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Number representations

In numerical computations, only two kinds of numbers are used:
integral numbers (integers) and
real numbers (reals).

However, computers handle not abstract “numbers”, but their
representations stored in the memory in binary form:

integers
1 Integer numbers

reals
2 Floating-point numbers
3 Fixed-point numbers
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Integer numbers
Limits

Integer numbers are
exact binary representations of integers
within given range.

Ranges of integer types are implementation-dependent. In general,
the C/C++ standards specify

the minimum sizes
char C: at least 8 bits; C++: exactly 8 bits
int at least 16 bits

long at least 16 bits
long long at least 32 bits

and (C++) that
s i z e o f ( char ) <= s i z e o f ( shor t ) <= s i z e o f ( i n t )

<= s i z e o f ( long ) <= s i z e o f ( long long )
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Integer numbers
Limits

Each implementation defines its ranges in headers limits and
climits (or limits .h).

#inc lude <c l im i t s >
// . . .
cout <<”INT_MAX = ” <<INT_MAX <<end l ;
cout <<”INT_MIN = ” <<INT_MIN <<end l ;
// . . .

#inc lude <l i m i t s >
// . . .
cout <<”INT_MAX = ” <<nume r i c_ l im i t s <i n t >::max ( ) <<end l ;
cout <<”INT_MIN = ” <<nume r i c_ l im i t s <i n t >:: min ( ) <<end l ;
// . . .
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Integer numbers
Limits

Example
integer type bytes bits unsigned signed

char 1 8 0 . . . 255 −128 . . . 127
short (int) 2 16 0 . . . 216 − 1 −215 . . . 215 − 1
int 4 32 0 . . . 232 − 1 −231 . . . 231 − 1
long (int) 4 32 0 . . . 232 − 1 −231 . . . 231 − 1
long long (int) 8 64 0 . . . 264 − 1 −263 . . . 263 − 1
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Integer numbers
Representations

Implementation of integer types is platform-dependent
numbers of bytes can be different
in principle, different number representations can be used for
signed numbers

sign-and-magnitude
ones’ complement
two’s complement
Excess-N

Virtually all contemporary processors use two’s complement for
signed integers, however

In floating-point numbers: sign-and-magnitude is used for
mantissa, Excess-N is used for exponent
Ones’ complement was used in older processors, it is also used
in checksum algorithms in some Internet protocols
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Integer numbers
Representation (2’s complements)

Positive int’s and zero are stored in natural binary notation.
Negative integers are stored as binary complements to zero or,
in fact, to a large power of two (two’s-complement).

in 16 bit short (range: 0 . . . 65535 or −32768 . . . 32767)
number unsigned short (signed) short

0 0000000000000000 0000000000000000
1 0000000000000001 0000000000000001
2 0000000000000010 0000000000000010
32767 0111111111111111 0111111111111111
65535 1111111111111111 —
-1 — 1111111111111111
-2 — 1111111111111110
-32768 — 1000000000000000
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Integer numbers
Representation (2’s complements)

You can check the (2’s) notation yourself

typedef i n t T; // put your type he r e
const i n t s i z e = 8∗ s i z eo f (T) ;
T number = −10; // put a v a l u e he r e

f o r ( i n t i=s i z e −1; i >=0; −− i )
cout <<!!(number&T(1)<< i ) ;

cout <<end l ;

The typedef keyword defines an alias for a data type,
& is the bitwise AND operator
<< is the bitwise right shift operator
!! a (double negation) is equivalent to a?1:0 or (a==0)?0:1
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Integer numbers
Representation (2’s complement)

The two’s-complement arithmetic makes the binary summation
straightforward

with 8 bit char

number register
3 = 0 0 0 0 0 0 1 1
-2 = 1 1 1 1 1 1 1 0

3+(-2) = 1˝ 0 0 0 0 0 0 0 1

In signed integral types, the first bit of the representation conveys
information about the sign of the number:

0 positive or zero,
1 negative.

