 
process heavily relying on the heuristic assumption of force smoothness: it would 
identify the smoothest, but not necessarily the actual loading.

NUMERICAL EXAMPLE

Fig. 1 shows the modelled elastic truss structure. It is 4 m x 2 m; the elements 
are 66 mm2 in cross-section, 0.5 m or 0.52 m long, and made of steel (7,800 kg/m3; 
200 GPa). Strain sensors were located in the 32 diagonal elements of the bottom 
plane. The left  hand side corner nodes were deprived of all  degrees of freedom, 
while the right hand side corner nodes were free in horizontal directions only.

Simulated impact forces

The simulated loading modelled a vertical  force moving along the numbered 
nodes across the structure (Fig. 1), thus it was triangular in shape in each node, see 
Fig. 2.  The  corresponding  strains  in  sensor  locations  have  been  calculated  and 
stored to model the measurements εα

M t.

FIGURE 1 Elastic truss structure modelled in the numerical example
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FIGURE 2 Simulated loading model 
a vertical force moving along the nodes 1, 2, 3, 4

FIGURE 3 Impact forces identified in node 4
(respective optimisation time: 3 s, 10 s, 33 s, 108 s)
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Impact identification

An accurate identification has been performed: hm ,κ n , τ =1{n=m ,κ=τ }. There are 32 
strain sensors, hence force evolutions in all 32 vertical DOFs of the top plane can be 
simultaneously identified.  The time interval of 10 ms was divided into 100 time 
steps, 300 optimisation steps were made. Fig. 3 shows as an example the identified 
vertical force evolution in node 4 after 10, 30, 100 and 300 optimisation steps, the 
respective optimisation times on a desktop PC were 3 s, 10 s, 33 s and 108 s.

CONCLUSIONS AND FURTHER WORK

A robust methodology for impact load identification is described. It  includes 
simultaneous multiple impact and moving load cases and  is based on local strain 
and/or acceleration measurements, which can be stored in a  black box system for 
reliable a posteriori reconstruction of accident scenario.

The research is ongoing to reduce the number of necessary sensors and verify 
the described heuristics, investigate the issues of the best sensor locations and the 
sensitivity to measurement noise. A corresponding algorithm for plate structures is 
currently being tested and an experimental verification is prepared.
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