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Least-squares problem

Least-squares problems originate from estimation of model
parameter in problems of fitting noisy data.

Consider the following model

y(t) = f (t; x),

where x ∈ Rn is a vector of unknown model parameters, to be
determined from a series of (noisy) measurements (yi , ti ),
i = 1, 2, . . . ,m. To reduce the noise influence, m > n.

The related least-squares problem is in general a nonlinear
optimization problem:

find x, which minimizes
m∑

i=1
(yi − f (ti ; x))2.
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Linear least-squares problem

If the dependence on parameters x is linear,

y(t) =
n∑

j=1
xj fj(t),

a linear least-squares problem is obtained,

find x, which minimizes
m∑

i=1

yi −
n∑

j=1
xj fj(ti )

2

,

which is equivalent to the following convex optimization problem:

find x, which minimizes ‖y− Ax‖2,

where x = [x1, . . . , xn]T, y = [y1, . . . , ym]T and A ∈ Rm×n is an
m × n matrix composed of fj(ti ).
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Linear least-squares problem

Linear least-squares problem

find x, which minimizes ‖y− Ax‖2,

where x ∈ Rn, y ∈ Rm and A ∈ Rm×n.

The related linear equation y = Ax can be in general inconsistent
(m > n) and have no exact solutions. However, the least-squares
solution xLS is the best solution in the sense of the minimum
residual norm:

AxLS is the closest point to y out of all points from range A.
AxLS is the orthogonal projection of y onto range A.

The least-squares solution is unique, if rank A = n (full column
rank), that is if A corresponds to an injection.
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Normal equations

Normal equations
The vector x minimizes ‖y− Ax‖2 if and only if it satisfies the
normal equations,

ATAx = ATy,

or equivalently AT(y− Ax) = 0.

If m >> n, the matrix ATA ∈ Rn×n is much smaller than the
initial matrix A ∈ Rm×n.
In the general case, ATA is (square) symmetric positive
semidefinite.
If A is full column rank, then ATA is full-rank positive definite
and normal equations have a unique solution.
A disadvantage of the normal equations is squaring of the
condition number (if A is ill-conditioned, then conditioning
ATA is even worse).
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Gauss-Markov theorem

The Gauss-Markov theorem
recasts the problem of estimating a vector of parameters in a
(noisy) linear model using the statistical terminology, and
states that the least-squares solution is the optimum estimator
of the parameter vector in the statistical sense, that it is

1 unbiased (mean estimation error is zero) and
2 of minimum variance.
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Gauss-Markov theorem

Let A ∈ Rm×n be a full column rank matrix of real numbers,
y ∈ Rm be a vector of (noisy) measurements (or observations) and
x ∈ Rn be an unknown parameter vector. Assume the linear model

y = Ax + ε, (?)

where ε is a vector of uncorrelated random measurement errors
with zero mean and the same variance,

E[ε] = 0, V[ε] = σ2I.

The best unbiased estimator x̂ of x is the solution to the
least-squares problem associated with (?):

x̂ = (ATA)−1ATy, V[x̂] = σ2(ATA)−1.
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Singular value decomposition (SVD)

Every rectangular matrix A ∈ Rm×n can be expressed as

A = UΣVT,

where U and V are unitary matrices, and Σ is an m × n diagonal
matrix with rank A nonnegative diagonal elements σi (called
singular values) ordered in a nonincreasing way.

Given matrix A, its rank can be marked explicitly in the SVD:

A = [U1U2]
[

Σ0 0
0 0

] [
VT

1
VT

2

]
= U1Σ0VT

1 ,

where the number of columns of U1, V1 and Σ0 is rank A. The
reduced decomposition A = U1Σ0VT

1 is called the thin SVD of A.
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SVD-based least-squares solution

Let A = U1Σ0VT
1 be the thin SVD of A ∈ Rm×n. The

least-squares problem

find x, which minimizes ‖y− Ax‖2,

has always a unique minimum norm solutiona given by

xsvd = V1Σ−1
0 UT

1 y.
aThat is, if solution to the least-squares problem is nonunique (rank A < n),

the solution with the minimum norm is chosen.

