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Unconstrained minimization

Unconstrained minimization problem
Given an objective function F : D = Rn → R, find such x̂ ∈ D that

∀x∈DF (x̂) ≤ F (x).
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Unconstrained minimization
Iterative solution process

The basic idea of all classical optimization algorithms

1. Initialization
Select any feasible initial point x0, for example

a first guess,
the best point from a set of random points (Monte Carlo),
zero, etc.

2. Iteration
while (stop conditions are not satisfied)
do having calculated points x0, x1, . . ., xk ,

compute the successive point xk+1.
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Unconstrained minimization
Stop conditions

At some step the iteration has to stop. Commonly used stop
conditions:

1 No significant improvement of the objective function

|F (xk+1)− F (xk)| ≤ ε.

2 Sufficiently small gradient norm

‖∇F (xk)‖ ≤ ε.

3 Steps getting too small

‖xk+1 − xk‖ ≤ ε.

4 Practical (time, no of steps, etc.).
5 Solution attained (discrete problems, some constrained

optimization problems).
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Unconstrained minimization
Rate and order of convergence

An optimization algorithm can be “fast” or “slow”.

General performance measures of an optimization algorithm are
given by its

rate of convergence,
order of convergence.
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Unconstrained minimization
Rate of convergence

Rate of convergence
Let xk → x?. The convergence rate is r , if

‖xk+1 − x?‖
‖xk − x?‖ −→ r .

If the optimization is convergent, the limit r must satisfy r ∈ [0, 1].

This is sometimes called Q-convergence (or Q-linear convergence),
where Q stands for “quotient”.

superlinear if r = 0 (for example xk = e−k2)
linear if r ∈ (0, 1) (for example xk = e−k)

sublinear if r = 1 (for example xk = 1/k)
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Unconstrained minimization
Order of convergence

Practical optimization algorithms converge linearly or superlinearly.
They can be further classified by their order of convergence.

Order of convergence
Let xk → x?. The order of convergence is p (p ≥ 1), if

‖xk+1 − x?‖
‖xk − x?‖p → const.

Q-convergence requires the error to decrease in each step. A more
general notion is R-convergence, which

1 Dominates the sequence of errors by a sequence of scalars,
‖xk − x?‖ ≤ ek ;

2 Investigates the Q-convergence of ek .
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Unconstrained minimization
Rate and order of convergence

Typical optimization algorithms have rates/orders of convergence
ranging from sublinear (very slow) to quadratic (very quick). If the
search point is sufficiently close to the minimum, then typically
Below linear Coordinate descent (or non-convergent)

Linear Steepest descent method
Superlinear Quasi-Newton method
Quadratic Newton and conjugate gradient methods

Usually, there is a tradeoff between the
order of convergence (total number of steps) and
numerical cost of each step.

If sensitivity analysis is very costly, the highest possible order might
not always be the best choice.
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2 Two main approaches
Line search methods
Trust region methods
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Two main approaches

In general, all classical optimization algorithms fall into two main
categories:

1 line search methods
2 trust region methods
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Line search methods
The basic outline of all line search algorithms is:

Select a feasible point x0.
Having calculated points x0, x1, . . ., xk , iteratively calculate
the successive point xk+1:

1 Choose the direction dk of optimization.
2 Starting from xk , perform a (usually approximate) 1D

optimization in the direction of dk , that is find sk ∈ R that
sufficiently2 decreases fk and |f ′k |, where

fk(s) = f (xk + s dk).

Then, take the step

xk+1 := xk + sk dk .

3 Check the stop conditions.
2Sufficiently, that is significantly enough to guarantee convergence to the

minimum. Exact minimization is usually not necessary; it can be costly and
sometimes it can even make the convergence slower.
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Line search methods

1 Choose the direction of
optimization.

2 Perform a (usually
approximate) 1D
optimization in that
direction.

3 Check the stop
conditions

Two problems:
1 Direction choice
2 Step size
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Trust region methods

Trust region methods use a simple approximation to f , which
is trusted only in a given vicinity of xk .
This trust region is usually defined as {x ∈ Rn : ‖Dx‖ ≤ ∆}.

