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Optimization problem

Optimization problem = objective function + domain

Objective function f : D→ R is the function to be minimized
Domain D of the objective function arguments

Unconstrained, D = Rn

Constrained with
equality constraints, D = {x ∈ Rn|gi(x) = 0, i = 1, . . . , m1}
or inequality constraints,
D = {x ∈ Rn|gi(x) ≥ 0, i = m1 + 1, . . . , m1 + m2}

where gi are called the constraint functions.

Optimization problem (minimization)
Find x̂ ∈ D such that

∀x∈D f (x) ≥ f (x̂)
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Active and inactive constraints

Each point x in the domain, x ∈ D, is called a feasible point.

An inequality constraint at a feasible point can be either
active gi (x) = 0 or

inactive gi (x) > 0.

The equality constraints are always active at all feasible points.
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Local and global minima

Local minimum
x̂ ∈ D is called a local minimum of f , iff there exists a
neighborhood Ω ⊂ Rn of x̂ (that is, an open set containing x̂),
such that x̂ minimizes f within Ω ∩D:

∀x∈Ω∩D f (x) ≥ f (x̂)

Global minimum
x̂ ∈ D is called a global minimum of f , iff it minimizes f within the
whole domain D:

∀x∈D f (x) ≥ f (x̂)
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Constrained vs. unconstrained optimization

Unconstrained optimization: an easy case
f (x , y) = x2 + 2y2 (one global minimum)
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Constrained vs. unconstrained optimization

Unconstrained optimization: a hard case
f (x , y) = x2 + 2y2 + cos 4π(x + y)y

(infinitely many local minima, two global)
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Constrained vs. unconstrained optimization

Constraints may turn an easy case into a hard case
f (x , y) = x2 + 2y2, cos 4π(x + y)y ≤ 0
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Constrained vs. unconstrained optimization

Constraints may also turn a hard case into an easy case

f (x , y) = x2 + 2y2 + cos 4π(x + y)y
x + y ≥ 0, y ≥ 0, 2x + 4y ≤ 3
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Optimality criteria in unconstrained optimization

If the objective function f is smooth enough, the necessary and
sufficient first- and second order optimality criteria in
unconstrained optimization can be stated in a simple form:
necessary 1st order If x̂ is a local minimum of f , then ∇f (x̂) = 0

(that is, a minimum must be a stationary point).
sufficient 2nd order If ∇f (x̂) = 0 and ∇2f (x̂) is positive definite,

then x̂ is a (strict) local minimum of f .

However, in constrained optimization only the sufficient criterion
holds. The necessary criterion is not valid: in a local minimum the
gradient may be non-vanishing.
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Optimality criteria in unconstrained optimization

The necessary criterion may fail in the constrained case
f (x , y) = x + y4 + (x2 − 1)2, x ≥ −1

2

-2
-1

0
1

2 -2

-1
0
1
2

0
10

20

-2
-1

0
1

2 -2 -1 0 1 2
-2

-1

0

1

2



14/47

Outline Basics Handling constraints Types of problems Linear programming Reading Homework 9

Equality constraints

An equality constrained problem
f (x , y) = x + y , g(x , y) = x2 + 9y2 − 4 = 0
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At the minimum the isolines of the objective function are tangent
to the constraint.
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Equality constraints

An equality constrained problem
f (x , y) = x + y , g(x , y) = x2 + 9y2 − 4 = 0
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At the minimum the isolines of the objective function are tangent
to the constraint. In other terms, the gradients of the objective
function and of the constraint are co-linear.
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Equality constraints
Consider an optimization problem with one regular2 equality
constraint g(x) = 0. Let x be feasible. Any direction d that

upholds the constraint ∇g(x)Td = 0 and
is a descent direction ∇f (x)Td < 0.

can be used to further decrease the objective function. Hence a
necessary condition for optimality is: there is no direction d
satisfying both of the above. And it is possible only when ∇f (x)
and ∇g(x) are co-linear, that is when

∇f (x) = λ∇g(x)

for some λ. This amounts to the condition ∇xL(x, λ) = 0, where
L(x, λ) is the Lagrangian,

L(x, λ) = f (x)− λg(x).
2Regular, that is with non-vanishing and continuous gradient ∇g .
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The method of Lagrange multipliers

The method of Lagrange multipliers
Assume x̂ is a local minimum of f (x), subject to

gi (x) = 0 i = 1, 2, . . . ,m1,

and the gradients of gi are all continuous and non-vanishing. Then
there exists a vector λ of Lagrange multipliers such that

∇xL(x̂,λ) = 0,

where L(x,λ) is the Lagrangian:

L(x,λ) = f (x)−
m1∑
i=1

λigi (x).
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Inequality constraints

Consider an optimization problem with one regular inequality
constraint g(x) ≥ 0. Let x be feasible. Any direction d that

upholds the constraint g(x) +∇g(x)T d ≥ 0 and
is a descent direction ∇f (x)Td < 0.

can be used to further decrease the objective function.