The matrix
A+ = V1Σ−1

0 UT
1

is called the pseudo-inverse or the Moore-Penrose inverse of A.
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SVD-based least-squares solution

The SVD expresses the matrix A as a sum of rank-one
matrices:

A = U1Σ0VT
1 =

rank A∑
i=1

σi uivT
i ,

where ui and vi are the ith columns of U and V, respectively.
The minimum norm minimizer of ‖y− Ax‖2 can be thus
expressed as

xsvd = V1Σ−1
0 UT

1 y =
[rank A∑

i=1

viuT
i

σi

]
y.
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SVD-based approach vs. normal equations

In comparison to the normal equations
+ In the SVD-based approach, the initial matrix A is used

directly. Therefore, the condition number is not squared.
– If m >> n, the matrix A is much larger than ATA and the

numerical cost of computing the SVD can be prohibitive.



14/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Iterative methods

The linear least-squares problem, expressed as

find x, which minimizes ‖y− Ax‖2,

is in fact the problem of unconstrained minimization of a convex
quadratic objective function

φ(x) = ‖y− Ax‖2 = xTATAx− 2 yTAx + yTy,

where ATA is positive semidefinite.

Therefore, any iterative optimization scheme can be used to find
an approximation to the exact solution, in particular the conjugate
gradient least-squares (CGLS) method described in Lecture B-3.
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Outline

2 Conditioning
Vector and matrix norms
Conditioning and estimation of accuracy
Deconvolution as a common source of ill-conditioning
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Norm on a linear space

A norm ‖ · ‖ on a linear space X
Let X be a real linear space. A function ‖ · ‖ : X → R with the
properties

‖x‖ ≥ 0 (positivity)
‖x‖ = 0 iff x = 0 (definitness)
‖kx‖ = |k|‖x‖ (homogeneity)

‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

for all x, y ∈ X and all k ∈ R is called a norm on X .
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Vector norms

Vector p-norms
The most often used vector norms are the so-called p-norms ‖ · ‖p:

‖x‖p =
[∑

i
|xp

i |
] 1

p

.

In particular,

‖x‖1 =
∑

i
|xi |,

‖x‖ = ‖x‖2 =
√∑

i
x2

i ,

‖x‖∞ = max
i
|xi |.
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Matrix norms

Operator norms
A vector norm ‖ · ‖ induces the corresponding matrix operator norm

‖A‖ = max
x 6=0

‖Ax‖
‖x‖ .

In particular, the vector p-norms induce the matrix norms:

‖A‖1 = maxj
∑

i |aij |,

‖A‖2 =
√

maxi λi (ATA) = maxi σi (A),
‖A‖∞ = maxi

∑
j |aij |.

The Frobenius matrix norm is defined by

‖A‖F =
√∑

i ,j a2
ij =

√∑
i λ

2
i .
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Consistent matrix and vector norms

It is important to use the matrix norms that are consistent with
the used vector norms, that is

‖Ax‖ ≤ ‖A‖‖x‖.

The following norms are consistent:

‖x‖1 . . . ‖A‖1
‖x‖2 . . . ‖A‖2, ‖A‖F
‖x‖∞ . . . ‖A‖∞
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Condition number

The notion of the condition number of a problem has been
introduced in Lecture B-1:

The condition number is the amplification factor of the
relative error between input and output data. It measures how
much the errors in the input data can affect the errors in the
output data.
Conditioning is a property of the problem, which (independent
of any algorithm used to solve it) can be well-conditioned or
ill-conditioned.
If a problem is ill-conditioned, an algorithm can give better
results only by chance. The errors in input data will inevitably
propagate to the output data.



21/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Condition number — diagonal matrices

Let D = diag (d1, d2, . . . , dn) be a nonsingular diagonal matrix.
The linear system Dx = y is a system of simple decoupled
equations:

dixi = yi , i = 1, 2, . . . , n,

which has the exact solution

xi = yi
di
, i = 1, 2, . . . , n.

