Programming, numerics and optimization

Lecture A-2: Programming basics |l

tukasz Jankowski
ljank@ippt.pan.pl

Institute of Fundamental Technological Research
Room 4.32, Phone +22.8261281 ext. 428

March 9, 20211

Current version is available at http://info.ippt.pan.pl/~1jank.

http://info.ippt.pan.pl/~ljank

Outline
°

Outline

@ Types and variables

© (Few important) operators
e Control flow statements
e Functions

e Homework 2

Types and variables
[1e}

Outline

@ Types and variables
o Data types
@ Variables
@ Constants

Types and variables

(o] J

Types and variables

Niklaus Wirth
Algorithms + Data Structures = Programs

Each variable (or an object, essentially a “data piece”) in a
C/C++ program
@ has a type assigned and

@ is accessible via an identifier.

Types and variables
[JeleleTolo)

DEYERAY IS

Each variable in a C/C++ program has a type assigned.

All data are stored in computer memory, which is organized in
bytes. The type is necessary since
@ variables of different types require different number of bytes
for storage. Usually,
e a single byte has to be allocated to hold a single char,
o four bytes for an integer number,
e eight bytes for a floating-point number, etc.
o data of different types are interpreted and processed
differently. Failure to do so leads to meaningless results.

Types and variables
0®0000

DEYERAY IS

Fundamental and compound types

Types in CH++
© Fundamental
o Integral (signed by default):
char, short, int, long as well as
unsigned char, unsigned short, unsigned int, unsigned long
o Floating-point: float, double, long double
e Boolean: bool
o void (absence of type information)

Some of the keywords can be omitted, for example
short = signed short = short int = signed short int
long = signed long = long int = signed long int
unsigned long = unsigned long int

Types and variables
00@000

DEYERAY IS

Fundamental and compound types

Types in CH++
@ Compound types (built-in or user-defined):
Arrays
Functions
Pointers
References
Classes/structures
Unions
Enumerations

“Derived [compound] types are merely convenient
software-engineering tools for grouping information stored
in fundamental data types”

Types and variables
[e]eleY Yolo)

DEYERAY IS
Logical type

Originally, there were no logical type variables dedicated to store
true/false values in C/C++ (like e.g. boolean in Pascal).

A boolean type bool has been added to C in 19992 and to C++
in 1993.

However, in C/C++ variables of any type (not only bool) can be
used to represent logical values.

The rule is very simple:

value of 0: false
any other value: true

2C99 introduces a new datatype __Bool. The header stdbool.h defines
bool as a typedef to the keyword _Bool.

Types and variables
0000e0

DEYERAY IS

void data type

A void data type
@ represents an absence of type (and thus no data),
@ is used for example when a function

e needs no arguments or
e does not returns a value.

and often in the context of pointers (Lecture A-3).

You cannot define/declare a variable of type void.

Types and variables
00000e

DEYERAY IS

Memory storage size

Size in bytes of a variable of each type is implementation-specific.
It can be easily found using the following code:

example C++ code

1 cout <<sizeof(bool) <<"bool” <<endl;

(
cout <<sizeof(char) <<"char” <<endl;
cout <<sizeof(short) <<"short" <<endl;
cout <<sizeof(int) <<"int" <<endl;
cout <<sizeof(long int) <<"longint” <<endl;
(
(
(

cout <<sizeof(float) <<"float” <<endl;
cout <<sizeof(double) <<"double” <<endl;
12 cout <<sizeof(long double) <<"long double” <<end|;

el A

Types and variables
©00000000

Variables

In the context of variables, several notions are important:
@ Definition, identifier, declaration, initialization

@ Scope and lifespan (lifetime)

Types and variables
0®0000000

Variables

Definition

@ Associates a type with an identifier and allocates a proper
amount of memory to store it.