The first bit is thus called the sign bit.
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Integer numbers
Examples (2’s complement)

unsigned short a=32767 , b=32768;
unsigned short c=a+b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

Console output

a = 32767
b = 32768
a+b = 65535

unsigned short a=32768 , b=32768;
unsigned short c=a+b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

Console output

a = 32768
b = 32768
a+b = 0
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Integer numbers
Examples (2’s complement)

unsigned short a=32768 , b=32769;
unsigned short c=a+b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

?

unsigned short a=1, b=2;
unsigned short c=a−b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

?
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Integer numbers
Examples (2’s complement)

unsigned short a=32768 , b=32769;
unsigned short c=a+b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

Console output

a = 32768
b = 32769
a+b = 1

unsigned short a=1, b=2;
unsigned short c=a−b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

?
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Integer numbers
Examples (2’s complement)

unsigned short a=32768 , b=32769;
unsigned short c=a+b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

Console output

a = 32768
b = 32769
a+b = 1

unsigned short a=1, b=2;
unsigned short c=a−b ;
cout <<”a\ t= ” <<a <<end l ;
cout <<”b\ t= ” <<b <<end l ;
cout <<”a+b\ t= ” <<c <<end l ;

Console output

a = 1
b = 2
a+b = 65535
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Floating-point numbers

Floating-point numbers are
within given range
unexact exponential binary representations of reals.

General rule:
x = ±2e m,

where
e is the exponent and

m is the mantissa (1 ≤ m < 2),
both represented in binary notations.
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Floating-point numbers
Example

12.75 represented in typical 32 bit float

12.75dec = +1100.11bin = +23dec 1.10011bin

+ 2130dec−127dec 1.100011bin
0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 ... 0

sign 8b: exponent 23b: mantissa (significand)

23 significant binary digits: relative representation accuracy
2−23 ≈ 10−7 (only < 7 significant decimal digits).
#inc lude<l i m i t s >
// . . .
cout <<nume r i c_ l im i t s <f l o a t >:: e p s i l o n ( ) <<end l ;

Exponent offset of −127 allows for negative exponents
(Excess-127 representation).
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Floating-point numbers
Representation and limits

Representation of floating-point types is platform-dependent. In
general, the C/C++ standards specify that

three floating-point types must be implemented:
float , double, long double
and that they have certain minimum capacities, e.g.

Minimum number of representable decimal digits: 6, 10, 10.
10−37 is within the range of normalized numbers
10+37 is within the range of representable numbers
the difference between 1 and the next representable number
must be not greater than 10−5, 10−9, 10−9

The actual values can be checked via the header limits by
cout <<nume r i c_ l im i t s <f l o a t >:: d i g i t s 1 0 <<end l ;
cout <<nume r i c_ l im i t s <f l o a t >:: min_exponent10 <<end l ;
cout <<nume r i c_ l im i t s <f l o a t >:: max_exponent10 <<end l ;
cout <<nume r i c_ l im i t s <f l o a t >:: e p s i l o n ( ) <<end l ;

Virtually all C/C++ implementations use float and double
conforming to the standard IEEE 754-1985.



17/60

Outline Number representations Arithmetic errors Problems and algorithms Conditioning Stability HW4

Floating-point numbers
Standard IEEE 754-1985

name sign(s) mantissa(m) exponent(e) offset

binary32 1 23 8 127
binary64 1 52 11 1023
binary128 1 112 15 16383

x = (−1)s (1.m) 2e−offset

Special cases for binary32
sign exponent mantissa interpretation

s 0 nonzero (−1)s (0.m) 2−126 (unnormalized)
255 nonzero NaN (Not a Number)

0 255 0 Infinity
1 255 0 -Infinity
0 0 0 0
1 0 0 -0
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Floating-point numbers
Standard C/C++ representations: float , double

Virtually all C/C++ implementations use float and double
conforming to the standard IEEE 754-1985.

