
1/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Programming, numerics and optimization
Lecture A-1: Preliminaries, programming basics I

Łukasz Jankowski
ljank@ippt.pan.pl

Department of Intelligent Technologies
Institute of Fundamental Technological Research

Room 4.32, Phone (+48)228261281 ext. 428

March 2, 20211

1Current version is available at http://info.ippt.pan.pl/˜ljank.

http://info.ippt.pan.pl/~ljank


2/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Outline

1 Course basics

2 Reading material

3 Programming paradigms

4 C/C++ basics

5 Homework 1



3/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Outline

1 Course basics
Objectives and abilities
Syllabus
Grading
Webpage
Questionnaire

2 Reading material

3 Programming paradigms

4 C/C++ basics

5 Homework 1



4/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Course objectives

Objective I
To introduce the principles of

Numerical computations in general
number representations,
conditioning,
stability,
distinction between problems and algorithms, etc.

Selected numerical techniques for
linear systems,
ordinary differential equations (ODEs),
optimization and structural optimization.



5/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Course objectives

Objective II
To provide a foundation for implementing selected numerical
techniques in C/C++ (or in any other programming language).

Matlab, Wolfram Mathematica (Maple, Scilab, Octave, Sage, etc.)
are great software for rapid prototyping, small- to medium-scale
general computations and visualization. Learn to use at least one
of them!2

However, you can encounter practical problems that are too large
or run too slow to be fully coded in standard high-level packages.
They need to be coded in a lower-level environment.

2Matlab and Wolfram Mathematica are available in IPPT PAN through
network licenses. Contact me, if you are interested in Mathematica.



6/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

General motivation

1 Providing a broad picture of basic numerical techniques for
linear systems, ordinary differential equations and (not only
structural) optimization.

2 Increasing the general understanding of the internals/pitfalls of
several frequently used algorithms. As a result, their common
implementations (in Matlab, Mathematica, etc.) should be
used more consciously and less in a black-box manner.

3 Providing a foundation for further work with C/C++ or other
general-purpose programming languages.



7/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Syllabus

15 lectures are planned in three threads:
1 Programming in C/C++ (4 lectures)

Basics (3)
Object-oriented programming (1)

2 Numerics (5 lectures)
Basics (1)
Linear systems (2)
Linear integral equations (1)
Integration of ODEs (1 lecture)

3 Optimization (6 lectures)
Unconstrained optimization (2)
Constrained optimization (1)
Heuristic methods (1)
Optimization in engineering, structural optimization (2)



8/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Syllabus — Programming in C/C++

Programming in C/C++:
1 programming paradigms, code and header files, preprocessor,

compiler, linker
2 types and variables, operators, control flow statements,

functions
3 pointers, arrays, structures, lists, trees, command line

arguments
4 object-oriented programming: objects and classes, creating

and destroying objects, overloaded operators, STL vector class



9/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Syllabus — Numerics

Numerics:
1 number representations, floating-point numbers, round-off

errors, problems and algorithms, conditioning, (in)stability
2 Linear systems I: basics, direct methods (special matrices,

factorizations and decompositions, Gaussian elimination),
iterative methods (stationary, Krylov subspace)

3 Linear systems II: least-squares problems, conditioning,
regularization, large systems

4 Linear integral equations
5 Integration of ODEs: basics (reduction to 1st order ODE,

convergence, order stability), explicit and implicit one-step
methods, multistep methods, Newmark method



10/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Syllabus — Optimization
Optimization:

1 Optimization I: optimization basics (objective function,
variables, constraints), sensitivity analysis

2 Structural optimization: structural reanalysis, examples
3 Unconstrained optimization I: stop conditions, line search and

trust region methods, search directions, step size, 1D case
4 Unconstrained optimization II: zero-order methods, steepest

descent, conjugate gradient methods, Newton and
quasi-Newton methods, least-squares problems

5 Constrained optimization: hard and soft constraints,
Lagrangian and KKT conditions, penalty functions,
classification of problems, linear and quadratic programming

6 Heuristic methods: No Free Lunch Theorem, simple
randomization, coupled local minimizers, Nelder-Mead
method, simulated annealing, evolutionary algorithms, swarm
intelligence, artificial neural networks



11/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Grading

Grading will be based entirely on your homeworks (HWs). The first
three HWs are obligatory, others you can freely choose from.
No. Title Points
HW 1 First steps (C++) 5
HW 2 Loops and functions (C++) 15
HW 3 Arrays and pointers (C++) 15
HW 4 Basic numerics 10
HW 5 Objects (C++) 20
HW 6 LU decomposition 25
HW 7 Regularization and iterative

linear solvers
25

HW 8 ODE integration 20
HW 9 Linear programming 15
HW 10 Optimization 25

Total 175

Points Grade
51–60 3.0
61–70 3.5
71–85 4.0
86–100 4.5

101–175 5.0



12/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Webpage
http://info.ippt.pan.pl/˜ljank

Lecture notes
Homeworks
Course schedule
etc.

http://info.ippt.pan.pl/~ljank


13/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Questionnaire
…to meet better your needs

Your
educational background,
computer/programming skills,
comments on the proposed schedule,
wishes and expectations.