@ For the compiler it means: "Allocate the storage for a variable
of the given type and use the given identifier to denote it."

int result; // storage allocation
// and identifier assignment
cout <<result <<endl;

identifier type memory storage

result A int N (4 bytes)

Types and variables
00®000000

Variables
Valid identifiers

An identifier in C++
@ is one or a sequence of more letters, digits and _ characters,
@ must begin with a letter,
@ cannot match any reserved keyword (int, char, bool, for, etc.),

@ is case sensitive.

Types and variables
[eleleY Yololelele]

Variables

Declaration

@ Associates a type with an identifier.

e No memory storage is reserved (it is assumed to be reserved
somewhere else).

@ For the compiler it means: “If you find this identifier in the
code, treat it as an integer variable.”

@ The identifier is associated with the storage not in compilation
time, but by the linker.

extern int result; // defined, e.g., in a library
cout <<result <<endl; // now the compiler knows the
// type but not the storage location

identifier type memory storage

result A int /= (4 bytes)

Types and variables
[eleleleY Yolelele]

Variables

Initialization

@ Assignment of an initial value to a variable/object (possibly at
the moment of its definition).

@ Variables in C/C++ are not initialized automatically (besides
global variables, which are zeroed).

int result; // definition
result = 178; // initialization
or

int result = 178; // definition + initialisation

identifier type memory storage

— —
result int (4 bytes)

Types and variables
000008000

Variables
Scope

A variable/object is accessible via its identifier.
@ Does each identifier need to be unique?
@ Where is it valid? Where can it be used?

Scope of a variable is the part of code in which the compiler
uniquely resolves its identifier. Within the scope, the identifier
must be unique. In C++ there are three scope types:

Local scope Each pair of { } defines a new nested local scope
(functions, loops etc.)

Global scope Identifiers are known throughout the entire program

Class scope ldentifiers are known within a given class (object
programming, Lecture A-4)

Types and variables
000000®00

Variables

Scope (example)

Global variables: result Local variables: i, j, result

int result; //global variable (zeroed)

int main() {
int i; //i uninitialised
cout <<" Global result: " <<result <<endl;
for(i=1; i<=100; ++i) {

int result; //global variable is hidden
for(int j=1; j<=100; j+=3) {
result = ix*j;
cout <<"Local result: " <<result <<endl;
}
} //end of scope of local result
cout <<"Global result: " <<result <<endl;
return 0;

Types and variables
000000080

Variables
Lifespan

@ When a variable/object is created and destroyed?

@ How long does it exist (i.e., how long the memory storage
remains allocated)?

e Entire duration of a program?
o Somewhat shorter?

A variable/object is
@ created, when its definition is encountered;

@ destroyed, when the execution leaves its scope (besides the
variables defined with the static modifier).

Types and variables
00000000e

Variables

Lifespan (example)

Global: result Local: i, j, result

int result; //result allocated

int main() {
int i; //i allocated
cout <<" Global result: " <<result <<endl;
for(i=1; i<=100; ++i) {

int result; //result allocated (mult.)
for(int j=1; j<=100; j+=3) { //j allocated (m.)
result = ixj;
cout <<"Local result: " <<result <<endl;
} //j destroyed
} //local result destroyed
cout <<"Global result: " <<result <<endl;
return O;

} //1 destroyed

Types and variables

Constants

In C++ there are three techniques to define/use constants:
@ Literal constants (literals)
@ Modifier const

© Preprocessor directives (C legacy)

Types and variables

Constants
Literal constants (literals)
Constant type Literal C++ type
Integral 'a’' char
28 int (decimal)
034 int (octal)
Ox1lc int (hex)
28L long int
28ul unsigned long int
Floating-point 12.3F float
—12.3 double
12. double
5.2e—3 double
12.3L long double
12.L long double
5.2e—3L long double
Strings "I am a string!\n" charx

Types and variables

Constants

Constant variables — modifier const

If the same constant is used several times throughout the code, it
is convenient to define a constant variable using the modifier const.

const int age = 30;
const double height = 1.78;

@ The compiler knows that age and height are (constant, so
unmodifiable) variables, hence all scope/lifespan rules do
apply.

