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1 Line search methods
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Line search methods
The basic outline of all line search algorithms is:

Select any feasible point x0.
Having calculated points x0, x1, . . ., xk , iteratively calculate
the successive point xk+1:

1 Choose the direction dk of optimization.
2 Starting from xk , perform a (usually approximate) 1D

optimization in the direction of dk , that is find sk ∈ R that
sufficiently2 decreases fk and |f ′

k |, where

fk(s) = f (xk + s dk).

Then, take the step

xk+1 := xk + sk dk .

3 Check the stop conditions.
2Sufficiently, that is significantly enough to guarantee convergence to the

minimum. Exact minimization is usually not necessary; it can be costly and
sometimes it can even make the convergence slower.
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Line search methods

1 Choose the direction of
optimization.

2 Perform a (usually
approximate) 1D
optimization in that
direction.

3 Check the stop
conditions

Two problems:
1 Direction choice
2 Step size
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2 Zero order methods
Coordinate descent
Powell’s direction set
Rosenbrock method
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Zero order methods — Coordinate descent
The simplest method. All
coordinate directions e1, …, en
are used sequentially,

dk := ek mod n.

The simplest method
Very slow or even
nonconvergent.
In 2D and with exact line
minimizations equivalent
to the steepest descent
(besides the first step).

The set of the search directions
can be periodically modified to
include directions deemed to be
more effective.
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Zero order methods — Powell’s direction set

Given x0,
1 Optimize along all the

directions e1, . . ., en and
yield the points x1, . . ., xn.

2 Modify the directions
e1 := e2

· · ·
en−1 := en

en := xn − x0

3 Optimize along en and
yield the point x0.

4 Repeat until stop
conditions are satisfied. -1 -0.5 0 0.5 1
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Zero order methods — Powell’s direction set

For a quadratic objective function and exact line minimizations,
Powell’s method generates a set of conjugate directions (besides
the first step).

Iteratively generated directions tend to “fold up on each other”
and become linearly dependent. Possible solutions:

Every m iterations reset the directions to the original set.
Every m iterations reset the directions to any orthogonal basis
(making use of some of the already generated directions).
When modifying the directions (step 2), instead of discarding
the first direction e1, discard the direction of the largest
decrease (since it is anyway a major component of the newly
generated direction en).
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Zero order methods — Rosenbrock method

The Rosenbrock method3 involves approximate optimization
that cycles over all the directions.
The direction set is modified after each approximate
optimization.

Single stage of the Rosenbrock method
Given x0.

1 Approximately optimize f using all the directions e1, . . ., en
and yield the points x1, . . ., xn.

2 Modify the directions so that en := xn − x0. Orthogonalize
the resulting set.

3 Let x0 := xn.

3H.H. Rosenbrock. An Automatic Method for Finding the Greatest or Least
Value of a Function. The Computer Journal 3(3):175–184, 1960. Full text:
http://dx.doi.org/10.1093/comjnl/3.3.175

http://dx.doi.org/10.1093/comjnl/3.3.175
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Zero order methods — Rosenbrock method

Approximate optimization
1 Let ∆si be an arbitrary initial step length in the ith direction.
2 Let α > 1 and β ∈ (0, 1) be two given constants (step

elongation and step shortening).
3 Repeat

for every direction i = 1, . . . , n
1 Make a step ∆si in the ith direction.
2 If successful (f not increased), then ∆si = α∆si ,

else if failed (f increased), then ∆si = −β∆si .

until the loop is executed N times
or until all ∆si become too small
or until at least one success and one failure in each direction.

Rosenbrock method requires a cheap objective function.
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Zero order methods — Rosenbrock method

Rosenbrock method
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3 Steepest descent
Simplified version of the method
Plotting the number of iterations
Attraction basins of minima
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Simplified steepest descent

The steepest descent method is often implemented in the following
simplified version:

xk+1 = xk − α∇f (xk),

where α > 0 is a given coefficient. This version
does not satisfy the Wolfe (strong Wolfe, Goldstein and Price,
backtracking) conditions and so
can perform extremely poorly and should not be used.

