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Fredholm integral equations

Fredholm integral equation of the first kind∫ b

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b]

Fredholm integral equation of the second kind

φ(x)−
∫ b

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b]

In the above, φ is the unknown function, while the kernel K and
the right-hand side f are given functions that are usually assumed
to be continuous2. The interval [a, b] can be substituted with any
non-empty compact Jordan measurable subset of Rn.

2Or “reasonably” piecewise continuous, weakly singular, etc.
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Volterra integral equations

Integral equations of the form∫ x

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b],

φ(x)−
∫ x

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b],

with variable limits of integrations are called Volterra integral
equations of the first and second kind.

Volterra integral equations can be treated as special cases of
Fredholm equations with K (x , y) = 0 for y > x , but they have
special properties3.

3For example, Volterra integral equations of the second kind with a
continuous (weakly continuous) kernel are always uniquely solvable.
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Integral equations as operator equations

Integral equations can be stated in the form of operator equations:

Kφ = f ,
φ−Kφ = (I − K)φ = f ,

in appropriate normed spaces.

The operator K : X→ Y is the integral operator

(Kφ) (x) =
∫ b

a
K (x , y)φ(y) dy

whose domain is an appropriate normed space X and whose range
is contained in an appropriate normed space Y.
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Integral operator
At first glance, an integral operator K,

(Kφ) (x) =
∫ b

a
K (x , y)φ(y) dy ,

can be understood as an infinite-dimensional generalization of a
finite-dimensional linear operator (a matrix).

K φ Kφ

=
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Difference kernel

The kernel K (x , y) is called the difference kernel, if
K (x , y) = K (x − y). Difference kernels occur in time-invariant
systems (if x and y represent time) and in space-invariant systems,
in case x and y represent space.

Difference kernels
can be intuitively
understood as
infinite-dimensional
counterparts of
Toeplitz matrices
(lower-triangular for
Volterra equations).

K φ Kφ

=
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Basic notions

Integral equations can be analysed directly, but rendering in the
form of operator equations allows to use the much more general
machinery of functional analysis. However, a lot of related general
notions are necessary:

vector spaces, normed spaces
open and closed sets
convergence of a sequence of elements of a normed space
Cauchy convergence and completeness of normed spaces
(which makes them Banach spaces)
pointwise, norm and uniform convergence of functions
continuity of operators
boundedness and compactness of sets and operators
scalar products and the induced norms (Hilbert spaces)
dual systems, adjoint operators
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Normed space

A norm ‖ · ‖ on a vector space X
Let X be a real/complex vector space. A function ‖ · ‖ : X→ R
with the properties

‖x‖ ≥ 0 (positivity)
‖x‖ = 0 iff x = 0 (definitness)
‖kx‖ = |k|‖x‖ (homogeneity)

‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

for all x, y ∈ X and all k ∈ R (or C) is called a norm on X.

Normed space
A vector space with a norm is called a normed space.
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Normed function space

An integral operator K : X→ Y is defined on a normed space
(domain) X and has a certain range K(X), which is contained in
the normed space Y. These are often the linear space C [a, b] of
continuous real (or complex) valued functions defined on the
interval [a, b] and furnished with either the maximum or the mean
square norms:

‖φ‖∞ = max
x∈[a,b]

|φ(x)|, ‖φ‖2 =
(∫ b

a
|φ(x)|2dx

) 1
2

.

In the case of the mean square norm, the requirement of continuity
is sometimes dropped, which yields the L2[a, b] space.

Notice that these function spaces are infinite-dimensional.
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Linear operator

Linear operator
An operator K : X→ Y from a vector space X into a vector space
Y is called linear if for all φ, ψ ∈ X and all a, b ∈ R (or C)

K(aφ+ bψ) = aKφ+ bKψ.

All integral operators of the form

(Kφ) (x) =
∫ b

a
K (x , y)φ(y) dy

are obviously linear.
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Bounded set and bounded linear operator

Bounded set
A subset of a normed space is called bounded if it is contained in a
ball of a finite radius.

