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Abstract

Technological metal forming processes of extrusion, forging and rolling with imposed
cyclic torsion or shear deformation have been recently studied in view of their ad-
vantages with respect to monotonic loading processes, cf. Bochniak and Korbel [2-4].
The present work is aimed to analyze such process in the case of simple tension or
compression of a cylindrical tube with imposed cyclic torsional deformation. The
material element response is assumed as rigid-perfectly plastic or elastic-perfectly
plastic. For these models, the analytical solutions can be provided for the steady
cyclic responses and the effect of two process parameters, namely the ratio of shear
and axial strain rates η and the amplitude of shear strain γm, can be clearly demon-
strated. Three different regimes of cyclic response can be visualized in the plane η,
γm. The cyclic response of a cylinder under combined axial compression and cyclic
torsion is predicted by considering a simplified model of a set of concentric tubes
and neglecting their radial stress interaction. The axial force and torsional moment
are then specified by averaging responses of consecutive tubes. The cyclic response
diagrams for the cylinder are next generated in terms of axial force and torsional
moment related to axial deformation and angle of twist.

1 Introduction

In recent years there has been a growing interest in metal forming processes
assisted by cyclic loading. The so called KOBO-type forming proposed by Kor-
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bel and Bochniak [2–4, 10] and applied to extrusion of tubes and wires has
demonstrated essential advantages with respect to classical forming processes.
The significant reduction of required load for forming, growth of ductility, possible
reduction of dissipated energy of forming and finer grain structure are the main
beneficial factors cf. also Kong et al [8, 9].

At the micro-mechanical scale, it is observed that destabilization of the de-
veloped dislocation substructure occurs with subsequent generation of coarse
slip bands propagating in a transgranular mode, thus reducing the stress level
required for progressive deformation. Such effects of instabilities of hardened
states at large plastic deformation were discussed already by Basinski and Jack-
son [1, 6]. Also Coffin [7] noted in his work that imposed cyclic deformation could
be applied to facilitate the progressive metal forming process.

The present work is aimed at the study of such cyclic deformation assisted
process by applying simple constitutive models of plastic response of metals.
Our objective is to provide an analytical solution of the steady cyclic deformation
process and discuss the effect of two basic parameters η and γm representing the
ratio of shear and axial strain rates, and the shear strain amplitude. The analysis
will be carried out for a perfectly plastic material model satisfying the Huber-
Mises yield condition. The types of steady cyclic responses are presented by
the interaction diagrams in the plane γm, η. Both piecewise linear and harmonic
shear strain controls are considered. The plastic dissipation in axial and torsional
straining is presented and referred to the dissipation in the monotonic tension or
compression process.

The study will be pertained to a circular cylinder or tube axially deforming
with a specified rate and subjected to alternative twist with specified rate and
amplitude. Most cyclic loading experiments available in literature have been per-
formed at specified axial stress values in order to study ratchetting strain induced
by cyclic torsion, cf. Mróz and Rodzik [11]. Here, we shall refer to tests performed
by Bochniak and Korbel [2] and Grosman [5] for the case of tension or compres-
sion of cylindrical specimens with imposed cyclic torsion. The analysis will be
presented first for a case of cylindrical tube and next the response of a cylinder
will be predicted by superposing solutions for a set of tubes of decreasing radii.
The analysis with account for material hardening and recovery effects will be
presented in a separate paper.

2 Problem formulation for a thin-walled tube.

Consider a thin walled tube of initial radius r0, and length l0 and wall thickness
t0 subjected to axial tension or compression. Assume the axial strain rate to be
specified and constant. The alternating torsion is imposed in order to reduce the
axial stress and applied axial force in order to execute the process. Denote by εx

and γxy the axial and shear strain components and their rates by ε̇x, γ̇xy. The
Cauchy stress components referred to the actual configuration are σx, τxy. For
simplicity, consider first the small strain formulation which can next be improved
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by considering configuration changes for large compressive or tensile strains. The
deformation program is shown in Fig. 1.

Figure 1. Axial and torsional deformation program: a/ tube dimensions, b/ longitudinal
strain εx(t), c/ piecewise linear variation of shear strain, d/ harmonic variation of shear
strain γxy(t).

For uniform in time length variation (l = l0(1± α̇t)) the axial strain and strain
rate are |εx| = α̇t, |ε̇x| = α̇, where α̇ = |l̇|/l0. For the logarithmic strain measure
there is εx = ln(1 ± α̇t) and |ε̇x| = |l̇|/l = ±α̇l/(1 ± α̇t). The shear strain is
assumed to oscillate with the amplitude 2γm and the period T . For piecewise
linear oscillation, Fig. 1c, we have β̇ = γ̇xy = 4γm/T . Denote the ratio of rates of
shear and axial strains by η, thus

η =
β̇

α̇
= const, β̇ =

4γm

T
, β̇ > 0, α̇ > 0. (2.1)

For the harmonic variation of γxy, Fig. 1d, we can write

γxy = γm sin
(

2π

T
t
)

, γ̇xy =
π

2
β̇ cos

(
2π

T
t
)

, β̇ =
4γm

T

and the ratio of strain rates is

γ̇xy(t)

|ε̇x|
= η

π

2
cos

(
2π

T
t
)

= η
π

2
cos

(

2π

T

|εx|
α̇

)

= η
π

2
cos

(

2π
|εx|
Ex

)

, (2.2)

where Ex = 4γm

η
is the strain period corresponding to time period T . Let us note

that the time measure can be replaced by the axial strain |εx| = α̇t.
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3 Deformation analysis for a rigid perfectly plastic material model

To understand the constitutive model assumptions in the analysis of cyclic
response of tube, we provide first the analytical solution for the perfectly plastic
material model assuming the Huber-Mises yield condition and the associated flow
rule. The constitutive equations can be written in the form:
• yield condition

F =
√

σ2
x + 3τ 2

xy − σ0 ≤ 0, (3.1)

• rate equations

ε̇x = ε̇e
x + ε̇p

x =
σ̇x

E
+ λ̇

σx

σ0

,

γ̇xy = γ̇e
xy + γ̇p

xy =
τ̇xy

G
+ λ̇

3τx

σ0

, (3.2)

where λ̇ > 0, F ≤ 0, λ̇F = 0. Here ’dot’ denotes the rate with respect to the
process evolution parameter, such as increasing axial strain, E and G are the
elastic Young and Kirchhoff moduli and σ0 denotes the yield stress.

