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Optimization problem

Optimization problem = objective function + domain

Objective function F : D→ R, which is the function to be
minimized or maximized
Domain D of the objective function arguments

Unconstrained, D = Rn

Constrained with
equality constraints, D = {x ∈ Rn|gi(x) = 0, i = 1, . . . , m}
inequality constraints, D = {x ∈ Rn|hi(x) ≤ 0, i = 1, . . . , m}
mixed type constraints,

where gi and hi are called constraint functions.

Optimization problem
Find x̂ ∈ D such that
∀x∈D F (x) ≥ F (x̂) (minimization problem) or
∀x∈D F (x) ≤ F (x̂) (maximization problem)
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Optimization problem
Potential difficulties

Objective function F
several local extrema
only F available, no sensitivity information (gradient, Hessian)
F is a result of an experiment or simulation

no direct analytic formulation
long computation or measurement time
data contaminated with numerical or measurement errors

extreme sensitivity
of F (x) in the neighborhood of x̂
of x̂ with respect to external parameters

Domain D:
complex constraints defining the boundary of D
complex nature of D, which can be an infinite-dimensional
space of functions or a large discrete set
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Optimization in structural engineering

input (excitation) system output (response)

Common optimization problems in structural engineering:
1 system identification (model updating)
2 system optimization/design
3 system control
4 input identification
5 sensor/actuator placement
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Optimization in structural engineering
1 System identification (model updating): Input and output

known (measured), system characteristics unknown.
2 System optimization/design: Change the system so that it

responds (in some sense) optimally to a given set of inputs,
satisfies certain requirements (like minimum mass).

3 System control: Given system input (unknown or known in
advance) and measured output, make the output satisfy
certain requirements (e.g. follow the reference output) by

input forces (active control) or by
affecting selected characteristics of the system, such as
stiffness, damping or yield stress (semi-active control)

4 Input identification: Identify (online or off-line) the input,
given the output and system characteristics.

5 Sensor/actuator placement: Determine the “best” placement
of sensors or actuators with respect to a given task (response
measurement, input identification, damage identification,
optimum control, etc.).
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Prerequisites for optimization

Prerequisites for optimization
1 optimization problem

objective function
domain: variables and constraints

2 a method for sensitivity analysis (gradients and, if possible,
Hessians of the objective function) — unless a zero-order
method is used

3 optimization algorithm



9/57

Outline Optimization problems Objective function Variables Constraints Sensitivity analysis

Outline

2 Objective function
Typical objective functions
Local and global minima
Convex objective functions
Multicriteria optimization
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Objective function

Objective function must reflect some computable (or measurable)
system characteristics. It is often expressed in terms

of the response
in the integral form (e.g. the mean-square acceleration)

F (x) =
∫ T

0
h(t,ux, u̇x, üx) dt

as the extremum (of a function of) system response

F (x) = max
0≤t≤T

h(t,ux, u̇x, üx)

or of the structure itself: mass, volume, dimensions, number
of elements, etc.
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Typical objective functions
Examples

System identification, input identification: fit between
simulated and measured system characteristics (static or
dynamic responses, eigenfrequencies, modal shapes/MAC,
etc.),

F (x) =
∑
n∈A

∫ T

0

[
ün − üM

n

]2
dt

or

F (x) =
∑

i

[
ωi − ωM

i
ωM

i

]2

.

System optimization: e.g., total mass of the structure,

F (x) =
∑
α

lαAαρα.

for a truss structure.
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Typical objective functions
Examples

System optimization and control:
mean square displacements or accelerations,

F (x) =
∑
n∈A

∫ T

0
ü2

ndt,

maximum displacements or accelerations,

F (x) = max
n∈A

max
0≤t≤T

ü2
n.
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Typical objective functions
Examples

Sensor/actuator placement:
measures related to observability/controllability of
system/output

information content of the measured data
conditioning/sensitivity of the unknowns being identified with
respect to the measurements
conditioning/sensitivity of the output with respect to the
control variables
maximum force used for optimum control, etc.

number of sensors/actuators
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Local and global minima

Minimization problem (finding a global minimum)
Find x̂ ∈ D such that ∀x∈D F (x) ≥ F (x̂).

