
1/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Programming, numerics and optimization
Lecture B-2:

Numerical integration of ordinary differential equations

Łukasz Jankowski
ljank@ippt.pan.pl

Institute of Fundamental Technological Research
Room 4.32, Phone +22.8261281 ext. 428

March 30, 20211

1Current version is available at http://info.ippt.pan.pl/˜ljank

http://info.ippt.pan.pl/~ljank

2/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics

2 Explicit one-step methods

3 Implicit one-step methods

4 Multistep methods

5 Methods for 2nd order equations

6 Homework 5

3/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics
Basic notions
Reduction to first order ODE
Problem classification
Sources of errors

2 Explicit one-step methods

3 Implicit one-step methods

4 Multistep methods

5 Methods for 2nd order equations

6 Homework 5

4/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Basic notions

Ordinary differential equation (ODE)
An ordinary differential equation (ODE) of order n is an equality
involving

a function and
its derivatives up to order n with respect to only one variable.

The highest order derivative can be given explicitly,

y (n) = F (t, y , y ′, . . . , y (n−1)),

or in an implicit form,

F (t, y , y ′, . . . , y (n)) = 0.

y (k) = ∂ky
∂tk denotes the kth order derivative of y with respect to t.

5/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Basic notions

Linear ODE
An ODE of order n is called linear, if it is of the form

an(t)y (n) + an−1(t)y (n−1) + . . .+ a1(t)y ′ + a0(t)y = q(t),

or

y (n) = an−1(t)y (n−1) + . . .+ a1(t)y ′ + a0(t)y + q(t).

Homogenous ODE
A linear ODE is said to be homogeneous, if q(t) = 0. Otherwise, it
is called inhomogeneous (or nonhomogeneous).

6/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Basic notions

Autonomous ODE (time-invariant)
An ODE of the form

y (n) = F (t, y , y ′, . . . , y (n−1))

is called autonomous, if F does not depend explicitly on t, that is
if it is of the form

y (n) = F (y , y ′, . . . , y (n−1)).

If t is time, an autonomous ODE is called time-invariant system.

In an autonomous (time-invariant) system, there are no external,
time-dependent influences (such as an external driving force in a
mechanical system). For example, most laws of nature are
generally assumed to be time-invariant.

7/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Reduction to first order ODE

An nth order ODE,

y (n) = F (t, y , y ′, . . . , y (n−1)),

can be reduced to a first order ODE

x′ = G(t, x), where x = (x1, . . . , xn),

by the following substitution:

x1 = y
x2 = y ′

· · ·
xn = y (n−1),

8/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Reduction to first order ODE
In other words, an nth order ODE in one variable,

y (n) = F (t, y , y ′, . . . , y (n−1))
can be reduced to a 1st order ODE in n variables,

x ′1 = x2

x ′2 = x3

· · ·
x ′n−1 = xn

x ′n = F (t, x1, x2, . . . , xn),
where

x1 = y
x2 = y ′

· · ·
xn = y (n−1).

9/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Reduction to first order ODE — example

Linear equation of motion
Linear equation of motion,

Mẍ + Cẋ + Kx = f,

can be reduced by the substitution u = x, v = ẋ to a first order
equation (state space form){

u̇ = v
v̇ = M−1 [f −Ku− Cv] ,

that is, to[
u̇
v̇

]
=
[

0 I
−M−1K −M−1C

] [
u
v

]
+
[

0
M−1

]
f.

10/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Problem classification

Problems involving ODEs can be classified into three main classes:
1 Initial value problems (IVP), in which values of the unknown

function are specified in one time moment only (initial
conditions):

solve ẋ = F(t, x), given x(0).

2 Boundary value problems (BVP), in which values of the
unknown function are specified in two or more time moments:

solve ẋ = F(t, x), given x1(t1), x2(t2), . . . , xn(tn).

3 Eigenproblems, which are similar to eigenproblems in linear
algebra:

solve Lx = λx,

where L is a given linear differential operator.

11/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Problem classification
Initial value problems

Given an ODE ẋ = F(t, x) and the initial conditions x(0) = x0.

There is a unique solution to the system within a neighborhood D
of the initial point x0, if for x ∈ D and t ∈ [0,T] the function F is
differentiable with respect to t and x1, . . . , xn (in fact, Lipschitz
continuity suffices).