@ A constant variable must be immediately initialized to be
usable (it is constant and cannot be assigned a value later).

Types and variables

Constants

Preprocessor directives

source files header files
(*.c, .cpp) (*.h)

- _
/ ‘ preprocessor |
compiler

Obj(e,stc)f)”es ‘ ‘ libraries ‘ !

The preprocessor runs before
the compiler.

Commands interpreted by the
preprocessor are called
directives and are preceded by a
hash #. They are not program
statements (not compiled).

Directives extend only one line
(unless backslash is used), no
semicolon at the end!

Directives allow to include files,
perform text substitutions and
test simple conditions.

Types and variables

Constants

Preprocessor directives

Preprocessor text substitutions can be used to define “constants’.

The directive
#define AGE 70

orders the preprocessor to replace in the code all the occurrences
of the word AGE with 70.

It is generally better to avoid defining constants by #define:

@ The replacements are blind. In slightly more complex cases it
can lead to unexpected results that are hard to trace back,
like in “#tdefine CTOF(c) 1.8xc+32". (Consider 2xCTOF(c).)

@ They happen before the compiler runs, so without any
syntax/type check. The compiler knows nothing about AGE.

Use the modifier const instead.

Operators
.

Outline

© (Few important) operators

Operators
®000

(Few important) operators

@ Arithmetic:
Addition +
Subtraction —
Multiplication
Division /
Modulo %

The type of the result depends on the type of the arguments.

A typical source of errors

float x = 3/2; // Result 1 (int — float)
cout <<x <<endl;
x = 3./2; // Result 1.5 (float —> float)

cout <<x <<endl;

Operators
oe00

(Few important) operators

@ Relational
Equal guess == age
Not equal guess != age
e Unary:
Logical NOT !true !(guess==age) !1
Increment ++Hi i+
Decrement —i i

int i = 10;
cout <<i++ <<endl; //print 10, then increment
cout <<++i <<endl; //increment, then print 12

Operators
coeo

(Few important) operators

o Logical:
Logical AND (guess==age) && lerror
Logical OR (guess!=age) || error
@ Assignment:
Assignment age = 60 guess = age
Compound assignment i+=10 i—=10
ix=coeff i/=coeff

Compound assignment operators are shorthands:
@ i+=10 is equivalent to i=i+10,
@ i/=10 is equivalent to i=i/10, etc.

Operators
ocooe

(Few important) operators

e Conditional (the only three-argument operator in C/C++):

(guess==age)? "Yes!” : "No.”

int age = 100, guess;

cout <<" Guess my age: ";
cin >>guess;

cout <<((guess=——age)?"Yes!”":"No.") <<endl;
//Note the parentheses (operator precedence)
cout <<(guess—age?"Yes!”":"No.") <<endl;

// is equivalent

cout <<guess=——age?"Yes!"”:"No." <<endl;
// is wrong

Control flow
°0

Outline

© Control flow statements
@ Loops
@ Branches
@ Jumps

Control flow
oce

Control flow statements

All statements (instructions) are
@ separated by semicolons ;
@ grouped within compound statements: {...}

e executed linearly (in order) unless a control flow statement is
encountered.

Control flow types:
o linear (default)
@ loop: while, do... while, for
@ branch (decision making): if ... else, switch... case
@ jump: break, continue, goto

@ exception handling: throw, try ... catch... finally .

Control flow

@00

Loops — while

while (expression)
statement

int age = 100;

int guess = 0;

true while (age != guess) {

— | statement cout <<" Guess my age: ";

cin >>guess;

cout << "Right!"” << endl;

@ If expression is false at the beginning, the statement is not
executed even once.

@ The statement can be either a single statement (ending with a
semicolon) or a compound statement {...}.

Control flow
oeo

Loops — do... while

do statement
while (expression);

|

statement | —

int age = 100;

int guess;

do {
cout <<”"Guess my age: ";
cin >>guess;

fa|5el } while (guess != age);

expression

cout <<"Right!" <<endl;

@ The statement is executed at least once.