Thus, the basic outline of all trust region methods is:
Select a feasible point x0, as well as

trust region shape D ∈ Rn×n,
trust region maximum and minimum sizes ∆max,∆0 ∈ R,

Having computed points x0, x1, . . ., xk ,
1 approximate f with fk
2 minimize fk within the trust region to obtain xk+1
3 compute f (xk+1) to verify accuracy of approximation and

update the size of the trust region
if necessary, repeat the current step

4 check the stop conditions
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Trust region methods

1 Approximate the objective function f in the vicinity of xk with
a simple-to-optimize3 function fk ,

f (xk + x) ≈ fk(xk + x), for ‖Dx‖ ≤ ∆k .

The vicinity of xk in which we trust the approximation is called
the trust region. Its size in the kth step is defined by ∆k .

2 Set xk+1 to the minimum of fk within the current trust region

xk+1 := xk + arg min
‖Dx‖≤∆k

fk(xk + x).

3Usually quadratic: fk (xk + x) := f (xk ) + xT∇f (xk ) + 1
2 xT∇2f (xk )x, but

other choices are also possible (e.g. rational).
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Trust region methods
Size of the trust region does matter: ease of minimization

If ∆k is large, the minimum of fk lies inside the trust region
and can be usually easily found.
If it is small, the minimum lies on the border (constraints!).
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Trust region methods
Size of the trust region does matter: accuracy

Size of the trust region
expresses our trust in the
accuracy of approximation.

Freudenstein & Roth function
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Trust region methods
Trust region size

3 Chose the new trust region size ∆k+1 based on

ρ = f (xk)− f (xk+1)
fk(xk)− fk(xk+1) = actual improvement

predicted improvement .

If ρ < 0, repeat the approximation with a smaller ∆k .
4 Check the stop conditions.
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Trust region methods
Constrained vs. unconstrained approach

Trust region methods rely on constrained minimization of
fk(xk + x), subject to trust region constraint ‖Dx‖ ≤ ∆k .

In general, this is equivalent to unconstrained minimization of

fk(xk + x) + αkxTDx, (?)

where α > 0 controls the trust region size4.
If fk is a quadratic approximation, minimization of (?) reduces
to solving a linear system.
This approach is used by the modified Newton method and
the Levenberg-Marquardt method (Lecture C-3).

4∆k is a non-increasing function of αk
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3 Line search — search directions
Steepest descent
Conjugate direction
Newton direction
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Search directions

In general, if gradient/Hessian is available, there are three common
choices for the next search direction:

1 steepest descent direction (slow),
2 direction conjugate to the previous search direction,
3 Newton or quasi-Newton direction (quick).

If gradient/Hessian is not available, an approximation can be used.
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Search directions
Steepest descent direction

The steepest descent direction is the most obvious search direction.

The steepest descent direction

dk+1 = −∇f (xk)

It is based on the linear approximation to the objective function:

f (xk + x) ≈ f (xk) + xT∇f (xk).

It gives rise to the steepest descent optimization method (in each
step simply choose the steepest descent direction), which is
intuitive, however can be very slow for difficult objective functions.
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Search directions
Steepest descent direction

If the exact minimum xk+1
of f along the previous
direction dk is found,

xk+1 := xk + s dk ,

0 = d
ds f (xk + s dk),

the steepest descent
direction at the line
minimum, −∇f (xk+1), is
perpendicular to dk :

0 = dT
k∇f (xk+1).
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Search directions
Conjugate direction

Any (smooth enough) function can be approximated by a
quadratic form, that is by its second-order Taylor series,

f (xk + s dk) ≈ f (xk) + s dT
k∇f (xk) + 1

2s2dT
k∇2f (xk) dk .

The gradient of the approximation is

∇f (xk + s dk) ≈ ∇f (xk) + s∇2f (xk) dk .
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Search directions
Conjugate direction

If f (xk) is the exact minimum along the previous search direction
dk−1, the gradient at the minimum xk is perpendicular to the
search direction dk−1,

dT
k−1∇f (xk) = 0.