These conditions amount to
inactive constraint (g(x) > 0) a single requirement ∇f (x)Td < 0

(since the constraint holds for all d short enough).
active constraint (g(x) = 0) both conditions simplify to

∇f (x)Td < 0 and ∇g(x)T d ≥ 0.
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Inequality constraints

The direction d is a feasible descent direction, if
case g(x) > 0 ∇f (x)Td < 0
case g(x) = 0 ∇f (x)Td < 0 and ∇g(x)T d ≥ 0.
A necessary condition for optimality (that is, for no feasible
descent direction) is hence:
case g(x) > 0 ∇f (x) = 0
case g(x) = 0 ∇f (x) and ∇g(x) are co-linear and point in the

same direction: ∇f (x) = λ∇g(x) for some λ > 0.
The necessary condition for optimality can be expressed in a form
common to both cases as:

∇xL(x, λ) = 0 and λg(x) = 0

for some λ > 0. λg(x) = 0 implies that λ can be positive only
when the constraint is active.
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Karush-Kuhn-Tucker (KKT) conditions

In the general case, minimize f subject to

gi (x) ≥ 0 i = 1, 2, . . . ,m1

gi (x) = 0 i = m1 + 1, . . . ,m1 + m2,

and provided the gradients of the constraints are continuous and
regular enough,

In fact, many formalizations of this “regularity” require-
ment are possible, the most common is called LICQ (Lin-
ear Independence Constraint Qualification): the gradients
of the active constraints are linearly independent.

then the necessary first-order conditions for optimality can be
stated in the form of the Karush-Kuhn-Tucker (KKT) conditions.
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Karush-Kuhn-Tucker (KKT) conditions

Karush-Kuhn-Tucker (KKT) conditions
Assume x̂ is a local minimum of f (x), subject to

gi (x) ≥ 0 i = 1, 2, . . . ,m1

gi (x) = 0 i = m1 + 1, . . . ,m1 + m2,

the gradients of gi are continuous and LICQ holds at x̂. Then
there exists a unique vector λ of Lagrange multipliers such that,
for i = 1, 2, . . . ,m1, λi ≥ 0 and

∇xL(x̂,λ) = 0 and λigi (x̂) = 0,

where L(x,λ) is the Lagrangian:

L(x,λ) = f (x)−
m1+m2∑

i=1
λigi (x).
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Hard and soft constraints

All constraints can be categorized into two general classes:
1 A constraint is a hard constraint, if it cannot be broken. For

example, an objective function involving a logarithm or a
square root is undefined for negative arguments. All points
generated by an optimization algorithm must be feasible with
respect to the hard constraints.

2 A constraint is called a soft constraint, if it can be broken
during the search. For example, a required upper bound on
the total cost can be broken during the search, provided that
the solution obeys it. Some optimization algorithms may
(temporarily) generate infeasible points with respect to the
soft constraints to speed-up the optimization process.
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Penalty functions

Constraints can be effectively dropped by adding to the objective
function a penalty function to penalize the points that approach or
break the constraints:

Exterior quadratic penalty function (soft constraints only):

fp(x, α) = f (x) + 1
2α

m1∑
i=1

g2
i (x) + 1

2α

m2∑
i=m1+1

[min(0, gi (x))]2 ,

Interior log and inverse barriers (inequality constraints only):

fp(x, α) = f (x)− α
∑m2

i=1 log gi (x),
fp(x, α) = f (x) + α

∑m2
i=1 [gi (x)]−1 .

The penalty function can be added also to the Lagrangian instead
of the objective function. This yields the method of augmented
Lagrangian.
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Penalty functions

Minimization problem
f (x , y) = x(x + 1) + y2 x2 − y − 1 ≥ 0

Quadratic penalty function Inverse barrier
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Penalty functions

Penalty functions:
Transform constrained problems into unconstrained, which are
easier to handle.
In general, the minimum of the augmented function is found,
which only approximates the minimum of the objective
function. The optimization usually has to be repeated with
gradually steeper barrier slope, that is with α decreasing to
zero.
Increase the ill-conditioning of the problem (the augmented
Lagrangian method performs often better with respect to
conditioning).
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3 Types of problems
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Types of problems

Linear programming the function and the constraints are linear
Quadratic programming the function is quadratic and the

constraints linear
Nonlinear programming the function or at least one of the

constraints is non-linear
Convex programming the function and the domain are convex

(linear equality constraints, concave inequality
constraints).