In practice, the right-hand side is known only approximately (due
to measurement errors, floating-point representation errors, etc.),
so that the system equation takes the form

di (xi + ∆xi ) = yi + ∆yi , i = 1, 2, . . . , n,

where |∆yi |
‖y‖ ≈ ε > 0. Notice that di ∆xi = ∆yi .
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Condition number — diagonal matrices

Since di ∆xi = ∆yi , the absolute error of the solution is

∆xi = ∆yi
di

, i = 1, 2, . . . , n.

Hence, the relative error level of the solution is bounded as follows

|∆xi |
‖x‖ = 1

di

|∆yi |
‖x‖ = 1

di

‖y‖
‖x‖
|∆yi |
‖y‖ ≤

maxj |dj |
di

|∆yi |
‖y‖ ≤

maxj |dj |
minj |dj |

|∆yi |
‖y‖ .

The condition number of the linear system Dx = y is thus

|∆xi |
‖x‖ /

|∆yi |
‖y‖ ≤

maxj |dj |
minj |dj |

= κ(D)

and can be very large, if di are of very different magnitudes.



23/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Condition number — diagonal matrices — 2D example

D =
[

1 0
0 0.2

]
, κ(D) = 5, y =

[
1

0.2

]
, ‖∆y‖ = 0

space of x space of y
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Condition number — diagonal matrices — 2D example

D =
[

1 0
0 0.2

]
, κ(D) = 5, y =

[
1

0.2

]
, ‖∆y‖ ≤ 1

space of x space of y
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Condition number
The diagonal matrix is an exemplary case, since all matrices can be
transformed to diagonal matrices using the SVD. The linear system

Ax = UΣVTx = y

by the following transformation of variables2

x̂ = VTx, ŷ = UTy

is reduced to the diagonal system

Σx̂ = ŷ.

The condition number of both systems is thus

κ(A) = κ(Σ) = σmax
σmin

.

2Transformations by unitary matrices have always the best-possible
condition number of 1.
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Condition number

Although it is easy to construct a counterexample, highly
ill-conditioned matrices of small dimensions are rather rare in
practice. However, ill-conditioning of medium and large matrices is
much more common.

Logarithmic plot of
the singular values
of two 1000× 1000
matrices of random
numbers N(0,1)
and U(0,1):
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Deconvolution as a common source of ill-conditioning

In proper infinite-dimensional function spaces, the convolution with
a continuous function h(t),

y(t) =
∫ T

0
h(t − s)x(s) ds, t ∈ [0,T ],

can be stated in the form of a simple linear operator equation
y = Hx . The operator H is compact3, so its inverse H−1 is
unbounded and noncontinuous. Thus, κ(H) =∞ and the problem
of finding x(t), given y(t) and h(t), is extremely ill-conditioned
(ill-posed).

3Intuitively, compact ≈ smoothing.
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Deconvolution as a common source of ill-conditioning

(Hx)(t) =
∫ t

0
x(t) dt (H−1y)(t) = y ′(t)

Both H and its inverse H−1 are linear. However, the inverse is
everywhere non-continuous.

yn(t) = sin nt
n (H−1yn)(t) = cos nt

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

uniform convergence to 0 non-convergent



28/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Deconvolution as a common source of ill-conditioning

In practice, all computations are performed using finite-dimensional
data, so that discretized h and y are used to compute the
discretized x . If the data originate from measurements or
simulations, the considered time interval [0,T ] is usually sampled
into N equal time steps ti = i∆t, so that

yi =
N−1∑
j=0

hi−j xj , i = 0, . . . ,N − 1,

where yi = y(ti ), xj = x(tj) and hk = ∆th(tk).
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Deconvolution as a common source of ill-conditioning
The discretized equations can be stated in the matrix form as a
single large finite-dimensional linear system

y = Hx,

where

y = [y1, . . . , yN ]T

x = [x1, . . . , xN ]T

and H = [hij ] is a diagonal-constant matrix, that is

hij = hi−j .