The function F defines
a vector velocity field.
If F = F(x), the
system is autonomous
(the vector velocity
field does not change
in time). 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

12/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Problem classification
Initial value problems — example

Non-linearized pendulum
Let the motion of a non-linearized pendulum be governed by

α̈ + sinα = 0.

The phase space is formed by α and α̇,

x =
[

x1
x2

]
=
[
α
α̇

]
,

so that
ẋ =

[
ẋ1
ẋ2

]
=
[
α̇
α̈

]
=
[

x2
− sin x1

]
.

12/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Problem classification
Initial value problems — example

Non-linearized pendulum

ẋ =
[

ẋ1
ẋ2

]
=
[
α̇
α̈

]
=
[

x2
− sin x1

]
.

-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

Α = x1

Α
=

x 2

12/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Problem classification
Initial value problems — example

Non-linearized pendulum

ẋ =
[

ẋ1
ẋ2

]
=
[
α̇
α̈

]
=
[

x2
− sin x1

]
.

-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

Α = x1

Α
=

x 2

13/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Sources of errors

Two general sources of errors in numerical integration of ODEs
1 Approximate data

In practice, all the data (initial conditions, equation
parameters) are known approximately. Ill-conditioned
problems will magnify these errors.

2 Numerical algorithms
Stability. A method is unconditionally stable, if the computed
solution to ẋ(t) = λx(t) converges to zero whenever Reλ < 0
(irrespective of the step size). If the convergence holds only for
∆t small enough, the method is called conditionally stable.
Local truncation error (LTE) is the error introduced in each
time step. A method is consistent, if LTE vanishes as ∆t → 0.
Global truncation error is the current LTE plus all the errors
accumulated from the previous time steps. A method is
convergent if the global truncation error vanishes as ∆t → 0.

In general, convergence = consistency + stability.

14/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics

2 Explicit one-step methods
Euler method
Runge–Kutta methods
Convergence, order and stability of RK2 methods
Richardson extrapolation
Adaptive step size control

3 Implicit one-step methods

4 Multistep methods

5 Methods for 2nd order equations

6 Homework 5

15/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Basic idea

The time is discretized and the solution is constructed stepwise,
using the information from the last step only.

The value x(t + ∆t) is computed based on
1 the value x(t) and
2 the velocity vector ẋ(t).

Sometimes intermediate time points from the last step [t, t + ∆t]
are also used.

Explicit methods are
numerically cheap (all formulas are explicit),
can have an arbitrarily high global accuracy O(∆tn),
but are only conditionally stable.

15/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Basic idea

The time is discretized and the solution is constructed stepwise,
using the information from the last step only.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

16/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Euler method

Euler method is probably the simplest method:

x(t + ∆t)− x(t)
∆t ≈ ẋ(t) = F(t, x),

hence
x(t + ∆t) ≈ x(t) + ∆tF(t, x).

The first point x(0) is defined by the initial conditions.

1 The computed solution is very sensitive to the length of the
time step ∆t:

small ∆t: long computing time, better accuracy (up to the
accuracy of the floating point arithmetics)
large ∆t: shorter computing time, worse accuracy

2 Global accuracy is O(∆t) (a first order method).
3 The method uses local linear approximation to x(t).

16/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Euler method

Euler method

x

ttΔtt

17/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Euler method — example

Equation: ẋ = x , x(0) = 1
Exact solution: x(t) = et

Step: x(t + ∆t) ≈ x(t)(1 + ∆t)
Accuracy: O(∆t)

0 0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

x

18/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Runge–Kutta methods

In each step, the Euler method takes into account only the
most recent point from the solution.
Runge–Kutta methods are a family of methods, which (unlike
the Euler method) take into account also intermediate time
steps within the current time interval [t, t + ∆t].
Methods that use

two time points (for example t and t + 1
2 ∆t) are said to be of

the 2nd order,
four time points are said to be of the 4th order, etc.

The most commonly used method of this family is so popular
that it is often called the Runge–Kutta method or RK4
(4th order Runge–Kutta).

19/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta methods

In the Euler method, the slope D that is used to compute the next
point by

x(t + ∆t) ≈ x(t) + ∆t D

is approximated as D ≈ ẋ(t). The two most popular 2nd order
Runge–Kutta methods improve the approximation accuracy by
using either the

1 derivative in the midpoint t + 1
2∆t (this is usually called the

2nd order Runge–Kutta method) or
2 the mean derivative at t and t + ∆t (called the Heun’s

method or the modified 2nd order Runge–Kutta method).