C++ name sign(s) mantissa(m) exponent(e) offset

float 1 23 8 127
double 1 52 11 1023

x = (−1)s (1.m) 2e−offset

Special cases are handled in an analogous manner.
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Floating-point numbers
Standard C/C++ representations: long double

long double representations
C++ name sign(s) mantissa(m) exponent(e) offset

==double 1 52 11 1023
80 bit 1 64 15 16383
binary128 1 112 15 16383
double-double implementation

x = (−1)s (1.m) 2e−offset

The most common representation of long double is 80-bit
(extended precision), which does not conform to IEEE 754. It
is usually stored in 96 or 128 bits (12 or 16 bytes).
In Microsoft Visual C++, long double maps to double.
GNU C on SPARC implements the standard binary128.
GNU C on PowerPC uses double-double implementation.
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Floating-point numbers
Example (a non-standard 6 bit number)

6 bit floating-point numbers (non-standard)
offset = 3 x = (−1)s (1.m) 2e−offset

s e m interpretation

0 1 0 0 0 1 = (−1)0 1.01bin 24−3 = 2.5
1 0 1 1 0 0 =

(−1)1 1.00bin 23−3 = −1
1 1 1 1 1 0 = NaN (Not a Number)
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Floating-point numbers
Example (a non-standard 6 bit number)

6 bit floating-point numbers (non-standard)
offset = 3 x = (−1)s (1.m) 2e−offset

s e m interpretation

0 1 0 0 0 1 = (−1)0 1.01bin 24−3 = 2.5
1 0 1 1 0 0 = (−1)1 1.00bin 23−3 = −1
1 1 1 1 1 0 =

NaN (Not a Number)
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Floating-point numbers
Example (a non-standard 6 bit number)

6 bit floating-point numbers (non-standard)
offset = 3 x = (−1)s (1.m) 2e−offset

s e m interpretation

0 1 0 0 0 1 = (−1)0 1.01bin 24−3 = 2.5
1 0 1 1 0 0 = (−1)1 1.00bin 23−3 = −1
1 1 1 1 1 0 = NaN (Not a Number)
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Floating-point numbers
Standard IEEE 754-1985: special cases

The standard defines also special cases to handle zero, infinity and
exceptional situations

Special cases for binary32 (float)
sign exponent mantissa interpretation

s 0 nonzero (−1)s (0.m) 2−126 (unnormalized)
255 nonzero NaN (Not a Number)

0 255 0 Infinity
1 255 0 -Infinity
0 0 0 0
1 0 0 -0
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Floating-point numbers
Example (a non-standard 6 bit number)

offset = 3 x = (−1)s (1.m) 2e−offset

normalized numbers, e /∈ {0, 7}
s 001 00 = ±0.2500
s 001 01 = ±0.3125
s 001 10 = ±0.3750
s 001 11 = ±0.4375
s 010 00 = ±0.5000
s 010 01 = ±0.6250
s 010 10 = ±0.7500
s 010 11 = ±0.8750
s 011 00 = ±1.0000
s 011 01 = ±1.2500
· · · · · ·

s 110 11 = ±14.000

unnormalized numbers
s 000 01 = ±0.0625
s 000 10 = ±0.1250
s 000 11 = ±0.1875

other special cases
s 000 00 = ±0
s 111 00 = ±Infinity
s 111 01 = NaN
s 111 10 = NaN
s 111 11 = NaN
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Floating-point numbers
Example (a non-standard 6 bit number)

Note the increasing spacing between the normalized numbers in
successive groups (constant relative representation accuracy).

normalized numbers (e = 1, . . . , 6)
±0.2500 ±0.3125 ±0.3750 ±0.4375 ∆x = 0.0625
±0.5000 ±0.6250 ±0.7500 ±0.8750 ∆x = 0.1250
±1.0000 ±1.2500 ±1.5000 ±1.7500 ∆x = 0.2500
±2.0000 ±2.5000 ±3.0000 ±3.5000 ∆x = 0.5000
±4.0000 ±5.0000 ±6.0000 ±7.0000 ∆x = 1.0000
±8.0000 ±10.0000 ±12.000 ±14.000 ∆x = 2.0000

The unnormalized numbers maintain constant absolute accuracy of
representation (but the relative accuracy can be very poor).
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Fixed-point numbers

Floating-point numbers are flexible, but have disadvantages:
much more complicated than integers, hence operations
involving them are much slower.
require a dedicated FPU (Floating Point Unit), hence their
hardware implementation is costly.