Neglecting elastic strains, from (3.2) we have

ε̇x = ε̇p
x = λ̇

σx

σ0

, γ̇xy = γ̇p
xy = λ̇

3τx

σ0

. (3.3)

Inverting (3.3), the dissipation function can be specified, namely

Ḋ = σxε̇
p
x + τxyγ̇

p
xy = σ0λ̇ = σ0

√

(ε̇p
x)2 +

1

3
(γ̇p

xy)2

and

σx =
∂Ḋ

∂ε̇p
x

= σ0
ε̇p

x
√

(ε̇p
x)2 + 1

3
(γ̇p

xy)2
, τxy =

∂Ḋ

∂γ̇p
xy

= σ0

1
3
γ̇p

xy
√

(ε̇p
x)2 + 1

3
(γ̇p

xy)2
(3.4)

For the piecewise-linear shear strain oscillation, Fig. 1c, we obtain from (3.4)

σx =
σ0

√

1 + η2

3

, τxy = ±η

3

σ0
√

1 + η2

3

(3.5)

and the specific dissipation power equals

Ḋ = σ0|ε̇x|
√

1 +
η2

3
= Ḋ0

√

1 +
η2

3
, Ḋ0 = σ0|ε̇x|. (3.6)
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For the harmonically varying shear strain, in view of (2.2), we obtain the stress
components in the plastic state

σx =

√
3σ0

√

3 + η2 π2

4
cos2(2π |εx|

Ex
)
, τxy =

η

3

√
3σ0η

2 π
2

cos(2π |εx|
Ex

)
√

3 + η2 π2

4
cos2(2π |εx|

Ex
)

(3.7)

and the dissipation power is expressed as follows

Ḋ = σ0|ε̇x|
√

1 + η2
π2

12
cos2(2π

|εx|
Ex

) = Ḋ0

√

1 + η2
π2

12
cos2(2π

|εx|
Ex

). (3.8)

Figure 2. Piecewise linear shear strain control: a/ stress path, b/shear stress-strain
hysteresis loop, c/axial stress variation

Some interesting conclusions can be drawn from this simple analysis. For the
case of piecewise linear shear strain control, the stress path AB at constant axial
stress value corresponds to consecutive combined plastic flow periods followed by
rigid unloading to a reverse shear straining point on the yield surface, Fig. 2a.
The shear hysteresis loop is shown in Fig. 2b and the axial stress variation in
Fig. 2c. It follows from (3.5) and (3.6) that the axial stress value depends on η
and is always reduced but the dissipation power is increased. For instance, for
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Figure 3. Harmonic shear strain control: a/ stress path, b/ shear stress-strain hysteresis
loop, c/ axial stress variation

η = 3, there is σx = 1
2
σ0 and Ḋ = 2Ḋ0 = 2σ0|ε̇x|. Thus, the axial stress reduction

occurs at the expense of increasing dissipated energy in the deformation process.
The harmonic shear strain control provides a different stress path ACBC ′

following the yield surface, Fig. 3a. Thus, there is no unloading stage and the
deformation process proceeds in a fully plastic regime. The shear stress-strain
hysteresis loop is shown in Fig. 3b. The axial stress varies between the values
corresponding to A or B and the maximal value σ = σ0 at C, Fig. 3c. The stress-
strain path in Fig. 3c touches the line σ = σ0 at C, C ′, C ′′, .... Note that this
line corresponds to η = 0 that is to monotonic axial straining. The dissipation
power increases with respect to its value Ḋ0 = σ0|ε̇x| corresponding to pure axial
deformation.

To illustrate the dissipated energy variation with process parameters, let us
calculate the dissipated energy in tension and torsion modes during one cycle of
deformation. For the piecewise linear shear strain control in view of (3.5) we have

Dγ
c =

cycle∫

0

τxydγxy =
3

4
η

σ0γm
√

1 + 1
3
η2

= σ0Ex

η2

3
√

1 + η2

3

, (3.9)
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Dε
c =

cycle∫

0

σxdεx = σ0Ex

1
√

1 + η2

3

, (3.10)

where Dγ
c and Dε

c are the dissipated energies in torsion and axial strain cycles.
The total dissipated energy per cycle equals

Dt
c = Dγ

c + Dε
c = σ0Ex

√

1 +
η2

3
= Dt

0

√

1 +
η2

3
(3.11)

Similarly, introducing e = |εx|/Ex, for the case of harmonic control of shear
strain, in view of (2.2), (3.7) and (3.8), we obtain

Dγ
c =

cycle∫

0

τxydγxy = σ0Ex

1∫

0

η2

3

π2

4
cos2(2πe)

√

1 + η2

3
π2

4
cos2(2πe)

de

Dε
c =

cycle∫

0

σxdεx = σ0Ex

1∫

0

1
√

1 + η2

3
π2

4
cos2(2πe)

de

and

Dt
c = σ0Ex

1∫

0

√

1 +
η2

3

π2

4
cos2(2πe)de

Figure 4. Variation of the dissipated energy in one deformation cycle with the strain rate
ratio η: continuous line - piecewise linear shear strain control, dashed line - harmonic
shear strain control
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Figure 4 presents the variation of dissipated energies per one cycle in axial and
torsional deformation. It is seen that the dissipated energy portion Dε

c decreases
with the increasing cycle frequency, but the dissipated energy Dγ

c increases. This
leads to total dissipated energy increase with respect to the uniaxial deformation
process.