20/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta methods

x(t + ∆t) ≈ x(t) + ∆t D,

1 The 2nd order Runge–Kutta method approximates D with the
derivative in the midpoint t + 1

2∆t,

D ≈ ẋ
(

t + 1
2∆t

)
= F

(
t + 1

2∆t, x
(

t + 1
2∆t

))
.

The value in the midpoint is approximated using the simple
Euler formula,

x
(

t + 1
2∆t

)
≈ x(t) + 1

2∆t F(t, x(t)),

so that

D = F
(

t + 1
2∆t, x(t) + 1

2∆t F(t, x(t))
)
.

20/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta methods

2nd order Runge–Kutta

tΔt /2 tΔtt t

x

21/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta methods

x(t + ∆t) ≈ x(t) + ∆t D,

2 The Heun’s method (aka modified 2nd order Runge–Kutta)
approximates D with the mean derivative at t and t + ∆t.
The latter is approximated via the Euler formula. Thus,

D ≈ ẋ(t) + ẋ(t + ∆t)
2 ,

where

ẋ(t) = F(t, x(t)),
ẋ(t + ∆t) = F(t + ∆t, x(t + ∆t))

≈ F(t + ∆t, x(t) + ∆t ẋ(t))
≈ F(t + ∆t, x(t) + ∆t F(t, x(t))).

21/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta methods

Heun’s method (modified 2nd order Runge–Kutta)

x

ttΔt /2 tΔtt

22/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta methods

Using a more algorithmic notation:

2nd order Runge–Kutta method

d1 = F (t, x(t))

d2 = F
(

t + 1
2∆t, x(t) + 1

2∆t d1

)
x(t + ∆t) = x(t) + ∆t d2

Heun’s method (modified RK2)

d1 = F (t, x(t))
d2 = F (t + ∆t, x(t) + ∆t d1)

x(t + ∆t) = x(t) + ∆t d1 + d2
2

Both methods require two computations of F per step.
Global accuracy is O(∆t2) (a second order method).
Local quadratic approximation to x(t) is used.

23/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta method — example

Equation: ẋ = x , x(0) = 1
Exact solution: x(t) = et

2nd order Runge–Kutta method
Accuracy: O(∆t2)

0 0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

x

23/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

2nd order Runge–Kutta method — example

Equation: ẋ = x , x(0) = 1
Exact solution: x(t) = et

2nd order Runge–Kutta method
Accuracy: O(∆t2)

per cent of the exact solution

0 0.2 0.4 0.6 0.8 1
98.3%

98.5%

98.8%

99.0%

99.3%

99.5%

99.8%

100.0%

Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

24/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

4th order Runge–Kutta method
As in the Euler and 2nd order Runge–Kutta methods, the next
point is computed using an approximation of the slope D as

x(t + ∆t) ≈ x(t) + ∆t D.
The most popular 4th order Runge–Kutta method approximates D
using a weighted average of derivatives at four time points,

d1 = F (t, x(t))

d2 = F
(

t + 1
2∆t, x(t) + 1

2∆t d1

)
d3 = F

(
t + 1

2∆t, x(t) + 1
2∆t d2

)
d4 = F (t + ∆t, x(t) + ∆t d3) ,

to obtain

x(t + ∆t) = x(t) + ∆t d1 + 2d2 + 2d3 + d4
6 .

24/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

4th order Runge–Kutta method

4th order Runge–Kutta method

t

x

tΔt /2 tΔtt

The method requires four computations of F per step.
Global accuracy is O(∆t4) (a fourth order method).
A fourth-order local approximation to x(t) is used.

25/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

4th order Runge–Kutta method — example

Equation: ẋ = x , x(0) = 1
Exact solution: x(t) = et

4th order Runge–Kutta method
Accuracy: O(∆t4)

Notice the need for a smooth interpolation at large step sizes

0 0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

x

25/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

4th order Runge–Kutta method — example

Equation: ẋ = x , x(0) = 1
Exact solution: x(t) = et

4th order Runge–Kutta method
Accuracy: O(∆t4)

per cent of the exact solution

0 0.2 0.4 0.6 0.8 1
99.986%

99.988%

99.990%

99.992%

99.994%

99.996%

99.998%

100.000%

Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

26/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK2 methods
Assumption of smoothness

ẋ(t) = F(t, x(t))

Assume that both x and F(t, x) are sufficiently smooth, so that
1 The second derivative of x(t) can be computed as

ẍ(t) = d
dt ẋ(t) = d

dt F(t, x(t)) = Ft(t, x(t)) + Fx(t, x(t)) ẋ(t).