However, investigation of its properties reveals astonishing
complexity4. Consider the following characteristics:

the number of iterations necessary for the method to converge
to the minimum from a given starting point,
the attraction basins of the minima.

4See C. A. Reiter’s home page at
http://webbox.lafayette.edu/˜reiterc.

http://webbox.lafayette.edu/~reiterc
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Plotting the number of iterations

The simplified steepest descent method:

xk+1 = xk − α∇f (xk).

For every value of the coefficient α, the regions of quick and slow
convergence of the method can be illustrated using the following
characteristics of starting points x0:

nsteps(x;α, ε) = arg mink min
m
|xk − x?

m| < ε, with x0 = x,

where x?
m are all local minima of the objective function f .

Thus, nsteps(x;α, ε) is the number of the iterations necessary for
{xk} to converge from x to any minimum of f .
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Plotting the number of iterations

Consider the Rosenbrock “banana” function, focus on [0, 2]× [1, 3]

f (x , y) = 100(y − x2)2 + (x − 1)2

The function f has a single global
minimum at (x?, y?) = (1, 1).
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Plotting the number of iterations

Legend
few iterations many iterations

The scale
begins at zero iterations
ends at the maximum number of iterations in the current
frame (but not more than 20 000).

All images have been computed with the resolution 400× 4005.
The accuracy ε = 0.001.

5600× 600 for the accompanying video.
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Plotting the number of iterations



19/64

Outline Line search Zero order Steepest descent Conjugate gradient Newton Quasi-Newton Least-squares

Plotting the number of iterations — zoom for α = 0.00195
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Plotting the attraction basins of minima

The simplified steepest descent method:

xk+1 = xk − α∇f (xk).

For every value of the coefficient α, the attraction basins of the
minima of the objective function can be illustrated by plotting

nmin(x;α, ε) = arg minm |x?
m − lim

k→∞
xk |, x0 = x,

if {xk} is convergent and 0 otherwise.

Thus, nmin(x;α, ε) is the number of the minimum to which {xk}
converges from x (or 0, if {xk} is nonconvergent).
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Plotting the attraction basins of minima
Consider a two-minimum modification of the Rosenbrock “banana”
function:

f (x , y) = 100(y − x2)2 + (x + 1
2)2(x − 1)2

The function f has two global
minima at (−1

2 ,
1
4) and (1, 1).
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Plotting the attraction basins of minima

Legend
no convergence minimum (1, 1) minimum (−1

2 ,
1
4)

All images have been computed with the resolution 400× 4006.
The accuracy ε = 0.001. Up to 20 000 iterations performed.

6600× 600 for the accompanying video.
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Plotting the attraction basins of minima
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Outline

4 Conjugate gradient methods
Conjugate directions
Linear conjugate gradient
Nonlinear conjugate gradient
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Search directions
Conjugate direction

Any (smooth enough) function can be approximated by a
quadratic form, that is by its second-order Taylor series,

f (xk + s dk) ≈ f (xk) + s dT
k∇f (xk) + 1

2s2dT
k∇2f (xk) dk .

The gradient of the approximation is

∇f (xk + s dk) ≈ ∇f (xk) + s∇2f (xk) dk .
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Search directions
Conjugate direction

If f (xk) is the exact minimum along the previous search direction
dk−1, the gradient at the minimum xk is perpendicular to the
search direction dk−1,

dT
k−1∇f (xk) = 0.

It is reasonable to expect that the minimization along the next
direction dk does not jeopardize the minimization along the
previous direction dk−1. Therefore, the gradient in the points
along the new search direction dk should still stay perpendicular
to dk−1. Thus we require that

0 = dT
k−1∇f (xk + s dk)

≈ dT
k−1

[
∇f (xk) + s∇2f (xk) dk

]
= s dT

k−1∇2f (xk) dk .
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Conjugate directions

Conjugate direction
Every direction dk , which satisfies

0 = dT
k−1∇2f (xk) dk ,

is said to be conjugate to dk−1 (at x with respect to f ).