Bound-constrained optimization upper or lower bounds on
variables are the only constraints

etc.
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4 Linear programming
Formulation of the problem
Methods
KKT conditions
Simplex method
Interior point methods
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Linear programming — the problem

Linear programming (LP)

Minimize cTx
subject to Ax = b, x ≥ 0.

The objective function and the constraints are linear.
The domain is defined by a set of (standarized) linear
constraints. All general linear constraints (Ax ≥ b) can be
converted to the standard form by introducing slack variables.
In geometric terms the domain is a closed convex polytope
(an intersection of hyper-planes). In practical cases it is
bounded and non-empty.
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Linear programming — constraint standarization

Minimize cTx subject to Ax = b, x ≥ 0.

The following more general linear constraints

Ax ≥ b, x ≥ 0

can be converted to the standard form by introducing slack
variables w,

Ax−w = b, x ≥ 0, w ≥ 0.
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Linear programming — constraint standarization

Minimize cTx subject to Ax = b, x ≥ 0.

Another form of the constraints,

Ax = b, (without the bounds)

can be converted to the standard form by splitting all xi into their
nonnegative and nonpositive parts, xi = x+

i − x−i , where

x+
i = max{0, xi} ≥ 0, x−i = −min{0, xi} ≥ 0.

In the new variables the problem takes the standard form

Minimize
[

c −c
] [

x+

x−

]
, subject to

[
A −A

] [
x+

x−

]
= b,

x+ ≥ 0, x− ≥ 0.
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Linear programming — methods

The objective function and the
constraints are linear, hence the
minimum is attained in the vertices of
the boundary of the domain (provided
it is bounded and non-empty).

LP algorithms fall into two classes:
1 Some start and remain on the boundary of the domain

polytope, moving through the vertices only and choosing in
each successive step an edge leading to a “better” vertex
(simplex method).

2 Some use also interior points to speed-up the computations
(interior point methods).
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Linear programming — KKT conditions

Minimize cTx subject to Ax = b, x ≥ 0, A ∈ Rm×n

The Lagrangian: L(x,π,κ) = cTx− πT(Ax− b)− κTx.
The KKT conditions are both necessary and sufficient: x̂ is a global
minimum, if and only if there exist vectors κ and π such that

ATπ + κ = c,
κ ≥ 0,

x̂iκi = 0 for i = 1, 2, . . . , n

and x̂ is feasible, that is

Ax̂ = b,
x̂ ≥ 0.
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Simplex method

Dantzig’s3 development of the simplex method in the
late 1940s marks the start of the modern era in optimiza-
tion. This method made it possible for economists to for-
mulate large models and analyze them in a systematic and
efficient way. Dantzig’s discovery coincided with the de-
velopment of the first digital computers, and the simplex
method became one of the earliest important applications
of this new and revolutionary technology.

Jorge Nocedal, Stephen Wright
Numerical Optimization

3George B. Dantzig (1914–2005), a “founding father” of linear
programming and the simplex method.
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Simplex method

The simplex method starts in a vertex of the domain and moves
through the vertices choosing in each successive step an edge
leading to a “better” vertex (e.g. a vertex with a lower or equal
value of the objective function).

Assume the matrix A is m× n and full row rank. A feasible point x
is a vertex, if

It has at most m non-zero components xi .
There exists an m-element set Ix ⊂ {1, 2, . . . , n} containing
indices i of all non-zero components xi such that the matrix
AIx composed of the corresponding columns of A is
nonsingular.

Moving from a vertex to an adjacent vertex corresponds to
replacing one index in the index set Ix and recomputing the
components of x.
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Simplex method

The simplex method has some non-trivial points:
Finding the initial vertex can be difficult.
There are several alternative rules to choose the best from the
adjacent vertices.

Moreover, in some large practical problems cycling may occur:
several (zero-length) degenerate steps can lead back to an already
visited vertex. An anticycling strategy is then necessary.