2 F can be expanded into its Taylor series around (t, x) as

F(t + ∆t, x + ∆x) = F(t, x) + Ft(t, x) ∆t + Fx(t, x) ∆x
+ O(∆t2) + O(∆t‖∆x‖) + O(‖∆x‖2),

where the rest simplifies to O(∆t2).

27/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK2 methods
General scheme of RK2 methods

RK2 methods for ẋ(t) = F(t, x(t))

xRK2(t + ∆t) = x(t) + ∆t (a1d1 + a2d2) ,

where

d1 = F(t, x(t)) = ẋ(t),
d2 = F(t + b∆t, x(t) + c∆t ẋ(t))

and a1, a2, b, c are certain coefficients.

a1 a2 b c

”the RK2 method” 0 1 0.5 0.5
Heun’s method 0.5 0.5 1 1

28/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK2 methods
Taylor series expansion of x(t):

x(t + ∆t) = x(t) + ∆t ẋ(t) + 1
2∆t2ẍ(t) + O(∆t3)

= x(t) + ∆t ẋ(t)

+ 1
2∆t2 [Ft(t, x(t)) + Fx(t, x(t)) ẋ(t)] + O(∆t3)

Taylor series expansion of F in the RK2 formula:

xRK2(t + ∆t) = x(t) + a1∆t ẋ(t) + a2∆t F(t + b∆t, x(t) + c∆t ẋ(t))

= x(t) + a1∆t ẋ(t) + a2∆t F(t, x(t))
+ a2b∆t2Ft(t, x(t)) + a2c∆t2Fx(t, x(t)) ẋ(t) + O(∆t3)

= x(t) + (a1 + a2)∆t ẋ(t)
+ a2∆t2 [bFt(t, x(t)) + cFx(t, x(t)) ẋ(t)] + O(∆t3).

29/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK2 methods

Therefore, by equating the coefficients in the two expansions:
The method is consistent, if

a1 + a2 = 1

If additionally

a2b = 0.5,
a2c = 0.5,

then the local (one-step) truncation error (LTE) is O(∆t3)
and so the global error is O(∆t2).

30/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK2 methods
The RK2 family

There are three equations with four unknowns, so they give a
one-parameter family of Runge–Kutta second order methods:

If a2 6= 0, then

xRK2(t + ∆t) = x(t) + ∆t [(1− a2)d1 + a2d2] ,

d1 = F(t, x(t)) = ẋ(t),

d2 = F
(

t + 1
2a2

∆t, x(t) + 1
2a2

∆t ẋ(t)
)
.

If a2 = 0, then the Euler method is obtained:

xRK2(t + ∆t) = x(t) + ∆t d1,

d1 = F(t, x(t)) = ẋ(t).

31/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK2 methods
The RK2 family — stability

The test case for stability is
ẋ(t) = λx(t), Reλ < 0.

Substitution of the RK2 family formulas (a2 6= 0) yields

xRK2(t + ∆t) = xRK2(t)
[
1 + ∆tλ+ 1

2∆t2λ2
]
,

which defines a convergent solution if and only if

|1 + ∆tλ+ 1
2∆t2λ2| < 1.

Similarly, for the Euler method it must hold that
|1 + ∆tλ| < 1,

and for the RK4 method

|1 + ∆tλ+ 1
2∆t2λ2 + 1

6∆t3λ3 + 1
24∆t4λ4| < 1.

32/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Convergence, order and stability of RK methods

Domains of
absolute
stability on
the complex
plane:
convergence
to 0 of the
computed
solution to

ẋ(t) = λx(t).

All explicit RK
methods are
conditionally
stable only.

33/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Richardson extrapolation
Assume the order of the global accuracy is known, e.g. for the
Euler method

x∆t(t) = xexact(t) + ∆t c(t) + O(∆t2).