Teoplitz matrix
A diagonal-constant matrix is a matrix H = [hij ], which satisfies
hij = hi−j . Such matrices are also called Toeplitz matrices and are
examples of structured matrices.
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Deconvolution as a common source of ill-conditioning
Discretized version of the deconvolution problem:

y = Hx,

where H = [hij ] is a Toeplitz matrix, that is hij = hi−j .
1 Since the original continuous system was extremely

ill-conditioned (unbounded inverse, hence κ(H) =∞ and the
inverse problem is even ill-posed), the condition number κ(H)
grows to ∞ as the discretization time step ∆t tends to zero.

2 An important conclusion: finer mesh (discretization) need not
lead to a better accuracy.

3 The singular values of a Toeplitz matrix that “arises from the
discretization of first-kind Fredholm integral equations […]
decay gradually, until they level off at a plateau approximately
at the machine precision times σmax (in infinite precision they
would decay to zero)“ (P. Ch. Hansen).
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Deconvolution — example

Consider the following deconvolution problem:

y(t) =
∫ t

0
cos(t − s)x(s)ds,

where y(t) can be interpreted as the velocity response of an
undamped single degree of freedom system to a force excitation
described by x(t).

Assume the observed response

y(t) = 1
2 t sin t, t ∈ [0, 2π].

The unique exact solution is x(t) = sin t. To find it numerically,
the time interval [0, 2π] has been discretized into 100 time steps.
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Deconvolution — example

The Toeplitz structure of the
discretized 100× 100 matrix H.
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Deconvolution — example

Three discretized right-hand sides
(measurements y(t)): exact and
contaminated with uncorrelated
Gaussian measurement errors at
1% and 10% rms levels.
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Outline

3 Numerical regularization
Regularization for direct methods
Regularization for iterative methods
Regularization parameter
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Numerical regularization

Consider a linear system Ax = y with a severely ill-conditioned A.
Such a system cannot be solved accurately based on y only, no
matter what algorithm is used, because even tiny inaccuracies
of y are highly amplified and dominate the computed x.
However, the accuracy can be improved if additional
information about some expected or typical characteristics of
x is exploited. This is called numerical regularization of the
solution.
The amount of regularization is controlled by the so-called
regulariztion parameter α:

When α is too large, the regularization information tends to
dominate and distort the computed regularized solution xα.
When α is too small, the measurement noise (amplified via
ill-conditioning) tends to dominate and distort the computed
regularized solution xα.
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Numerical regularization
The additional information is usually related to smoothness of x
and takes the form of the requirement of a limited magnitude of
‖Dpx‖, where D is the matrix of the pth order differences,

D0 = I,

D1 =


−1 1 0 · · · 0
0 −1 1 · · · 0
0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1

 ,

D2 =


1 −2 1 · · · 0
0 1 −2 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

 .
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Regularization for direct methods

Consider Ax = y and the formula for its SVD-based solution,

x = V1Σ−1
0 UT

1 y =
[rank A∑

i=1

viuT
i

σi

]
y.

The formula clearly explains the reason of error amplification:
divisions by the increasingly tinier singular values.
In many practical problems, the components of x and y, which
correspond to tiny singular values, are of high frequency4. As
a result, these components are often disproportionally affected
by the noise.

4The singular vectors ui and vi [of a matrix that arises from the
discretization of first-kind Fredholm integral equations] have an increasing
number of sign changes in their elements as i increases, i.e., as the
corresponding singular values σi decrease. Often, the number of sign changes is
precisely i − 1. (P. Ch. Hansen, 1995)
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TSVD and standard Tikhonov regularization
However, the noisy components can be filtered out from the
solution by explicit damping of the excessively amplified
components,

x̃ =
[rank A∑

i=1
φ(σi )viuT

i

]
y,

where φ(σ) is a filtering function. The most popular choices are
Truncated Singular Value Decomposition (TSVD)

φ(σ) =
{
σ−1 if σ ≥ α
0 otherwise

Standard Tikhonov regularization with the parameter α

φ(σ) = σ

σ2 + α2 .