4 Cyclic solution for an elastic-perfectly plastic material

Consider now the elastic-plastic material model for which the constitutive
equations are specified by (3.1) and (3.2). We shall analyze both piecewise linear
and harmonic shear strain controls.

4.1 Piecewise linear shear strain control: analytical solution

In view of the constraint γ̇xy/ε̇x = η, from (3.2) it follows that

σ̇x = E
(

ε̇x − λ̇
σx

σ0

)

, τ̇xy = G
(

ηε̇x − λ̇
3τxy

σ0

)

. (4.1)

For the plastic state, the consistency condition requires that

Ḟ = σxσ̇x + 3τxy τ̇xy = 0. (4.2)

Substituting (4.1) into (4.2), we obtain

λ̇ = σ0
Eσx + 3Gητxy

Eσ2
x + 9Gτ 2

xy

ε̇x, λ̇ > 0, ε̇x > 0. (4.3)

Let us note that η takes positive and negative values, however, the shear stress
τxy changes its sign with η, so we have τxy > 0, η > 0 and τxy < 0, η < 0, so that
τxyη > 0. The inverse elastic-plastic equations are

σ̇x = E

(

1 − Eσx + 3Gητxy

Eσ2
x + 9Gτ 2

xy

σx

)

ε̇x,

τ̇xy = G

(

η − Eσx + 3Gητxy

Eσ2
x + 9Gτ 2

xy

3τxy

)

ε̇x (4.4)

and for the elastic path we have

σ̇x = Eε̇x, τ̇xy = Gγ̇xy = Gηε̇x.

To integrate analytically the rate equations (4.4), let us introduce the trigono-
metric stress representation satisfying the yield condition (3.1), namely

σx = σ0 cos θ,
√

3τxy = σ0 sin θ (4.5)
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with the rates

σ̇x = −σ0(sin θ)θ̇,
√

3 ˙τxy = σ0(cos θ)θ̇. (4.6)

The first incremental equation (4.4) can now be presented as follows

σ0

3G
θ̇ =

√
3η

3
cos θ − sin θ

1 +
(

3G
E

− 1
)

sin2 θ
ε̇x. (4.7)

Let us introduce the following notation

tan Φ =

√
3|η|
3

=
˙̄γxy

˙̄εx

, m =
3G

E
− 1 =

1 − 2ν

2(1 + ν)
,

ε̄x =
E

σ0

εx =
εx

ε0

, γ̄xy =
E

σ0

γxy√
3
, tan ϕ = (1 + m) tan Φ (4.8)

where ε0 = σ0/E is the elastic strain in uniaxial tension associated with the yield
stress σ0. Equation (4.7) can now be rewritten in the incremental form

dε̄x =
cos Φ

1 + m

1 + m(sin θ)2

sin(±Φ − θ)
dθ. (4.9)

Integrating (4.9), we obtain for η > 0

ε̄x = C +
cos Φ

1 + m

[

m cos(Φ + θ) − (1 + m(sin Φ)2) ln

∣
∣
∣
∣
∣
tan

Φ − θ

2

∣
∣
∣
∣
∣

]

︸ ︷︷ ︸

f(θ)

(4.10)

and for η < 0 we have

ε̄x = C̄ +
cos Φ

1 + m

[

m cos(Φ − θ) − (1 + m(sin Φ)2) ln

∣
∣
∣
∣
∣
tan

Φ + θ

2

∣
∣
∣
∣
∣

]

︸ ︷︷ ︸

f(−θ)

, (4.11)

where C and C̄ are the integration constants obtained from the initial values on
the respective paths.

The plastic strain rate ε̇p
x is expressed as follows

ε̇p
x = λ̇ cos θ =

σ2
0

E(1 + m)

cos Φ

cos ϕ

cos(±ϕ − θ)

sin(±Φ − θ)
(cos θ)θ̇ (4.12)

Integrating (4.12), we obtain for η > 0

ε̄p
x = Cε −

cos Φ

(1 + m) cos ϕ

[

cos(ϕ − Φ − θ) + cos(ϕ − Φ) cos Φ ln | tan(
Φ − θ

2
)|

]
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and for η < 0 there is

ε̄p
x = C̄ε −

cos Φ

(1 + m) cos ϕ

[

cos(ϕ − Φ + θ) + cos(ϕ − Φ) cos Φ ln | tan(
Φ + θ

2
)|

]

,

where Cε and C̄ε denote the integration constants.
For the elastic path, we can write for η > 0

sx =
σx

σ0

=
Eεx

σ0

+ s0 = ε̄x + s0, (4.13)

sxy =

√
3τxy

σ0

=

√
3Gη

σ0

εx + t0 = tan ϕε̄x + t0

and for η < 0, there is

sx =
σx

σ0

=
Eεx

σ0

+ s0 = ε̄x + s0, (4.14)

sxy =

√
3τxy

σ0

= −
√

3Gη

σ0

εx + t0 = − tan ϕε̄x + t0

Now, let us specify the rate of plastic dissipation. During one cycle of defor-
mation the elastic work vanishes and the work of external loading is dissipated.
We have

Ḋ = σxε̇
p
x + τxyγ̇

p
xy = σ0λ̇ = Ḋx + Ḋxy. (4.15)

In view of (4.5) and (4.3) we obtain

Ḋ =
σ2

0

E(1 + m)

cos Φ

cos ϕ

cos(ϕ ∓ θ)

sin(±Φ − θ)
θ̇

and

Ḋx = σ0λ̇ cos2 θ = Ẇ p cos2 θ, Ḋp
xy = σ0λ̇ sin2 θ = Ẇ p sin2 θ.