Conjugate set
A set of vectors di that pairwise satisfy 0 = dT

i ∇2f (x) dj , is called
a conjugate set (at x with respect to f ).

If f is an n-dimensional quadratic form, then n global conjugate
directions can be always found. If f is also positive definite, then
single exact optimization along each of them leads directly to the
global minimum.
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Conjugate directions

Coordinate descent Conjugate directions
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Linear conjugate directions

Let A be an n × n positive definite matrix and

f (x) := c + xTb + 1
2xTAx,

r(x) := ∇f (x) = b + Ax,

and di (i = 1, 2, . . . , n) be mutually conjugate directions with
respect to A,

dT
i Adj = 0 for i 6= j .
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Linear conjugate directions

According to the line search principle

xk+1 := xk + skdk ,

where sk minimizes fk(s) := f (xk + sdk). For quadratic f , fk is a
parabola with the exact minimizer

sk = − dT
k rk

dT
k Adk

,

where rk = r(xk) = ∇f (xk) = b + Axk .
The matrix A is n × n, hence exactly n such optimum steps along
all conjugate directions di lead to the global minimum,

xn = x? = x0 +
n−1∑
k=0

skdk .
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Linear conjugate directions
Choosing the next direction

Let di , i = 0, 1, . . . , k be (already computed) conjugate directions
with respect to A. Then

xk+1 = x0 +
k∑

i=0
sidi

is the minimum in the subspace

x0 + span {d0, . . . ,dk}

and thus the gradient rk+1 = ∇f (xk+1) is perpendicular to
span {d0, . . . ,dk} and so

rT
k+1di = 0, i = 0, 1, . . . , k.
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Linear conjugate directions
Choosing the next direction

The next conjugate direction dk+1 can be hence computed using
the gradient rk+1 as

dk+1 = −rk+1 +
k∑

i=0
ηk+1,i di ,

where the coefficient ηk+1,i ensure conjugacy of dk+1 with all the
previous directions,

dT
k+1Adi = 0, i = 0, 1, . . . , k

which yields

ηk+1,i =
rT
k+1Adi

dT
i Adi

.

Therefore

dk+1 = −rk+1 +
k∑

i=0

rT
k+1Adi

dT
i Adi

di .
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Linear conjugate directions

Linear conjugate directions (for a quadratic form)

dk+1 := −rk+1 +
k∑

i=0
ηk+1,i di , ηk+1,i =

rT
k+1Adi

dT
i Adi

,

where
f (x) = c + xTb + 1

2xTAx,

r(x) := ∇f (x) = b + Ax.

Therefore, the computation of
the next conjugate direction dk+1 requires k + 1 coefficients
ηk+1,i (i = 0, 1, . . . , k) to be computed
the entire set of all conjugate directions di , i = 0, . . . , n − 1,

requires O(n2) time with a large constant and
can be numerically unstable (a scheme similar to
Gram-Schmidt orthogonalization).
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Linear conjugate gradient method

Fortunately, it turns out that if the first direction d0 is the steepest
descent direction,

d0 = −r0 = −∇f (x0),

then in

dk+1 := −rk+1 +
k∑

i=0
ηk+1,i di

it is enough to take into account the last direction only,

dk+1 := −rk+1 + ηk dk = −rk+1 +
rT
k+1Adk

dT
k Adk

dk ,

and the resulting direction dk+1 is automatically conjugate to all
previous directions di , i = 0, 1, . . . , k.