14/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Outline

1 Course basics

2 Reading material
C/C++
Numerics
Optimization

3 Programming paradigms

4 C/C++ basics

5 Homework 1



15/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Reading material — C/C++, programming

Jerzy Grębosz,
Symfonia C++ (in polish)

Bruce Eckel,
Thinking in C++,
http://mindview.net/Books

Bjarne Stroustrup,
C++ Programming Language
(polish edition: Język C++)

http://mindview.net/Books


16/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Reading material — C/C++, programming

query: “C++ tutorial”, e.g.:
http://www.cplusplus.com/doc/tutorial/

Niklaus Wirth
Algorithms + Data Structures = Programs

Brian W. Kernighan,
Dennis M. Ritchie,
ANSI C.

http://www.cplusplus.com/doc/tutorial/


17/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Reading material — C/C++, programming
Kernighan, Ritchie, ANSI C



18/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Reading material — Numerics

Germund Dahlquist, Åke Björck,
Numerical Methods in Scientific Computing, vol. 1,2

Numerical Recipes in C++ (C, Fortran),
http://nr.com.

Gene H. Golub, Charles F. Van Loan,
Matrix computations.

MathWorld
http://mathworld.com

http://nr.com
http://mathworld.com


19/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Reading material — Optimization

Jorge Nocedal, Stephen Wright,
Numerical Optimization

R. T. Haftka, Zafer Gürdal,
Elements of Structural Optimization.

Zbigniew Michalewicz,
Genetic Algorithms + Data Structures
= Evolution Programs.

Germund Dahlquist, Åke Björck,
Numerical Methods in Scientific Computing,
vol. 2, Chapter 10: Iterative methods for linear systems, pp. 469–560.



20/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Outline

1 Course basics

2 Reading material

3 Programming paradigms
Imperative
Procedural
Object-oriented paradigm
Declarative
Array-processing

4 C/C++ basics

5 Homework 1



21/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Programming paradigms

There is a certain number of fundamental programming concepts:
record,
named state,
lexically scoped closure,
sequentiality vs. concurrency/independence,
observable nondeterminism,
data abstraction, polymorphism and inheritance,
exceptions, etc.,

which define the way of representing and handling the two basic
elements of any program, that is the

data and
operations.



22/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Programming paradigms

programming paradigm
A programming paradigm is a fundamental style of computer
programming. Each paradigm supports a certain set of concepts.

There is a large number of paradigms (or wannabe paradigms).
However, there is a fundamental opposition between

1 the imperative programming, which focuses on data, program
state and control flow (how-to),

2 the declarative programming, which focuses on functions and
declares relations (what-is).



23/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Programming paradigms

The most commonly used paradigms seem to be:
procedural (C, Pascal),
object-oriented (C++, Java, Smalltalk),
array-based (APL, J),
functional (Haskell, Erlang, J),
logic (Prolog).

A programming language can be designed to support one particular
programming style, but also a certain subset of styles (e.g. one for
small applications and another one for large systems).



24/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Programming paradigms3

3Peter van Roy, “Programming Paradigms for Dummies: What Every
Programmer Should Know”



25/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Imperative programming

Imperative-style programs describe
what is to be computed
along with and inseparable from the details how it is to be
computed (implementation): control flow, data storage, etc.

All programs, irrespective of the paradigms, are ultimately
transformed for execution to machine code, which is

imperative style and
very inconvenient for programming.



26/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Imperative programming — assembly



27/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Procedural programs

The imperative paradigm allowed procedural programming to
evolve.

Reusable code parts are collected and separated in procedures
(functions, routines) for repetitive or later use.
The programs got structured.



28/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Procedural programs

In larger procedural programs, the
the data and
the structure of the program (procedure call order)

tend to be increasingly scattered and hard to manage.



29/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Procedural programs



30/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Object-oriented programs



31/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Object-oriented paradigm

Object-oriented languages group data and operations together in
re-usable objects, which represent entities from the real world
being modelled (data abstraction).

A procedural program is in fact a group of tasks (procedures) to
compute, while an object-oriented program might be seen as a
collection of cooperating objects, which

receive/send messages and process data,
reflect the structure of the system being modelled.

In this way object-oriented languages support modularity by
separation, encapsulation and protection of data and operations.



32/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Object-oriented languages — two views

Since 1990s object-oriented languages are in a wide use in
mainstream software development.

+ By focusing on objects and their interactions rather than on
computing tasks, object-oriented languages follow the natural
way people perceive the world and deal with it.