An element x̂ is a global minimum of F , if there is no other x ∈ D
that has a smaller value of F (x).

Local minimum
An element x̃ is a local minimum of F , if there is no other x in a
neighborhood of x̃ that has a smaller value of F (x), that is if

∃ε>0 ∀x∈D [‖x− x̃‖ < ε]⇒ [F (x̃) ≤ F (x)] .
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Local and global minima

A global minimum is also a local minimum.
A function can have multiple local and multiple global minima.

F (x , y) = x2 + 2y2

Unique global minimum

F (x , y) = (|x | − 0.5)2 + y2

Multiple global minima
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Local and global minima

A global minimum is also a local minimum.
A function can have multiple local and multiple global minima.

F (x , y) = x2 + 2y2

Unique global minimum

F (x , y) = 2y2

Multiple global minima
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Local and global minima

A function can have multiple local and multiple global minima.
In general, there is no method to check if a given local
minimum is also global2.

2unless the objective function and the domain are both convex.
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Convex objective functions

Convex function
A function F : D→ R, where D ⊆ Rn, is called convex, if

The domain D is a convex set, that is if the line segment
joining any two points in D lies completely in D,

∀x,y∈D ∀α∈[0,1] (1− α)x + αy ∈ D

and if

∀x,y∈D ∀α∈[0,1] F ((1− α)x + αy) ≤ (1− α)F (x) + αF (y) .
(?)

A concave function is defined in the same way, with the “≥” sign
in (?).
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Convex objective functions
Convex

Concave Neither convex nor concave
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Convex objective functions

Convex (concave) objective functions have a very useful property,
which makes them easier to optimize:

Any local minimum of a convex objective function is also its
global minimum;
Any local maximum of a concave objective function is also its
global maximum,

Unfortunately, not many practical objective functions in structural
engineering are convex or concave.

The probably most important convex (concave) function is the
quadratic form xTAx with a positive (negative) (semi)definite
matrix A.
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Multicriteria optimization

Not rarely there are multiple objective functions, which we would
wish to optimize simultaneously. For example, we may wish

a structure to have a low mass and high stiffness or
minimize both deformations and accelerations.

The scalar concept of optimality does not apply directly to the
case of multiple objective functions, since usually no point is
optimum with respect to all objective functions simultaneously.

A trade-off between the functions is necessary.
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Multicriteria optimization

In general, there are three ways to proceed:
1 Choose the most important objective function and impose

limits on the others (make them constraints), for example
minimize the mass while keeping the compliance below a given
level,
minimize the accelerations and keep the deformations below a
given level.

2 Combine the functions in a single objective function, e.g.

F (x) =
∑

i
αiFi (x) or F (x) =

∑
i
αiF 2

i (x).

3 The systematic approach of Edgeworth-Pareto optimization.
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Multicriteria optimization
Edgeworth-Pareto optimization

Edgeworth-Pareto optimal point
Consider a minimization problem with multiple objective functions.
A vector x̂ ∈ D is called an Edgeworth-Pareto optimal point
(non-dominated point, efficient point), if for all x ∈ D

∀i Fi (x) = Fi (x̂) or ∃i Fi (x) ≥ Fi (x̂)

(that is if there is no other x ∈ D with at least one objective
function smaller and others equal).

In general, there are many Edgeworth-Pareto optimal points, which
all lie on a Edgeworth-Pareto curve (plane, hyperplane).
In practice, a particular solution is chosen from this curve by
combining all objective functions in a single compound function
and optimizing it. Different combinations yield different points.
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Multicriteria optimization
Edgeworth-Pareto optimization — simple example

Objective functions

F1(x , y) = x2 − y2

F2(x , y) = x

Domain

x , y ∈ [−1, 1]

Edgeworth-Pareto optimal points



24/57

Outline Optimization problems Objective function Variables Constraints Sensitivity analysis

Multicriteria optimization
Edgeworth-Pareto optimization — identification of a moving load trajectory

A

B C D
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Multicriteria optimization
Edgeworth-Pareto optimization — identification of a moving load trajectory

An evolutionary algorithm is used
intense mutation (local randomized modifications of trajectory
points)
no cross-over

The initial population is
the naive solution based on
F1 only.

