
## Homework 10 (25 points)

Optimization

Consider the following two 2D trusses:



The four outermost nodes are fixed (no translations).



The leftmost bottom node is fixed (no translations). The rightmost node is fixed in vertical direction only (no vertical translations).

## Homework 10 (25 points)

Optimization



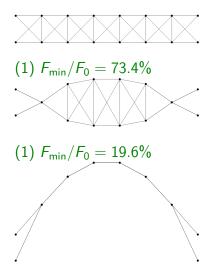


Assume both trusses are statically loaded with unit vertical loads:

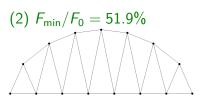
- 1. the  $1^{st}$  truss in all non-fixed nodes,
- 2. the  $2^{nd}$  truss in all non-fixed bottom nodes.

Minimize the objective function F (square sum of element stresses) with respect to:

(1) The 1<sup>st</sup> truss: vertical co-ordinates of all loaded nodes,


(2) The 2<sup>nd</sup> truss: vertical co-ordinates of all upper nodes,

(3) The 2<sup>nd</sup> truss: both co-ordinates of all upper nodes,

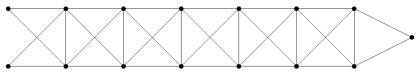

while the total volume of the structures is constant and all elements have the same cross-section.

Homework 10 (25 points)

Optimization








(3)  $F_{\min}/F_0 = 41.7\%$ 

## Homework 10 (25 points)

Optimization

Consider the following 2D truss:



The leftmost nodes are fixed.

Assume the truss is statically loaded with unit vertical load at the rightmost node. Minimize the objective function F (square sum of element stresses) with respect to vertical co-ordinates of all nodes besides the tip and the fixed nodes. Keep the total volume of the structures constant. Assume that all elements have the same cross-section. Use any method and software you like. E-mail the resulting truss and the source code to ljank@ippt.pan.pl.