Denoting

D̄ =
D

D0

, D0 = σ0ε0

and integrating (4.15), we obtain for η > 0

D̄(θ) = Cw − cos Φ

(1 + m) cos ϕ
[cos(ϕ − Φ) ln | sin(Φ − θ)| + θ sin(ϕ − Φ)](4.16)

and for η < 0 there is

D̄(θ) = C̄w − cos Φ

(1 + m) cos ϕ
[cos(ϕ − Φ) ln | sin(Φ + θ)| − θ sin(ϕ − Φ)](4.17)
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where Cw and C̄w denote the integration constants calculated from the accumu-
lated value in the previous cycles. The tensile and torsional dissipated energies
are

D̄x(θ) = Cwx −
1

4

cos Φ

(1 + m) cos ϕ
[cos(±ϕ ∓ Φ − 2θ) (4.18)

+A(±Φ,±ϕ) ln | sin(±Φ − θ)| + θB(±Φ,±ϕ)] ,

where

A(Φ, ϕ) = cos(ϕ + Φ) + cos(ϕ − 3Φ) + 2 cos(ϕ − Φ),

B(Φ, ϕ) = sin(ϕ − 3Φ) + 2 sin(ϕ − Φ) − sin(ϕ + Φ)

and

D̄xy(θ) = Cwxy +
1

4

cos Φ

(1 + m) cos ϕ
[cos(±ϕ ∓ Φ − 2θ) (4.19)

+C(±Φ,±ϕ) ln | sin(±Φ − θ)| + θD(±Φ,±ϕ)] ,

where

C(Φ, ϕ) = cos(ϕ + Φ) + cos(ϕ − 3Φ) − 2 cos(ϕ − Φ),

D(Φ, ϕ) = sin(ϕ − 3Φ) − 2 sin(ϕ − Φ) − sin(ϕ + Φ).

4.2 Analysis of process parameters

Consider now the steady state cyclic deformation process for specified γm and
η. Figure 5a presents one of typical steady cyclic states in the stress plane sx =
σx/σ0, sxy =

√
3τxy/σ0. The yield condition is now represented by a circle of unit

radius and the conjugate plastic strain rates are ε̇p
x and γ̇p

xy/
√

3.
The cyclic stress path is formed by two semi-cycles O∗ − D − A − O∗ and

O∗−B−C−O∗, where the position O∗ is specified by the value sx = s∗ which is
to be determined. The elastic stress paths AB and CD are inclined at the angle
ϕ to the sx-axis, where for positive η

tan ϕ =
ṡxy

ṡx

=

√
3τ̇xy

σ̇x

= (1 + m) tan Φ =
(

3

2

1

1 + ν

)
η√
3

and the angle Φ specifies the elastic or purely plastic strain path for transformed
strains ε̄x and γ̄xy. Note that ϕ > Φ for ν ≤ 0.5. The radial lines O − A and
O − D are inclined at the angles θA and θD to the sx - axis. From geometrical
relations it is seen that

∆θ = θA − θD = π − 2ϕ, (4.20)

tan θA =
sin ϕ

√

1 − (s∗)2 sin2 ϕ − s∗ cos ϕ

cos ϕ
√

1 − (s∗)2 sin2 ϕ + s∗ sin2 ϕ
. (4.21)
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Figure 5. Steady state cycles representation in the sx, sxy-plane a/ the case η > ηm(γm),
b/ the case η = ηm(γm), c/ the case ηl(γm) < η < ηm(γm), d/ the case η > ηl(γm)

Let us specify first the limit value of η for which the elastic unloading or
reloading occurs along the path AB or CD. The unloading inequality is

Ḟ = σxσ̇x + 3τxy τ̇xy = σx(Eε̇x) + 3τxy(−G|η|ε̇x) ≤ 0,

where σx = σ0 cos θA, 3τxy =
√

3σ0 sin θA. We have

Ḟ =
(

cos θA −
√

3 sin θA

G

E
η
)

σ0Eε̇x =
(

1 − (2 + m)(sin Φ)2
)

σ0Eε̇x ≤ 0(4.22)

where we assumed the limit value of θA = Φ occurring for γm → ∞. For finite
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shear amplitude values, there should be θA < Φ. The inequality (4.22) provides

|η| ≥
√

3

1 + m
= ηl(∞)

and for finite values of γm the corresponding limit value ηl = ηl(γm) should be
greater than ηl(∞) thus

ηl(γm) > ηl(∞).

The other steady cycle pattern can be generated when the points D and B
merge on the sx-axis, Fig. 5b. Then, the maximal axial stress reached in the
cyclic process equals the static value σ0. Considering the elastic path from A and
assuming it touches the yield surface at B, we can write

sx = ε̄∗x + cos θA = 1

sxy =− tan ϕε̄∗x + sin θA = 0.

We note also that θA = π−2ϕ along the path AB. In the case γm → ∞ the angle
θA can be replaced by Φ and we obtain the condition for the maximal stress σx

to be less or equal to σ0

|η| ≥
√

3(3 + 2m)

1 + m
= ηm(∞)

Here again for a finite value of γm, the corresponding value ηm = ηm(γm) is
greater than ηm(∞) thus ηm(γm) > ηm(∞). After reaching the yield stress at B the
stress path remains on the yield surface and at the instant of reversing the twist
the stress state is represented by point C which is a mirror image of point A
with respect to the sx-axis. When the elastic unloading occurs, the yield surface
is reached again at the point D which is the mirror reflection of point B, Fig. 5a.
The maximal value of the tensile stress smax reached in the course of deformation
process is represented by points B and D. When η = ηm, then smax = 1 and
points B and D merge on the sx-axis.

Figure 6 presents the variation of angle difference ϕ−Φ for increasing values of
η and different values of the Poisson ratio. It is seen that ϕ−Φ reaches a maximum
for η close to 2 and then tends to 0. The characteristic material parameters and
two limit values of η for different metallic materials are collected in Table 1 1 . It
is seen that ηl and ηm vary within very small range.

