
1/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Programming, numerics and optimization
Lecture B-3:

Linear systems I: Direct and iterative methods

Łukasz Jankowski
ljank@ippt.pan.pl

Institute of Fundamental Technological Research
Room 4.32, Phone +22.8261281 ext. 428

April 13, 20211

1Current version is available at http://info.ippt.pan.pl/˜ljank.

http://info.ippt.pan.pl/~ljank

2/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Outline

1 Basics

2 Existence and uniqueness of solution

3 Direct methods

4 Iterative methods

5 Homework 7

3/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Outline

1 Basics
Basic notions
Types of problems
Methods of solution

4/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

A matrix: basic notions

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 , A ∈ Rm×n or A ∈ Cm×n

A is an m × n matrix: m rows, n columns
If m = n, then A is square.
A is a row vector, if m = 1, and a column vector, if n = 1.
In algebraic terms A defines a linear mapping A : Rn → Rm,
such that x 7→ y = Ax.
AT is the transpose of A (A flipped about its main diagonal,
with rows turned into columns and vice versa): aij → aji . If
AT = A, then A is symmetric (and obviously square).
For complex matrices AH is the conjugate transpose:
aij → āji . If AH = A, then A is Hermitian.

5/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Basic matrix operations

Matrix sum: A,B ∈ Rm×n, numerical cost: O(mn) operations

C = A + B, cij = aij + bij

Matrix-vector product: A ∈ Rm×n, x ∈ Rn, numerical cost:
O(mn) operations

y = Ax, yi =
n∑

j=1
aijxj


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn




x1
x2
...
xn

 =


∑n

j=1 a1jbj∑n
j=1 a2jbj

...∑n
j=1 amjbj

 =


y1
y2
...

ym



6/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Basic matrix operations

Matrix-matrix product: A ∈ Rm×n,B ∈ Rn×p, numerical cost:
O(mnp) operations

C = AB, cij =
n∑

k=1
aikbkj


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn




b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
bn1 bn2 · · · bnp



=


c11 c12 · · · c1n
c21 c22 · · · a2n
...

...
cm1 cm2 · · · cmp



7/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Basic matrix operations

Matrix sum
commutative: A + B = B + A
associative: A + (B + C) = (A + B) + C

Matrix product
in general, not commutative:

if either A or B is non-square, both multiplications may not be
possible (incompatible dimensions)
even if both matrices are square of the same dimensions,
usually AB 6= BA

distributive: A(B + C) = AB + AC
associative: A(BC) = (AB)C
(but the numerical cost can be very different)

8/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Basic matrix operations
Matrix product is associative, but the numerical cost can be much
different. Consider a matrix-matrix-vector product2:

A,B ∈ RN×N (matrices), C ∈ RN (a vector)
A(BC) = (AB)C

Numerical cost of A(BC)

cost BC = O(N2)
cost A(BC) = O(N2) + O(N2) = O(N2)

Numerical cost of (AB)C

cost AB = O(N3)
cost (AB)C = O(N3) + O(N2) = O(N3)

2In C/C++, operator ∗ is left-associative, that is A ∗ B ∗ C = (A ∗ B) ∗ C.

9/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Types of problems

Problems related to finite-dimensional linear systems can be
roughly classified into three groups:

1 Find-a-solution problems:
given A and y, solve Ax = y

2 Least-square problems:
given A and y, minimize ‖y− Ax‖2

3 Eigenvalue problems: in the narrow sense,
given A, find vector-scalar pairs (x, λ) such that Ax = λx.

In a broader sense, the term “eigenvalue problems” can be
used for all related problems, like the problems of finding
singular values, null-spaces, etc.

10/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Methods of solution

Methods used to solve problems involving linear system can be
classified into two broad groups

1 Direct methods,
2 Iterative methods.

The direct methods
Compute the solution in a finite number of steps, which is
known in advance.
In the exact arithmetic, the computed solution would be exact.
Stability in finite precision arithmetics is usually well-analyzed.
Require direct access to the elements of the system matrix A
(which has thus to be known explicitly).

11/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Methods of solution

The iterative methods
Compute an approximate solution in an iterative way.
In general, the number of iterations to obtain a good
approximation is unknown in advance.
The convergence properties of the methods are often hard to
analyze, especially in finite precision arithmetics. In some
cases, finite-precision iterations may not converge at all.
Many of the methods require access only to a matrix–vector
multiplication procedure (Ax, sometimes also ATx), so that A
may be given only implicitly (e.g. Ax can be the result of an
experiment or a simulation).
They are most useful for solving large sparse or structured
systems, for which any factorization (necessary in direct
methods) would take too much time, destroy the sparsity or
the matrix structure, or be too inaccurate.