In fact, these methods regularize the solution by limiting ‖x‖.
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Tikhonov regularization
The Tikhonov regularized solution of Ax = y is defined as

find x, which minimizes ‖y− Ax‖2 + α2‖Dx‖2,

where α ≥ 0 is the regularization parameter. The solution is
regularized with respect to the norm ‖Dx‖, where the matrix D
represents the additionally available information. The solution
satisfies the regularized counterpart of the normal equation,(

ATA + α2DTD
)

x = ATy,

which corresponds to the following least-squares problem:

minimize
∥∥∥∥∥
[

A
αD

]
x−

[
y
0

]∥∥∥∥∥
2

.

Given the SVD of the matrix A, the standard case of D = I can be
computed directly (see the previous slide).
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Regularization for iterative methods

Iterative methods are often used for large-scale problems (direct
methods are then impractical).

The solution is approximated iteratively by computing a
sequence of approximated solutions xk .
In regularizing iterative methods, the components
corresponding to large singular values (low frequency) are
retrieved before the components corresponding to small
singular values (high frequency). Therefore, the number of
iterations plays the role of the regularization parameter: the
more iterations, the less regularized the solution.
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Regularization for iterative methods
The conjugate gradient least squares method (CGLS) (Lectures
B-3 and C-4) is probably the most popular regularizing iterative
method.

In the standard formulation, the CGLS method iteratively
minimizes

φ(x) = ‖y− Ax‖2

and the regularization is with respect to ‖x‖.
A regularization with respect to ‖Dx‖ can be performed via a
change of variables,

w = Dx, x = D−1w,

so that the method minimizes iteratively

φ(w) = ‖y− AD−1w‖2

with respect to ‖w‖ = ‖Dx‖.
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Regularization parameter

The “amount of regularization” is controlled by the regularization
parameter α:

TSVD number of truncated singular values
Tikhonov weighting parameter α
iterative number of iterations

In all regularization methods, direct or iterative, the proper choice
of the regularization parameter α is crucial:

Too small α results in a computed solution being too noisy.
If α is too large, the computed solution is overly distorted by
the regularizing condition (overregularized).
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Regularization parameter — example

Tikhonov-regularized solution to the deconvolution example at
10% measurement error (exact solution x(t) = sin t)

D = D1, α = 0.05, 0.1, 0.5, 1, 5, 10, 50.
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Regularization parameter — the L-curve method

In the absence of information about the noise level in y, all
methods of choice of the regularization parameter are more or less
heuristic. The most popular method is the L-curve method5.

The L-curve is a log-log plot of the norm of the regularization
condition ‖Dx‖ versus the norm of the residuum ‖y− Ax‖ in
dependence on the regularization parameter α.
The L-curve usually consists of two branches corresponding to

excessive (horizontal, lower) and
insufficient (vertical, upper)

regularization. The corner is assumed to correspond to the
proper value of α; it is usually defined as the point of
maximum curvature.

5For an overview and comparison of other methods, see F. Bauer,
M.A. Lukas (2011) Comparing parameter choice methods for regularization of
ill-posed problems. Mathematics and Computers in Simulation,
81(9):1795–1841. doi:10.1016/j.matcom.2011.01.016

http://dx.doi.org/10.1016/j.matcom.2011.01.016
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Regularization parameter — the L-curve — example

The deconvolution example at 10% measurement error (D = D1)

Α = 1.3
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Regularization parameter — the L-curve — example

The deconvolution example at 10% measurement error, the
regularized solution compared to the exact solution (D = D1,
α = 1.3 found by the L-curve method)

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0



47/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Outline

4 Large Toeplitz systems
Toeplitz systems
Common problems
A not-so-large example (10 000× 10 000)



48/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Toeplitz matrices

Toeplitz matrices
A matrix H = [hij ] is called a Toeplitz matrix, if it satisfies
hij = hi−j ,

H =


h0 h−1 h−2 · · · h−n+1
h1 h0 h−1 · · · h−n+2
h2 h1 h0 · · · h−n+3
...