@ The statement can be either a single statement (ending with a
semicolon) or a compound statement {...}.

Control flow
ooe

Loops — for

for(initialisation; expression; step)
statement

for(int age=1; age<=10; ++age){

cout <<”l am " <<age;

T cout <<" years old!\n";

cout <<"End of loop!" << endl;

© The initialization is executed only once.

@ |If expression is false at the beginning, the statement is not
executed even once.

© Any of initialization , expression and step can be empty.

@ The statement can be a single or a compound statement.

else

Branches — if ...

Control flow
®00

if (expression) statementl J

Hrue statement

expression

! ;taIeme;tQj‘gb
L= === Y

if (expression) statementl
else statement2

int age = 100, guess;
cout <<"Guess my age: ";
cin >>guess;
if (guess<age)
cout <<"More!\n";
else if (guess>age)
cout <<"Lower!\n";

else cout <<"Right!\n";

@ The statement2 can be another if statement.

@ Both statements can be single or compound statements.

Control flow
oeo

Branches — switch ... case

int guess;

cout <<”"Guess my age: ";
cin >>guess;
switch (guess) {
case 50: cout <<"No, but my brother is 50.\n";
cout <<"Try again." <<endl;
break :
case 100: cout <<"Right!\n";
break ;
case 150: cout <<"No, but my sister is 150.\n";

cout <<"Try again." <<endl;
break ;

default: cout <<"No. Try again” <<endl;
break ;

Control flow
ooe

Branches — switch ... case

switch (guess) {
case 50: cout <<"No, but my brother is 50!\n";

break ;
case 100: cout <<"Right!\n";
break ;
default: cout <<"No.\n";
break;
}
o
@ The expression (guess) must be of an integral type (or
equivalent). Floating point numbers, etc. are not allowed.
@ If a match is found, the execution starts with the
corresponding case.
© The code executes until a break is encountered.
@ If no match is found, the execution starts with the default

(which is an optional part and may not occur).

Control flow
®0000

Jumps — break, continue

The flow of any loop can be controlled by
@ break, which immediately quits the loop (in case of many
nested loops, it quits just a single loop, not all of them)
@ continue, which stops the execution of only the current

iteration of the loop (the loop is resumed at the next
iteration).

break and continue statements are generally considered poor
programming style and usually can be avoided.

Jumps — break, continue

Control flow

lo] lelele]

break and continue statements are generally considered poor
programming style and usually can be avoided.

break, a simplistic example

int age = 100;
int guess;
do {
cout <<"Guess it: ";
cin >>guess;
if (guess=—age) break;
} while (true);
cout <<"Right!"” <<endl;

int age = 100;

int guess;

do {
cout <<"Guess it: ";
cin >>guess;

} while (guess != age);

cout <<"Right!" <<endl;

Jumps — break, continue

Control flow
00®00

break and continue statements are generally considered poor
programming style and usually can be avoided.

continue, a simplistic example

int age;

for (age=1;age<=18;++age){
cout <<age <<endl;
if (age>=10) continue;

cout <<"lLess ";
cout <<"than 10...\n";

}

cout <<"An adult” <<endl;

int age;
for (age=1;age<=18++age){
cout <<age <<endl;
if (age<10) {
cout <<"Less than ";
cout <<"10...\n";

}
}

cout <<"An adult” <<endl;

Control flow
0000

Jumps — goto the infamous

goto foundlt;

foundlt:

The statement goto label;

@ Forces the execution to jump to the statement labelled with
label .

@ It is poor programming style, (probably) unless it is used to
leave several complicated nested loops.

Control flow
0o00e

Jumps — the infamous goto

goto is poor programming style, (probably) unless it is used to
leave several complicated nested loops.

