()

On addressable driving of 2D electrostrictive matrix

Eugene J. Danicki

Abstract—An analysis is presented for addressable driving of
two-dimensional matrix transducer comprising crossed periodic
metal strips on both sides of electrostrictive layer and represent-
ing the matrix rows and columns. Evaluation of stress in the layer
excited by electrode potentials requires formulation of nontrivial
electrostatic problem. Its solution and numerical examples are
presented.

Index Terms—transducer matrix, acoustic beam-forming.

I. INTRODUCTION

Electrostrictive plates (ceramics or polymer membranes)
find growing applications in actuators (cf. [ 1]-[3], for instance)
and transducers [4], [S]. Typically, uniform electric field is
applied to entire device causing its uniform deformation,
as demonstrated in [6], {7]. Here, we discuss an arbitrary
nonuniform electric field resulting in intentional nonuniform
stress in the plate and its nonuniform vibrations. Transduc-
ers utilizing such electrode configuration were considered in
literature recently [8], [9], although the concept was much
earlier [10]. Perspective application of such a device may be
in acoustic beam-forming transducers [11].

Consider a d-thick layer of dielectric permittivity € with
crossed periodic metal strips (electrodes) arranged on both
sides of it, Fig. 1. Certain electric potentials (signals) drive
each electrode: F; and S; on the bottom and upper sides of the
plate, respectively, where 7, j are the row and column numbers
determining position of the (ij) matrix cell where the 4, jth
strips are crossing. Let the applied voltages F;, S; be the time-
harmonic signals:

F; = cos2nfit, S; = cos2n(f;—t, fi=lMHz], Q< fi,
(1)
)
in [kHz] range, for example (one may consider S; shifted by
an arbitrary phase ¢;). The resulting stress in the (ij)-cell is

approximately [6]:

o) = g[(Fi—S;)/d]* ~ 1—cos(fi—fi)t—cos(fit+fi)t+--- .

2
In most applications the cell vibrations at high frequencies
can be neglected, yielding the tool for selective (addressable)
excitation of given cells: only this cell will vibrate with low
frequency (2, which resides between strips driven by signals
F; and S having frequencies different by €.

Let’s consider another example, where =
cos2rfrt, Fs = cos2wfat (Fig. 1) and 57 =
cos 2m( f1 — Q)t+cos 2m(fo —Q)t, S2 = cos 2m(fo —Q)t. One
may check that only cells: (11),(21) and (22) will vibrate
at frequency 2. Naturally, applying certain phase-shifts to
S;, amplitudes or different {2’s yields quite flexible tool for
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Fig. 1. a) Periodic metal strips (electrodes) arranged perpendicularly on
both sides of electrostrictive layer and connected to external voltage sources.
b) The voltage V' = 1 is applied to the upper {th strip residing on a d-thick
dielectric layer; other strips are grounded.

controlling vibrations of cells and the vibration distribution
over an entire electrostrictive transducer matrix. The shape
of vibrations requires detailed analysis of electric field
distribution in the layer presented below.

II. PLANAR ELECTRIC FIELD IN 7-SPECTRAL DOMAIN

In this analysis, the known BIS-expansion method [12] is
applied using the Bloch expansions for electric field on upper
(superscript u) and bottom (superscript b) sides of the layer
(F = -V, E;, I, are the tangential electric field and D =
D, is the normal induction). Applying the pseudo-Einstein
summation convention by neglecting the summation symbols
over m' € [-M,M+1], n’ € [-N, N], the expansions for
strip period A = 27/ K and width w are:

DY = ]5 E a;n;Pn_n,<A)e_]7'n,z€_]5’my7

nf,n,m
E: = E OLSSH_R/]DH_R,(A)e—j?”nme—jsmy
nr-‘n,m
D" = —je E ﬁ::l/Pm_m/(A)e_]smye—ﬁ'n;x’ 3)
n,m
; —JSm — TR
Ey = : ﬂz’STn—m’PTn_m/(A)e 78 ye ar 1,
n,m

K =2n/A, 8y =mK, r,, =7 +nK, r € (0,K)

where A = cos Kw/2 and P, are the Legendre functions.
These fields satisfy the boundary conditions stating that tan-
gential field vanishes on strips and the normal induction
vanishes between strips (neglecting the outside fields).

The unknown coefficients a;’, §;, are evaluated from the
equations governing the field inside the layer presented in [12];
transformed here by applying the symmetry property 57 ., =
B, they must be satisfied for any n € [-N,N — 1] and
m € [-M,0], withn’ € [-N, N],m” € [—M, 0] and notation
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where S, = sign(v + 0) and kp,, = /r2 + s2, (note the

symmetry o " = a];). For m = 0, the last equation should
be replaced by (k = knm|m=0):

Poiw o k d
- , 1™ 2 tanh kd-2
wosh g +2[(-1) tan kddgx 5)

P re(=4) le=o —P—m 18> = 0.

