Homework 3 (15 points)

Arrays and pointers (Fibonacci numbers)

- 1. (4 points) Rework the code you obtained in HW2.3:
 - Define in the main() function a local array of a constant length.
 - Rewrite the fibo(int x0, int x1, int n) function so that it
 - $1.1\,$ accepts the array as an additional parameter and
 - 1.2 fills the passed array with the first n Fibonacci numbers starting with x0, x1.
 - Pass the array you defined in the main() function to the fibo() function.
- 2. (3 points) Rework the code you produced in HW3.1:
 - Add a function printIntArray () so that it
 - $2.1\,$ accepts an int array as a parameter and
 - 2.2 prints its contents.
 - Remove the printing code from the fibo () function.
 - Modify the main() function to use both fibo() and printIntArray ().

Homework 3 (15 points)

Arrays and pointers (Fibonacci numbers)

- 3. (4 points) Rework the code you obtained in HW3.2 to use a dynamically-allocated array of a variable length (entered by the user) instead of a constant size local array.
- 4. (4 points) Modify the code you obtained in HW3.3 to accept three command line arguments n, $\times 0$ and $\times 1$, instead of asking the user to enter them manually. For example, if the executable file is called fibo, the command line

```
fibo 40 0 1 [ENTER]
```

should print the first 40 Fibonacci numbers starting with 0, 1 and $\mathsf{exit}^1.$

E-mail the answer and the source code to ljank@ippt.pan.pl.

¹In Dev C++ you can use the menu 'Execute \rightarrow Parameters' to specify the arguments instead of running the program from the command line. March