
1/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Programming, numerics and optimization
Lecture A-4: Object-oriented programming

Łukasz Jankowski
ljank@ippt.pan.pl

Institute of Fundamental Technological Research
Room 4.32, Phone +22.8261281 ext. 428

April 6, 20211

1Current version is available at http://info.ippt.pan.pl/˜ljank.

http://info.ippt.pan.pl/~ljank

2/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Disclaimer

I do realize that
For those of you that know OOP, this lecture will contain
nothing new.
For those of you that do not know OOP, this lecture will be
much too condensed.
OOP would require a dedicated course.

OOP is required for HW6 and HW7. If OOP/C++ is new for you,
these HWs will probably demand a lot of additional work.

3/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)

2 Objects and classes

3 Creating and destroying objects

4 Overloaded operators

5 STL vector class

6 Homework 6

4/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)
Basic idea
Objects and classes
Basic concepts
Advantages and disadvantages

2 Objects and classes

3 Creating and destroying objects

4 Overloaded operators

5 STL vector class

6 Homework 6

5/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Object-oriented programming (OOP)

Structure of a typical non-object code

6/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Object-oriented programming (OOP)

Objects (may) bring order

7/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Object-oriented programming (OOP)

Object paradigm is an answer to the following deficiencies of
procedural programming:

Data separated from processing information.
The code (and the real problem it solves) scattered into
separate, unrelated data chunks and functions.

8/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes

Types in C++
1 Fundamental: bool, char, int, float , double, void, …
2 Compound (built-in or user-defined): pointers, arrays,

structures, classes, …

Classes are user-defined types, which group together:
Data (internal content of an object), e.g. matrix elements
Functions (often called methods)

Defining operations on the data, e.g. matrix :: det()
Responsible for the behavior of an object, e.g. point :: show()

9/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes

Classes corresponds to types.
Objects (of a given class) correspond to variables (of a given
type). An object is called to be an instance of his class.

The idea is to have e.g. a type (class) vector to use it like int:

i n t a = 5 , b = 2 , c ;
c = 2∗a∗b ;
cout <<c ;

v e c t o r a (5 , 4) , b (12 , 1) , c ;
c = a−b ;
cout <<c . norm () ;

Data: vector elements
Functions: multiplication, addition, subtraction, showing etc.

10/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Basic concepts

OOP is described in a variety of ways:
from ideologically negative (e.g. hard-core proponents of
functional programming),
to pragmatic,
to ideologically positive (“an OO program is an ensemble of
communicating agents…”).

There is no a generally-agreed set of features, an OO language
should support. However, the typical features include:

Encapsulation
Inheritance
Polymorphism
Dynamic dispatch

11/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Basic concepts
Encapsulation

Encapsulation usually refers to
grouping together data with functions that operate on them

E.g. an object matrix might bundle matrix entries together
with methods like det().

protecting a part of the internal data of an object from
external access and modifications

E.g. matrix entries might be private data (accessible only
indirectly).

12/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Basic concepts
Inheritance

Classes in an OO language can form a class hierarchy.

Objects of the derived class
inherit their properties (data & methods) from the base class,
specialize the base class.

13/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Basic concepts
Multiple inheritance

Some of OO languages (like C++) allow multiple inheritance.

With inheritance, parent classes are often abstract classes2.
2An abstract class is non-instantiable (each actual vehicle must be either an

electric car or an electric locomotive or a diesel locomotive etc.: there is no
such a thing as a “pure vehicle”).

14/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Basic concepts
Polymorphism, dynamic dispatch

The (possibly abstract) class shape
might have a (virtual) member
function shape.draw(). This function
is inherited by the derived classes,
which have to implement it
according to their characteristics.

Assume we have an array of pointers to different shapes.
Thanks to polymorphism, they can be all treated as being of
the (possibly abstract) type shape. The array can be thus
defined as shape ∗ptr [shape_no];.
Thanks to dynamic dispatch, given an object of the class
shape, it can be ordered to be drawn by calling the method
shape.draw(). Depending on its actual type (circle? cube?),
the method of the proper derived class will be executed
(decided upon not during compilation, but in runtime when
the type of the actual object is known).