In each time step, the next point can be computed using two time
steps, e.g. a single ∆t and two 1

2∆t, to obtain two
approximations, x∆t(t) and x 1

2 ∆t(t). If the higher-order terms are
neglected, a simple linear system is obtained,

x∆t(t) ≈ xexact(t) + ∆t c(t)

x 1
2 ∆t(t) ≈ xexact(t) + 1

2∆t c(t),

which yields
xexact(t) ≈ 2x 1

2 ∆t(t)− x∆t(t).

33/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Richardson extrapolation

If more higher-order terms are accounted for, computations at
three or more time steps have to be done.
In “Numerical recipes” Richardson extrapolation is described
“for alchemist readers as turning lead into gold”.
The Richardson extrapolation improves the accuracy of the
computed solution. However, the estimate of the accuracy is
lost.

34/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Richardson extrapolation — example

Euler method example, accuracy O(∆t)
Extrapolation based on time steps ∆t = 0.1 and ∆t = 0.2

0 0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Extrapolated
Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

x

34/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Richardson extrapolation — example

Euler method example, accuracy O(∆t)
Extrapolation based on time steps ∆t = 0.1 and ∆t = 0.2

per cent of the exact solution

0 0.2 0.4 0.6 0.8 1
86%

88%

90%

92%

94%

96%

98%

100%

Extrapolated
Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

35/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Richardson extrapolation — example

Standard Richardson extrapolation uses a polynomial
expansion in ∆t, e.g. for fourth-order Runge–Kutta methods:

x∆t(t) = xexact(t) + ∆t4c4(t) + ∆t5c5(t) + . . .

There are many variations to the standard approach. E.g. a
rational expansion might be used,

x∆t(t) ≈ xexact(t) + P(∆t)
Q(∆t) ,

where P and Q are polynomials.

36/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Adaptive step size control

The methods described so far use constant step sizes. However, to
minimize the numerical costs, an adaptive step size can be used.

Many small steps should tiptoe through treacherous ter-
rain, while a few great strides should speed through smooth
uninteresting countryside. /Numerical recipes/

In each time step, the accuracy can be monitored by comparing
x∆t(t) and x 1

2 ∆t(t) (step doubling procedure):
If the difference is small enough, retain the half-step solution
and double the time step.
Otherwise, halve the time step and repeat the (halved) step.

Additionally, since x(t + ∆t) is computed twice, the Richardson
extrapolation can be used.

37/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics

2 Explicit one-step methods

3 Implicit one-step methods

4 Multistep methods

5 Methods for 2nd order equations

6 Homework 5

38/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Implicit methods

Explicit methods rely basically on the formula

x(t + ∆t) ≈ x(t) + ∆t D

with the slope D is approximated using the explicitly given
derivative F(t, x(t)) at the beginning of the current time step
interval [t, . . . , t + ∆t]. The derivatives at the end or in the
intermediate points are only estimated using this initial value.

Implicit methods make use of the (initially unknown) derivative at
the end of the time step, ẋ(t + ∆t) = F(t + ∆t, x(t + ∆t)).

The value x(t + ∆t)) is given only implicitly, so it has to be
found by solving a (possibly nonlinear) equation, which might
be time-consuming.
Many popular implicit methods are unconditionally stable.

39/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Implicit methods

The simplest implicit method (backward Euler) is symmetric
to the explicit Euler method:

x(t + ∆t) ≈ x(t) + ∆t F(t + ∆t, x(t + ∆t)).

Slightly more advanced is the trapezoidal method:

x(t + ∆t) ≈ x(t)

+ 1
2∆t [F(t, x(t)) + F(t + ∆t, x(t + ∆t))] .

It is similar to the Heun’s method, but uses the exact
derivative at t + ∆t instead of an estimate.

In such formulas, the unknown x(t + ∆t) is given only implicitly. It
has to be found by solving a (possibly nonlinear) equation.

40/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Implicit methods — example

Equation: ẋ = x , x(0) = 1. Exact solution: x(t) = et .

(Explicit) Euler method:
x(t + ∆t) ≈ x(t) + ∆t x(t)

= (1 + ∆t)x(t).
Backward Euler method (simple implicit):

x(t + ∆t) ≈ x(t) + ∆t x(t + ∆t)

= x(t)
1−∆t .

Trapezoidal method:

x(t + ∆t) ≈ x(t) + 1
2∆t [x(t) + x(t + ∆t)]

= x(t)
1 + 1

2∆t
1− 1

2∆t
.

41/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Implicit methods — example

Equation: ẋ = x , x(0) = 1. Exact solution: x(t) = et .