Bounded linear operator
A linear operator K : X→ Y from a normed space X into a normed
space Y is called bounded if

there exists a positive number C such that for all φ ∈ X

‖Kφ‖ ≤ C‖φ‖.

or, equivalently, if it maps bounded sets in X into bounded
sets in Y.
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Compact set

Compact set
A subset A ⊂ X of a normed space X is called compact, if

every open covering of A contains a finite subcovering.
every sequence of elements from A contains a subsequence
converging to an element in A.

Bounded, closed and finite-dimensional subsets of normed spaces
are compact.

In other words, a finite-dimensional subset of a normed space
is compact if and only if it is bounded and closed.

A subset of a normed space is called relatively compact, if its
closure is compact.

A finite-dimensional subsets of a normed space is relatively
compact if and only if it is bounded.
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Compact linear operator

Compact linear operator
A linear operator K : X→ Y from a normed space X into a normed
space Y is called compact, if

for each bounded sequence φn in X the sequence Kφn
contains a convergent subsequence in Y or, alternatively,
each sequence from the set {Kφ : φ ∈ X, ‖φ‖ ≤ 1} contains a
convergent subsequence or, alternatively,
it maps bounded sets in X into relatively compact sets in Y.

Compact linear operators are bounded and continuous.
Products of two bounded linear operators are compact if at
least one of them is compact.
Linear combinations of compact linear operators are compact.
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Compactness of integral operators

A very important fact is that almost all integral operators used in
practice are compact.

If the kernel K (x , y) is a continuousa function
K : [a, b]× [a, b]→ R (or C), then the corresponding integral
operator K defined by

(Kφ) (x) =
∫ b

a
K (x , y)φ(y) dy ,

is compact in C [a, b] and/or L2[a, b].
aThe kernel may be also “reasonably” piecewise continuous, weakly singular,

square integrable, etc.



18/59

Outline Classification Integral operators 2nd kind eqs. 1st kind eqs. Solutions Reading

Compact integral operators

Intuitively (or in physical terms), a compact integral operator K
has a smoothing effect, that is K damps the high-frequency
components in φ, so that Kφ is substantially more smooth than φ.

This smooting effect is illustrated by the Riemann-Lebesgue
lemma: if k is integrable on [a, b], then∫ b

a
k(x) sin(λx) dx λ→∞−−−→ 0.
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Eigenvalues and spectrum of a compact integral operator

Eigenvalue and spectrum
Let K : X→ X be a compact linear operator mapping a normed
space X into itself. A complex number λ is called an eigenvalue of
K, if there exists a non-zero φ ∈ X, such that

Kφ = λφ.

The spectrum µ(K) of K is defined as a set of its all eigenvalues.

Spectral radius
The spectral radius r(K) of K is defined as

r(K) = sup
λ∈µ(K)

|λ|.
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Singular value expansion

A continuous counterpart of the singular value decomposition
(SVD) of a matrix, A =

∑
i σiuivT

i , is the singular value expansion
(SVE) of the kernel of a compact linear integral operator4.

Singular Value Expansion
For any square integrable kernel K : [a, b]× [a, b]→ R (or C),

K (x , y) =
rank K∑

i=1
σiui(x)vi(y),

where σi are the singular values of K , and ui and vi are the
singular functions of K . The singular values are all positive,
ordered in the nonincreasing order and decay to zero, while the
singular functions form orthonormal systems, that is
〈ui , uj〉 = 〈vi , vj〉 = δij . For non-degenerate kernels, rank K =∞.

4In fact, the SVE exists for all compact linear operators on Hilbert spaces.
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Finite vs. infinite-dimensional normed spaces

In finite-dimensional normed spaces
all norms are equivalent (w.r.t. convergence of sequences).
a set is compact if and only if it is bounded and closed.
all linear operators are bounded, continuous and compact
(compactness is equivalent to boundedness).
in particular, the identity operator I is compact.
each linear operator can be represented as a multiplication by
a certain matrix.
a linear operator from X into itself is surjective if and only if it
is injective (the dimensions must match).
the SVD exists for all matrices (linear operators). There is a
finite number of singular values.
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Finite vs. infinite-dimensional normed spaces

In infinite-dimensional normed function spaces
two norms need not be equivalent (like ‖ · ‖∞ and ‖ · ‖2).
a set can be bounded and closed, but not compact.
a linear operator need not be bounded, continuous or compact
(however, it is continuous if and only if it is bounded).
in particular, the identity operator I is linear, continuous and
bounded, but not compact.
not all linear operators can be represented in the form of a
typical integral operator.
the properties of surjectivity and injectivity of a linear operator
are unrelated to each other.
the SVE exists for compact operators. There can be infinitely
many singular values, which decay to zero.
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Infinite-dimensional normed spaces

In particular, the facts that
an integral operator with a continuous5 kernel is compact,
the identity operator is not compact,

justify the difference between the integral equations of the first and
second kind.