Fig. 5c presents the case when the yield point at D is reached by the elastic
unloading path AB for sxy(B) > 0 and similarly the point D is reached for
sxy(D) < 0. This case corresponds to ηl(γm) ≤ η ≤ ηm(γm). Fig. 5d presents the

1 Material parameters in Table 1 are collected on the basis of A concise encyclopedia
of metallurgy ed. A.D. Merriman and Vademecum of Material Science [In Polish], W.
Domke, WNT, Warszawa, 1982
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Metal E σ0 ε0 ν m ηm ηl

[GPa] [MPa] [%]

Al 68.3 13-22 0.02-0.03 0.34 0.119 2.785 1.637

Al-alloy 70 40-320 0.06-0.45 0.33 0.128 2.771 1.631

Sn 54.3 34.5* 0.06* 0.36 0.103 2.812 1.649

Zn 86.9 110* 0.13* 0.25 0.200 2.661 1.581

Cu(annealed) 123 40-80 0.03-0.06 0.35 0.111 2.798 1.643

Pb 16.2 12.5* 0.08* 0.44 0.042 2.920 1.697

Ag 79.5 276* 0.35* 0.37 0.095 2.825 1.655

Ti 110 170 0.15 0.36 0.103 2.812 1.649

Au 80 138* 0.17* 0.44 0.042 2.920 1.697

cast iron 211 80-150 0.04-0.07 0.27 0.181 2.689 1.594

mild steel 210 130-350 0.06-0.17 0.29 0.163 2.716 1.606

stainless steel 210 500-680 0.24-0.33 0.3 0.154 2.730 1.612

Table 1
Values of material parameters and two limit values of η for different metallic materials
(values denoted with a star specify the tensile strength). For Al-alloys, cast iron and
steels the yield stress strongly depends on the steel composition and the forming process

Figure 6. Difference ϕ − Φ for varying η and different values of ν

stress path for which there is no elastic unloading and the whole deformation
process is purely plastic. This occurs when η ≤ ηl(γm).

Let us now provide the solution for the half-cycle of the steady state of cyclic
deformation presented in Fig. 5a. At the point A we have ε̄x(A) = ε̄A, γ̄xy(A) =
γ̄m, ε̄x = ε̄A + ∆ε̄x. Along the path portion AB the elastic deformation occurs
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and we have

sx = ∆ε̄x + cos θA (4.23)

sxy =− tan ϕ∆ε̄x + sin θA. (4.24)

Along the stress path portion BC the elastic-plastic deformation occurs, and we
have in view of (4.10)

Ēx/2 = ∆ε̄x(θC) = cos θB − cos θA − f(−θB) + f(−θC) =

= cos θD − cos θA − f(θD) + f(θA)

and finally

γ̄m =
η

2
(cos θD − cos θA − f(θD) + f(θA)) . (4.25)

On the other hand, when no elastic unloading occurs, this relation simplifies to

γ̄m =
η

2
(f(θA) − f(−θA)) (4.26)

Equations (4.25) and (4.26) provide the solution for steady cyclic states. In fact,
as θD = θA − (π − 2ϕ), cos θD = − cos(θA + 2ϕ), Eq. (4.25) can be rewritten in
the form

γ̄m =
η

2
(− cos(θA + 2ϕ) − cos θA − f(θA + 2ϕ − π) + f(θA)) . (4.27)

This equation can be solved numerically for specified γ̄m and η thus providing
θA, θD and θB = −θD, θC = −θA. For purely plastic regime Eq. (4.26) provides
the solution for θA.

Now, let us specify the limit response curves ηl = ηl(γm) and ηm = ηm(γm)
separating in the plane of process parameters η, γm the domains of different
responses with stress paths shown in Fig. 5. The curve ηm = ηm(γm) separates
the domains C and B. In the domain C both elastic unloading or reloading tensile
paths AB and CD occur with reduction of maximal stress with respect to the
limit value σx = σ0 cf. Fig. 5a. In the domain B, the elastic unloading and
reloading paths AB and CD exist, but the maximal value of tensile stress equals
σ0, cf. Fig. 5. The curve ηl = ηl(γm) separates the domains B and A, where in
the domain A no elastic unloading or reloading occurs, cf. Fig. 5d. As for the
case of purely plastic cycle there is θD = −θA, we have, in view of the relation
θD = θA−(π−2ϕ), the value of θA = π/2−ϕ = −θD and the limit line ηl = ηl(γm)
is specified by the relation

γ̄m =
ηl

2

(

f(
π

2
− ϕ) − f(ϕ − π

2
)
)

.

The response curve ηm = ηm(γm) separating the domains C and B is specified
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setting θD = 0 and θA = π − 2ϕ into Eq. (4.25) which provides

γ̄m =
ηm

2
(1 + cos(2ϕ) − f(0) + f(π − 2ϕ)) .

Figure 7 provides the three response domains in the plane (η, γm/ε0). Let us
note that the separating curves tend to asymptotic values ηl(∞) and ηm(∞) for
γm → ∞.

Figure 7. The regimes A, B, C of cyclic response in the plane of process parameters η,
γm (m = mAl = 0.128).

Let us note that for the regime C where the elastic unloading or reloading
occurs, we have

smax = cos θD = − cos(θA + 2ϕ), s∗ =
sin(θA + ϕ)

sin ϕ
, smin = cos θA

and for the remaining two regimes A and B there is

smax = s∗ = 1, smin = cos θA

so the angle θA could be easily related to smin.
Figure 8 presents the distribution of isolines smin = const in the response plane

(η, γm/ε0). The curves separating domains A, B, C are also shown in bold lines.
It is seen that the curves are bounded by the asymptotic lines for γm → ∞ and
η → ∞ thus

ηsmin

l =

√

3(1 − s2
min)

smin

, γ̄smin
m =

√

3(1 − s2
min)

1 + m

Figure 9 presents the distribution of isolines smax = const The domains A and
B for which smax = 1 is marked below the separating curve ηm = ηm(∞). It is
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Figure 8. Minimal values smin of the tensile stress in the plane of process parameters
η, γm. Bold lines separate the regimes A, B, C (m = mAl = 0.128).