0 0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
Euler
method
Simple
implicit
Trapezoidal
method
Exact

t

x

41/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Implicit methods — example

Equation: ẋ = x , x(0) = 1. Exact solution: x(t) = et .

per cent of the exact solution

t
0 0.2 0.4 0.6 0.8 1

98.0%

98.5%

99.0%

99.5%

100.0%

100.5%

101.0%

101.5%

102.0%

Euler method Simple implicit Trapezoidal
method

Exact

42/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics

2 Explicit one-step methods

3 Implicit one-step methods

4 Multistep methods
Modified midpoint method
Predictor-corrector methods

5 Methods for 2nd order equations

6 Homework 5

43/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Multistep methods

All methods described so far are one-step methods, i.e. the
solution is advanced based on the values and derivatives computed
for the last time step only, often at fractional time instances.

Multistep methods take into account results obtained in several
previous time steps:

On one hand, they are usually quicker than one-step methods,
because they do not need calculations at intermediate,
fractional time steps.
On the other hand, the accuracy can be lower, because the
solution is computed based on the results that are more
distant in time than in one-step methods. Thus, multistep
methods should be used with smooth functions.

44/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Modified midpoint method

The probably simplest multistep method is based on the formula

x(t + ∆t)− x(t −∆t)
2∆t ≈ ẋ(t) = F(t, x(t)),

which yields

x(t + ∆t) ≈ x(t −∆t) + 2∆t F(t, x(t)).

It is called the modified midpoint method. Two points are
necessary to start the procedure:

1 x(0) is defined by the initial conditions,
2 x(∆t) has to be computed, e.g. using the Euler formula.

Global accuracy is O(∆t2).
Two points are necessary to start.

45/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Modified midpoint method — example

Equation: ẋ = x , x(0) = 1
Exact solution: x(t) = et

Modified midpoint method
Accuracy: O(∆t2)

0 0.2 0.4 0.6 0.8 1
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

Exact
Δt = 0.1
Δt = 0.2
Δt = 0.4

t

x

46/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Predictor-corrector methods

Most of the multipoint methods used in practice belong to the
class of predictor-corrector methods, which basically

compute initial approximations to x(t + ∆t) and ẋ(t + ∆t)
based on the values and derivatives computed in several
previous time steps (prediction step);
correct the result based on the predicted derivative (correction
step).

One of the simplest predictor-corrector methods is the Heun’s
method (here the “multi” of multistep is reduced to one), since it
first computes the new value by the Euler method and then uses
the corresponding derivative to improve the solution.

47/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Predictor-corrector methods

Heun’s method

x

ttΔt /2 tΔtt

prediction

correction

48/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Predictor-corrector methods — ABM-PC

The probably most known predictor-corrector method is called
ABM-PC (Adams-Bashforth-Moulton Predictor-Corrector) and
uses

Adams-Bashforth method in the prediction step,
Adams-Moulton method in the correction step.

The Lagrange interpolating polynomial is the polynomial of the lowest possible
degree (degree ≤ n − 1) that passes through the n points (ti , xi),
i = 0, 1, . . . , n − 1. It is explicitly given by

xL(t) =
n−1∑
i=0

xi

n−1∏
j=0
j 6=i

t − tj

ti − tj
.

49/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Predictor-corrector methods — ABM-PC

Prediction step (Adams-Bashforth method)
1 Given the derivatives in the n previously computed points

ẋ(t − i∆t), i = 0, 1, . . . , n− 1, the derivative ẋ is interpolated
using the Lagrange interpolating polynomial as

ẋL1(t) ≈
n−1∑
i=0

ẋ(t − i∆t)
n−1∏
j=0
j 6=i

t − tj
ti − tj

.

2 The interpolating polynomial is used to predict the value of
the function and its derivative in the next time step t + ∆t by

xpred(t + ∆t) ≈ x(t) +
∫ ∆t

0
ẋL1(t + τ)dτ,

ẋpred(t + ∆t) = F (t + ∆t, xpred(t + ∆t)) .

50/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Predictor-corrector methods — ABM-PC
Correction step (Bashforth-Moulton method)

1 The “time window” of n steps is shifted one step ahead to
include the step t + ∆t, and the Lagrange interpolating
formula is again used to interpolate the derivatives in the
points ẋ(t − i∆t), i = −1, 0, 1, . . . , n − 2,

ẋL2(t) ≈
n−2∑

i=−1
ẋ(t − i∆t)

n−2∏
j=−1
j 6=i

t − tj
ti − tj

.