Kφ = f ,
φ−Kφ = (I − K)φ = f ,

If the operator K is compact, then the operator I − K is not
compact, and so they have very different properties.

5“reasonably” piecewise continuous, weakly singular, square integrable, etc.
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3 Integral equations of the second kind
Riesz theory
Volterra integral equations of the second kind
Fredholm alternative
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Riesz theorem

Let K : X→ X be a compact linear operator and X a normed
space. Consider the homogenous equation

φ−Kφ = 0. (?)

Then either

Equation (?) has only the trivial solution φ = 0 and the
inhomogeneous equation

φ−Kφ = f

has a unique solution φ ∈ X, which depends continuously on
f ∈ X. That is, the inverse operator (I − K)−1 exists and is
bounded and continuous, so that the inhomogeneous equation is
well-posed.

Or…
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Riesz theorem

Or

Equation (?) has a finite number of linearly independent nontrivial
solutions and the inhomogeneous equation

φ−Kφ = f

is either unsolvable or its general solution is of the form

φ = φ̂+
m∑

i=1
αiφi ,

which is a sum of a particular solution φ̂ and a linear combination
of the finite number of the linearly independent solutions to (?).



27/59

Outline Classification Integral operators 2nd kind eqs. 1st kind eqs. Solutions Reading

Riesz theory

As in the case of a square matrix A and the related
finite-dimensional mapping A : Rn → Rn, the Riesz theory states
that the operator I − K : X→ X with a compact K is surjective if
and only if it is injective.

In other words, the Riesz theory allows to deduce existence from
uniqueness of the solution to the operator equation of the second
kind

φ−Kφ = f

with a compact K, which makes it similar to finite-dimensional
equations Ax = b with a square matrix A.
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Volterra integral equations of the second kind

In particular, the Riesz theorem allows to deduce that

The Volterra integral equation of the second kind with a
continuous (weakly continuous, etc.) kernel K ,

φ(x)−
∫ x

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b] ,

has a unique solution φ ∈ C [a, b] for each right-hand side
f ∈ C [a, b].
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Fredholm alternative

Let K be a continuousa integral kernel.
a“reasonably” piecewise continuous, weakly singular, square integrable, etc.

Consider the inhomogeneous integral equations

φ(x)−
∫ b

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b],

ψ(x)−
∫ b

a
K (y , x)ψ(y) dy = g(x), x ∈ [a, b],

and the related homogeneous integral equations

φ(x)−
∫ b

a
K (x , y)φ(y) dy = 0, x ∈ [a, b],

ψ(x)−
∫ b

a
K (y , x)ψ(y) dy = 0, x ∈ [a, b].
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Fredholm alternative

Either

The homogeneous integral equations have only the trivial solutions
φ = ψ = 0 and the inhomogeneous integral equations have unique
solutions φ, ψ ∈ C [a, b] for each right-hand side f ∈ C [a, b].

or

The homogeneous integral equations have the same finite number
of linearly independent solutions and the inhomogeneous integral
equations have solutions if and only if the right-hand sides
f , g ∈ C [a, b] satisfy∫ b

a
f (x)ψ(x) dx = 0,

∫ b

a
φ(x)g(x) dx = 0,

for all solutions φ, ψ of the homogeneous equations.
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4 Integral equations of the first kind
Inherent ill-posedness
On some Volterra integral equations of the first kind
Singular value expansion
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Inherent ill-posedness

Compact linear operators on infinite-dimensional normed spaces
cannot have a bounded inverse.

Let K be a compact operator and assume that its inverse K−1

exists and is bounded. Then the product of the two operators,
KK−1 would be compact (as a product of a compact and a
bounded operator). But it is the identity operator I, which is not
compact in an infinite-dimensional space.
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Inherent ill-posedness

Inverse of a compact linear operator on an infinite-dimensional
normed space is linear, unbounded and non-continuous.