This is called (a bit misleadingly) the conjugate gradient method.
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Linear conjugate gradient method
Using

rk+1 − rk = skAdk ,

dk+1 = −rk+1 + ηk dk ,

rT
k+1di = 0 for i = 0, 1, . . . , k,

it is easy to
express the optimum step length sk for the use with
xk+1 := xk + skdk as

sk = − dT
k rk

dT
k Adk

= rT
k rk

dT
k Adk

.

simplify ηk for the use with dk+1 := −rk+1 + ηk dk ,

ηk =
rT
k+1Adk

dT
k Adk

=
rT
k+1rk+1

rT
k rk

.
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Linear conjugate gradient method

Linear conjugate gradient
Given f (x) = c + xTb + 1

2xTAx, chose the initial point x0.
Initialize: r0 := b + Ax0, d0 := −r0 and k := 0.

While stop conditions not satisfied do

sk := rT
k rk

dT
k Adk

,

xk+1 := xk + skdk ,

rk+1 := rk + skAdk ,

ηk :=
rT
k+1rk+1

rT
k rk

,

dk+1 := −rk+1 + ηk dk ,

k := k + 1.

This is basically
the CG method
for solving
Ax = −b
(Lecture B-3).
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Nonlinear conjugate gradient method

The conjugate gradient algorithm can be (almost) directly used
with non-quadratic objective functions, provided the exactly
minimizing step is replaced with a line search. It is inexpensive
numerically (no Hessian, just gradients; data storage only one step
back) and in general yields a superlinear convergence.

The line search need not to be exact. However, the step length sk
has to satisfy the strong Wolfe conditions with 0 < c1 < c2 < 0.5
(Lecture C-2) in order to assure that the next direction
dk+1 := −rk+1 + ηk dk is a descent direction with

ηk :=
rT
k+1rk+1

rT
k rk

= ∇f (xk+1)T∇f (xk+1)
∇f (xk)T∇f (xk) .
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Nonlinear conjugate gradient method

Nonlinear conjugate gradient
Given f (x), chose the initial point x0.
Initialize: r0 := ∇f (x0), d0 := −r0 and k := 0.
While stop conditions not satisfied do

1 Find step length sk satisfying strong Wolfe conditions with
0 < c1 < c2 < 0.5, set xk+1 := xk + skdk .

2 Compute rk+1 := ∇f (xk+1).
3 Compute

Fletcher-Reeves

ηk :=
rT
k+1rk+1

rT
k rk

Polak-Ribière

ηk := max
[
0,

rT
k+1(rk+1 − rk)

rT
k rk

]

4 Compute dk+1 := −rk+1 + ηk dk .
5 Update the step number k := k + 1.
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Nonlinear conjugate gradient method
Iteratively generated search directions dk can tend to “fold up on
each other” and become linearly dependent. Therefore, the
directions should be periodically reset by assuming ηk := 0, which
effectively restarts the procedure of generating the directions from
the scratch (that is, the steepest descent direction).

Restart every N iterations.
With quadratic objective function and exact line searches,
consecutive gradients are orthogonal, rT

i rj = 0 if i 6= j . The
procedure can be thus restarted when

rT
k+1rk

‖rk+1‖‖rk‖
> c ≈ 0.1,

which in practice happens rather frequently.
Polak-Ribière method restarts anyway when the computed
correction term is negative (rather infrequently).
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5 Newton methods
Inexact Newton methods
Modified Newton methods
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Newton methods
The Newton direction dk := −

[
∇2f (xk)

]−1∇f (xk) is based on
the quadratic approximation to the objective function:

f (xk + x) ≈ f (xk) + xT∇f (xk) + 1
2xT∇2f (xk) x.

If the Hessian ∇2f (xk) is positive definite (the approximation is
convex), the minimum is found by solving

∇f (xk + dk) ≈ ∇f (xk) +∇2f (xk) dk = 0.

The Hessian has to be computed (a 2nd order method).
Inverting a large Hessian is time-consuming.
Far from the minimum the Hessian may not be positive
definite and dk may be an ascent direction.

Quick quadratic convergence near the minimum.
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Newton methods

Far from the minimum
the Hessian may not be positive definite and
the exact Newton direction may be an ascent direction.