An intermediate type between integer and floating-point types for
representation of reals are fixed-point types. A fixed-point number
has a fixed number of binary digits before and after the binary
point (no exponential notation).

cheaper hardware implementation
quicker operations
much smaller data range (no exponential progress)
constant spacing between successive numbers, so accuracy
measured not relatively but in absolute terms
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Arithmetic errors

The errors in computer arithmetic can be of three basic types
An overflow error occurs when the number to be represented
in a given type is too large for it (happens with both integer
and floating-point types).
An underflow error occurs when the number to be represented
in a given floating-point type is too small (too small exponent)
and has to be represented by zero (floating-point only).
A round-off error occurs each time a real number cannot be
exactly represented in a given floating-point type and has to
be rounded to the nearest floating-point number
(floating-point only).
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Arithmetic errors
Round-off error

Relative accuracy of floating-point numbers

C++ name mantissa bits (mb) significant dec. digits

float 23 bits ∼ 6
double 52 bits ∼ 15
long double (80 bit) 64 bits ∼ 19
long double (128 bit) 112 bits ∼ 33

Exact number v
Representation v (1± ρ), |ρ| ≤ 2−mb
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Arithmetic errors
Common error situations

Division by a number which is very close to zero (represented
by an unnormalized number)

#inc lude <cmath>
// . . .
cout <<f l o a t (pow(10. ,−45)) <<end l ;
cout <<1./ f l o a t (pow(10. ,−45)) <<end l ;

// the r e s u l t i s a doub l e
// f l o a t i n g −po i n t number

Computed result: 7.13624e+44.
Exact value: 1e+45.
This is a relative error level of 29% in a single operation.
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Arithmetic errors
Common error situations

Subtraction of two very similar numbers (cancellation of
terms)

float(1 + 10−6) - float(1) = 0.954 10−6

float(1 + 10−7) - float(1) = 1.192 10−7

float(1 + 10−8) - float(1) = 0

This can happen e.g. when solving a quadratic equation
x2 − 2px + q = 0 with p2 >= q. Direct application of the
standard formula,

x = p ±
√

p2 − q,

can yield a very inaccurate result in one of the roots if
p2 >> q.
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Arithmetic errors
Common error situations

x2 − 1000x + 0.1 = 0
exact (6 digits) computed in float relative error

x1 1000 1000 0 %
x2 10e-5 9.15527e-5 9 %

A modified version of the algorithm

i f (p>=0) x1 = p+s q r t ( p∗p−q ) ;
e l s e x1 = p−s q r t ( p∗p−q ) ;
x2 = q/x1 ;

avoids the pitfall. It is valid, because x1x2 = q (as well as
x1 + x2 = 2p).
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Arithmetic errors
Common error situations

Two floating points are practically never equal:

f l o a t x = 1 . / 3 ; // n o t i c e the dot ( 1 . )
cout <<(4∗x−1==x ) <<end l ; // NOT equa l !

Never rely on exact comparison of floating point numbers:

f o r ( f l o a t x=0; x<=1; x+=0.1)
cout <<”x = ” <<x <<end l ;

An even worse stop condition would be x==1 (infinite loop).
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Arithmetic errors
Common error situations

Error propagation happens when the errors accumulate over
many steps with rounding at each of them

x0 = 1/3 xn+1 = 4xn − 1

step no. exact float double long double

0 0.333333 0.333333 0.333333 0.333333
5 0.333333 0.333344 0.333333 0.333333
10 0.333333 0.34375 0.333333 0.333333
15 0.333333 11 0.333333 0.333333
20 0.333333 10923 0.333313 0.333333
25 0.333333 ∼ 107 0.3125 0.333344
30 0.333333 ∼ 1010 21 0.34375
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Arithmetic errors
Examples

Patriot system, failed Scud interception (Gulf War, Feb. 1991)
The system used an integer timing register which was incremented
at intervals of 0.1 s. However, the integers were converted to
decimal numbers by multiplying by the binary approximation of 0.1,

d = 0.00011001100110011001100bin = 0.09999990463...dec.