The survival is governed by
the fit function that quan-
tifies the distance to the
Pareto front in the F1–F2
space.
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Outline

3 Variables
Types of variables
Functions
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Types of variables

Variables to be optimized can be
continuous numbers

element cross-sections
damping coefficients
nodal co-ordinates and masses
material properties (stiffness, density, yield stress, etc.)
control gains/parameters

discrete (numbers, subsets, sequences, etc.)
number of nodes, elements, sensors, actuators, supports, etc.
placement of elements, sensors, actuators, supports in discrete
structures
sequence of graph vertices, etc.

functions
time history of the optimum control
identified system excitation
continuous distribution of material properties
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Functions
Typical optimization techniques require the variables to be (real,
complex, integer) numbers. If they are functions:

find directly the exact analytical solution, e.g. by the Calculus
of Variations, Functional Analysis, etc. (beyond the scope of
this lecture)
reduce to a parametric (finite-dimensional) problem, e.g.

1 discretize into time steps (finite elements)

F → [F (t1),F (t2), . . . ,F (tn)]T

2 use a finite combination of basis functions (harmonics,
eigenfunctions, Bessels, etc.)

F (t) ≈
N∑

i=1
ai F̂i (t)

3 In certain cases the function can be (directly or implicitely)
implied by the optimization objective.
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Functions
Discretization into time steps (finite elements)

Discretization F → [F (t1),F (t2), . . . ,F (tn)]T

Time discretization is natural, since ODEs are numerically
solved in a finite number of time steps. Space discretization is
natural in the context of the FEM.
A huge number of variables for even simple problems.
Danger of over-optimized solutions (extremely noisy and
meaningless). Often it is better to have a more coarse
distribution of variables than of time steps or finite elements.
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Functions
Combination of basis function

A natural way to have a more coarse distribution of variables
is to express the unknown function in the form of a finite
combination of some basis functions (harmonics,
eigenfunctions, splines, etc.)

F (t) ≈
N∑

i=1
ai F̂i (t),

where N is much smaller than the number of time steps
(finite elements).
The coefficients ai become the variables to be optimized.
Dimensionality of the problem is significantly reduced and F is
a linear function of the combination coefficients ai .
The choice of the basis and its dimension is not always
obvious.
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Functions
Implied directly

In certain cases the function can be (directly or implicitly) implied
by the optimization objective.

For example, the problem of optimum control for
minimization of acceleration can be often simplified to the
problem of immediate (or local) minimization of acceleration.
The obtained solution is optimal only locally, but often
reasonably close to the globally optimal solution.
In certain bilinear control problems (e.g., control of damping),
the optimum control function is implicitely implied by the
optimization goal (via co-state/adjoint variables) in a very
simple way:

bang-bang control is optimum,
(relatively) easy computation of derivatives,
(relatively) simple stationarity criterion (∇F = 0).
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4 Constraints
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Constraints

In most practical continuous optimization problems, the domain D
is a proper subset of Rn and the variables are constrained

either directly (in terms of the variables)
Cross-sections of elements, nodal masses, damping coefficients,
Young’s moduli, etc. cannot be negative.
Hardening coefficients in plasticity cannot be greater than 1.
Constant volume in the problem of material redistribution∑

α

lαAαρα = V .

or indirectly (in terms of the structural response)
Maximum stress, max0≤t≤T σi (t) ≤ σmax.
Maximum mean square accelerations,

∫ T
0 ẍ2

i dt ≤ C .
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Constraints

Constraints can be either
natural constraints, like nonnegativity of masses,
cross-sections, Young’s moduli, or
design constraints, which limit maximum (or mean-square)
allowable stresses, displacements, accelerations, masses, etc.

Design constraints usually greatly influence the optimum solution
x̂, so that it is often expected to lie on the boundary of the
domain, x̂ ∈ ∂D.

In general, even if some variables can be in principle treated as
unconstrained (like the excitation force to be identified), imposing
some form of constraints may have a regularizing (stabilizing)
effect on the solution.
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Constraints

Constrained problems are usually harder than unconstrained,
because the algorithm has to take care to stay within the domain.