– Object-oriented programming is popular in big companies,
because it suits the way they write software. At big
companies, software tends to be written by large (and
frequently changing) teams of mediocre programmers.
Object-oriented programming imposes a discipline on these
programmers that prevents any one of them from doing too
much damage. The price is that the resulting code is bloated
with protocols and full of duplication. This is not too high a
price for big companies, because their software is probably
going to be bloated and full of duplication anyway. /Paul
Graham, http://www.paulgraham.com/noop.html/

http://www.paulgraham.com/noop.html


33/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Object-oriented languages — two views

– Object-oriented programming enforces an additional
abstraction layer, which is often unnecessary and hindering in
small projects.

+ It is useful in large projects as it
follows the natural way people perceive the world and manage
its complexity,
considerably simplifies management and maintenance of the
system.

+ Even small projects may benefit from specialized reusable
objects.



34/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Declarative languages

Functional and logic languages are examples of declarative
languages, which

specify only what is to be computed (done, shown, etc.) and
leave the implementation details (sequencing of computation,
organization of the data storage) to the interpreter/compiler.

For example, in logic languages (like Prolog) the programmer
represents the problem to be solved by declaring a set of logical
relations, which are then tackled by a theorem prover or a model
generator.



35/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Array-processing languages

While other languages apply operations to scalars, which can be
then explicitly grouped in higher-dimensional data structures,
array-processing languages (vector languages: APL, J, K, Q) apply
all operations transparently to vectors, matrices, and higher
dimensional arrays.

Each function must have a rank, which is defined separately
with respect to its all arguments. The rank specifies the
dimensionality of the “unit” argument.
If an argument to a function is of a higher dimensions than
the corresponding rank, implicit looping is performed. In
practice, almost all loops can be treated implicitly, which
makes programs very concise and even terse.



36/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Array-processing languages — example
mean of an array in C++

double mean ( double tab [ ] , i n t no ){
double s =0;
f o r ( i n t i =0; i<no ; ++i )

s += tab [ i ] ;
return s /no ;

}

mean of a list in J

mean =. +/ % #

www.jsoftware.com

The C++ version is applicable only to 1D arrays.
The J version computes the mean item of a list, whatever
type it is, so it can be also applied to matrices to compute the
mean row, to 3D arrays to compute the mean 2D matrix, etc.
In J, the means of all the rows of a matrix can be also
computed by an explicit modification of the rank: mean”1.

q u i c k s o r t =: ( ( $ :@( <#[) , (=#[) , $ :@( >#[)) ({~ ?@#)) ^ : (1<#)

https://www.jsoftware.com


37/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Outline

1 Course basics

2 Reading material

3 Programming paradigms

4 C/C++ basics
Source and header files
From source files to executables
Integrated Development Environments (IDE)
A simple example

5 Homework 1



38/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Source and header files



39/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

From source files to executables



40/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Integrated Development Environments (IDE)

Microsoft Visual C++
http://www.microsoft.com/express
Geany http://www.geany.org
Eclipse + CDT http://www.eclipse.org
Netbeans http://www.netbeans.org/features/cpp
Code::blocks http://www.codeblocks.org
Linux: any text editor + gcc

Or any other.

http://www.microsoft.com/express
http://www.geany.org
http://www.eclipse.org
http://www.netbeans.org/features/cpp
http://www.codeblocks.org


41/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

A simple example

Example

#inc lude <ios t r eam>
using namespace s t d ;

/∗ A ve r y s imp l e example ,
∗ to i l l u s t r a t e b a s i c concep t s .

∗/

i n t main ( ) {
cout <<”Hi , t ha t ’ s me ! ” <<end l ;
cout <<”How are you?” ;

// Dev C++ u s e r s might add : system (” pause ” ) ;
// Return v a l u e 0 means t e rm ina t ed ok , no e r r o r s .
return 0 ;

}



42/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Outline

1 Course basics

2 Reading material

3 Programming paradigms

4 C/C++ basics

5 Homework 1



43/43

Course basics Reading Programming paradigms C/C++ basics Homework 1

Homework 1 (5 points)
First steps

1 Install on your computer a compiler/IDE of your choice.
2 Write and compile a simple code introducing yourself (e.g.

printing ’My name is...’).
3 Send me (ljank@ippt.pan.pl) your source file (*.cpp) and

information on your configuration (system, IDE).

mailto:ljank@ippt.pan.pl

	Course basics
	Objectives and abilities
	Syllabus
	Grading
	Webpage
	Questionnaire

	Reading material
	C/C++
	Numerics
	Optimization

	Programming paradigms
	Programming paradigms
	Imperative
	Procedural
	Object-oriented paradigm
	Declarative
	Array-processing

	C/C++ basics
	Source and header files
	From source files to executables
	Integrated Development Environments (IDE)
	A simple example

	Homework 1
	Homework 1