15/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Advantages and disadvantages

Advantages of OOP
better representation of real-world entities by grouping
together data with operations (e.g. a matrix is no longer just
a 2D array but a matrix), inheritance, polymorphism, etc.
hidden implementation details and protection of internal data
operator overloading
brings order into the system model and the code (easier
production and maintenance)
potential for reusability

Disadvantages of OOP
slower code
code duplications
additional abstraction layer

16/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)

2 Objects and classes
Class definition
Pointers to objects
Internal data

3 Creating and destroying objects

4 Overloaded operators

5 STL vector class

6 Homework 6

17/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes
Class definition

An object consists of
Interface (e.g. for a matrix class: +, −, ∗, transpose(), det(),
invert (), eigenvalues () etc.)
Hidden implementation (internal data structures, internal
operations etc.).

c l a s s c lassName {
pr i va te :

// p r i v a t e data members
// p r i v a t e f u n c t i o n s

pub l i c : // c l a s s i n t e r f a c e
// p u b l i c data members (not recommended)
// p u b l i c f u n c t i o n s

} ;

18/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes
Class definition — example

Class definition

c l a s s v e c t o r {
pr i va te :

i n t x , y ;
pub l i c :

void setXY (i n t a , i n t b) {x=a ; y=b ; }
double getLength (void) const ;

} ; // n o t i c e the s em i co l on !

double v e c t o r : : ge tLength (void) const {
return s q r t (x∗x+y∗y) ;

}

The const modifier ensures here that the member
function does not modify the object (its data members).

19/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes
Class definition — example

Class definition

i n t main (void) {
v e c t o r a ; // o b j e c t d e f i n i t i o n

a . setXY (1 , 1) ;
cout <<a . getLength () <<end l ;
// cout <<”a . x = ” <<a . x <<end l ; ERROR!

system (” pause ”) ;
// f o r Dev C++ u s e r s on l y

return 0 ;
}

20/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes
Pointers to objects

As variables of any other type, objects can be created and
destroyed dynamically.

i n t main () {
v e c t o r ∗pa ; // p o i n t e r to a v a r i a b l e

// o f the type v e c t o r

pa = new v e c t o r ; // c r e a t e a v e c t o r
pa−>setXY (1 , 1) ;
cout <<pa−>getLength () <<end l ;
de lete pa ; // d e l e t e the o b j e c t ∗pa
pa = NULL ;

return 0 ;
}

21/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Objects and classes
Internal data

Internal data are specific to each object, that is each object has its
own set of the internal data.

object a object b

vector a,b;
x = ?
y = ?
. . .

x = ?
y = ?
. . .

a.setXY(1,1);
b.setXY(5,10);

x = 1
y = 1
. . .

x = 5
y = 10
. . .

22/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)

2 Objects and classes

3 Creating and destroying objects
Constructor
Destructor
Copy constructor

4 Overloaded operators

5 STL vector class

6 Homework 6

23/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Constructor

Constructor is a special function, which is
automatically called when a new object is created
used to initialize internal variables, assign dynamic memory for
internal storage etc.
cannot be called at a later time

Constructor
must have the same name as the class
has no return type (not even void)
can be overloaded

If no constructor is provided, a default constructor is automatically
created (no arguments, no initialization).

24/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Constructor — example

c l a s s v e c t o r {
pr i va te :

i n t x , y ;
pub l i c :

v e c t o r (i n t a , i n t b) ; // c o n s t r u c t o r
void setXY (i n t a , i n t b) {x=a ; y=b ; }
double getLength (void) const ;

} ;

v e c t o r : : v e c t o r (i n t a , i n t b) {
x = a ;
y = b ;

}

25/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Constructor — example

vector a; ERROR: if there is a user-defined con-
structor, then no default constructor is
created. But here the user-defined con-
structor for the class vector requires ar-
guments.

vector a (1,2); right! Call the user-defined constructor.

vector ∗pa; a pointer to an object of the type vector

pa = new vector; ERROR: there is no no-argument con-
structor.

pa = new vector(1,2); right!
…
delete pa;

26/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Overloaded constructors

A class can have many constructors, provided they are
distinguishable by the number or types of their arguments.

