
Homework 7 (25 points)

LU decomposition

April 13, 2021
Current version available at http://info.ippt.pan.pl/~ljank

1 HW7 contents

This file comes zipped with three files:

1. A simple object matrix library matrix.cpp (optimized for simplicity, not
quickness).

2. Header file matrix.h for the matrix library (contains mostly declarations
of the class and functions).

3. Demo program using the library mainMatrix.h.

Unzip all three into the same directory. Create a new project in your IDE, add
the ∗.h and both ∗.cpp files to the project. Rebuild and run.

2 General information

The matrix class from HW6 has been updated as follows:

1. The element type is aliased T, which is defined to be float at the beginning
of the header matrix.h. It can be easily changed to double or long double
by one the following modifications of the typedef definition:

typedef double T;
typedef long double T;

If you change the type, do not forget to rebuild the project before running
it again. For the tasks below use the type float.

2. The class implements LU decomposition with rescaling and row pivoting.
The matrices L, U and the rescaling and permutation data are internally
pointed to by the following pointers:

• vector<vector<T> > ∗luMatrix;
which is a pointer to the decomposed LU matrix. Both L and U
matrices are stored in this single matrix: U above and in the diagonal,
while L below it (as the matrix L has only 1s on the diagonal). See
the functions getLMatrix() and getUMatrix().

1

http://info.ippt.pan.pl/~ljank

• vector<T> ∗ sclVector;
which is a pointer to the scaling vector. The matrix rows are scaled
with respect to the sums of the absolute values of the row elements.
That is, for example, the scaling vector {0.1, 0.1, 0.1} means that all
row-sums were 10.

• vector<unsigned int> ∗ prmVector;
which is a pointer to the permutation vector. For example, the vector
{1, 2, 0} means that during the decomposition 0th row went to the
2nd row, 1st row went to the 0th row and 2nd row went to the 1st
row.

The LU data are initialized, deleted (when the original matrix is modified)
or copied from another matrix (in the copy constructor and the assignment
operator) by the following private functions:

void i n i t i a l i s eLUMat r i c e s (void) ;
void deleteLUMatr ices (void) ;
void copyLUMatrices (const matrix & m) ;

LU decomposition is run automatically whenever necessary (see for ex-
ample matrix.cpp, lines 162, 173, etc.) by calling the private function
luDecompose(void), which makes use of

• void luRescale(void);
to rescale and copy the original matrix to the ∗luMatrix and to save
the scaling information in ∗sclVector;

• void luSwapRows(unsigned int r1, unsigned int r2);
to swap the rows no. r1 and r2 of ∗luMatrix and to store the pivoting
information in ∗prmVector.

The six following public functions

unsigned int getLUPermutationVector (unsigned int r) ;
T getLUScal ingVector (unsigned int r) ;
matrix getLMatrix (void) ;
matrix getUMatrix (void) ;
matrix getLUPermutationVector (void) ;
matrix getLUScal ingVector (void) ;

are used to get the LU data. If the matrix is not yet decomposed, they
call the luDecompose() function.

3. The unary minus operator is defined,

matrix operator− (const matrix & m) ;

to make possible verification of the results without depriving you of your
fun with HW6, where you are expected to write binary operator−() and
operator−=().

4. Two new member function are declared (in matrix.h) and partially defined
(in matrix.cpp):

2

• matrix solveLS(const matrix& b);
which is meant to solve (if posible) a linear system Ax = b and to
return the computed solution vector x;

• matrix det(void);
which is meant to compute (if possible) the determinant of the ma-
trix.

The demo program (mainMatrix.cpp) generates a random 4× 4 matrix A,
decomposes it into L and U, prints the results and verifies them by back
permutating and rescaling LU to compare it with the original matrix A.

3 Your tasks

1. (5 points) Fill the gaps in the det() function (matrix.cpp file, line 264). No-
tice that to compute the determinant it is enough to multiply the diagonal
elements of the U matrix (since the L matrix has 1s on the diagonal) and
to divide them by the row scaling factors (stored in ∗sclVector). Take into
account the permutation parity (stored in the variable permutationParity,
which is either -1 or 1). Use the hints in the comments.

2. (10 points) Fill the gaps in the solveLS() function (matrix.cpp file, line 235).
Use the hints in the comments. Modify themain() function (mainMatrix.cpp)
to demonstrate that your function really works (for example uncomment
the lines 32–41 in the main() function).

3. (5 points) Define (in the mainMatrix.cpp file) the following matrices:

A =

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6

 , b1 =

0
1
1
1

 , b2 =

1
1
1
1

 .

Clearly, A is a singular matrix. Compute its determinant and use your
function solveLS() to solve two linear systems Ax1 = b1 and Ax2 = b2.
Check the residua r1 = b1 − Ax1 and r2 = b2 − Ax2. What are the
results and why? Redo the task using the type double instead of float
(line 10 of matrix.h, do not forget to rebuild the project).

4. (5 points) Modify the solveLS() function so that it accepts not only vectors
(that is, the case of B.getColNo()==1), but full matrices as arguments. The
return value should hence be such a matrix X (with B.getColNo() columns),
that AX = B.

E-mail your answers and the reworked source codes to ljank@ippt.pan.pl.

3

mailto:ljank@ippt.pan.pl

	HW7 contents
	General information
	Your tasks