In general, constraints are handled either by
1 Penalty functions, which transform the problem to an

unconstrained problem by adding to the objective function a
penalty term,

Fp(x) = F (x) + αFD(x),

that “penalizes” the objective function for x close to, on or
outside the boundaries of the domain D.
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Constraints

or by
2 Lagrangian multipliers, which are used to transform the

problem of minimizing F (x) subject to equality constraints
gi (x) = 0 into the unconstrained problem of finding the
stationary points of the Lagrangian,

∇xL(x, λ) = 0 where L(x, λ) = F (x) +
∑

i
λigi (x),

which encodes both the objective function and the
constraints. Generalization of the method of Lagrange
multipliers to inequality constraints yields the
Karush-Kuhn-Tucker (KKT) conditions.



37/57

Outline Optimization problems Objective function Variables Constraints Sensitivity analysis

Outline

5 Sensitivity analysis
Gradient and Hessian
Finite Difference Approximations (FDM)
Direct Differentiation Method (DDM)
Adjoint Method
Automatic Differentiation (AD)
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Sensitivity analysis
Gradient

For continuous variables and sufficiently smooth objective
functions, there exists gradient of the objective function, which is
the vector of its first derivatives:

∇F (x) = ∂F (x)
∂x =

[
∂F (x)
∂x1

,
∂F (x)
∂x2

, . . . ,
∂F (x)
∂xn

]T
.

Since −∇F (x) is the direction of the steepest descent, the
gradient is extremely useful in optimization.

However, even if the gradient exists (continuous unknowns, smooth
function/constraints), computing it can be numerically costly.
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Sensitivity analysis
Gradient of the structural response

Assume the objective function (or a constraint) is of the form
F (ux, x), where ux is the response, and depends on the variables x.
The gradient of F is then expressible in terms of the gradients of
the structural response:

dF (ux, x)
dxi

= ∂F
∂xi

+
∑

j

∂F
∂uj

duj
dxi

,

so that
∇xF (ux, x) = ∂F

∂x + ∂F
∂u

dux
dx .

Hence, if the derivatives of the response dux
dx are already computed,

the gradient ∇xF (ux, x) can be computed quickly.
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Sensitivity analysis
Gradient of the structural response

For example

F (u, x) =
∑

i

∫ T

0

[
üi − üM

i

]2
dt.

∇xF (u, x) = 2
∑

i

∫ T

0

[
üi − üM

i

] düi
dx dt.

Sensitivity analysis
The gradient of the response expresses its sensitivity to the
variables, hence calculating it is called sensitivity analysis.
However, sensitivity analysis can be numerically costly, so some
methods compute ∇xF (u, x) directly and not via du

dx .
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Sensitivity analysis
Gradient of extremum-based objective functions

Objective functions (or constraints), which are based on the
extremum value of the response, such as

max
0≤t≤T

F (u, x, t) = F (u, x, tmax) ,

have a useful property: when computing the derivative, the
location of the extremum tmax of F can be assumed to be fixed in
time, so that

∇xF = ∂F
∂x + ∂F

∂u
du
dx +∂F

∂t
dtmax
dx = ∂F

∂x + ∂F
∂u

du
dx ,

since the third term is always zero:
if tmax is an interior point, then ∂F

∂t
∣∣
t=tmax

= 0

otherwise tmax ∈ {0,T} and dtmax
dx = 0.
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Sensitivity analysis
Hessian

Hessian of a function is the matrix of its second derivatives,

∇2F (x) =


∂2F
∂x1∂x1

∂2F
∂x1∂x2

· · · ∂2F
∂x1∂xn

∂2F
∂x2∂x1

∂2F
∂x2∂x2

· · · ∂2F
∂x2∂xn...

... . . . ...
∂2F
∂xn∂x1

∂2F
∂xn∂x2

· · · ∂2F
∂xn∂xn

 .