12/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Outline

2 Existence and uniqueness of solution

13/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Range and null-space of a matrix

In algebraic terms, a matrix A ∈ Rn×m is a linear mapping
A : Rm → Rn, defined by x 7→ y = Ax.

The range of A is defined as
range A = {Ax ∈ Rn|x ∈ Rm} ⊆ Rn.

If range A = Rn, the mapping A is a surjection.
(existence) Ax = y is solvable iff y ∈ range A.

The null-space (or kernel) of A is defined as
ker A = {x ∈ Rm|Ax = 0}.

If ker A = {0}, then the mapping A is an injection.
(uniqueness) If x is a solution to Ax = y,
then x + x̃ for each x̃ ∈ ker A is also a solution.

14/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Matrix rank
The surjectivity and injectivity of the matrix A can be conveniently
expressed in terms of its rank, which can be defined as

rank A = dim range A ≤ min(m, n).

A is called full-rank, if it has the largest possible rank.
Otherwise it is said to be singular or rank-deficient (which in
the exact arithmetic are synonyms).
The rank of the matrix A equals the number of its linearly
independent columns (or, equivalently, rows).

The dimensionality m of the domain of A is split into the
dimensionality of its range and of its null-space,

m = rank A + dim ker A.

A is surjective, iff n = rank A (requires n ≤ m).
A is injective, iff m = rank A (requires m ≤ n).
A is bijective, iff m = n = rank A (full-rank square A).

15/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Existence and uniqueness of solution

Consider a linear equation Ax = y, where A ∈ Rn×m. Depending
on the surjectivity and injectivity of A, four general cases are
possible:

1 A is a bijection (n = m = rank A, full-rank square A). The
equation has a unique solution.

2 A is surjective, but not injective (n = rank A < m). For each
y there are infinitely many solutions, which can be expressed
as xp + x0, where xp is a particular solution and
x0 ∈ ker A 6= {0}.

3 A is injective, but not surjective (m = rank A < n).
Depending on y, there is either a unique solution (if
y ∈ range A) or no solution at all.

4 A is neither injective, nor surjective (rank A < min(m, n)).
Depending on y, there are either infinitely many solutions (if
y ∈ range A) or no solutions at all.

16/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Outline

3 Direct methods
Special matrices
Factorizations and decompositions
Gaussian elimination

17/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Direct methods

Direct methods
Compute the solution in a finite and known in advance time
(number of steps).
In the exact arithmetic, the computed solution would be exact.
Stability in finite precision arithmetics are usually
well-analyzed.
Require direct access to the elements of the system matrix A
(which has thus to be explicitly given).

18/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Direct methods

Direct methods solve Ax = y in two general steps:
1 Factorize A into a product of two or more matrices (e.g.

A = Q1Q2Q3), such that Qiv = u are all easily solvable. The
original equation is then expressed as e.g. Q1(Q2(Q3x)) = y.

2 Compute the solution x by successively solving the resulting
equations, e.g.

Q1x1 = y
Q2x2 = x1

Q3x3 = x2,

so that finally x = x3.
The numerical cost of the first step (for a square n × n matrix) is
usually O(n3) and much larger then that of the second step O(n2).
If several equations with the same A and different right-hand sides
y have to be solved, A is factorized only once.

19/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Special matrices

In the first step, a direct method of solving Ax = y factorizes A
into a product of two or more special matrices Q1,Q2, . . . ,QN .

The matrices are called special, since Qiv = u have all to be easily
solvable. They are usually:

diagonal,
unitary or orthonormal,
permutation matrices,
lower or upper triangular.

20/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Square diagonal matrices

D = diag(d1, d2, . . . , dn) =


d1 0

d2
. . .

0 dn



Elements of a diagonal matrix are all zero except the diagonal.
If di 6= 0 for all i , then D is full-rank and bijective. The
system Dx = y is then uniquely solvable for all y.
If di = 0 for some i , then D is singular and neither surjective
nor bijective. Depending on y, the system Dx = y has either
infinitely many solutions or no solutions at all.