After 100 hours (3.6 106 ticks), an error of 3.6 106 (0.1− d) ≈
0.34 s had accumulated. This discrepancy caused the Patriot
system to continuously recycle itself instead of targeting properly.
As a result, an Iraqi Scud missile could not be targeted and was
allowed to detonate on a barracks, killing 28 people.a

aWeisstein, Eric W. ”Roundoff Error.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/RoundoffError.html

http://mathworld.wolfram.com/RoundoffError.html
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Arithmetic errors
Examples

Ariane rocket
A notorious example is the fate of the Ariane rocket launched on
June 4, 1996 (European Space Agency 1996). In the 37th second
of flight, the inertial reference system attempted to convert a
64-bit floating-point number to a 16-bit number, but instead
triggered an overflow error which was interpreted by the guidance
system as flight data, causing the rocket to veer off course and be
destroyed.a

aWeisstein, Eric W. ”Roundoff Error.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/RoundoffError.html

http://mathworld.wolfram.com/RoundoffError.html
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Problems and algorithms

The accuracy of the computed solution to a numerical problem is
affected by two fundamental distinct factors:

1 “difficulty level” of the problem itself and
2 quality of the algorithm used to solve it.
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Problems

A problem F is a functional relation between input and output
data, formulated as

given x , find F (x).

A problem does not specify the way (algorithm) to compute y .

Given x , find
√

x .
Given a0, a1, a2, find the roots of a0 + a1x + a2x2 = 0.
Given initial conditions and a differential equation, find the
solution.

Well-posed problem (Hadamard, 1902)
Existence, uniqueness and stability (Liptschitz continuity)
of the solution.
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Algorithms

An algorithm is a recipe (A) to solve a given problem F in a
well-defined, specific way:

given x , compute FA(x).

There can be several different algorithms to solve one problem.

Given x , find
√

x .
1 Taylor expansion around e.g. 1.
2 Recurrence rn+1 = 1

2 (rn + x/rn) with r0 = (x < 1)?1 : x being
the first approximation (Heron’s algorithm).

Given a0, a1, a2, find the roots of a0 + a1x + a2x2 = 0.
1 Direct application of the standard/modified formulas.
2 bisection, Brent’s, Newton, secant methods, …

Given initial conditions, solve a differential equation.
1 Euler, Runge-Kutta, midpoint, multistep methods, …
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Sources of errors

Problem (well-posed)
given x , find F (x)

Algorithm
given x , compute FA(x)

There are two fundamental sources of errors:
Problem conditioning: sensitivity of the problem to unaccuracy
of the initial data. Instead of exact x , only its approximation
(due to round-off errors, unexact measurements, etc.) x̃ is
available. Hence, even having an ideal algorithm it is possible
to compute not F (x), but only F (x̃).
Algorithm stability: algorithms themselves introduce internal
errors, hence even having exact input data x , it is possible to
compute not F (x), but only FA(x).

As a result, not F (x), but merely FA(x̃) is computed.
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Problem posedness and conditioning

Well-posed problem (Hadamard, 1902)
A problem is well-posed for a given input data, if its solution

1 exists,
2 is unique and
3 is stable (Liptschitz continuous) with respect to the input.

Conditioning of a problem
A problem: given x , find y = F (x)
Conditioning: How sensitive is F (x) to errors in x?
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Problem posedness and conditioning

A problem can be well-posed, but significantly ill-conditioned.
A problem that is not Lipschitz-continuous is ill-posed. Such a
problem must be extremely ill-conditioned.
Continuous ill-posed problems often yield extremely
ill-conditioned discretized versions.

The notions of posedness and conditioning are important as
1 many important physical problems are ill-posed (especially

inverse problems)
2 real-world data are always approximate (whether

measurements or simulations)
measurement errors
round-off arithmetic errors
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Conditioning
1D differentiable problems

Assume F : R→ R is differentiable

Exact data: x

Rounded-off data: x̃ = x + ∆x

Absolute error: |∆y | = |F (x̃)− F (x)| ≈ |F ′(x)||∆x |

Relative error: |∆y |
|y | = |F (x̃)− F (x)|

|F (x)| ≈ |F
′(x)|
|F (x)| |∆x |

Condition number: |∆y |
|y | /

|∆x |
|x | = |F

′(x)|
|F (x)| |x |
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Conditioning
1D differentiable problems

Condition number κ
If F : R→ R is differentiable and F (x) 6= 0, a condition
number κ at x can be computed as

κ(x) = |F
′(x)|
|F (x)| |x |.