c l a s s v e c t o r {
pr i va te :

i n t x , y ;
pub l i c :

v e c t o r (void) ; // d e f a u l t c o n s t r u c t o r
v e c t o r (i n t a , i n t b) ; // c o n s t r u c t o r
void setXY (i n t a , i n t b) {x=a ; y=b ; }
double getLength (void) const ;

} ;

v e c t o r : : v e c t o r (i n t a , i n t b) {x = a ; y = b ; }
v e c t o r : : v e c t o r (void) {x = 0 ; y = 0 ;}

27/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Constructor with default arguments

As any other function, constructor can take default arguments.

c l a s s v e c t o r {
pr i va te :

i n t x , y ;
pub l i c :

v e c t o r (i n t a=0, i n t b=0); // c o n s t r u c t o r
void setXY (i n t a , i n t b) {x=a ; y=b ; }
double getLength (void) const ;

} ;

v e c t o r : : v e c t o r (i n t a , i n t b) {
x = a ;
y = b ;

}

28/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Destructor

Destructor is a special function, which is
automatically called when an object is destroyed (at end of its
scope or when deleted with delete)
used to clean-up (dynamic memory used by the object, closing
open files etc.)

Destructor
must have the same name as the class, preceded with a tilde ∼
has void arguments and no return type (not even void)
cannot be overloaded

29/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Destructor — example

c l a s s v e c t o r {
p r i v a t e :

i n t ∗x , ∗y ;
pub l i c :

v e c t o r (i n t a=0, i n t b=0); // c o n s t r u c t o r
~ v e c t o r (vo id) ; // d e s t r u c t o r
// . . .

} ;
v e c t o r : : v e c t o r (i n t a , i n t b) {

x = new i n t (a) ;
y = new i n t (b) ;

}
v e c t o r : : ~ v e c t o r (vo id) {

de le te x ;
de le te y ;

}

30/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Destructor — example

If an object uses dynamic memory
a user-defined constructor should be provided for allocation
destructor should deallocate it to avoid memory leakage

if there was only the
default constructor vector a;

x
y

. . .

???

???

with the user-defined
constructor vector a (1,2);

x
y

. . .

2

1

30/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Destructor — example

If an object uses dynamic memory
a user-defined constructor should be provided for allocation
destructor should deallocate it to avoid memory leakage

without a user-defined
destructor

x
y

. . .

2

1

with a user-defined
destructor

x
y

. . .

2

1

31/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Copy constructor

Copy constructor is a special constructor, which is called whenever
a new object is created (copied) from an existing object.

If no user-defined copy constructor is provided, a default copy
constructor is provided automatically (shallow: blindly copies
internal variables). When a class uses dynamic memory, it should
always have a user-defined copy constructor (deep: intelligently
copying data pointed to, not the pointers only).

Copy constructor is defined as a usual constructor, but with a
single argument: a const object of the same type passed by
reference. The current object (the one being created) is created
(copied) from the passed object.

32/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Copy constructor — example

c l a s s v e c t o r {
p r i v a t e :

i n t ∗x ,∗ y ;
pub l i c :

v e c t o r (const v e c t o r &v) ; // copy c o n s t r u c t o r
v e c t o r (i n t a , i n t b) ; // c o n s t r u c t o r

// . . .
} ;

v e c t o r : : v e c t o r (const v e c t o r &v) {
x = new i n t (∗ v . x) ; // a c c e s s to p r i v a t e members
y = new i n t (∗ (v . y)) ; // i n s i d e the c l a s s on l y

} // (even from anothe r o b j e c t)

An argument to a copy constructor has to be passed by reference
(passing by value would require an already defined copy
constructor). However, it is passed with a modifier const
(const vector &v) to protect it against modifications.

33/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Copy constructor — example

A default (shallow) copy constructor with a class using dynamic
memory copies blindly (shallowly) pointer by pointer instead of
allocating additional memory.

vector a (1,2);
vector b = a;

a bx
y
. . .

x
y
. . .

2

1

At the end of the scope the object b is
destroyed first and the dynamic mem-
ory is deallocated. When the object a
is then destroyed, it tries to deallocate
the memory already deallocated!

a x
y
. . .

???

???

34/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Copy constructor — example

A class using dynamic memory should always have a deep,
user-defined copy constructor to intelligently copy the data and
allocate additional memory if necessary.

vector a (1,2);
vector b = a;

a bx
y
. . .

x
y
. . .