21/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Square diagonal matrices

The linear system Dx = y, where D is an n × n diagonal matrix, is
a system of n decoupled equations:

dixi = yi , i = 1, 2, . . . , n,

which can be solved in O(n) operations:
If all di 6= 0, then the unique solution is given by xi = yi/di .
Otherwise there is i such that di = 0. The matrix D (and
thus also A) is singular and neither surjective nor injective.
Existence of solution depends on y:

If yi = 0 for all i such that di = 0, then there are infinitely
many solutions, since equation 0xi = 0 is satisfied by any xi .
If there exists i such that di = 0 and yi 6= 0, then there are no
solutions, since no xi can satisfy 0xi = yi , where yi 6= 0.

The case of a non-square diagonal matrix can be treated in a
similar way.

22/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Diagonal matrices — examples

Square diagonal matrix
1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 4




x1
x2
x3
x4

 =


1
1
y
1


If y == 0, then the equation has infinitely many solutions:

x1
x2
x3
x4

 =


1

1/2
0

1/4

+


0
0
c
0

 , c ∈ R,

where [1 1/2 0 1/3]T is a particular solution and [0 0 c 0]T belongs
to the null space of the system matrix. Otherwise (if y 6= 0), the
equation nas no solutions.

22/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Diagonal matrices — examples

Non-square diagonal matrix
The equation  1 0 0 0

0 2 0 0
0 0 3 0




x1
x2
x3
x4

 =

 1
1
1


has infinitely many solutions,

x1
x2
x3
x4

 =


1

1/2
1/3
0

+


0
0
0
c

 , c ∈ R,

where [1 1/2 1/3 0]T is a particular solution and [0 0 0 c]T belongs
to the null space of the system matrix.

22/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Diagonal matrices — examples

Non-square diagonal matrix
1 0 0
0 2 0
0 0 3
0 0 0


 x1

x2
x3

 =


1
1
1
y


If y == 0, the equation has a unique solution x1

x2
x3

 =

 1
1/2
1/3

 .
Otherwise, the equation has no solutions.

23/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Unitary matrices

A real square matrix Q is called unitary, if Q−1 = QT.

If a matrix Q ∈ Rn×n is unitary, then
Q has orthonormal rows and columns, i.e.

QTQ = QQT = I,

where I is the n by n diagonal matrix.
Columns q1,q2, . . . ,qn (and rows) of Q form an orthonormal
basis in Rn, that is

qT
i qj = δij ,

where δij is Kronecker’s delta.
Unitary matrices are thus always full-rank.

24/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Unitary and orthonormal matrices

Since unitary matrices are always full-rank and easily invertible
(Q−1 = QT), a linear system Qx = y with a unitary matrix
Q ∈ Rn×n has a unique solution for all y and can be solved in
O(n2) operations,

x = Q−1y = QTy.

A unitary matrix with a part of rows (or columns) removed is
called an orthonormal matrix. The removed (or, more often, not
computed at all) vectors usually form a basis of the null-space of
the considered system matrix. They can be thus disregarded, if
only a particular solution is sought for instead of the full solution
space. The particular solution obtained this way is usually the
minimum-norm solution.

25/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Permutation matrices

A square n× n matrix Π is said to be a permutation matrix, if it is
obtained from an n × n identity matrix by permuting its rows.

Every row and every column of a permutation matrix has
exactly single 1 and everywhere else 0s.
There are n! different permutations of an n-element sequence.
So, there are exactly n! permutation matrices of the
dimensions n × n.
A permutation matrix Π satisfies ΠTΠ = I, therefore it is a
special case of a unitary matrix.
When applied to an n × n matrix A:

ΠA is the matrix A with permuted rows.
AΠ is the matrix A with permuted columns.

26/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Lower and upper triangular matrices

A square matrix L is called a lower triangular matrix, if all its
elements above the main diagonal are zero: lij = 0 for i < j .

A square matrix U is called an upper triangular matrix, if all its
elements below the main diagonal are zero: uij = 0 for i > j .

L =


l11 0
l21 l22
...

... . . .
ln1 ln2 · · · lnn

 U =


u11 u12 · · · u1n

u22 · · · u2n
.

0 unn



27/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Lower triangular systems — forward-substitution

An n × n lower triangular system Lx = y,
l11 0
l21 l22
...

... . . .
ln1 ln2 · · · lnn




x1
x2
...
xn

 =


y1
y2
...
yn

 ,

can be solved with O(n2) operations by forward-substitution.

