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Abstract

In the paper a new formula for the space time finite element approach to
dynamic solution of solid is developed. Omne degree of freedom system was
analyzed to find an unconditionally stable scheme of integration. Relations
are expressed in terms of velocity. The geometry of the domain analysed is
updated in every time step. The procedure can be efficient for geometrically
non linear problems of mechanics of continuum.

1 Introduction

Nowadays practical problems of manufacturing require more accurate determination
of phenomena which govern the process to be investigated. The increase of speed of
calculations also is required since they become more and more complex. Particular
requirements are imposed to dynamic computations, where the solution is repeated
for each time step. Several completely new methods of calculations were elaborated
to meet all the requirements imposed to the solution.

Recently the space-time element method has been developed. It can be applied
to a dynamic modeling of mechanical problems, both to rigid and deformable body.
It can be considered as an extension and generalization of the commonly known
finite element method. The main feature is that time variable is considered in the
same way as spatial variables. Since the space—time discretization is applied to quite
new engineering problems, a short review of the state-of-the-art can introduce us to
a subject.

First attempts of the space-time modelling of physical problems were published
in (Gurtin, 1964; Herrera and Bielak, 1974). The definition of the minimized func-
tional allowed to derive the relation between time variable and spatial variables in
space—time subdomains. These subdomains can be regarded as space—time finite
elements. Oden (Oden, 1969) proposed a general approach to the finite element
method. He extended the imagine of the structure on time variable. Unfortuna-
tely, this interesting idea of the nonstationary partition of structure on subspaces
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proposed was not continued. Fried, Argyris, Scharpf and Chan (Fried, 1989; Argy-
ris and Scharpf, 1969;, 1969,; Argyris and Chan, 1972) have formulated problems
with space and time treated equally. However, in the papers of Kuang and Atluri,
for example (Kuang and Atluri, 1985), the final discretization was carried on sepa-
rately for time and space. For a long time dynamical problems were solved with
separation of time variable and spatial variables. The physical space of the struc-
ture was discretized by one method (for example the finite element method, finite
difference method) while time derivatives were integrated with the use of another
(Runge-Kutta, Newmark, Wilson method etc.) A great number of published papers
concerned the direct integration of the differential equation of motion assuming the
stationary discretization.

Independently of the researches mentioned above Kaczkowski in his papers (Ka-
czkowski, 1975, 1976, 1979) introduced for the first time some abstract physical
terms to mechanics: the equation of time-work, mass as a vector quantity or a
space—time rigidity. A synthesis of the space-time element method can be found in
(Kaczkowski and Langer, 1980) and stability considerations in (Langer, 1979; Bajer,
1987,). Space—time elements which lead to unconditionally stable solution schemes
were described in (Kacprzyk, 1984; Kacprzyk and Lewinski, 1983). Unfortunately
they could be applied for only space—time forms rectangular in time, obtained as
a vector product of spatial domain and time interval. In next works researchers
turned to non rectangular shapes of elements. Triangular elements of string were
elaborated (Witkowski, 1983, 1985). Then non stationary partition of the structure
and non rectangular space-time elements (Bajer, 1986, 1987,) enabled to solve quite
new group of problems by the space—time element method: contact problems (Bajer
and Bogacz, 1989), problems with adaptive mesh (Bajer, 1987,; Bajer, 1989; Bajer,
1990).

Together with works which developed the method in many papers the estimation
of the accuracy and efficiency of the space-time element method in different technical
problems was described (Brzeziniski and Pietrzakowski, 1979; Kacprzyk, 1981; Bajer,
Burkhardt and Taltello, 1987, 1989; Taltello and Burkhardt, 1988; Kaczkowski,
1988). Non linear effects: geometric (Witkowski, 1983; Podhorecka, 1988) and
material (Podhorecki, 1986; Podhorecka and Podhorecki, 1985; Bajer, Bogacz and
Bonthoux, 1991), were also considered. In the group of reviews we can find the works
(Bajer and Podhorecki, 1989; Bajer and Bonthoux, 1988, 1991) and the introduction
to publication (Witkowski, 1983).

The main advantage of the space—time element method is that the approximation
in time is continuous. This condition in general case requires more computational
effort than in the case of non continuous approximation. Here we will try to reduce
the general problem of time integration of the differential equation with continuity
of displacements and velocities which describe the system, to the problem which
requires the same amount of arithmetical operations as the non continuous solution.
However, here we still preserve the continuity in time. In this paper a new formula
for the space time finite element approach is developed. One degree of freedom
system was analyzed to find the unconditionally stable scheme of time integration
of the differential equation. The velocity is assumed as a quantity which describes



Figure 1: Space—time domain.

the process. Then the geometry of the domain analysed can easily be updated. The
space—time element with the spatial geometry which changes in time is depicted in
Fig. 1.