Figure 9. Maximal values smax of the tensile stress in the space of process parameters η,
γm. Bold line separates the regime C and regimes A, B of no maximal stress reduction,
(m = mAl = 0.128).

seen that the isolines smax = const tend to asymptotic values for γm → ∞ and
η → ∞, satisfying the relations

γ̄smax

m =

√

3(1 − s2
max)

1 + m
, ηsmax

l −
√

3 tan [arccos(smax) − 2ϕ(ηsmax

m )] = 0

The typical axial and torsional cyclic responses for different values of η and γ̄m
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are illustrated in Figs. 10-12.

Figure 10. Variation of the tensile stress path and the hysteresis loop of shear
stress-strain response in the course of cyclic deformation, η < ηl regime A: no elas-
tic unloading

Figure 11. Variation of the tensile stress path and the hysteresis loop of shear
stress-strain response in the steady cyclic deformation, ηl < η < ηm regime B: elastic
unloading no reduction of smax
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Figure 12. Variation of the tensile stress path and the hysteresis loop of shear
stress-strain response in the steady cyclic deformation, η > ηm : a/ η = 4, b) η = 10
(regime C: elastic unloading, maximal tensile stress reduction)

Consider now the plastic dissipation generated in one deformation cycle. Fol-
lowing (4.16), (4.17) and (4.18), (4.19), we may calculate the total dissipation
∆D̄, and the portions ∆D̄x, ∆D̄xy. Fig. 13 presents the variation of dissipa-
tion increments for increasing values of η. It is seen that the total dissipation
increment largely increases with respect to the dissipation increment in pure ten-
sion. However, the tensile dissipation increment decreases and tends to zero for
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increasing values of η.
The increment of plastic dissipation during one cycle when θA → Φ (for suf-

ficiently large values of Ex and γm) may be calculated as a double increment of
plastic dissipation during the half-cycle, so that

∆D̄cycle = 2(D̄(θA) − D̄(θD)) = 2(D̄(θA) − D̄(θA − π + 2ϕ))

for an elastic-plastic half-cycle and

∆D̄cycle = 2(D̄(θA) − D̄(−θA)).

for a totally plastic semicycle. Let us note that the angle θA is uniquely related
with γm, η and Ex for the steady cycle, Eqs. (4.26), (4.27).

Similarly we may calculate the increment of the axial plastic strain ε̄P
x during

one steady cycle respectively for two regimes, so we have

∆ε̄P
cycle = 2(ε̄p

x(θA) − ε̄p
x(θA − π + 2ϕ)),

∆ε̄P
cycle = 2(ε̄p

x(θA) − ε̄p
x(−θA)).

Let the ratio δ =
∆D̄cycle

∆ε̄P
cycle

of a plastic work increment and a plastic strain increment

during one cycle be treated as a energy-based measure of expense of the plastic
extension process. For the pure tension this expense coefficient δ equals to one.

It would be interesting to find the upper limit value of δ for arbitrary values
of η but for γm → ∞ what is equivalent to θA → Φ. We obtain (as compared to
the results (3.9)-(3.11))

δl = lim
θA→Φ

∆D̄cycle

∆ε̄P
cycle

= lim
θA→Φ

D̄(θA) − D̄(θA − π + 2ϕ)

ε̄p
x(θA) − ε̄p

x(θA − π + 2ϕ)
= (4.28)

= lim
θA→Φ

dD̄
dθ
dε̄p

dθ

=
1

cos Φ
=

√

1 +
η2

3

and similarly

lim
θA→Φ

∆D̄xcycle

∆ε̄P
cycle

= cos Φ =
1

√

1 + η2

3

, (4.29)

lim
θA→Φ

∆ ¯Dxycycle

∆ε̄P
cycle

=
1

cos Φ
− cos Φ =

1
3
η2

√

1 + η2

3

. (4.30)

Fig. 13a presents the variation of the expense coefficient for varying values
of η and Ex. Figs 13b,c present the evolution of axial and torsional expense
coefficients. The bold lines present the limit values derived analytically, cf. Eqs
(4.28-4.30). It is seen that the total dissipation always increases for the combined
process, however, the axial dissipation decreases remarkably for increasing values
of η and γm.
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Figure 13. a/ Variation of the ratio of total plastic dissipation increment per cycle and
the axial plastic strain increment (expense coefficient δ) with Ex and η , b/ variation
of axial expense coefficient c/ variation of torsional expense coefficient.
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4.3 Harmonic shear strain control: incremental relations

Consider now the harmonic shear strain control specified by (2.2), accompanied
by the progressive axial extension, thus

ε̇x = α̇,
γ̇xy

ε̇x

= η
π

2
cos

(

2π
εx

Ex

)

. (4.31)

For the elastic regime, the incremental (or rate) equations are

σ̇x = Eε̇x, τ̇x = Gη
π

2
cos

(

2π
εx

Ex

)

ε̇x. (4.32)

and for the elastic-plastic regime we have

σ̇x = E
(

ε̇x − λ̇
σx

σ0

)

, τ̇xy = G
(

η
π

2
cos

(

2π
εx

Ex

)

ε̇x − λ̇
3τxy

σ0

)

(4.33)

The yield condition (3.1) and the consistency condition Ḟ = 0 provide

λ̇ = σ0

Eσx + 3Gη π
2

cos
(

2π εx

Ex

)

τxy

Eσ2
x + 9Gτ 2

xy

ε̇x (4.34)

and the relations (4.33) can be written in the form

σ̇x = E



1 −
Eσx + 3Gη π

2
cos

(

2π εx

Ex

)

τxy

Eσ2
x + 9Gτ 2

xy

σx



 ε̇x, (4.35)

τ̇xy = G



η
π

2
cos

(

2π
εx

Ex

)

−
Eσx + 3Gη π

2
cos

(

2π εx

Ex

)

τxy

Eσ2
x + 9Gτ 2

xy

3τxy



 ε̇x.