Forward substitution

x1 = y1
l11
, xi =

yi −
∑i−1

j=1 lijxj

lii
.

28/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Upper triangular systems — back-substitution

Similarly, an n × n upper triangular system Ux = y,
u11 u12 · · · u1n

u22 · · · u2n
.

0 unn




x1
x2
...
xn

 =


y1
y2
...
yn

 ,

can be solved with O(n2) operations by back-substitution.

Back substitution

xn = yn
u11

,

xi =
yi −

∑n
j=i+1 uijxj

uii
.

f o r (i n t i=n−1; i >=0; −− i) {
sum = 0 ;
f o r (i n t j=i +1; j<n ; ++j)

sum += U(i , j)∗ x (j) ;
x (i) = (b (i)−sum)/U(i , i) ;

}

29/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Factorizations and decompositions

Solution of the system Ax = y by direct methods requires a
factorization of A into a product of two or more special matrices
that make the system easier to solve, e.g.

A = Q1Q2 or A = Q1Q2Q3.

Direct methods can be broadly classified into two groups
Decomposition methods use a factorization with unitary
matrices and (usually) a diagonal matrix, which directly
provide important information about the matrix and the
related mapping (dimensionality and basis of the null-space,
eigen- or singular values, etc.). The factorization
(decomposition) often amounts to solving the related
eigenproblem.
The other direct methods are known under the general name
of factorization methods.

30/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Factorizations
The probably most commonly used factorizations are

LU factorization: A = LU, where L and U are respectively
lower and upper triangular matrices. It exists for any square
nonsingular matrix3.
QR factorization: A = QR, where Q is a unitary (or
orthogonal) matrix and R is an upper triangular matrix.
Similarly, there exist QL, RQ and LQ factorizations.
LDL factorization: A = LDLT, where L is a lower triangular
matrix and D is a diagonal matrix with positive elements.
LDL factorization exists for symmetric positive definite
matrices (for other matrices it may not exist).
Cholesky factorization: A = LLT, where L is a lower
triangular matrix. Cholesky factorization exists only for
symmetric positive definite matrices.

3Sometimes a pre-multiplication by a permutation matrix Π is necessary, so
that ΠA = LU.

31/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — eigen decomposition
Eigenvalues and eigenvectors

A fundamental notion in linear algebra is that of an eigenvalue and
the corresponding eigenvectors of a square matrix.

Let A be a square n × n matrix. A number λ is called an
eigenvalue of A and a vector v is called a corresponding
eigenvector if and only if Av = λv.

As the above condition yields (A− λI) v = 0, the eigenvalues of A
are the roots of its characteristic polynomial,

fA(λ) = det (A− λI) ,

which always has n complex roots. Thus, every square n × n
matrix has always n complex eigenvalues (some or all of which can
be real). Every eigenvalue has a multiplicity, which is defined as
the multiplicity of the corresponding root of fA(λ).

32/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — eigen decomposition
Symmetric (Hermitian) matrices

The probably most known decomposition is the eigen
decomposition of a symmetric (Hermitian) matrix:

Every square n× n symmetric (Hermitian) matrix A has n
linearly independent eigenvectors and can be expressed as

A = PDP−1,

where D is a diagonal matrix with the eigenvalues of A on
the diagonal, D = diag (λ1, λ2, . . . , λn), and P is the ma-
trix with the corresponding eigenvectors as columns. The
eigenvalues are all real. The eigenvectors are orthogonal,
and if they are scaled to be orthonormal, then P−1 = PT

and
A = PDPT.

33/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — eigen decomposition

If A is non-symmetric (non-Hermitian), the existence of the eigen
decomposition depends on the number of the eigenvectors:

If a square n×n matrix A has n linearly independent eigen-
vectors, than it can be expressed as

A = PDP−1,

where P collects all the eigenvectors as columns, and D is
a diagonal matrix with the corresponding eigenvalues on
the diagonal, D = diag (λ1, λ2, . . . , λn). If A

has an eigen decomposition, it is called diagonalizable4. A
non-symmetric (non-Hermitian) matrix may have complex
eigenvalues.

4It is diagonal in the coordinates defined by the columns of P.

34/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — eigen decomposition — examples

Symmetric matrix
The matrix

A =
[

1 −1
−1 1

]
, fA(λ) = λ2 − 2λ,

is symmetric, thus it has two linearly independent orthogonal
eigenvectors with two corresponding real eigenvalues,

v1 = [−1 1]T v2 = [1 1]T ,
λ1 = 2 λ2 = 0.