The condition number is a measure of amplification of
relative error between input and output data.
It is a property of the problem, which (independent of
any algorithm) can be well- or ill-conditioned.
If a problem is ill-conditioned for specific input data, an
algorithm can give better results only by chance. The
errors in input data propagate to the output data.
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Conditioning
Multidimensional differentiable problems (see Lecture B-4)

The condition number of a differentiable multidimensional problem

F : Rn → Rm

in a given point x ∈ Rn is usually computed as the condition
number of the corresponding linearized problem

F (x + ∆x) ≈ F (x) + J(x)∆x = b + Ax,

where J(x) is the Jacobian. The condition number of such a
problem is usually (in the spectral norm) computed as

κ(A) = σmax(A)
σmin(A) ,

that is as a ratio of the maximum and the minimum singular value
of A. For square normal matrices

κ(A) =
∣∣∣∣λmax(A)
λmin(A)

∣∣∣∣ .
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Conditioning
Noncontinuous problems (see Lecture B-5)

If F is noncontinuous at x (ill-posed), no algorithm can provide an
accurate result. Small inaccuracies of the input data x propagate
to discontinuous jumps of the output data F (x).

In most practical finite-dimensional problems, F is piecewise
continuous/differentiable, thus only a limited number of
non-continuity points has to be studied in detail.
Infinite-dimensional problems can be noncontinuous
everywhere. For example, it happens to Fredholm integral
equations of the first kind with a continuous kernel K (t, s),

y(t) =
∫ b

a
K (t, s)x(s)ds = (Kx)(t),

since then K is a compact operator and so x = K−1y is
everywhere non-continuously dependent on the function y .
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Conditioning
Noncontinuous problems (see Lecture B-5)

(Kx)(t) =
∫ t

0
x(t) dt (K−1y)(t) = y ′(t)

Both K and its inverse K−1 are linear. However, the inverse is
everywhere non-continuous.

yn(t) = sin nt
n (K−1yn)(t) = cos nt
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Conditioning — Examples

F (x) = 1
x

Absolute error can be huge ∼ ∆x
x2

Condition number (relative error) κ(x) = 1

F (x , y) = x − y

Exact data: x , y

Rounded-off data: x̃ = x(1 + δx ), ỹ = y(1 + δy )

Exact result: x − y

Computed result: x̃ − ỹ = (x − y) + (xδx − yδy )

Relative error: (x̃ − ỹ)− (x − y)
x − y = xδx − yδy

x − y

If x ≈ y , even small δx and δy can result in a large relative error.
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Problem conditioning — examples

Roots of (higher order) polynomials. . .
. . . can be very sensitive to even small errors in the coefficients

F (x) = (x − 10)10 + δx10

= (1 + δ)x10 − 100x9 + 4500x8 − . . .− 1010x + 1010

δ = 0
δ = 10−10

δ = 10−5
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Problem conditioning — examples

Damped pendulum with harmonic excitation
Non-linearized equation of motion

θ̈ + γθ̇ + sin θ = A cosωt

A = 1.5
γ = 0.5
ω = 2/3
t ∈ [70, 90]
θ̇0 = 0

θ0 = 0
θ0 = 10−3
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Problem conditioning — examples

Damped pendulum with harmonic excitation
Non-linearized equation of motion

θ̈ + γθ̇ + sin θ = A cosωt

A = 1.5
γ = 0.5
ω = 2/3
t ∈ [160, 190]
θ̇0 = 0

θ0 = 0
θ0 = 10−6
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Problem conditioning — examples

Saturn ring gaps & unstable orbits (orbital resonances with moons)
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Algorithm stability

A problem: given x , find F (x)
An algorithm: given x , compute FA(x)
Stability: How large is the error introduced by the algorithm?