As a result, integral equations of the first kind are inherently
ill-posed (extremely ill-conditioned).

Well-posed problem (J. Hadamard 1902)
A problem is well-posed, if its solution

1 exists,
2 is unique,
3 continuously depends on the input data.

A well-posed problem can be ill-conditioned. Many practical
(inverse) problems are not only ill-conditioned, but also ill-posed.
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On some Volterra integral equations of the first kind

In some cases, Volterra integral equations of the first kind,∫ x

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b], (?)

can be handled by converting them into an equivalent integral
equation of the second kind. Assume that f (a) = 0 and
K (x , x) 6= 0 for x ∈ [a, b].

1 If the derivatives f ′ and ∂K/∂x exist and are continuous, then
differentiation of (?) with respect to x yields

φ(x) +
∫ x

a

∂K(x ,y)
∂x

K (x , x)φ(y) dy = f ′(x)
K (x , x) , x ∈ [a, b].
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On some Volterra integral equations of the first kind

2 If the derivative ∂K/∂y exists and is continuous, then an
integration by parts of (?) yields

ψ(x)−
∫ x

a

∂K(x ,y)
∂y

K (x , x)ψ(y) dy = f (x)
K (x , x) , x ∈ [a, b],

where
ψ(x) =

∫ x

a
φ(y) dy .
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Singular value expansion
The ill-posedness of a compact linear operator is revealed by its
SVE and an analysis of the decay rate of the singular values.

For any square integrable kernel K : [a, b]× [a, b]→ R (or C),

K (x , y) =
rank K∑

i=1
σiui(x)vi(y),

where σi are the singular values of K , and ui and vi are the
singular functions of K . The singular values are all positive,
ordered in the nonincreasing order and decay to zero, while the
singular functions form orthonormal systems, that is

〈ui , uj〉 = 〈vi , vj〉 = δij .

For degenerate kernels, the upper summation limit (rank K ) is
finite.
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Singular value expansion
Just as in the case of the SVD, A = UΣVT =

∑
i σiuivT

i , where

Avi = σiui ,

in the case of the SVE of the kernel K

Kvi = σiui .

The unique solution to Ax = b, if exists, can be expressed as

x =
rank A∑

i=1

viuT
i

σi
y.

Similarly, the solution of the integral equation of the first kind
Kφ = f , if exists, can be expressed as

φ =
rank K∑

i=1

vi 〈ui , f 〉
σi

.
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Singular value expansion

In the SVD, the ratio between the largest and the smallest
singular value is a numerical measure of ill-conditioning of the
matrix.
In case of a compact integral operator, there are usually
infinitely many singular values, which decay to zero. As a
result, the related integral equation of the first kind, Kφ = f ,
is unbounded and ill-posed.
As Kvi = σiui , the operator K (or its “smoothing effect”) can
be characterized by the decay rate of its singular values:

The faster the singular values decay to zero, the more
“smoothing” is the kernel.
In practice, the smaller singular value σi , the more oscillatory
are the singular functions ui and vi .
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Singular value expansion
The formula for the solution to Kφ = f ,

φ =
rank K∑

i=1

vi 〈ui , f 〉
σi

,

clearly illustrates the ill-posed nature of the equation:
The larger i , the more amplified is the corresponding spectral
component 〈ui , f 〉 ui of the right-hand side f .
If the solution exists, the series is convergent, and so
σ−1

i 〈ui , f 〉
i→∞−−−→ 0. In line with the Riemann-Lebesgue

lemma, and as the singular functions are increasingly more
oscillatory, the right-hand side f must be “well-behaved” for
large i (smooth enough).
However, the noise overlaid on f is often less “well-behaved”
(smooth) than f . As a result, for large enough i , the noise can
dominate in the corresponding components of the solution.
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5 Selected methods of numerical solution
Successive approximations (+example)
Quadrature/Nyström methods (+example)
Collocation methods
Kernel approximations
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Successive approximations

Let K : X→ X be a bounded linear operator mapping a Banacha

space X into itself with the spectral radiusb r(K) < 1. Then for all
f ∈ X the successive approximations