One of the eigenvalues is zero, so A is singular.

A =
[

1 −1
−1 1

]
=
[
−1 1

1 1

] [
2 0
0 0

] [
−0.5 0.5

0.5 0.5

]

34/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — eigen decomposition — examples

Non-symmetric diagonalizable matrix
The non-symmetric matrix

A =
[

1 1
−1 1

]
, fA(λ) = λ2 − 2λ+ 2,

is diagonalizable, since it has two linearly independent eigenvectors,

v1 = [−i 1]T v2 = [i 1]T .

The two corresponding eigenvalues are complex:

λ1 = 1 + i λ2 = 1− i.

A =
[

1 1
−1 1

]
=
[
−i i
1 1

] [
1 + i 0

0 1− i

] [
0.5i 0.5
−0.5i 0.5

]

34/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — eigen decomposition — examples

Non-symmetric non-diagonalizable matrix
The non-symmetric matrix

A =
[

1 0
1 1

]
, fA(λ) = λ2 − 2λ+ 1,

is non-diagonalizable, since it has only one linearly independent
eigenvector,

v1 = [0 1]T ,

even if its single eigenvalue has the multiplicity of two:

λ1 = λ2 = 1.

The matrix A has no eigen decomposition and is non-singular.

35/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — singular value decomposition

The probably most important decomposition is the singular value
decomposition (SVD):

Every rectangular matrix A ∈ Rn×m can be expressed as

A = U
[

Σ0 0
0 0

]
VT = UΣVT,

where U and V are unitary matrices, and Σ is an n×m di-
agonal matrix with nonnegative diagonal elements ordered
in a nonincreasing way.

36/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — singular value decomposition

Every rectangular matrix A ∈ Rn×m can be expressed as

A = U
[

Σ0 0
0 0

]
VT = UΣVT,

where U and V are unitary, and Σ is a diagonal matrix.

full-rank A ∈ Rn×m (rank A = n < m)

A = UΣVT =

37/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — singular value decomposition
Every rectangular matrix A ∈ Rn×m can be expressed as

A = U
[

Σ0 0
0 0

]
VT = UΣVT,

where U and V are unitary, and Σ is a diagonal matrix.
Diagonal elements σi of Σ are called the singular values of A.
The number r of positive singular values equals to rank A.
The matrix Σ0 is thus rank A× rank A.
The SVD is unique up to the ordering of the singular vectors
(columns of U and V) corresponding to equal singular values.
The columns of V, which correspond to the vanishing singular
values, form a basis for the null-space of A.
ATA = VΣTUTUΣVT = VΣTΣVT is the eigen
decomposition of ATA. Therefore, σ2

i (A) = λi (ATA).
The singular values provide full information about
conditioning of A (see Lecture B-4).

38/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — singular value decomposition
Examples

Non-symmetric non-diagonalizable square matrix
The non-symmetric and non-diagonalizable matrix

A =
[

2 0
3 2

]

has the following singular value decomposition:

A =
[1√

5 − 2√
5

2√
5

1√
5

] [
4 0
0 1

] [2√
5 − 1√

5
1√
5

2√
5

]T

38/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — singular value decomposition
Examples

Non-square matrix
The non-square matrix

A =
[

2 0 0
3 2 0

]

has the following singular value decomposition:

A =
[1√

5 − 2√
5

2√
5

1√
5

] [
4 0 0
0 1 0

]
2√
5 − 1√

5 0
1√
5

2√
5 0

0 0 1


T

39/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Decompositions — rank-revealing QR factorization

Another decomposition is called the rank-revealing QR
factorization:

Let the rank of A ∈ Rn×m be r = rank A ≤ min(n,m).
There exists a rank-revealing QR factorization,

AΠ =
[

Q1 Q2
] [R1 R2

0 0

]
,

where R1 is an r × r upper triangular matrix with positive
diagonal elements, R2 is an r × (m − r) matrix and Π is
a permutation matrix such that the first r columns of AΠ
are linearly independent. The matrix [Q1Q2] is unitary. The

matrices Q1 and Q2 are (column) orthonormal:
The r columns of Q1 form a basis for range AΠ.
The n − r columns of Q2 form a basis for ker (AΠ)T.