A simplistic example

int result, i, j;
for (i=1; i<=100; ++i) {
for (j=1; j<=100; j+=3) {
result = ixj;
if (result > 3211)
goto foundlt;
¥
}

foundlt:
cout <<i <<" x " <] <" =" <Kresult <<endl;

Functions
@00

Outline

@ Functions
@ Definition, declaration, call
@ void arguments and void return type
@ Passing arguments
@ Overloaded functions

Functions
oeo

Functions

Procedural programming allows

@ reusable code parts to be collected and separated in
procedures (functions, routines) for repetitive or later use,

@ programs to be structured and better readable.

In C/C++

@ all procedures are called functions (even if they return no data
or take no arguments).

@ execution of a program starts with the main() function.

In C/C++, data sharing between functions is possible via
@ global variables or

e arguments and return data (which is usually preferred).

Functions

global
variable

T~~~

function 1

D function 2

return data

Functions

@000

Definition, declaration, call

#include <iostream>
using namespace std;

int add(int x, int y) { //definition of add
int r =x +vy;

return r;
}
int main() { //definition of main
int r;
r = add(2,7); //call to add
cout <<"2 + 7 = " <<r <<endl;
return O;

Definition, declaration, call

Functions
0®00

int add(int x, int y) { //definition of add
int r =x + vy;
return r;
}
int main() { //definition of main
int r;
r = add(2,7); //call to add
........... }
v
Note the corresponding elements
int add(int x, inty) {..} //definition
0 T 1 !
r = add(2, 7); // call

Functions

[ele] lo}

Definition, declaration, call

#include <iostream>
using namespace std;

int add(int x, int y); // declaration of add
// int add(int, int);

int main() {
int r=add(2,7);

; // call already possible
cout <<"2 + 7 =

" <<r <<endl;
return 0;
}
int add(int x, int y) { // definition of add
return x + y; // (later than call)

}

Functions
ocooe

Definition, declaration, call

A source code of a program consists of a set of source files. In
principle, each one of them should be doubled:

@ library .h (header file) contains all declarations (of functions,
classes, etc.),

@ library .cpp contains all the corresponding definitions.

Functions defined in one file (library .c) can be used in another file
by including at the beginning the corresponding header file
(library .h). For your own libraries located in the current folder use

#include "library .h"
For standard libraries use

#include <library >
// or #include <library.h>

Functions
[1o}

void type arguments

#include <iostream>
using namespace std;

int ask(void) { //no arguments needed
int r;
cin >>r;
return r;

}

int main() { //the keyword void can be skipped

cout <<"Your age? ";

cout <<"Thanks, " <<ask() <<endl;
//in call (empty) parentheses are obligatory
return O;

}

Functions
oe

void return type

#include <iostream>
using namespace std;

void printAge(int age) { // no need for

cout <<"Age: " <<age <<endl; // any return
//value
int main() {
printAge(100); // return value not used
return 0;

}

Functions
[Jelelolole}

Passing arguments

Arguments to a function® can be passed
e by value

@ by reference

If an argument is passed by value, the function operates on a copy
of the originally passed data. The original data cannot be thus
altered inside the function.

If an argument is passed by reference, the function operates on the
original data, so that it can be altered inside the function®.

3Essentially, the same applies to return data.
*In C, passing by reference corresponds to passing a pointer to a variable
instead of the variable itself.

Passing arguments by value

Functions
0@0000

int add(int x,
X +=y;
return x;

}

int y) {

int main() {
int a=2, b=7;
cout <<a <<"+" <<b <" =
cout <<add(a,b) <<" = ";
cout <<a <<"+" <<b <<endl;

return 0;

@ x and y are copies of a and b
(in different memory
storage).