Full Hessian has n2 elements, hence can be used only if the
number of variables n is moderate. Otherwise the Hessian can
be approximated by a sparse matrix.
If the exact Hessian is not available (in a reasonable amount of
time or memory), it can be approximated using the gradient

at few points (BFGS or SR1 algorithms, sparse approximation)
or at one point by exploiting special properties of the objective
function (Gauss-Newton, Levenberg-Marquardt algorithms).
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Methods of sensitivity analysis

In structural optimization, objective functions are rarely given
explicitly in the analytical form. At least four basic methods can be
considered to compute gradients:

1 Finite Difference Approximations (FDM)
2 Direct Differentiation Method (DDM)
3 Adjoint Method
4 Automatic Differentiation (AD)
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Sensitivity analysis
Finite Difference Approximations (FDM)

The derivative of the objective function with respect to the
variable xi can be approximated with the finite difference:

∂F (x)
∂xi

≈ F (x + hei )− F (x)
h .

Computing the full gradient with respect to all n variables requires
n + 1 computations of the objective function (one at x and n at
x + hei for all i), which usually amounts to n + 1 full system
simulations.
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Sensitivity analysis
Finite Difference Approximations (FDM)

FDM can suffer from the problem of proper step size:
If too large, the derivative is not accurate enough.
If too small, numerical errors occur.

F (x) = x2

F ′(1) ≈ (1 + h)2 − 1
h

In many problems, there can be no clear gap between the “large”
and the “small” step sizes (the “plateau” disappears).
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Sensitivity analysis
Direct Differentiation Method (DDM) — statics

The DDM is a method for computing the gradients of the response
(sensitivity analysis), which can be further used in computations of
the gradient of the objective function by ∇xF (ux, x) = ∂F

∂x + ∂F
∂u

dux
dx .

The equation of equilibrium,

Ku = f,

can be directly differentiated with respect to the variable x ,

Kdu
dx = df

dx −
dK
dx u,

and solved to obtain the derivative of the response du
dx .

A separate solution (but with the same matrix K) is necessary for
each variable x .
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Sensitivity analysis
Direct Differentiation Method (DDM) — frequency domain

Analysis in the frequency domain leads to the quasi-static
formulation, hence the gradients of eigenvetors and eigenvalues
can be computed in a similar way. Direct differentiation of

(K− λM) u = 0, uTMu = 1

with respect to the design variable x yields two equations, which
can be combined together to form the following linear system:[

K− λM −Mu
−uTM 0

] [ du
dx
dλ
dx

]
=
[
−
(

dK
dx − λ

dM
dx

)
u

1
2uT dM

dx u

]
,

which has to be solved separately for each
variable x and
eigenpair (λ,u).
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Sensitivity analysis
Direct Differentiation Method (DDM) — dynamics

The equation of motion,

Mü + Cu̇ + Ku = f,

can be directly differentiated with respect to the variable x ,

Mdü
dx + Cdu̇

dx + Kdu
dx = df

dx −
dM
dx ü− dC

dx u̇− dK
dx u,

and integrated numerically using the same integration scheme as
the original equation.

A separate analysis of the full structure is necessary for the
derivative of response with respect to each variable.
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Sensitivity analysis
Adjoint Method

The DDM, as all methods based on the sensitivity of the response,
requires one full system simulation for each design variable to
obtain the sensitivity of the response.

If there are many variables, but only few objective functions
(constraints), the Adjoint Method can be quicker, as it requires
one full system simulation for each objective function (constraint)
instead of each variable.
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Sensitivity analysis
Adjoint Method — statics

Differentiation of the objective function F (x ,u) yields
dF
dx = ∂F

∂x + ∂F
∂u

du
dx ,

which includes the sensitivity of the response that should be
eliminated. Direct differentiation of the equation of equilibrium,

Ku = f,

yields, as in the DDM,

Kdu
dx + dK

dx u− df
dx = 0,

which can be premultiplied by the vector of adjoint variables λ and
(as vanishing) added to the derivative of the objective function:

dF
dx = ∂F

∂x + ∂F
∂u

du
dx + λT

[
Kdu

dx + dK
dx u− df

dx

]
.
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Sensitivity analysis
Adjoint Method — statics

The terms with the derivatives of the response can be collected
together,

dF
dx = ∂F

∂x + λT
(dK

dx u− df
dx

)
+
(dF

du + λTK
) du

dx .