40/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination

Gaussian elimination is a method of
solving a full-rank Ax = y by
performing the LU factorization of A.

Gaussian elimination uses two elementary operations
1 adding a multiple of the ith row to the jth row and
2 interchanging two rows/equations (or columns/unknowns),

called pivoting
to eliminate the unknowns xi in order to obtain an equivalent
upper triangular system Ux = ŷ, which can be solved by
back-substitution.

41/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann




x1
x2
...
xn

 =


y1
y2
...
yn

 = y

First, x1 is eliminated from the other equations by subtracting the
multiple li1 = ai1/a11 of the first equation from the ith equation.
This way a reduced system of n − 1 equations with n − 1
unknowns x2, . . . , xn is obtained,

A(2)x =


a11 a12 · · · a1n

0 a(2)
22 · · · a(2)

2n
...

...
0 a(2)

n2 · · · a(2)
nn




x1
x2
...
xn

 =


y1

y (2)
2
...

y (2)
n

 = y(2),

where a(2)
ij = aij − li1ai1 and y (2)

i = bi − li1b1.

42/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination

The procedure is repeated n − 1 times: xk , k = 2, . . . , n − 1 is
eliminated from the rest i = k + 1, . . . , n equations using the
multiplier lik = a(k)

ik /a(k)
kk . This yields an upper triangular system,

which can be solved by back-substitution:

A(n)x =


a11 a12 · · · a1n

a(2)
22 · · · a(2)

2n
.

0 a(n)
nn




x1
x2
...
xn

 =


y1

y (2)
2
...

y (n)
n

 = y(n),

where a(k+1)
ij = a(k)

ij − lika(k)
ik and y (k+1)

i = b(k)
i − likb(k)

k .

43/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination with pivoting

Gaussian elimination uses in the kth step the multiplier
lik = a(k)

ik /a(k)
kk to eliminate the unknown xk . This works seamlessly,

unless the diagonal element a(k)
kk ≈ 0.

If a(k)
kk = 0, elimination is not possible.

If a(k)
kk is very small, elimination can be numerically unstable.

The second elementary operation (row pivoting) can be then used.
The kth row is interchanged with one of the next rows, so that the
diagonal element is maximized. Some procedures pivot also
columns (interchange the unknowns). Before performing the
Gaussian elimination with pivoting, the matrix should be rescaled

The maximum magnitude of the elements in each row to one.
The sum of the magnitudes of the row elements to one.

There is no need for pivoting, if A is symmetric positive definite.

44/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination with pivoting — example

Example (Dahlquist and Björck)

Ax =
[

10−6 1
1 1

] [
x1
x2

]
=
[

1
0

]
= y.

A is nonsingular and well-conditioned. The exact solution is

x = 1
1− 10−6

[
−1
1

]
≈
[
−1
1

]
.

However, the solution computed by Gaussian elimination without
pivoting in the precision of 6 decimal digits yields

x =
[

0
1

]
.

45/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination — numerical costs

After all steps an upper triangular system is produced,

A(n)x =


a11 a12 · · · a1n

a(2)
22 · · · a(2)

2n
.

0 a(n)
nn




x1
x2
...
xn

 =


y1

y (2)
2
...

y (n)
n

 = y(n).

The number of operations in Gaussian elimination is ∼ n3/3. This
is substantially more than ∼ n2/2 necessary to solve the resulting
upper triangular system.
If the multipliers lik are stored (together with the information
about row interchange and scaling, if necessary), then y(n) for
different right-hand side vectors y can be computed at later times
at the cost of ∼ n2/2 only. Hence the total cost of each
subsequent computation would be ∼ n2 only.

45/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination — numerical costs

After all steps an upper triangular system is produced,

A(n)x =


a11 a12 · · · a1n

a(2)
22 · · · a(2)

2n
.

0 a(n)
nn




x1
x2
...
xn

 =


y1

y (2)
2
...

y (n)
n

 = y(n).

To save the memory, the multipliers lik can be stored for later use
in the lower part of the matrix A(k) (in the place of the zeroed
elements), 

a11 a12 · · · a1n

l21 a(2)
22 · · · a(2)

2n
...

...
ln1 ln2 · · · a(n)

nn



46/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination — LU factorization
Gaussian elimination is an algorithm for LU factorization of the
system matrix, A = LU, where:

L = [lik], where lkk = 1 and lik = 0 for i < k.
U = [ukj], where ukj = a(k)

kj for j ≥ k and ukj = 0 otherwise.