φi+1 = Kφi + f , i = 0, 1, 2, . . . ,

with arbitraryc φ0 ∈ X converge to the unique solution φ of

φ−Kφ = f .
aA complete normed space is called a Banach space (for example, C [a, b]

with ‖ · ‖∞ or L2[a, b] with ‖ · ‖2). Successive approximations φi are a Cauchy
sequence and completeness ensures its convergence. Every incomplete normed
space can be uniquely completed to a Banach space.

bA weaker condition is ‖K‖ < 1.
cOften φ0 = f .
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Successive approximations

In other words, I − K has a bounded inverse operator on X, which
can be expressed by the von Neumann series:

(I − K)−1 =
∞∑

i=0
Ki .

This is similar to the convergence of a geometric series
∑

i s i with
|s| < 1.
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Successive approximations

In particular, each Volterra integral operator,

Kφ(x) =
∫ x

a
K (x , y)φ(y) dy , x ∈ [a, b],

has a spectral radius r(K) = {0}. Thus,

Volterra integral equations of the second kind,

φ(x)−
∫ x

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b],

can be always solved by successive approximations:

φi+1(x) = f (x) +
∫ x

a
K (x , y)φi(y) dy , i = 0, 1, 2, . . .
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Successive approximations
(A simplistic) example

Consider equation of motion of a simple undamped 1-DOF system,

ẍ(t) + x(t) = f (t). (?)

The acceleration a(t) := ẍ(t) is measured for t ∈ [0, 10].

a(t) = f (t)−
∫ t

0
f (τ) sin(t − τ) dτ, (??)

where the first term is due to Newton’s second law, and the second
term is the convolution with the impulse-response.

The inverse problem is to compute the excitation f (t), given the
measured acceleration: solve (??), given a(t)a.

aHere, it is easier to compute the excitation directly from (?). However,
consider a multi-DOF problem with a, perhaps, measured impulse-response…
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Successive approximations
Example

Exact excitation (assumed to be unknown)

f (t) =


t t ∈ [0, 1),
2− t t ∈ [1, 2),
0 t ∈ [2, 10].
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Exact measurement (given analytically)

a(t) =
sin t t ∈ [0, 1),
2 sin(1− t) + sin t t ∈ [1, 2),
4(sin 0.5)2 sin(1− t) t ∈ [2, 10].
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-0.5

0.0

0.5

1.0



46/59

Outline Classification Integral operators 2nd kind eqs. 1st kind eqs. Solutions Reading

Successive approximations
Example

Successive approximations
By a rearrangement of the original equation,

a(t) = f (t)−
∫ t

0
f (τ) sin(t − τ) dτ,

the formula for successive approximations is obtained:

f0(t) := 0,

fn+1(t) := a(t) +
∫ t

0
fn(τ) sin(t − τ) dτ,

Notice that f1(t) = a(t).
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Successive approximations
Example

successive approximations: f1(t), …, f11(t)

0 2 4 6 8 10
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0

5

10

15
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Successive approximations
Example

f1(t), f11(t) and f (t)

0 2 4 6 8 10
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-0.5
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0.5

1.0
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Successive approximations
Example

errors |fn(t)− f (t)| in log scale

0 2 4 6 8 10
10-23

10-19

10-15

10-11

10-7

0.001

10
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Quadrature/Nyström methods

Quadrature or Nyström methods are used for the approximate
solutions of integral equations of the second kind with continuous
or weakly singular kernels. They are based on the following
standard formula for numerical integration:∫ b

a
h(x) dx ≈

n∑
j=0

αn,jh(xn,j),

where xn,j ∈ [a, b] are the quadrature points and αn,j are the
quadrature weights. Different quadrature rules give rise to different
versions of the method.
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Quadrature/Nyström methods

In the integral equation of the second kind,

φ(x)−
∫ b

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b],

the integration is approximated numerically:

φn(x)−
n∑

j=0
αn,jK (x , xn,j)φn(xn,j) = f (x), x ∈ [a, b].
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Quadrature/Nyström methods

Let φn be a solution of

φn(x)−
n∑

j=0
αn,jK (x , xn,j)φn(xn,j) = f (x), x ∈ [a, b]. (?)