The integration of electric field should yield the given strip
potentials; for the assumed unitary voltage of [th upper strip
and all bottom strips grounded, the condition results in (J;; is
the Kronecker delta):

’ K .
(_1>n O‘Zl’ —n’—T/K(_A) = 57710?6]”A Sinﬂ'%- (6)

Solving Egs. (4), (5) and (6) for a ﬁ:ﬁb,, the planar electric
field on both sides of dielectric 1ayer is determined by Eqgs. (3).
The system of equations becomes singular at » = 0 (conse-
quently E¥ = 0 and D¥ + D% = 0); to avoid this difficulty,
r = 107%K was applied instead in computed examples.

In principle, N, M involved in the above system of equa-
tions should be infinite, but practicaly it suffices to apply
usually not very large finite numbers. Let N', M’ be such
that tanh N'Kd ~ tanh M'Kd ~ 1, then N > N’ should be
chosen such that rn/knar ~ 1, and similarly for M > M’:
sy /kn'a = 1. It can be checked that the solution to o, 57,
changes negligible if N, M are chosen larger, except of being
supplemented by close-to-zero components, meaningless for
evaluation of electric fields from Eqgs. (3). Properties saving
the computation time are: o (K — r) = [a™,(r)]* and

B (K = 1) =B " (r)]"

HI. ELECTROSTRICTIVE STRESS INSIDE THE LAYER

Integration of £ given by Egs. (3) over z for y = 0 (that is
over the bottom strip center in this example) and subsequent
inverse Fourier transformation over the spectral parameter r
yields the potential spatial distribution at z = d/2 [13]:

_1/“
=%

Za (r)Pu—n(A), n=E(p),

) e IP%dp

(7
Ey(p) =

(for arbitrary y, replace ), o by > o exp(—jmKy)),
where E£(p) is the closest integer smaller than p, thus p =
r + nK is the spectral parameter spanning an entire domain
(using FFT, one has to truncate it in computations).

The charge distribution along the upper [th strip, that is the
charge density integrated over the strip width, can be evaluated
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Fig. 2. Level maps of electric field (E ., on the left) in the domain 2A X A
centered at * =y = 0, and the electostrictive stress o (on the right) in the
domain 2A X 2A (i.w. axes are in A units), for d/A=0.15,w=A/2.

in similar manner:

M
E e—jme

K _
Qm ('r)e_]”A dr/K,

Sy i ®
Qu(r)= | D"dw=jehai Py /i (A),
—A/2

from which one may evaluate the y-averaged mutual strip
capacitances.

As known [14], [15], the electric field is singular at the strip
edges (this is the cost of idealization of real, finite-thickness
electrodes by strips of infinitesimal thickness). In order to
avoid the corresponding difficulty, we evaluate the electric
field (in particular, its z-component) at the middle layer plane
z = 0. This electric field can be reconstructed from the surface
normal induction on both sides of the layer [12], again using
spectral variable p and n = E(p),r = p — nk:

E.(x,y)=2 / e~ IPTdpx

(T) n—n’ (A)+ﬁn (T) m—m/’ (A) e—jme
K sinh(ky,,,d/2) '

>

m=—0oQ

©)

Fast growing sinh(k,.,d/2) makes the above equation suitable
for computation.

According to Eq. (2), stress o) (its z-component is con-
sidered only here) is proportional to the product of E,(z,y)
resulting from the applied potential to the upper ith strip
and E,(z,y) excited by the lower jth strip potential, which
equals E.(y,x) in the considered case of the same strip
periodicity and width. Fig. 2 presents numerical example of
field distributions in relative scale: the maximum value of
FE, is set to 10. It shows that the stress distribution is far
from uniform and spans well outside the cell covered by the
supplied strips.

IV. CONCLUSIONS

Detailed analysis of electrostatic field is presented for
the recently proposed addressable driving of electrostrictive
transducer matrix. Numerical examples show the electric field
distribution and the resulting nonuniform stress induced in
the area of the excited matrix cell (the code is available at
http://www.ippt.gov.pl/~edanicki/CrosStrips.pdf.



Fig. 3. Left: A proposed improvement to the transducer exploiting lateral
expansion of the excited domain of electrostrictive foil (dark strips are fixed).
Right: Spatial spectrum of the excited stress by two crossed strips.

It is well known that elastomer foils build their extend much
their lateral dimension when electric field is applied to their
thickness (cf. [7]). The structure sketched on the Fig. 5 (on
left) may exploit well this property by forming the foil concave
at the crossing domain of the upper and lower electrodes.
Between them, the foil is fixed (attached to the solid frame),
hence the excited concave domain must move upward when
excited, producing pressure in the fluid to which the ultrasound
is to be radiated.

The excited pressure (ie. the excited acoustic potential in
the media) is not uniform over the excited transducer cell,
and it extends over several neighboring cells as well. This
may somehow distort the shape of the radiated wave-beam. In
the paraxial approximation (cf. [16]), this shape corresponds
to the spatial spectrum of the transducer pressure, shown in
Fig. 3 (on right), taking into account that only central part of
this spectrum, namely limited by the wave-number acoustic
waves, can contribute to the wave-beam. This corresponds to
the circle shown in the figure in the case of strip period equal
half-wavelength of acoustic waves (the spectrum on the circle
radiates in tangential direction to the transducer plane). One
may see from the levels of the acoustic pressure presented
in the figure remains flat within 15%, hence the wave-beam
distortion in the discussed case may not be significant.
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