It turned out that the simplex method has an important deficiency:
although in almost all practical problems it is very quick, the
general time complexity is exponential. There are (rather artificial)
problems, in which the method visits all vertices before reaching
the optimum.
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Interior point methods

The in general exponential time complexity of the simplex method
has motivated the development of interior point methods with
polynomial complexity:

The simplex method takes a lot of easy-to-compute steps
around the boundary of the domain, while
the interior point methods use a smaller number of expensive
steps through interior points of the domain and approach the
optimum point of the boundary only in the limit.
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Interior point methods

The feasibility and KKT optimality conditions for the LP problem
of minimizing cTx subject to Ax = b, x ≥ 0 are

ATπ + κ = c,
Ax = b,

xiκi = 0 for i = 1, 2, . . . ,m

and

x ≥ 0,
κ ≥ 0.

The most popular class of interior point methods (primal-dual
methods) solves the equality conditions using nonlinear Newton’s
method and biasing the search direction to strictly obey the
inequality conditions.
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Primal-dual methods

The equality conditions can be stated as

F (x,π,κ) =

 ATπ + κ− c
Ax− b
XKe

 =

 0
0
0

 ,
where

X = diag {x1, . . . , xn},
K = diag {κ1, . . . , κn},
e = [1, . . . , 1]T.

Due to the term XK these equations are mildly nonlinear. The
primal-dual methods solve it using nonlinear Newton’s method.
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Primal-dual methods
Nonlinear Newton’s method linearizes the equation,

0 = F (x + ∆x,π + ∆π,κ + ∆κ)

≈ F (x,π,κ) + J(x,π,κ)
[

∆x ∆π ∆κ
]T
,

that is

J(x,π,κ)
[

∆x ∆π ∆κ
]T

= −F (x,π,κ),

and solves it to find the search direction. For primal-dual feasible4

x, π and κ it reduces to solving 0 AT I
A 0 0
K 0 X


 ∆x

∆π
∆κ

 =

 0
0

−XKe

 .
4That is, for x, π and κ feasible for both the primal problem (Ax = b) and

the dual problem (ATπ + κ = c).
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Primal-dual methods — biasing the search direction

The direction computed by solving

J(x,π,κ)
[

∆x ∆π ∆κ
]T

= −F (x,π,κ)

is used as a linear search direction.

As the number of iterations grows, xiκi → 0, and usually only a
small step can be taken before the bounds x ≥ 0 and κ ≥ 0 are
violated. The primal-dual methods bias thus the computed
direction to keep a proper distance from the bounds.
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Primal-dual methods — the central path method

The central path is an arc of feasible points parametrized by τ > 0,
which ensures a proper distance from the bounds x ≥ 0 and κ ≥ 0:

ATπ + κ = c,
Ax̂ = b,

x̂iκi = τ,

x̂ ≥ 0,
κ ≥ 0.

As τ → 0, the central path can converge only to the solution.

The method biases the direction towards a point on the central
path defined by a certain τ > 0, instead of the exact solution
(τ = 0), in order to equalize the distance from all the bounds and
allow for much longer steps in further iterations.
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Primal-dual methods — the central path method

The central path method computes the biased direction by solving

F (x,π,κ) =
[

0 0 σµe
]T
,

where

e = [1, . . . , 1]T,

µ = 1
n

n∑
i=1

xiκi = xTκ

n

and σ ∈ [0, 1] is a parameter weighting between centering (σ = 1)
and progressing towards the exact solution σ = 0.
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5 Further reading
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Further reading

Jorge Nocedal, Stephen Wright
Numerical Optimization
2nd edition, Springer 2006.
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Homework 9 (15 points + 5 extra)
Linear programming

1 Consider the following linear problem:

Maximize 2x + 2y + z

subject to

 1 1 1
1 1 0
0 0 1


 x

y
z

 ≤
 5

4
4


x ≥ 0, y ≥ 0, z ≥ 0.

1 (5 points) The constraints define a 3D polytope. What shape
is it? What is the number of its vertices, edges and facets?

2 (5 points) Solve the problem.
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Homework 9 (15 points + 5 extra)
Linear programming

2 An intersection of a 2D plane

ax + by + cz = d

and a unit cube{
{x , y , z} ∈ R3| 0 ≤ x , y , z ≤ 1

}
is a (sometimes degenerate) 2D polytope.

1 (5 points) What types of polytopes can be obtained this way
(triangle? square? …?) For each polytope type state the
equation of the corresponding plane.

2 (5 points extra) What types of polytopes can be obtained by
intersecting a 2D plane with a four dimensional cube?

E-mail the answers to ljank@ippt.pan.pl.

mailto:ljank@ippt.pan.pl
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