Algorithms introduce internal errors, hence having even exact input
data x , it is possible to compute not F (x) but rather FA(x).

Even the best algorithm will not solve exactly a severely
ill-conditioned problem (as conditioning is problem-specific).
A stable algorithm will not introduce considerable more error
than the error resulting from the problem conditioning and
approximate input.
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Algorithm stability
Examples

F (x , y) = x2 − y2

The problem is ill-conditioned for x2 ≈ y2. But assume the input
data x and y are known exactly.

FA(x , y) = x2 − y2

FB(x , y) = (x − y)(x + y)

FA(x , y) =
[
x2(1 + δ1)− y2(1 + δ2)

]
(1 + δ3)

≈ (x2 − y2)(1 + δ3 + x2δ1 − y2δ2
x2 − y2 )

FB(x , y) = [(x − y)(1 + δ1)(x + y)(1 + δ2)] (1 + δ3)
≈ (x2 − y2)(1 + δ1 + δ2 + δ3)

If x2 ≈ y2, a serious loss of accuracy can occur within algorithm A.
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Algorithm stability
Examples

Assume that sin x and cos x are computed with 6 accurate digits
(∼float) and chop the rest off.

FA(x)= sin2 x FB(x)= 1− cos2 x

0.000 0.001 0.002 0.003 0.004 0.005
0

5. ´ 10-6

0.00001

0.000015

0.00002

0.000025

0 2. ´ 10-64. ´ 10-66. ´ 10-68. ´ 10-60.00001
0

2. ´ 10-11

4. ´ 10-11

6. ´ 10-11

8. ´ 10-11

1. ´ 10-10
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Algorithm stability
Examples

Assume that sin x and cos x are computed with 6 accurate digits
(∼float) and chop the rest off. All the other operations are
accurate.

FA(x)= sin2 x
x2 FB(x)= 1− cos2 x

x2

0.000 0.001 0.002 0.003 0.004
0.0

0.5

1.0

1.5

2.0

F (0.0012345) = 0.99999
FA(0.0012345)= 0.99919
FB(0.0012345)= 1.31234
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Algorithm stability
Examples

Assume that sin x and cos x are computed with 6 accurate digits
(∼float) and chop the rest off. All the other operations are
accurate.

FA(x)= sin2 x
x2 FB(x)= 1− cos2 x

x2

0 2. ´ 10-6 4. ´ 10-6 6. ´ 10-6 8. ´ 10-6 0.00001
0

1

2

3

4

exact
FA(x)
FB(x)
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Homework 4 (10 points)
Basics of numerics

Let S(n) =
∑n

i=1
1
i .

In accurate arithmetic, the following three formulas are equivalent2:

s1 = 1
1 + 1

2 + . . .+ 1
n

s2 = 1
n + 1

n − 1 + . . .+ 1
1

s3 = 1
n + 1

n
n

n − 1 + 1
n

n
n − 1

n − 1
n − 2 + . . .+ 1

n
n

n − 1 · · ·
3
2

2
1

2Assume that “+” is left-associative: a + b + c is interpreted as (a + b) + c.
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Homework 4 (10 points)
Basics of numerics

Consider the following implementations in single (float) arithmetic:

f l o a t s1 = 0 ;
f o r ( i n t i =1; i<=n ; ++i )

s1 += 1/ i ;

f l o a t s2 = 0 ;
f o r ( i n t i=n ; i >=1; −− i )

s2 += 1/ i ;

f l o a t d = 1/n , s3 = d ;
f o r ( i n t i=n−1; i >=1; −− i ) {

d ∗= ( i +1)/ i ;
s3 += d ;

}
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Homework 4 (10 points)
Basics of numerics

Compute S(108) using all three algorithms.
1 The results are quite unexpected. Find and explain the reason.
2 Correct the error and repeat the computations. Explain the

differences between the results.
3 How can you compute the exact value (up to five or six

significant decimal digits)? What is it?

E-mail the answers to ljank@ippt.pan.pl.

mailto:ljank@ippt.pan.pl
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