The last term can be made vanishing, if λ is the solution of

λTK = −dF
du or Kλ = −

(dF
du

)T
,

which should be solved once for each objective function
(constraint) F . The derivative of the objective function can be
obtained for every unknown x by substituting this solution into

dF
dx = ∂F

∂x + λT
(dK

dx u− df
dx

)
.
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Sensitivity analysis
Adjoint Method — dynamics

Let the objective function (constraint) be expressed as

F =
∫ T

0
g(t, x ,u) dt,

which also includes extremum-based functions by

F = h(tmax, x ,u(tmax)) =
∫ T

0
h(t, x ,u)δ(t − tmax) dt.

Differentiation with respect to the variable x yields

dF
dx =

∫ T

0

[
∂g
∂x + ∂g

∂u
du
dx

]
dt,

which still includes the sensitivity of the response that should be
eliminated.
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Sensitivity analysis
Adjoint Method — dynamics

Direct differentiation of the equation of motion,

Mü + Cu̇ + Ku = f,

yields, as in the DDM,

Mdü
dx + Cdu̇

dx + Kdu
dx + dM

dx ü + dC
dx u̇ + dK

dx u− df
dx = 0,

which can be premultiplied by the vector of adjoint variables λ and
(as vanishing) added to the derivative of the objective function:

dF
dx =

∫ T

0

[
∂g
∂x + ∂g

∂u
du
dx + λT

(
Mdü

dx + Cdu̇
dx + Kdu

dx

+dM
dx ü + dC

dx u̇ + dK
dx u− df

dx

)]
dt.
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Sensitivity analysis
Adjoint Method — dynamics

The terms with the derivatives of the response can be collected
together,

dF
dx =

∫ T

0

[
∂g
∂x + λT

(dM
dx ü + dC

dx u̇ + dK
dx u− df

dx

)]
dt

+
∫ T

0

[[
∂g
∂u + λTK

] du
dx + λT

(
Mdü

dx + Cdu̇
dx

)]
dt,

and integrated by parts,∫ T

0
λTCdu̇

dx dt = λTCdu
dx

∣∣∣∣T
0
−
∫ T

0
λ̇

TCdu
dx dt,

∫ T

0
λTMdü

dx dt = λTMdu̇
dx

∣∣∣∣T
0
− λ̇

TMdu
dx

∣∣∣∣T
0

+
∫ T

0
λ̈

TMdu
dx dt.



55/57

Outline Optimization problems Objective function Variables Constraints Sensitivity analysis

Sensitivity analysis
Adjoint Method — dynamics

Substituting the results back we obtain

dF
dx =

∫ T

0

[
∂g
∂x + λT

(dM
dx ü + dC

dx u̇ + dK
dx u− df

dx

)]
dt

+
∫ T

0

[
∂g
∂u + λTK− λ̇

TC + λ̈
TM

] du
dx dt

+ λTCdu
dx

∣∣∣∣T
0

+ λTMdu̇
dx

∣∣∣∣T
0
− λ̇

TMdu
dx

∣∣∣∣T
0
.

All terms but the first vanish if the initial conditions are zero and

λ̈
TM− λ̇

TC + λTK = −∂g
∂u , λ(T ) = λ̇(T ) = 0,

which can be backward integrated and substituted to the first line
to obtain the derivative of F with respect to every x without
additional full system simulations.
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Sensitivity analysis
Adjoint Method — dynamics

Finally,

dF
dx =

∫ T

0

[
∂g
∂x + λT

(dM
dx ü + dC

dx u̇ + dK
dx u− df

dx

)]
dt,

where the adjoint variables λ are obtained via a backward
integration of

Mλ̈− Cλ̇ + Kλ = −
(
∂g
∂u

)T

with the following endpoint conditions

λ(T ) = λ̇(T ) = 0.
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Sensitivity analysis
Automatic Differentiation (AD)

Automatic Differentiation
disregards the physical meaning of the structural response,
objective function, constraints etc. in order to just
break down the algorithm for calculating the response into
elementary arithmetic operations, which can be easily
differentiated by the chain rule.

For example the Euler formula for integrating ODEs,

ut+1 = ut + ∆t f (t, ut),

where f (t, u) = u̇, can be mechanically differentiated to obtain
dut+1
dx = dut

dx + ∆t ∂f
∂u

dut
dx .

Since objective functions in structural optimization are often
complicated, Automatic Differentiation is usually used in
combination with other methods in hybrid approaches.
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