In practice the Newton method is implemented as
Inexact Newton methods, which solve ∇2f (xk) dk = −∇f (xk)

inexactly to assure that dk is a descent direction
(Newton–conjugate gradient method).

Modified Newton methods, which modify the Hessian matrix
∇2f (xn) so that it becomes positive definite. The
solution to Hk dk = −∇f (xk), where Hk is the
modified Hessian, is then a descent direction.
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Inexact Newton methods

Inexact solution of ∇2f (xk) dk = −∇f (xk)
Is quicker, since the Hessian is not inverted.
Can guarantee that the inexact solution is a descent direction.

Stop condition is usually based on the norm of the residuum,
normalized with respect to the norm of the RHS (∇f (xk)):

‖rk‖
‖∇f (xk)‖ = ‖∇

2f (xk) dk +∇f (xk)‖
‖∇f (xk)‖ ≤ αk ,

where at least αk < α < 1 or preferably αk → 0, for example

αk = min
[1
2 , ‖∇f (xk)‖

]
or αk = min

[1
2 ,
√
‖∇f (xk)‖

]
.
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Inexact Newton methods
Newton–conjugate gradient

The Newton–conjugate gradient method solves in each step

∇2f (xk) dk = −∇f (xk)

iteratively (an iteration in each step of the iteration) using the
linear conjugate gradient method, with the stop conditions

Direction pi+1 of a negative curvature is generated,

pT
i+1∇2f (xk)pi+1 ≤ 0,

or the Newton equation is inexactly solved,

‖rk‖
‖∇f (xk)‖ ≤ αk ,

where
αk = min

[1
2 ,
√
‖∇f (xk)‖

]
.
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Modified Newton methods

Modified Newton methods modify the Hessian matrix ∇2f (xk) (as
little as possible) by

Hk = ∇2f (xk) + Ek ,

so that it becomes sufficiently positive definite and the solution to
the modified equation[

∇2f (xk) + Ek
]

dk = −∇f (xk)

is a descent direction. There are several possibilities to choose Ek :
1 A multiple of identity, Ek = τ I.
2 Obtained during Cholesky factorisation of the Hessian with

immediate increase of the diagonal elements (Cholesky
modification).

3 others (Gershgorin modification, etc.).
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Outline

6 Quasi-Newton methods
Approximating the Hessian
DFP method
BFGS method
Broyden class and SR1 method
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Quasi-Newton methods

All Newton methods require the Hessian to be computed and some
of them (modified Newton) invert or factorize it. Both tasks are
time-consuming and error-prone.

Quasi-Newton methods compute the search direction using a
gradient-based approximation to the Hessian (or to its inverse):

dk = −H−1
k ∇f (xk) or dk = −Bk∇f (xk).

Quasi-Newton methods are useful
in large problems (the Hessian is dense and too large),
with severely ill-conditioned Hessians,
when second derivatives are unavailable.
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Quasi-Newton methods
Approximating the Hessian

Approximation is based on gradients and updated after each step
using the previous step length and the change of the gradient.
Approximate the function around the last two iterates:

fk−1(x) := f (xk−1 + x) ≈ f (xk−1) + xT∇f (xk−1) + 1
2xTHk−1x,

fk(x) := f (xk + x) ≈ f (xk) + xT∇f (xk) + 1
2xTHkx,

where xk := xk−1 + sk−1dk−1.
Assume the previous-step approximate Hessian Hk−1 is known.
The next approximation Hk can be obtained by comparing the
gradients in xk−1:

∇fk(−sk−1dk−1) = ∇fk−1(0).
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Quasi-Newton methods
Approximating the Hessian

The requirement ∇fk(−sk−1dk−1) = ∇fk−1(0) leads to

Hk (xk − xk−1) = ∇f (xk)−∇f (xk−1),

which is usually stated in the shorter form and called the
secant equation

Hkyk = gk ,

where yk := xk − xk−1,

gk := ∇f (xk)−∇f (xk−1).