@ Modifications to x and y do
not alter a and b.

console:
247 =9 = 247

Functions
[e]e] Yolole}

Passing arguments by reference

int add(int &x,int &y) { @ x and y are other names for
X 4= vy; a and b (x, y reference a, b).
return x; e Modifications to x and y do
} alter a and b.

int main() {
int a=2, b=7;

cout <<a <<"+" <<b <" = "; console:

cout <<add(a,b) <<" = "; 247 =9 = 947
cout <<a <<"+" <<b <<endl;

return O0;

Functions
[ee]eY Tole}

Passing arguments by reference

Function doubleMe()
float doubleMe(float &x){

return (x *= 2); @ doubles the passed variable
} @ returns the doubled value.

int main() {
float a=2.1;

cout <<"a = " <<a <<endl; console:
doubleMe(a); a=21
cout <<"a = " <<a <<endl; a=42
cout <<doubleMe(a) <<endl; 8.4
return 0;

Functions

0000e0

Passing constant arguments by reference

const float a = 2.1;
printMe(a);
printMe(2.1);

void printMe(float &x) {
cout <<x <<endl;

}

v

Use the modifier const to pass constant arguments by reference

void printMe(const float &x) {
cout <<x <<endl;

}

v

Wrong: const arguments cannot be modified

float doubleMe(const float &x) {
return (x *x= 2);

}

Functions
00000®

Passing arguments

Default values of arguments

Default second argument

o If y is omitted in a call, 1 is

used instead.

int add(int x, int y=1) { o
return x+vy; @ “=1"is stated only once

} (in declaration, if present)

int main() {

cout <<"34+4 = " <<add(3,4);

cout <<endl; console:
cout <<"3+1 = " <<add(3); 3+4 =7
cout <<endl; 341 =4

return 0;

Functions
00000®

Passing arguments

Default values of arguments

int add(int x, int y=1); e If y is omitted in a call, 1 is

used instead.

int add(int x, int y) { L
return x+vy; e “=1" is stated only once

} (in declaration, if present)

int main() {

cout <<"3+4 = " <<add(3,4);

cout <<endl; console:
cout <<"3+1 = " <<add(3); 3+4 =7
cout <<endl; 341 =4

return 0;

Functions

Overloaded functions

Several functions can have the same name, if they

o differ in argument void changeMe(int &x,int &y){
types or int a=x;

o differ in argument X=Y
number. y=as:

}

int changeMe(int &x){ float changeMe(float &x) {
return (x —= 1); return (x /= 2);

} }

Outline

© Homework 2

Homework 2 (15 points)

Loops and functions (Fibonacci numbers)

Definition
The first two numbers xg and x; are set arbitrarily (but usually to 0
and 1). For the successive numbers the recurrence formula is used:

Xn — Xp—1+ Xp—2.

0,1,1,2 3,5, 8, 13, 21, 34, 55, 89, 144, ..

Homework 2 (15 points)

Loops and functions (Fibonacci numbers)

#include <iostream>
using namespace std;

int main() {
int x0, x1, x2, iter = 2;

cout << "Input F(0) "
cin >> x0;
cout << "Input F(1) ;
cin >> x1;
while (iter < 40) {

x2 = x0 + x1;

cout <<"F(" <<iter4++ <<")\t=\t" <<x2 <<endl;

x0 = x1;
x1l = x2;
}
return O;

Homework 2 (15 points)

Loops and functions (Fibonacci numbers)

@ (4 points) Rewrite the example to use the do... while loop.

@ (4 points) Rewrite the example to use the for loop.

@ (4 points) Write a function fibo(int x0, int x1, int n); that
would calculate and print first n Fibonacci numbers starting
with x0, x1:

e Do not forget to take into account the n==0 and n==1 cases.
o Modify the main() function to use your fibo (...) function.

© (3 points) Start with 0 and 1, and print the first 50 numbers.
What happens and why?

E-mail the answer and the source code to 1jank@ippt.pan.pl.

mailto:ljank@ippt.pan.pl

	Outline
	Outline

	Types and variables
	Data types
	Variables
	Constants

	(Few important) operators
	Overview

	Control flow statements
	Loops
	Branches
	Jumps

	Functions
	Definition, declaration, call
	!void! arguments and !void! return type
	Passing arguments
	Overloaded functions

	Homework 2
	Homework 2