It is reasonable to expect that the minimization along the next
direction dk does not jeopardize the minimization along the
previous direction dk−1. Therefore, the gradient in the points
along the new search direction dk should still stay perpendicular
to dk−1. Thus we require that

0 = dT
k−1∇f (xk + s dk)

≈ dT
k−1

[
∇f (xk) + s∇2f (xk) dk

]
= s dT

k−1∇2f (xk) dk .
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Search directions
Conjugate direction

Conjugate direction
Every direction dk , which satisfies

0 = dT
k−1∇2f (xk) dk ,

is said to be conjugate to dk−1 (at xk with respect to f ).

Conjugate set
A set of vectors di that pairwise satisfy 0 = dT

i ∇2f (x) dj , is called
a conjugate set (at x with respect to f ).

If f is an n-dimensional quadratic form, then n global conjugate
directions can be always found. If f is also positive definite, then
single exact optimization along each of them leads directly to the
global minimum.
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Search directions
Conjugate direction

Coordinate/steepest descent Conjugate directions
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Search directions
Newton direction

Newton direction

dk = −
[
∇2f (xk)

]−1
∇f (xk)

The Newton direction is based on the quadratic approximation to
the objective function,

f (xk + dk) ≈ f (xk) + dT
k∇f (xk) + 1

2dT
k∇2f (xk) dk .

If the Hessian ∇2f (xk) is positive definite (the function is convex),
the minimum is found by solving

0 = ∇f (xk + dk) ≈ ∇f (xk) +∇2f (xk) dk .

There is a natural step length in the Newton direction (unlike in
the case of the steepest descent or the conjugate directions).
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Search directions
Quasi-Newton direction

Quasi-Newton direction

dk = −H−1
k ∇f (xk), where Hk ≈ ∇2f (xk)

The quasi-Newton direction is computed using an approximation
to the exact Hessian or to its inverse.

The approximation is based on the gradients and can be either
iteratively updated in each step using the previous step length
and the related change of the gradient (e.g. BFGS method) or
in least-squares problems, built from scratch in every step
using some gradient-related information from the current step
only (Gauss-Newton or Levenberg-Marquardt methods).
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4 Line search — step size
Wolfe and strong Wolfe conditions
Goldstein and Price conditions
Implementation
Convergence
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Step size

At every step of the optimization, when the search direction dk is
already decided, the next problem is to find a step size sk (along
this direction) that decreases

fk(s) = f (xk + s dk)

and guarantees that {xi} converges to a minimum.

The first natural idea is to look for the exact minimizer along dk .
It is often too expensive to find.
In certain cases, it may even make the convergence slower.

On the other hand, requiring only any reduction of the objective
function, fk(sk) < fk(0), is not enough, since the steps can be then
too short and the optimization may stall far from the minimum.
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Step size

Practical conditions require the step size to
1 sufficiently decrease the objective function and
2 be not too short

The most commonly used conditions for inexact line search are
Wolfe (or strong Wolfe) conditions that are used when the
gradient is numerically inexpensive
Goldstein and Price conditions that are used when the
gradient is numerically costly.
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Wolfe conditions

Let fk(s) = f (xk + s dk).

Wolfe conditions
The step size sk satisfies the Wolfe conditions, if it

sufficiently decreases the objective function,

fk(sk) ≤ fk(0) + c1 sk f ′k(0). (W1)

This condition prevents also too large steps and is called the
Armijo condition.
is not too short,

f ′k(sk) ≥ c2f ′k(0). (W2)

The constants c1 and c2 should satisfy 0 < c1 < c2 < 1. It is
usually recommended that c1 < 0.5.

f ′k(s) denotes the directional derivative, f ′k(s) = dT
k ∇f (xk + s dk).
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Wolfe conditions

(W1): fk(sk) ≤ fk(0) + c1 sk f ′k(0) (W2): f ′k(sk) ≥ c2f ′k(0)

OK OK

s

fk
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Strong Wolfe conditions

(W1): fk(sk) ≤ fk(0) + c1 sk f ′k(0) (W2): |f ′k(sk)| ≤ c2|f ′k(0)|

OK OK

s

fk
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Goldstein and Price conditions

The second of the Wolfe (or strong Wolfe) conditions

fk(sk) ≤ fk(0) + c1sk f ′k(0),
f ′k(sk) ≥ c2f ′k(0),

requires gradient computations (f ′k(sk)) at each trial step sk . If the
gradient is numerically costly, an approximation can be used,

f ′k(sk) ≈ fk(sk)− fk(0)
sk

,

which yields Goldstein and Price conditions.
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Goldstein and Price conditions
Let fk(s) = f (xk + s dk).