2

1

2

1

At the end of the scope each objects frees its own allocated
memory.

35/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Copy constructor
Copy constructor (either user-defined or default) is called in three
situations: when an object is

1 created from another object of the same type

v e c t o r a (1 , 1) , b = a , c (a) ;

2 passed by value as an argument to a function

vo id doSomething (v e c t o r v) { . . . } ;

3 returned by value from a function

v e c t o r f (. . .) {
v e c t o r a (1 , 1) ;
// . . .
re tu rn a ;

}

36/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)

2 Objects and classes

3 Creating and destroying objects

4 Overloaded operators
As a class member or global function
Result by value and by reference
Two special operators

5 STL vector class

6 Homework 6

37/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Overloaded operators

In mathematics, two vectors or matrices can be simply added, just
as two numbers. The same functionality, for example

v e c t o r a (1 , 1) , b (2 , 2) , c = a+b ;
i n t s c a l a rP r o d u c t = a∗b ;

is possible in C++ by means of overloaded operators, which are
defined either as

class member functions or as
global functions.

Most of operators can be overloaded, e.g.

+ − ∗ / = == < > −=
+= && << ++ −− & ! [] ()

38/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Overloaded operator — as a class member function

c l a s s v e c t o r {
pr i va te :

i n t x , y ;
pub l i c :

v e c t o r (i n t a=0, i n t b=0);
i n t operator ∗(const v e c t o r &v) const ;

// . . .
} ;

i n t v e c t o r : : operator ∗(const v e c t o r &v) const {
return x∗v . x+y∗v . y ;

}

Note the direct access to the private data members.

39/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Overloaded operator — as a global function
However, it is not always possible to add an operator as a class
member function, e.g. to ostream (object cout) to instruct it about
printing objects of the type vector. In such cases, an operator has
to be defined as a global function and looses the direct access to
private data members.

c l a s s v e c t o r {
p r i v a t e :

i n t x , y ;
pub l i c :

v e c t o r (i n t a=0, i n t b=0);
i n t getX (vo id) const { re tu rn x ; }
i n t getY (vo id) const { re tu rn y ; }

} ;

i n t operator ∗(const v e c t o r &v1 , const v e c t o r &v2) {
re tu rn v1 . getX ()∗ v2 . getX () + v1 . getY ()∗ v2 . getY () ;

}

40/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Result by value and by reference

As other functions, overloaded operators can return objects by
value or by reference.

Assume a and b are vectors, while k is an integer:
v e c t o r a (1 , 1) , b (5 , 1 5) ;
i n t k=10;

Operator + (as in a+b) should return a new object of the type
vector (by value) and leave the objects a and b unaltered.
Operator ∗= (as in a∗=k) should return the modified object a
(by reference).

41/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Result by value and by reference

c l a s s v e c t o r {
p r i v a t e : i n t x , y ;
pub l i c : v e c t o r (i n t a=0, i n t b=0) {x=a ; y=b } ;

v e c t o r operator+(const v e c t o r &v) const ;
v e c t o r & operator+=(const v e c t o r &v) ;

} ;

v e c t o r v e c t o r : : operator+(const v e c t o r &v) const {
re tu rn v e c t o r (x+v . x , y+v . y) ;

} // a new ob j e c t i s c r ea t ed , cop i ed & r e t u r n e d

v e c t o r & v e c t o r : : operator+=(const v e c t o r &v) {
x += v . x ;
y += v . y ;
re tu rn ∗ t h i s ;

} // the c u r r e n t o b j e c t (∗ t h i s) i s mod i f i e d & r e t u r n e d

42/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

ostream (cout) insertion operator<<

c l a s s v e c t o r {
p r i v a t e : i n t x , y ;
pub l i c : v e c t o r (i n t a=0, i n t b=0) {x=a ; y=b } ;

i n t getX (vo id) const { re tu rn x ; }
i n t getY (vo id) const { re tu rn y ; }

} ;

ost ream & operator<< (ostream &os t r , const v e c t o r &v) {
o s t r <<”x = ” <<v . getX () <<”y = ” <<v . getY () <<end l ;
re tu rn o s t r ;

}

i n t main () {
v e c t o r a (1 , 1) , b (2 , 2) ;
cout <<a <<end l <<b ;
re tu rn 0 ;

}

43/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

ostream (cout) insertion operator<<

ost ream & operator<< (ostream &os t r , const v e c t o r &v) {
o s t r <<”x = ” <<v . getX () <<”y = ” <<v . getY () <<end l ;
re tu rn o s t r ;

}

Defined as a global function (since as a member function it
should be added to the class ostream, which cannot be
modified).
Returns the same ostream by reference in order to enable
chaining: cout <<a <<endl <<b;
Both arguments are passed by reference.
Only the second argument (vector) is const.

