Homework 4 (10 points)

Basics of numerics

Let

$$S(n) = \sum_{i=1}^{n} \frac{1}{i}.$$

In accurate arithmetic, the following three formulas are equivalent¹:

$$s_1 = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n}$$

$$s_2 = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{1}$$

$$s_3 = \frac{1}{n} + \frac{1}{n} \frac{n}{n-1} + \frac{1}{n} \frac{n}{n-1} \frac{n-1}{n-2} + \dots + \frac{1}{n} \frac{n}{n-1} \cdots \frac{3}{2} \frac{2}{1}$$

$$a+b+c$$
 is interpreted as $(a+b)+c$.

¹Assume that "+" is left-associative:

Homework 4 (10 points)

Basics of numerics

Consider the following implementations in single (float) arithmetic:

Homework 4 (10 points)

Basics of numerics

Compute $S(10^8)$ using all three algorithms.

- 1. The results are quite unexpected. Find and explain the reason.
- 2. Correct the error and repeat the computations. Explain the differences between the results.
- 3. How can you compute the exact value (up to five or six significant decimal digits)? What is it?

E-mail the answers to ljank@ippt.pan.pl.