Goldstein and Price conditions
The step size sk satisfies the Goldstein and Price conditions, if

fk(sk) ≤ fk(0) + c1sk f ′k(0), (G1)

fk(sk)− fk(0)
sk

≥ c2f ′k(0). (G2)

Goldstein and Price conditions are equivalent to two bounds on the
average slope,

c2f ′k(0) ≤ fk(sk)− fk(0)
sk

≤ c1f ′k(0).

The constants should satisfy 0 < c1 < c2 < 1 and are often chosen
so that c1 + c2 = 1.
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Goldstein and Price conditions

c2f ′k(0) ≤ fk(sk)− fk(0)
sk

≤ c1f ′k(0).

OK OK

s

fk

Note that Goldstein and Price conditions may exclude all local
minimizers of f .
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Implementation

In Wolfe, strong Wolfe as well as in Goldstein and Price conditions:

First condition ensures a sufficient decrease of the
objective function and prevents too long steps

Second condition ensures the step is not too short.
that is, if the

first condition fails, the step should be decreased,
second condition fails, the step should be increased.

If f is smooth and bounded from below, there exist step lengths
that satisfy the Wolfe (strong Wolfe, Goldstein and Price)
conditions.



41/58

Outline Unconstrained minimization Two main approaches Search directions Step size 1D optimization

Implementation — backtracking
The backtracking approach might be easier implementable and still
prevents too short steps. Initially, select

the initial step length sini

the Armijo constant c ∈ (0, 1)
the contraction factor ρ ∈ (0, 1)

In each iteration:
s = sini

while fk(s) > fk(0) + c s f ′k(0) do s = ρs
sk = s

In practice
The initial step size sini can be varied in successive iterations
(but should not converge to zero).
The contraction factor ρ might be allowed to vary in each
iteration, provided that 0 < ρmin ≤ ρ ≤ ρmax < 1.
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Convergence
after Nocedal, Wright

Let the objective function f be bounded from below and have
Lipschitz-continuous gradients (bounded slopes of gradient norms).
If the line search satisfies Wolfe (or strong Wolfe, or Goldstein and
Price) conditions, then∑

k
‖∇f (xk)‖2 cos2 αk <∞, (*)

where αi is the angle between the steepest descent and the search
directions in the ith step,

cosαi = −dT
i ∇f (xi )

‖di‖‖∇f (xi )‖
.

Equation (*) is called the Zoutendijk condition and implies that

‖∇f (xk)‖ cosαk → 0.
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Convergence
after Nocedal, Wright

The Zoutendijk condition, provided the search directions do not
become too perpendicular to gradients5, implies ‖∇f (xk)‖ → 0.
Therefore, the search is attracted to a stationary point for:

Steepest descent line search, since cosαk = 1.
Newton and quasi-Newton line searches, if all Hessians
∇2f (xk) (or approximated Hessians Hk)

are positive definite and
have uniformly bounded condition numbers, ‖Hk‖‖H−1

k ‖ < c,
since then cosαk ≥ 1

c .

For conjugate gradient line searches it is possible to prove that
only a subsequence of gradient norms converges to zero,

lim inf
k→∞

‖∇f (xk)‖ = 0.

5That is cosαk ≥ ε > 0, at least for k large enough.
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5 Exact 1D optimization
Zero-order methods
First-order methods
Second-order methods
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1D optimization methods

0th order (non gradient-based, only f known)
golden section and bracketing
quadratic interpolation or approximation

1st order (f and f ′ known)
steepest descent method
quasi-Newton and modified quasi-Newton method

2nd order (f , f ′ and f ′′ known)
Newton method
modified Newton method

Hybrid methods (like the Brent’s method) are also possible.