...
... . . . ...

hn−1 hn−2 hn−3 · · · h0



Systems with Toeplitz matrices often arise from the disretization of
linear integral equations in time domain, e.g. in inverse problems of
input identification.
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Block matrices with Toeplitz blocks

Discretization of matrix linear integral equations, e.g. in problems
of input identification in MIMO6 systems, may yield linear
equations with a block matrix with Toeplitz blocks.

1 15 000
30 000

45 000
60 000

75 000
90 000

1

15 000

30 000

45 000

60 000

75 000

90 000

M1,x M1,y M1,z M3,x M3,y M3,z

M1,x

M1,y

M1,z

M3,x

M3,y

M3,z

6Multiple inputs, multiple outputs.
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Toeplitz systems — common problems

Common problems:
Memory If many time steps are considered, such a matrix and

the space required for its storage can be huge.
Time Most of direct operations on such large matrices can

be too time-consuming.
Accuracy Large Toeplitz matrices are usually extremely

ill-conditioned.

Toeplitz matrices correspond to discrete convolutions: use
frequency domain, if possible! But in transient analysis, other
problems can then appear:

spectral leakage
windowing functions
regularization
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Memory

H =


h0 h−1 h−2 · · · h−n+1
h1 h0 h−1 · · · h−n+2
h2 h1 h0 · · · h−n+3
...

...
... . . . ...

hn−1 hn−2 hn−3 · · · h0


A general n× n matrix requires n2 storage for all elements hij .
An n × n Toeplitz matrix is defined by 2n − 1 elements:
h−n+1, . . ., hn−1. Such a matrix can be thus stored in a
reduced form. For large matrices, the difference is tremendous:
e.g. 7.5 GB vs. 176 kB for a 90000× 90000 double matrix.
This is typical for structured systems (and for sparse systems).

In case of discretization of time-convolutions, lower-triangular
Toeplitz systems may arise, which are defined by n elements only.
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Time
Iterative methods

Most of direct operations on large Toeplitz matrices, including all
decompositions and factorizations, would be too time-consuming.
Iterative methods will yield a reasonably accurate solution in a
much shorter time.

SVD time (PC, Wolfram Mathematica 8)
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Time
Quick matrix-vector multiplication

Most of iterative methods (like CGLS) make extensive use of
matrix-vector multiplications. Standard multiplications requires
O(n2) operations. However, Toeplitz matrices are discrete versions
of convolution operators.

In continuous time, the convolution can be performed in
frequency domain by simple multiplication of spectra:

F(f ? g) = (F f )(Fg),

so that
(f ? g)(t) = F−1 [(F f )(Fg)] (t). (?)

In discrete time, the fast Fourier transform (FFT) can be
used, which requires only O(n log n) time. However, the
discrete counterpart of (?) is valid only for circulant matrices,
which form a subset of Toeplitz matrices.



54/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Time
Circulant matrices

Teoplitz matrix
A matrix H = [hij ], which satisfies hij = hi−j , is called a Toeplitz
matrix.

Circulant matrix
A Toeplitz matrix H = [hij ], where hij = hi−j , is called a circulant
matrix, if h−k = hn−k .


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0


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Time
Quick matrix-vector multiplication (circulant matrices)

An n × n circulant matrix Ĥ can be multiplied by any vector x̂ in
O(n log n) time instead of O(n2) time via the FFT7:

Ĥx̂ = FFT−1
[
FFT(ĥ) FFT(x̂)

]
,

where ĥ is the first column of Ĥ.


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1


Toeplitz matrices that arise from the
discretization of time convolutions are
usually lower-triangular and so they are
not circulant.

7Depending on the exact definition of the FFT, sometimes the right-hand
side has to be multiplied by

√
n.
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Time
Quick matrix-vector multiplication (non-circulant Toeplitz matrices)

However, non-circulant Toeplitz matrices can be augmented to
become circulant:

H =


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

 −→ Ĥ =



1 0 0 0 0 4 3 2
2 1 0 0 0 0 4 3
3 2 1 0 0 0 0 4
4 3 2 1 0 0 0 0

0 4 3 2 1 0 0 0
0 0 4 3 2 1 0 0
0 0 0 4 3 2 1 0
0 0 0 0 4 3 2 1





57/67

Outline Least-squares problem Conditioning Regularization Large Toeplitz systems Reading HW8

Time
Quick matrix-vector multiplication (non-circulant Toeplitz matrices)

A product of a non-circulant Toeplitz matrix with a vector, Hx, can
be computed via the augmented version of the matrix by dropping
the trailing zeros from the product Ĥx̂, where x̂ =

[
xT0T

]T
, that

is, where x̂ is the original vector x padded with zeros.