Such symmetric positive definite Hk exists (non-uniquely) only if

yT
l Hkyk = yT

k gk > 0,

which is guaranteed if the step length sk satisfies Wolfe conditions.
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Quasi-Newton methods
Approximating the Hessian

Since the solution is non-unique, Hk should be chosen so that it is
the closest approximate to the last step approximation Hk−1:

Find a symmetric positive definite matrix Hk , which sat-
isfies the secant equation Hkyk = gk and minimizes
‖Hk −Hk−1‖ for a given norm ‖ · ‖.

The approximation is used to find the quasi-Newton direction
dk = −H−1

k ∇f (xk), which requires inverting the approximated
Hessian. The task is thus often reformulated to find an
approximation to the inverse Bk = H−1

k :
Find a symmetric positive definite matrix Bk , which satis-
fies the inverse secant equation Bkgk = yk and minimizes
‖Bk − Bk−1‖ for a given norm ‖ · ‖.
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Quasi-Newton methods
Approximating the Hessian

In both cases, the solution is easy to find if the weighted Frobenius
norm7 is used,

‖A‖W = ‖W1/2AW1/2‖F,

where the the weighting matrix W satisfies the inverse (or direct)
secant equation. If W−1 (or W) is the average Hessian over the
last step, ∫ 1

0
∇2f (xk−1 + τsk−1dk−1) dτ,

then two updating formulas are obtained:
DFP (Davidon, Fletcher, Powell) formula for Hessian updating and
BFGS (Broyden, Fletcher, Goldfarb, Shanno) formula for inverse

Hessian updating.
Both formulas use rank two updates to the previous step matrix.

7The Frobenius norm of a matrix A is defined as ‖A‖2
F =

∑
i,j a2

ij .
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Quasi-Newton methods — DFP method

DFP (Davidon, Fletcher, Powell) Hessian updating formula

HDFP
k =

(
I− gkyT

k
gT

k yk

)
Hk−1

(
I− ykgT

k
gT

k yk

)
+ gkgT

k
gT

k yk

The corresponding formula for updating the inverse Hessian

BDFP
k = Bk−1 −

Bk−1gkgT
k Bk−1

gT
k Bk−1gk

+ ykyT
k

gT
k yk
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Quasi-Newton methods — BFGS method

BFGS (Broyden, Fletcher, Goldfarb, Shanno) inverse Hessian
updating formula

BBFGS
k =

(
I− ykgT

k
gT

k yk

)
Bk−1

(
I− gkyT

k
gT

k yk

)
+ ykyT

k
gT

k yk

The corresponding formula for updating the Hessian

HBFGS
k = Hk−1 −

Hk−1ykyT
k Hk−1

yT
k Hk−1yk

+ gkgT
k

gT
k yk
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Quasi-Newton methods — Broyden class

The DFP and the BFGS formulas for updating the Hessian can be
linearly combined to form a general updating formula for the
Broyden class methods.

Broyden class methods

Hk = (1− φ)HBFGS
k + φHDFP

k .

The restricted Broyden class is defined by 0 ≤ φ ≤ 1.
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Quasi-Newton methods — SR1 method

A member of the Broyden class is the SR1 (symmetric rank one)
method, which yields rank one updates to the Hessian.

SR1 method

φSR1
k = yT

k gk
yT

k (gk −Hk−1yk)

The weighting coefficient φSR1
k may fall outside [0, 1] interval.

The SR1 formula approximates Hessian well, but
the approximated Hessian might not be positive semidefinite,
the denominator in the above formula can vanish or be small.

It is thus usually used with modified Newton methods (trust
region) and sometimes the update is skipped.
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Outline

7 Least-squares problems
Hessian approximation
Gauss-Newton method
Levenberg-Marquardt method
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Least-squares problems
In many problems (like parameter fitting, structural optimization,
etc.) the objective function is a sum of squares (residuals):

f (x) = 1
2r(x)Tr(x) = 1

2

n∑
i=1

r2
i (x).