In principle, most of these methods should be combined with step
length conditions checking. Then they can be also used for inexact
search.
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Zero-order methods — golden section

s
L

s
1

s
2

s
U

4.71"2.6"

s

f

The minimum must be bracketed and the function unimodal
Exact error estimation (minimum bounds)
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Zero-order methods — golden section
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The minimum must be bracketed and the function unimodal
Exact error estimation (minimum bounds)
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Zero-order methods — golden section

Assumptions:
1 The minimum is bracketed between given sL and sU

2 The function f (s) is unimodal between sL and sU

Initialization:
sU > sL ≥ 0 bracketing the minimum of f (s)
φ := 1+

√
5

2 (the golden fraction)

s1 := sU − sU−sL

φ s2 := sL + sU−sL

φ

While sU − sL > ε do
If f (s1) < f (s2)

then sU := s2, s2 := s1, s1 := sL + sU − s2
else sL := s1, s1 := s2, s2 := sL + sU − s1
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Zero-order methods — bracketing
Bracketing can used to bracket the minimum.
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Zero-order methods — bracketing
Bracketing can used to bracket the minimum.
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Zero-order methods — bracketing

Assumptions:
The function f (s) is unimodal for s ≥ sL

Initialization:
sL and ∆s
φ := 1+

√
5

2 (the golden fraction)

sU := sL + ∆s s1 := sU − sU−sL

φ

While f (s1) > f (sU) do
sL := s1, s1 := sU, sU := sU + φ(s1 − sL)

As the result, the minimum is bracketed between sL and sU
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Zero-order methods — quadratic interpolation

s
1

s
2

s
3

s

f

No error
estimation
Concavity
problem

Quick near the minimum
Can be combined with the golden
section method (Brent’s method)
Backtracking is natural
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Zero-order methods — quadratic approximation

s

f

The only method, if the error level (from measurements or
numerical simulation) is significant.
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First-order methods — steepest descent

s

f

s := s − α f ′(s)

Always goes in the
right direction
The further from
the minimum, the
larger steps

No step length control (e.g. by Wolfe etc.)
Overshooting possible
Very slow in plateaux and shallow minima
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First-order methods — steepest descent
Freudenstein & Roth function (cross-section)

Freudenstein & Roth function s := s − α f ′(s)

The optimization sequence is
fully defined by two parameters:

1 starting point x0
2 coefficient α

Optimization can be assessed in terms of two measures
1 number of iterations to achieve the minimum
2 attraction basins of the minima

Up to 100 iterations have been computed for each (x0, α).
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First-order methods — steepest descent
Freudenstein & Roth function (cross-section)

attraction basins of minima no. of iterations (up to 100)
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First-order methods — steepest descent
Freudenstein & Roth function (cross-section)

attraction basins of minima no. of iterations (up to 100)
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First-order methods — steepest descent
Freudenstein & Roth function (cross-section)

attraction basins of minima no. of iterations (up to 100)
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Second-order methods — Newton
The Newton method uses the

quadratic interpolation (based on f (s), f ′(s) and f ′′(s)) or
the Newton (tangent) method to find the root of f ′(s) = 0

s

f s := s − α f ′(s)
f ′′(s)

Concavity problem
Unreliable far from
the minimum
Step length problem
(damped version:
α < 1)

Very quick near the minimum Backtracking possible



56/58

Outline Unconstrained minimization Two main approaches Search directions Step size 1D optimization

Second-order methods — modified Newton

The modified Newton method tries to take advantage of both
steepest descent (effective further from the minimum) and
Newton (effective near the minimum).

s := s − α f ′(s)
β + f ′′(s)

1 At first β is positive (to emulate the steepest descent
method),

2 then gradually decreased (to emulate the Newton method).
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First-order approximations to second-order methods

In the Newton and the modified Newton methods, the second
derivative f ′′ can be approximated using the data from the last two
iteration points si and si−1 as

f ′′(si ) ≈
f ′(si )− f ′(si−1)

si − si−1

or, if f (si−1) is preferred over f ′(si−1),

f ′′(si ) ≈ 2 f ′(si )
si − si−1

− 2 f (si )− f (si−1)
(si − si−1)2 .

In this way, first-order approximations are obtained, which yield the
quasi-Newton and the modified quasi-Newton method.
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Second-order methods — Brent’s method

The Brent’s method combines the
reliable golden section method and
quick Newton method.

... a scheme that relies on a sure-but-slow golden sec-
tion search, when the function is not cooperative, but that
switches over to parabolic interpolation when the function
allows (Numerical Recipes)
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