2 Then this new interpolating polynomial is used in the same
way as before to compute the (corrected) value of the
function and its derivative in the next time step t + ∆t,

x(t + ∆t) ≈ x(t) +
∫ ∆t

0
ẋL2(t + τ)dτ,

ẋ(t + ∆t) = F (t + ∆t, x(t + ∆t)) .

51/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Predictor-corrector methods — ABM-PC
The most popular is probably the four-point ABM-PC method:

1 The value in the new time step is predicted as

xpred(t+∆t) = x(t)+∆t
[
− 9

24 ẋ(t − 3∆t) + 37
24 ẋ(t − 2∆t)

−59
24 ẋ(t −∆t) + 55

24 ẋ(t)
]

and used to compute the predicted derivative,

ẋpred(t + ∆t) = F(t + ∆t, xpred(t + ∆t)),
2 which is used in the correction step to obtain

x(t + ∆t) ≈ x(t) + ∆t
[1
24 ẋ(t − 2∆t)− 5

24 ẋ(t −∆t)

+19
24 ẋ(t) + 9

24 ẋpred(t + ∆t)
]
,

ẋ(t + ∆t) = F(t + ∆t, x(t + ∆t)).

52/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics

2 Explicit one-step methods

3 Implicit one-step methods

4 Multistep methods

5 Methods for 2nd order equations
Newmark method
Other methods

6 Homework 5

53/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Methods for 2nd order equations

Typical methods for numerical integration of ODEs require
the ODE to be 1st order.
However, a typical equation of motion is of the 2nd order.

There is a large class of methods specialized for equations of
motion

the classical Newmark method and its variations (structural
mechanics)
symplectic methods (energy conservation in systems of
classical mechanics: orbital dynamics, molecular dynamics,
discrete element method, etc.)

54/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Methods for 2nd order equations
Newmark method

Taylor series with Lagrange remainder:

x(t + ∆t) = x(t) + ∆t ẋ(t) + ∆t2

2 ẍ(t + 2β∆t), β ∈
[
0, 12

]
ẋ(t + ∆t) = ẋ(t) + ∆t ẍ(t + γ∆t), γ ∈ [0, 1]

If linear interpolation of acceleration is used

ẍ(t + 2β∆t) ≈ (1− 2β)ẍ(t) + 2β ẍ(t + ∆t)
ẍ(t + γ∆t) ≈ (1− γ)ẍ(t) + γ ẍ(t + ∆t)

So that, together with the standard equation of motion,
x(t + ∆t) = x(t) + ∆t ẋ(t) + ∆t2

2 [(1− 2β)ẍ(t) + 2β ẍ(t + ∆t)]

ẋ(t + ∆t) = ẋ(t) + ∆t [(1− γ)ẍ(t) + γ ẍ(t + ∆t)]
f(t + ∆t) = Mẍ(t + ∆t) + Cẋ(t + ∆t) + Kx(t + ∆t)

55/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Methods for 2nd order equations
Newmark method

A rearrangement leads to the matrix form

A

 x(t + ∆t)
ẋ(t + ∆t)
ẍ(t + ∆t)

 = B

 x(t)
ẋ(t)
ẍ(t)

+ C f(t + ∆t),

where

A =

[I 0 −β∆t2I
0 I −γ∆t I
K C M

]
, B =

[I ∆t I (0.5 − β)∆t2I
0 I (1 − γ)∆t I
0 0 0

]
C =

[0
0
I

]
,

which yields the Newmark update rule x(t + ∆t)
ẋ(t + ∆t)
ẍ(t + ∆t)

 = A−1B

 x(t)
ẋ(t)
ẍ(t)

+ A−1C f(t + ∆t).

56/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Methods for 2nd order equations
Newmark method

The Newmark update rule x(t + ∆t)
ẋ(t + ∆t)
ẍ(t + ∆t)

 = A−1B

 x(t)
ẋ(t)
ẍ(t)

+ A−1C f(t + ∆t).

Unconditional stability of the Newmark scheme can be assessed by
inspecting the eigenvalues of A−1B as ∆t →∞.

This yields the condition 1
2 ≤ γ ≤ 2β ≤ 1.