Then

∇f (x) =
n∑

i=1
ri (x)∇ri (x) = J(x)Tr(x),

∇2f (x) =
n∑

i=1
∇ri (x)∇ri (x)T +

n∑
i=1

ri (x)∇2ri (x)

= J(x)TJ(x) +
n∑

i=1
ri (x)∇2ri (x),

where J(x) is the Jacobi matrix of the residuals, J(x) =
[

∂ri (x)
∂xj

]
i ,j

.
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Least-squares problems — Hessian approximation

If the residuals ri (x), at least near the minimum,
vanish (the optimum point yields is a good fit between the
model and the data), that is ri (x) ≈ 0,
or are linear functions of x, that is ∇2ri (x) ≈ 0,

then the Hessian simplifies to

∇2f (x) = J(x)TJ(x) +
n∑

i=1
ri (x)∇2ri (x)

≈ J(x)TJ(x),

which is always positive semidefinite and can be computed using
the first derivatives of the residuals only.
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Least-squares problems — Gauss-Newton method

Substitution of the approximation into the Newton formula,

∇2f (xk) dk = −∇f (xk),

yields the

Gauss-Newton formula

J(xk)TJ(xk) dk = −J(xk)Tr(xk),

which may be problematic, if J(xk)TJ(xk) is not a good
approximation to the Hessian.
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Least-squares problems — Levenberg-Marquardt method

A modified version of the Gauss-Newton method is called the
Levenberg-Marquardt method8

Levenberg-Marquardt formula[
J(xk)TJ(xk) + λI

]
dk = −J(xk)Tr(xk).

The parameter λ allows the step length to be smoothly controlled:
For small λ, the steps are Gauss-Newton (or Newton) in
character and take advantage of the superlinear convergence
near the minimum.
For large λ, the identity matrix dominates and the steps are
similar to steepest descent steps.

Sometimes a heuristic is advocated, which uses the diagonal of the
approximated Hessian J(xk)TJ(xk) instead of the identity matrix.

8Notice that this is essentially a trust-region approach.
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Least-squares problems — Levenberg-Marquardt method

(quadratically) approximated objective function
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Least-squares problems — Levenberg-Marquardt method

The rule with the diagonal of the Hessian matrix (instead of the
identity) is a heuristic only. It can be quicker, but sometimes (and
not so rare) may be also much slower.
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Least-squares problems — Levenberg-Marquardt method
In the Levenberg-Marquardt formula,[

J(xk)TJ(xk) + λI
]

dk = −J(xk)Tr(xk),

the parameter λ controls the step length. It is updated in each
optimization step based on the accuracy

ρ = f (xk)− f (xk + dk)
fk(0)− fk(dk) = actual decrease

predicted decrease

of the quadratic approximation fk to the objective function

f (xk + x) ≈ fk(x) := f (xk) + xTJ(xk)Tr(xk) + 1
2xTJ(xk)TJ(xk)x.

The denominator in the formula for ρ simplifies to

fk(0)− fk(dk) = 1
2dk [λdk −∇f (xk)] .
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Least-squares problems — Levenberg-Marquardt method

Given the coefficients ρmin ≈ 0.1, ρmax ≈ 0.75 and k ≈ 25.

Single optimization step of the Levenberg-Marquardt method
Compute r(xk), J(xk), J(xk)TJ(xk) and −∇f (xk).
do

1 Solve [
J(xk)TJ(xk) + λI

]
dk = −J(xk)Tr(xk).

2 Compute f (xk + dk).
3 Compute

ρ = f (xk)− f (xk + dk)
fk(0)− fk(dk) = actual decrease

predicted decrease .

4 If ρ < ρmin, then λ = kλ,
else if ρ > ρmax, then λ = λ/k.

while ρ < 0
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