Introducing the trigonometric stress representation (4.5) and the notation (4.8),
the incremental relations (4.35) can be presented as follows

σ0

3G
θ̇ =

√
3η

3
π
2

cos
(

2π εx

Ex

)

cos θ − sin θ

1 +
(

3G
E

− 1
)

sin θ2
ε̇x (4.36)

or

dε̄x =
1

1 + m

1 + m(sin θ)2

tan Φπ
2

cos
(

ε̄x

Ēx

)

cos θ − sin θ
dθ, (4.37)

where ε̄x = εx/ε0. Eq. (4.37) can be integrated numerically. The elastic unloading
condition now is

Ḟ = σ0

(

cos θσ̇x +
√

3 sin θτ̇xy

)

= σ0

[

cos θ + (1 + m)
π

2

η√
3

cos
(

2π
εx

Ex

)]

ε̇x ≤ 0(4.38)
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Figure 14. Harmonic shear strain control with maximal axial stress reduction and
elasto-plastic response (η = 6, γm/ε0 = 4.62) a/ cyclic stress path, b/ variation of
axial and shear stress and shear strain, c/ torsional hysteresis loop.

Figure 15. Harmonic shear strain control with no maximal axial stress reduction and
elasto-plastic response (η = 6, γm/ε0 = 9.24) a/ cyclic stress path, b/ variation of axial
and shear stress and shear strain c/ torsional hysteresis loop.

Introducing the notation

tan
[

Φ
(

ε̄x

Ēx

)]

=
π

2

√
3η

3
cos

(

2π
ε̄x

Ēx

)

,

tan
[

ϕ
(

ε̄x

Ēx

)]

= (1 + m)
π

2

η√
3

cos
(

2π
ε̄x

Ēx

)

=
ṡe

xy

ṡe
x

we obtain from (4.38)

cos (θ − ϕ) = 0, θ − ϕ = ±π

2
,
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Figure 16. Harmonic shear strain control with no maximal axial stress reduction and
plastic response (η = 6, γm/ε0 = 0.924) a/ cyclic stress path, b/ variation of axial and
shear stress and shear strain, c/ torsional hysteresis loop.

so the stress trajectory in the sx, sxy-plane at the instant of unloading is tangential
to the yield surface. The elastic stress rates ṡe

xy and ṡe
x then specify the angle ϕ.

The reverse point of the axial stress oscillation is specified by the condition
dsx/dεx = 0 and then

sin θ sin (Φ − θ) = 0, so that θ = Φ

and the tensile stress reduction occurs when Φ < θ.
The typical stress paths are presented in Figs 14-16. Similarly as for piecewise

linear shear strain control, the response regimes A, B, C will occur depending on
γm and η.

Fig. 14 presents the cyclic material response for η = 6, γm3/ε0 = 4.62 when
the cyclic process is composed of elastic and elastic-plastic portions with the
reduction of maximal axial stress (regime C). Fig. 15 presents the cyclic response
for η = 6, γm2/ε0 = 9.24 when the elastic and elastic-plastic portions occur with
no reduction of maximal axial stress (regime B). Fig 16 for η = 6, γm1/ε0 = 0.924
presents the response for small amplitude value and no maximal stress reduction.
Fig. 17 presents the cyclic response diagram in the plane γm/ε0, η. It is seen
that the line separating the regimes A + B and C differs essentially from that
generated for piecewise linear control. In fact, for instance η = 6 and increasing
γm/ε0, we intersect the domain C at two points for small and large values of
γm/ε0. Thus, there is no reduction of maximal value of sx for sufficiently small
values of γm ≤ γm1 and for sufficiently large values γm ≥ γm2. For piecewise linear
control the separating lines tend to asymptotic values of γm/ε0 and η, cf. Fig. 7.
The diagrams shown in Figs 14, 15 and 16 are presented for the values γm = γm1,
γm2 and γm3 marked in Fig. 17. It is also demonstrated that the periodic shear
strain variation exhibits phase shift with respect to the shear stress variation.
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Figure 17. The response diagram in the plane γm/ε0, η specifying domains A + B and
C of no-reduction and reduction of maximal axial stress a/ diagram for large values of
γm/ε0, b/ diagram for small values of γm/ε0

Figure 18. Comparison of the tensile stress paths for piecewise linear and harmonic
shear strain controls (E = 77000 MPa, ν = 0.4, σ0 = 500 MPa, η = 6), a/ γm1 = 0.006,
b/ γm3 = 0.03, c/ γm2 = 0.06. Relative parameter values: ε0 = σ0/E ∼ 0.0065,
γm/ε0 = 0.924; 4.62; 9.24.

Fig. 18 presents the comparative diagrams of axial stress variation for piecewise
linear and harmonic shear strain control for the same values of γm and η. It is
seen that much bigger axial stress reduction occurs for piecewise-linear control
for larger values of γm.

5 Approximate cyclic solution for a cylinder

In this section we shall discuss the approximate solution for the steady cyclic
state in a cylinder subjected to axial tension or compression combined with cyclic
torsion of a specified angular amplitude. We assume that the cylinder is composed
of thin walled tubes of varying radii and neglect the radial tube interaction, Fig.
19. Assuming the plane cross section and material incompressibility, the strain
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Figure 19. Cylinder geometry

tensor is expressed in the cylindrical coordinate system

εx = ε, γxθ = ϑr, εr = εθ = −1

2
ε

and the non-vanishing strain rate components are

ε̇x = ε̇ γ̇xθ = ϑ̇r, ε̇r = ε̇θ = −1

2
ε̇.