1 0 0 0
2 1 0 0
3 2 1 1
4 3 2 1




w
x
y
z

 ∼



1 0 0 0 0 4 3 2
2 1 0 0 0 0 4 3
3 2 1 0 0 0 0 4
4 3 2 1 0 0 0 0

0 4 3 2 1 0 0 0
0 0 4 3 2 1 0 0
0 0 0 4 3 2 1 0
0 0 0 0 4 3 2 1





w
x
y
z

0
0
0
0


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Accuracy

Large Toeplitz systems are usually extremely ill-conditioned
use a regularizing iterative method, like CGLS, which will
retrieve well-conditioned components before the
ill-conditioned components
The number of iterations will play the role of the
regularization parameter

the more iterations, the less regularized the solution
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A not-so-large example (10 000× 10 000)

Consider the deconvolution problem:

y(t) =
∫ t

0
cos(t − s)x(s)ds,

where y(t) is the velocity response of an undamped single DOF
system to a force excitation x(t).

Assume the observed response

y(t) = 1
2 t sin t, t ∈ [0, 10× 2π].

The unique exact solution is x(t) = sin t. To find it numerically,
the time interval [0, 10× 2π] has been discretized into 10 000 time
steps.
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A not-so-large example (10 000× 10 000)

Two discretized right-hand sides
(measurements y(t)): exact and
contaminated with uncorrelated
Gaussian measurement errors at
50% rms level.

0 2000 4000 6000 8000 10000

-40

-20

0

20

40

The exact solution is x(t) = sin t.
The solution computed in the
noisy case (without
regularization, here the 10 000
iteration) would be useless.

0 2000 4000 6000 8000 10000

-20

-10

0

10

20
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A not-so-large example (10 000× 10 000)

Residuum norms of the iterates
A common stop condition for CGLS is based on the norm of the
residuum ‖y− Ax‖.
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A not-so-large example (10 000× 10 000)

L-curve and the accuracy
The stop condition can be also
based on the L-curve (as the actual accuracy is in practice unknown).

L-curve actual accuracy
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Orange dots mark the iterates no. 25, 50, 75, . . . , 300.
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A not-so-large example (10 000× 10 000)

CGLS iterates

iterates 25, 50 iterates 75, 100, 125, 150
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5 Further reading
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Further reading
Linear least-squares problems

G. Dahlquist, Å. Björck, Linear Least Squares Problems, [in:]
Numerical Methods in Scientific Computing, vol. 2.

Conditioning, regularization
P.Ch. Hansen, Discrete inverse problems: Insight and
Algorithms, SIAM 2010.
P.Ch. Hansen, Deconvolution and regularization with Toeplitz
matrices, Numerical Algorithms 29:323–378, 2002.
F. Bauer, M.A. Lukas, Comparing parameter choice methods
for regularization of ill-posed problems. Mathematics and
Computers in Simulation 81(9):1795–1841, 2011.

Large Toeplitz systems:
I. Gohberg, V. Olshevsky, Fast algorithms with preprocessing
for matrix-vector multiplication problems, J. Complexity,
10(4):411–427, 1994.
I. Gohberg, V. Olshevsky, Complexity of multiplication with
vectors for structured matrices, Linear Algebra Appl.,
202:163–192, 1994.
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6 Homework 8
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Homework 8 (25 points)
Regularization and iterative linear solvers

Available soon at http://info.ippt.pan.pl/˜ljank.

E-mail the answer and the source code to ljank@ippt.pan.pl.

http://info.ippt.pan.pl/~ljank
mailto:ljank@ippt.pan.pl
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