The most commonly used values are γ = 1
2 and β = 1

4
(energy conservation).

57/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Methods for 2nd order equations
Other methods

There exist several variations to the Newmark method that might
have better numerical properties, e.g.

Bossak method
Hilber-Hughes-Taylor method
Park-Housner method
Trujillo method
space-time finite element method

For more information and references consult
S. Krenk. Energy conservation in Newmark based time integration
algorithms. Comput. Methods Appl. Mech. Engrg.
195(44–47):6110–6124, 2006.
Cz. Bajer, Time integration methods—still questions. Theoretical
Foundations of Civil Engineering. W. Szcześniak (ed.), vol. 1.
pp. 45–54, Warsaw 2002.

http://dx.doi.org/10.1016/j.cma.2005.12.001
http://dx.doi.org/10.1016/j.cma.2005.12.001
http://dx.doi.org/10.1016/j.cma.2005.12.001
http://www.ippt.pan.pl/~cbajer/il2.pdf
http://www.ippt.pan.pl/~cbajer/il2.pdf
http://www.ippt.pan.pl/~cbajer/il2.pdf

58/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Outline

1 Basics

2 Explicit one-step methods

3 Implicit one-step methods

4 Multistep methods

5 Methods for 2nd order equations

6 Homework 5

59/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Homework 5 (20 points)
Numerical integration of ODEs

Zipped HW52 contains:
Simple C++ source code for numerical integration of the
equation of a harmonically excited nonlinearized damped
pendulum (θ̈ + γθ̇ + sin θ = a cosωt) using the Euler method.
A simple gnuplot3 script for generating plots (you can also use
any other plotting software).
An example data set computed and plotted for a linear
pendulum with the Euler method and float datatype at time
steps 10−2 s, 10−3 s, 10−4 s and 10−5 s.
The readme file.

2Available on http://info.ippt.pan.pl/˜ljank
3http://www.gnuplot.info/

http://info.ippt.pan.pl/~ljank
http://www.gnuplot.info/

60/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Homework 5 (20 points)
Numerical integration of ODEs

1 (6 points) Fill the body of the function printRK2(), which
should be similar to printEuler (), but implement the 2nd order
Runge–Kutta method instead of the Euler method.

61/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Homework 5 (20 points)
Numerical integration of ODEs

2 (6 points total) Compute four numerical solutions in the time
interval [0, 50] s using the Euler method with the datatype
float and with the time step sizes of 10−2 s, 10−3 s, 10−4 s
and 10−5 s. Plot the computed solutions.

1 (4 points) Which solution seems to be the (more or less) exact
solution? Why the solutions computed at the shortest and the
longest time step sizes differ so much from the other two
solutions?

2 (2 points) Recompute and replot the solutions using the same
time interval, time step sizes and

1 Euler method and double datatype,
2 2nd order Runge–Kutta method and float datatype,
3 2nd order Runge–Kutta method and double datatype.

Comment on the accuracy of the results.

62/62

Outline Basics Explicit one-step Implicit one-step Multistep 2nd order equations HW5

Homework 5 (20 points)
Numerical integration of ODEs

3 (4 points) 2nd order Runge–Kutta method combined with
double data type seems to be the most reliable from the
tested methods, at least in the used time interval of [0, 50] s.
Check how far (how many seconds) can you more or less trust
this solution at step size 10−2 s: …[0, 75] s? …[0, 100] s?
…even more? How can you know it?

4 (4 points) Rework the code for the Euler method to tackle the
one-variable equation ẋ = − 1

x . Start from x(0) = 1 and
compute numerical solutions in the interval [0, 2] at different
step sizes. What happens and why? What is the exact
(analytical) solution?

E-mail your answers, plots and the reworked source code to
ljank@ippt.pan.pl.

mailto:ljank@ippt.pan.pl

	Outline
	Outline

	Basics
	Basic notions
	Reduction to first order ODE
	Problem classification
	Sources of errors

	Explicit one-step methods
	Basic idea
	Euler method
	Runge–Kutta methods
	Convergence, order and stability of RK2 methods
	Richardson extrapolation
	Adaptive step size control

	Implicit one-step methods
	Implicit one-step methods

	Multistep methods
	Multistep methods
	Modified midpoint method
	Predictor-corrector methods

	Methods for 2nd order equations
	Methods for 2nd order equations
	Newmark method
	Other methods

	Homework 5
	Homework 5