Assume the linear variation of shear strain with the radius r and constant tensile
strain of each tube, so that

γxθ(r) = γR
xθ

r

R
, εx(r) = εx, r = r0 exp(εr), ṙ = rε̇,

where R is the actual outer radius of the cylinder. The strain rates are

ε̇x = α̇ = const, ε̇r = −1

2
ε̇ = const, γ̇xθ(r) = γ̇R

xθ

r

R

Similarly to the case of thin walled tube, two different shear strain programs are
considered: piecewise linear and harmonic, so we have

γ̇R
xθ = ηRε̇x, or γ̇R

xθ = ηR π

2
cos

(

2π
εx

Ex

)

ε̇x.
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5.1 Piecewise linear shear strain control: rigid-plastic model

Assuming the rigid-perfectly plastic model, and using the solution (3.5) for a
tube, we can present the stress distribution in the cylinder

σx(r̄) =
σ0

√

1 + η2r̄2

3

, τxθ(r̄) = ±η

3

σ0r̄
√

1 + η2r̄2

3

, where r̄ =
r

R
. (5.1)

The stress distribution for η = 1, 3 and 10 is shown in Fig. 20.
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Figure 20. Variation of axial stress and shear stresses in a cylinder for η = 1, 3, 10

Integrating the axial and shear stresses (5.1) over the actual cross-section of
the cylinder, we obtain

F = F0
6

η2





√

1 +
η2

3
− 3



 , M = M0

√
3

η3



(η2 − 6)

√

1 +
η2

3
+ 6



 ,

where F0 = F (η = 0) is the axial force in pure tension and M0 = M(η → ∞) is
the twisting moment in pure torsion, so that

F0 = πR2σ0, M0 =

√
2

3
√

3
πR3σ0.

Figure 21. The cross-sectional force and moment variation in the steady cyclic state

Figure 21 presents the evolution of F/F0 and M/M0 in the course of cyclic
deformation. It is seen that the axial force and the torsional hysteretic loop
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depend on the value of parameter η. Figure 22 presents the variation of F/F0

and M/M0 with η. It is seen that the axial force decreases and the torsional
moment amplitude increases with η.

Figure 22. Variation of axial force and twisting moment with the parameter η.

5.2 Harmonic control of shear strain: rigid-plastic model

For the harmonic variation of γxy, the stress components follow from the solu-
tion for a tube, Eq. (3.7), so we have

σx(r̄) =

√
3σ0

√

3 + η2r̄2 π2

4
cos2(2πe)

, τxθ(r̄) = ±
√

3σ0r̄η
π
2

cos(2πe)

3
√

3 + η2r̄2 π2

4
cos2(2πe)

, (5.2)

where e = εx/Ex. Figure 23 presents the stress variation within the cylinder for
increasing values of e, and the assumed value η = 3.

Figure 23. The axial and shear stress distribution in cylinder for η = 3
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The cross sectional axial force and twisting moment are expressed as follows

F = F0
6

η2 π2

4
cos2(2πe)





√

1 +
1

3
η2

π2

4
cos2(2πe) − 3



 ,

M = M0

√
3

η3 π3

16
cos3(2πe)



(η2π2

4
cos2(2πe) − 6)

√

1 +
1

3
η2

π2

4
cos2(2πe) + 6



 .

Variation of F/F0 and M/M0 in the course of steady cyclic deformation is pre-
sented in Fig. 24. It is seen that the axial force reaches its maximum equal F0

and its minimum value strongly depends on η.

Figure 24. Variation of axial force and twisting moment in the steady cyclic state for
different values of η.

5.3 Piecewise linear shear strain control: elastic-plastic model

To simplify the analysis, we shall treat cylinder as a discrete set of thin walled
tubes and neglect their radial interaction. The resulting axial force, and tor-
sional moment are obtained by summing up and averaging stress contributions
of consecutive tubes. Referring to Fig. 25, it is seen that depending on the value
of radius r and sufficiently large values of η, the tubes can correspond to the
regimes A, B, and C. Thus in the external cylinder portion r2 ≤ r ≤ R the
regime C occurs with elastic unloading and maximal axial stress reduction, cf.
Fig. 26, but in the central cylinder portion 0 ≤ r ≤ r1 the regime A occurs with
no elastic unloading during the steady cyclic deformation. In the intermediate
portion r1 ≤ r ≤ r2 the regime B occurs with no reduction of maximal tensile
stress.

6 Concluding remarks

The present paper provides the analysis of cyclic deformation modes for a
tube or cylinder subjected to axial extension or compression with specified rate
of displacement, assisted by cyclic torsion of specified strain rate and amplitude.
The fundamental process parameters are the ratio of rates of shear and axial
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Figure 25. Three different stress regimes within a cylinder subjected to monotonic
extension and cyclic torsion

Figure 26. Variation of axial stress within a cylinder in one cycle of twist for varying
values of the radius r.

strains η and the shear strain amplitude γm . Three different stress regimes are
detected and analyzed in detail. The response domains in the plane of process
parameters are specified and plotted in the form of diagrams resembling famil-
iar Bree diagrams specifying shake down, alternating plasticity and ratchetting
domains for structural elements under load control and a perfectly plastic ma-
terial response. It is demonstrated that considerable axial force reduction can
be attained for sufficiently large values of η and γm. However, the plastic energy
dissipation in the process is always larger with respect to the pure axial extension
or compression for specified total elongation or shortening of the cylinder. The
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response for piecewise linear and harmonic shear strain control is illustrated by
presenting the cyclic stress path and stress-strain diagrams. The application of
material hardening models combined with dynamic recovery effects would pro-
vide different results and prediction of reduced energy dissipation. This topic will
be the subject of a separate study and confrontation with experimental data. The
problem of microstructure evolution in the course of cyclic loading especially, fine
grained structure generation will also be analysed. The present paper provides
the fundamental clarification of cyclic deformation modes and their dependence
on process parameters.
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