The values φn(xn,i) at the quadrature points can be obtained by
solving the following finite-dimensional linear system:

φn(xn,i)−
n∑

j=0
αn,jK (xn,i , xn,j)φn(xn,j) = f (xn,i).

Conversely, given the values φn(xn,i), equation (?) is satisfied by

φn(x) = f (x) +
n∑

j=0
αn,jK (x , xn,j)φn(xn,j), x ∈ [a, b].
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Quadrature/Nyström methods
Example

Divide the time interval [0, 10] evenly into n + 1 quadrature points,

tj,n := 10 j
n , j = 0, 1, . . . , n,

and use the quadrature weights

αj,n =


0.510

n for j = 0,
1.010

n for j = 1, 2, . . . , n − 1
0.510

n for j = n,

which amount to the linear interpolation between the quadrature
points.
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Quadrature/Nyström methods
Example

The original equation,

a(t) = f (t)−
∫ t

0
f (τ) sin(t − τ) dτ,

is transformed into the following discrete system

a
(

10 i
n

)
= fn

(
10 i

n

)
−

n∑
j=0

αn,jK
(

10 i
n , 10 j

n

)
fn
(

10 j
n

)
(?)

with n + 1 unknowns fn(10 i
n ). The kernel K (t, τ) = sin(t − τ) for

t ≥ τ and 0 otherwise. Solved (?), the unknown excitation is

fn(t) = a(t) +
n∑

j=0
αn,jK

(
t, 10 j

n

)
fn
(

10 j
n

)
.
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Quadrature/Nyström methods
Example

fn(t) for n = 10, 20, 50, 100, 200
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Quadrature/Nyström methods
Example

errors |fn(t)− f (t)| in log scale

0 2 4 6 8 10
10-6

10-5
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0.001
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Collocation methods
Projection methods

Collocation method belong to the wider class of projection
methods, which solve operator equation6

Lφ = f ,

by projecting it onto finite n-dimensional subspaces Yn,

PnLφn = Pnf ,

where Pn : Y→ Yn is a projection operator.

6which can be of the first or second form
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Collocation methods
In collocation methods,

the finite n-dimensional subspaces are often generated via
splines or trigonometric interpolations,
the equation is required to be satisfied only at a finite number
n of collocation points,

Lφn(xn,i) = f (xn,i), i = 1, 2, . . . (?)

If φn is expressed as a linear combination,

φn(x) =
n∑

j=1
βjuj(x),

equation (?) is equivalent to the linear system
n∑

j=1
βjLuj(xn,i) = f (xn,i), i = 1, 2, . . .
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Kernel approximations

Kernel approximation methods approximate the original kernel K
of an integral equation of the second kind with a degenerate kernel
Kn of a finite rank n:

K (x , y) ≈ Kn(x , y) =
n∑

j=1
uj(x)vj(y).

Substitution into an integral equation of the second kind,

φ(x)−
∫ b

a
K (x , y)φ(y) dy = f (x), x ∈ [a, b],

yields

φn(x)−
n∑

j=1
uj(x)

∫ b

a
vj(y)φn(y) dy = f (x), x ∈ [a, b],
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Kernel approximations
…that is

φn(x)−
n∑

j=1
uj(x)Vn,j = f (x), x ∈ [a, b], (?)

where
Vn,j =

∫ b

a
vj(y)φn(y) dy .

Equation (?) is multiplied by vi(x) and integrated, which yields the
following linear n-dimensional system

Vn,i −
n∑

i=1

[∫ b

a
uj(x)vi(x) dx

]
Vn,j =

∫ b

a
f (x)vi(x) dx (??)

with the unknowns Vi , i = 1, 2, . . . , n. Given the solution to (??),
the approximate solution φn is obtained from (?) as

φn(x) = f (x) +
n∑

j=1
Vn,juj(x).
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Outline

6 Further reading
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Further reading

P. Ch. Hansen, Discrete Inverse Problems: Insights and
Algorithms, SIAM 2010.
P. Ch. Hansen, Rank-deficient and discrete ill-posed problems:
numerical aspects of linear inversion, SIAM 1998.
R. Kress, Linear integral equations, 2nd ed., Springer 1999.
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