A(n) →


a11 a12 · · · a1n

l21 a(2)
22 · · · a(2)

2n
...

...
ln1 ln2 · · · a(n)

nn



→


1 0
l21 1
...

... . . .
ln1 ln2 · · · 1




a11 a12 · · · a1n

a(2)
22 · · · a(2)

2n
.

0 a(n)
nn



47/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Gaussian elimination — LU factorization

Gaussian elimination yields LU factorization of the system matrix.
Therefore, it is one of the direct methods, as it computes the
solution of a linear system Ax = y in two steps

1 Single LU factorization ΠA = LU, where Π is the
permutation and row rescaling matrix (if necessary). This step
requires ∼ n3/3 operations.

2 Solution of
(
Π−1LU

)
x = y via the solution of the equivalent

systems Lx1 = Πy and Ux = x1, where Πy is the rescaled and
pivoted y.

The second step costs only ∼ n2 operations and can be repeated
several times for different right-hand side vectors y.

48/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Outline

4 Iterative methods
Stationary methods
Krylov subspace methods

49/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Iterative methods

Iterative methods
Compute an approximate solution in an iterative way.
In general, the number of iterations to obtain a good
approximation is unknown in advance.
The convergence properties of the methods are often hard to
analyze, especially in finite precision arithmetics. In some
cases, finite-precision iterations may not converge at all.
Many of the methods require access only to a matrix-vector
multiplication procedure (Ax, sometimes also ATx), so that A
may be given only implicitly (e.g. Ax can be the result of an
experiment or a simulation).
They are most useful for solving large sparse or structured
systems, for which any factorization (necessary in direct
methods) would take too much time, destroy the sparsity or
the matrix structure, or be too inaccurate.

50/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Iterative methods

There are two important groups of iterative methods
Stationary methods: Jacobi, Gauss-Seidel, successive
over-relaxation (SOR), etc.
Krylov subspace methods, out of which the conjugate gradient
method seems to be the most important.

51/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Stationary methods for Ax = y

Split the system matrix A into

A = M−N,

such that M is a nonsingular special matrix (diagonal, lower
triangular, etc.) Direct access to A is thus required.
Compute iteratively the solution using an easily solvable5

Mxk+1 = Nxk + y.

Convergence properties are usually well-analyzed, e.g.
If A ∈ Rn×n is nonsingular and the spectral radius6 of
M−1N satisfies ρ(M−1N) =< 1, then

xk converge to x = A−1y for any starting x0,
the error ‖x− xk‖ tends to zero like ρ(M−1N)k .

5The subscript k in xk denotes the iteration number, and not the kth
component xk of the (kth iterate) vector xk .

6Magnitude of the maximum-magnitude eigenvalue.

52/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Stationary methods — Jacobi and Gauss-Seidel
Stationary methods for Ax = y are defined by

Mxk+1 = Nxk + y, where A = M−N.

Split the system matrix A into its strictly lower triangular L,
diagonal D and strictly upper triangular U parts,

A = L + D + U.

The Jacobi method is defined by

M = D,
N = −L−U.

The Gauss-Seidel method is defined by

M = D + L,
N = −U.

Both method are convergent if A is symmetric positive-definite.

53/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Stationary methods — Jacobi and Gauss-Seidel
Both Jacobi and Gauss-Seidel formulas have a simple explanation.
For example, consider a linear system with three unknowns:

a11x1 + a12x2 + a13x3 = y1

a21x1 + a22x2 + a23x3 = y2

a31x1 + a32x2 + a33x3 = y3

It can be transformed to an equivalent form

a11x1 = y1 − a12x2 − a13x3

a22x2 = y2 − a11x1 − a13x3

a33x3 = y3 − a11x1 − a12x2

which in the vector notation takes the form

Dx = y− (L + U)x,

where D, L and U are respectively the diagonal, strictly lower and
strictly upper triangular parts of A.

54/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Stationary methods — Jacobi and Gauss-Seidel
Therefore, every linear system Ax = y can be transformed to the
equivalent form

Dx = y− (L + U)x.