2 One degree of freedom system

Let us consider free vibration of a material point, described by the equation

v
— +kx=0 1
We assume the linear distribution of real velocity v over the time interval A (0 <
t < h)

1 1
v = (1 — %)'UO + %‘01 (2)
The displacement x(¢) is described by the integral
t h 1\? t?

We have the linear dependence on the velocity vg and vy determined at limits of the
interval [0, h]. As a virtual velocity we assume the Dirac distribution which depends
on the parameter a (0 < o < 1) and only on the velocity vy:

t

v = 'vl6<% — oz) (4)

Substitution of the above relations into (1) and integration over the time interval

[0, k] yields:
tpd at+ [ o Ea@d =0 5
/ng(m—vo)wfoum(t)t_ . (5)
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As a result we have:

S ok - L ) A R (6
i m 1+ 550)
or symbolically
v = T’UO + B.I?O (7)

Displacement 1 in a successive moment is determined from the velocity vy and vy:
1 = xo+ h[(1 = B)ve + Bvn] (8)
The accurate solution is obtained for 3 =1 — a. With respect to this we can write
r1 = 2o + hlave + (1 — a)v4] (9)

In the particular case of @ = 1/2 equation (9) is identical to the relation (3) assumed
for t = h, that is 21 = 2o + h(vo + v1)/2.

Denoting x = h*k/m one can write the transition to the successive moment in

ey w

where the 2 x 2 matrix is the transfer matrix T. It allows to find the stability
condition for h — oo. Eigenvalues of T in the case of h — oo are as follows:

21 a2 -1
(8 . j:L C¥2 (11>

the following form:
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and their modules are:

if v2/2<a<1

i (12)
LVt —4a? +2, if 0<a</2/2

A, Pasel =
Both the modules are equal to one when o > +/2/2. This important inequality allows
us to assume for calculations the unconditionally stable procedure. Particularly, in
problems of vibrations of systems composed of many degrees of freedom or if one
wish to neglect the inertia effects in problems of the plastic flow of material, the
unconditional stability is significant.

Tests performed for the one-degree-of-freedom system with the initial conditions
xg = 0 and vy = 1 in the case of @ = 0.5 are presented in Fig. 2 and in the case of
a = 1.0 in Fig. 3. The error of the displacement amplitude for selected values of
time step related to the period of vibrations 7' is depicted in Fig. 4. It should be
emphasized that the amplitude of the velocity is almost exact. In turn the error of
the amplitude of displacements arises from the phase error, it means the elongation
of the period of vibrations, which always appears when large time step h is applied.
In such a case the system starts to be more elastic and it responds increasing the
displacement amplitude.
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Figure 2: Velocity v calculated with different time step for a = 0.5.
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Figure 3: Velocity v calculated with different time step for o = 1.0.



Figure 4: The displacement amplitude for selected parameters a.

3 Finite element of a bar

Let us consider a bar vibrating axially, in an initial state described in a continuous
domain 0 < x < [. We will construct the mathematical model of the problem in a
form of a discrete system, composed of one finite element.

We start from the differential equation of motion

92, 92,
@ — c2_a—u =0 (13)
ot? 0z?

¢ = E/p is the wave velocity in an elastic medium. Time derivative of the displa-
cement u is replaced by a velocity v, then the equation is multiplied by the function
of distribution of the virtual velocity v*. By integration we will balance the energy
in the domain of the space—time element @ = {z,¢: 0 < a2 <[(t),0 <t < h}:

/ dQ / —dﬂ =0 (14)

Integration by parts of the second term, with the values determined at ends of the
interval gives the relation in the following form:

dQ =0 (15)
Displacement u(x,t) will be expressed by velocity
i
u(z,t) = u(z,0) + / o(z, 1) dt (16)
0

We assume the linear interpolation of the velocity in the interior of the element

v(x,t) = N(z,t)v (17)



N is the matrix of interpolation functions and v is a velocity vector described at
nodal points. Then equation (17) has a following form

(o, t) = uo + /OtN(x,t)dt v (18)