44/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Assignment operator=

An assignment operator = is very similar to the copy constructor.
A user-defined version is necessary when the class uses
dynamic memory,
otherwise a default (shallow) operator= is created
automatically.

c l a s s v e c t o r {
p r i v a t e : i n t ∗x ,∗ y ;
pub l i c : v e c t o r (const v e c t o r &v) ;

v e c t o r (i n t a , i n t b) ;
v e c t o r &operator=(const v e c t o r &v) ;

} ;
v e c t o r & v e c t o r : : operator=(const v e c t o r &v) {

∗x = ∗v . x ;
∗y = ∗v . y ;
re tu rn ∗ t h i s ;

}

45/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Assignment operator=

with the default shallow operator=

vector a (1,2);
vector b (3,4);
b = a;

a bx
y
. . .

x
y
. . .

2

1

4

3

with a deep user-defined operator=

vector a (1,2);
vector b (3,4);
b = a;

a bx
y
. . .

x
y
. . .

2

1

2

1

46/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)

2 Objects and classes

3 Creating and destroying objects

4 Overloaded operators

5 STL vector class

6 Homework 6

47/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

STL vector class

Standard (pointer-based) arrays are possible in C++ and very
quick, but they have disadvantages:

troublesome allocation and destruction, especially when
multidimensional,
troublesome resizing.

Standard Templates Library (STL), now a part of the C++
Standard Library, is an object library providing generic containers
(arrays, lists etc.) and algorithms for objects of any type, provided
they have proper (default or user-defined)

copy constructor,
destructor,
assignment (=) and comparison (==) operators.

See http://www.sgi.com/tech/stl or any tutorial on the web.

http://www.sgi.com/tech/stl

48/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

STL vector class — 1D example

#i n c l u d e <vec to r >

1D arrays

vec to r <int> V; // d e f i n i t i o n o f the v a r i a b l e

V . r e s i z e (100 , 0) ; // r e s i z e and i n i t i a l i z e
V [1 0] = 10 ;
V . push_back (3) ; // add 3 at the end
cout <<V. s i z e () ; // now 101 e l ement s

STL vectors are automatically destroyed in a proper way at the end
of their scopes.

49/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

STL vector class — 2D example

#i n c l u d e <vec to r >

2D arrays

vec to r <vec to r <int> > V2d ; // note the space !

V2d . r e s i z e (1 0 0) ; // 100 rows
f o r (i n t i =0; i<V2d . s i z e () ; ++i)

V2d [i] . r e s i z e (1 0 0) ;
// each row has 100 e l ement s
V2d [1 0] [1 0] = −10;

STL vectors are automatically destroyed in a proper way at the end
of their scopes.

50/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Outline

1 Object-oriented programming (OOP)

2 Objects and classes

3 Creating and destroying objects

4 Overloaded operators

5 STL vector class

6 Homework 6

51/51

Outline OOP Objects and classes Constructors/destructors Overloaded operators STL vector HW6

Homework 6 (20 points)
Matrix class

Available at http://info.ippt.pan.pl/˜ljank.

E-mail the answer and the source code (all three files) to
ljank@ippt.pan.pl.

http://info.ippt.pan.pl/~ljank
mailto:ljank@ippt.pan.pl

	Outline
	Disclaimer
	Outline

	Object-oriented programming (OOP)
	Basic idea
	Objects and classes
	Basic concepts
	Advantages and disadvantages

	Objects and classes
	Class definition
	Pointers to objects
	Internal data

	Creating and destroying objects
	Constructor
	Destructor
	Copy constructor

	Overloaded operators
	As a class member or global function
	Result by value and by reference
	Two special operators

	STL vector class
	

	Homework 6
	Homework 6