The Jacobi method takes this formula directly and obtains

Dxk+1 = y− (L + U)xk ,

where all components of xk+1 are computed using the
previous-step iterate xk . However, when the ith component of the
vector xk+1 is being computed, then all the components preceding
it (no. 1, 2, . . . , i − 1) are already known and can be used instead
of these of the previous-step iterate xk . This yields the
Gauss-Seidel method,

Dxk+1 = y− Lxk+1 −Uxk , that is
(D + U)xk+1 = y−Uxk .

55/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Stationary methods — successive over-relaxation (SOR)

The Jacobi and Gauss-Seidel methods are appealing because of
their simplicity. However, when the spectral radius of M−1N is
close to unity, their convergence is very slow.

The successive over-relaxation (SOR) method tries to improve the
convergence by modifying the original Gauss-Seidel step,

Dxk+1 = y− Lxk+1 −Uxk ,

so that the formula for the iterate xk+1 is weighted against the
previous value xk with such a relaxation factor ω,

xk+1 = ωD−1 [y− Lxk+1 −Uxk] + (1− ω)xk ,

that the corresponding spectral radius is minimized.

56/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Stationary methods — successive over-relaxation (SOR)

The SOR method can be compactly represented in the general
form of the stationary methods,

Mωxk+1 = Nωxk + ωy,

where

Mω = D + ωL,
Nω = (1− ω)D− ωU.

The relaxation factor ω should minimize the spectral radius of
M−1

ω Nω. The choice of its optimum value is not easy. In general
SOR can be convergent only for ω ∈ (0, 2).
If A is symmetric positive-definite, then SOR converges for all
ω ∈ (0, 2).

57/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Krylov subspace methods

Krylov subspace methods find iteratively the best (in a given
sense) solution xk of Ax = y in successively larger Krylov
subspaces Kk(A, y) = span (y,Ay,A2y, . . . ,Ak−1y).

They are often expressed as iterative optimization methods.
Most of them can be also related to the Lanczos iterative
tridiagonalization procedures.
No access to the full matrix A is required, only a routine for
matrix-vector multiplication Ax (and sometimes also ATy).

The most important Krylov subspace method seems to be the
conjugate gradient method.

58/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Krylov subspace methods — conjugate gradient method

The conjugate gradient method (CG) for a linear system Ax = y
with a symmetric positive-definite A can be expressed as

an iterative optimization of the objective function

φ(x) = 1
2xTAx− yTx

in successively growing Krylov subspaces Kk(A, y),
which can be shown to be generated by the gradients in the
successive approximations xk ,

∇φ(xk) = Axk − y = −rk ,

where rk denotes the residual.

59/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Krylov subspace methods — conjugate gradient method
after Björck, Dahlquist

The matrix A has to be
symmetric positive-definite.
Note that the matrix A is
required only in the form of
a matrix-vector
multiplication Ax.
The algorithm requires
additional storage for few
vectors and scalars only.

p = r0 = y− Ax
while ‖r0‖ > ε

q = Ap

α = ‖r0‖2

pTq
x = x + αp
r1 = r0 − αq
β = ‖r1‖2/‖r0‖2

p = r1 + βp
r0 = r1

60/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Krylov subspace methods — CGLS method
after Björck, Dahlquist

If A is not symmetric
positive-definite, then the CG
method can be applied to the
normal equations,

ATAx = ATy,

which amounts to minimizing

φ(x) = 1
2‖Ax− y‖2.

This is the conjugate gradient
least-squares (CGLS) method.
A is required only in the form of
the multiplications Ax and ATy.

r = y− Ax
p = s0 = ATr
while ‖r‖ > ε

q = Ap
α = ‖s0‖2/‖q‖2

x = x + αp
r = r − αq
s1 = ATr
β = ‖s1‖2/‖s0‖2

p = s1 + βp
s0 = s1

61/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Outline

5 Homework 7

62/62

Outline Basics Existence & uniqueness Direct methods Iterative methods HW7

Homework 7 (25 points)
LU decomposition

Available soon at http://info.ippt.pan.pl/˜ljank.

E-mail the answer and the source codes to ljank@ippt.pan.pl.

http://info.ippt.pan.pl/~ljank
mailto:ljank@ippt.pan.pl

	Outline
	Outline

	Basics
	Basic notions
	Types of problems
	Methods of solution

	Existence and uniqueness of solution
	Existence and uniqueness of solution

	Direct methods
	Direct methods
	Special matrices
	Factorizations and decompositions
	Gaussian elimination

	Iterative methods
	Overview
	Stationary methods
	Krylov subspace methods

	Homework 7
	Homework 7