The differentiation of (18) results in the following equation:

u_ b (1 _ h(“ilt) (01 = v2)(2 — @3) + (vs — va)(22 — 21)] +

dzr 16a? Ty — Ta)
t du
E(‘Ul — Vg — U3 + ‘04) + d—xo (19)
The derivative dug/dz is the initial deformation eq determined for ¢ = 0. Equation
(19) can be written in a short form:
ou

%:[Nllv"'vNil]v_l_sO (20)

In equation (19) and followings we use constants:

= $1—$2—$3+$4)/4

—x1+ T2 — 23+ 24)/4
(21)

1 — X2+ T3+ 24)/4

a; = (
az = (
az = (
ay = (x1 4+ 22+ 23+ 24)/4

The derivative dv/dt can also be simply determined (analytically or numerically):

dv 0N

ot~ ot
Successive derivatives of the shape functions dN;/dt have more complex form and
we will only mention here that they depend on the geometry of the element (z;, 7 =
1,...4; h) and variables x and t.

We should assume the distribution of the virtual displacement v*. In our con-
siderations Dirac delta 6(t/h — «) is put on the plane extended between the values
vs and vg, which are brought to points z; and zp, respectively (Fig. 5). Since
rr, =23+ a(zs — 1) and p = 24+ (x4 — x2), where a = t/h, 0 < o < 1, velocity

*

v

(22)

T — 22— axs — z29) <t ) o
vy —v3)| Ol - —« 23
:cg—;v1+oz(:61—:v2—;v3+:v4)(4 3)] h (23)
and its spatial derivative:

h* _ Vg — U3 ) 5(3 _ a) (24)
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vt = |vg +

can be easily described.



Figure 5: Scheme of the distribution of the virtual velocity.

Now, since we have all the terms which are required, we can compute the respec-
tive integrals:
T

ON oN-\" ON*
T T . T ! . T —
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(25)

We obtain the following form:

foero R [ (%)

or shortly:

T

V+/Q(a;j*

M+K)v+e=0 (27)
The final form of the matrices M, K and the vector e exhaust our formulation:

0 0 0 0
M=) 0 0 0 0 (28)
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The stiffness matrix K has a form:

K=F (31)

S1 —S81 S —S82
—S51 S1  —S2 52



where: . 9 )
51 = s5h(a1 + az)In a(l —20) — a0 _ e (32)
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(33)

The vector e contains the initial strain (initial for the time interval actually consi-
dered):
0
e=p{ (34)
— &
€o
The testing calculations were carried on for the single element, fixed at one end.
The initial length is equal to 1.0. The initial velocity vo=1.0. When large time step
h=1.0 is assumed (Fig. 6) we can observe large errors, although the solution is still
stable. The velocity is damped and the length of the element decreases (Fig. 7).
The system is overstiffned and the phenomenon dramatically grows up. It is not
difficult to predict that such a large change of the element length (and the geometry
of the space—time element) during one time step (in practice equal to the length
of the element) has to flow unprofitably on the solution. However, the decrease of
the time step considerably improves results. Two successive figures (Fig. 8 and 9)
show results for lower initial velocity vy = 0.1. Time step A = 0.1 allows to obtain
sufficiently good approach. In practice much more lower both time step and initial
velocities are applied to engineering problems. All the tests were performed for
a = 1.0. If a smaller value of « is applied (v/2/2 < a < 1) results are still better.
Here we must say that numerical integration by Gauss quadrature usually used
to compute integrals when the spatial domain changes and our space—time element
is not a rectangular one, is accurate only for polynomes. That is why the order
of numerical integration should be increased when the domain integrated differs
considerably from the multiplex form (obtained by multiplication of spatial domain
by time interval).

4 General case of elasticity

Here we will discuss a more general approach which allows to discretize the arbitrary
problem of dynamics of a continuous system.
If we denote the strain € as

e =Du, (35)
where D is a differential operator, and the stress o as
o =Ee, (36)

and if we assume the distribution of the virtual velocity v*, the equation of the
virtual work expressed in terms of velocity will assume the following form:

/( /)at dﬂ+/ O'dQ—}—/Q(V*)Tr]ZV d0 =0 (37)
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Figure 6: Velocity in time in the case of different steps of integration A (vo = 1.0,
a=1.0).
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Figure 7: Length of the element in time in the case of different steps of integration
h (vo = 1.0, a = 1.0).
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Figure 8: Velocity in time in the case of different steps of integration A (vo = 0.1,

a=1.0).

0.20

AR
VUV

-0.10
v, =0.10
a=0.75 .
_0.20 TT T T T T T TT T T T T T TTIT i TT T T T T T TT T T T T 1T TT T T T T T
0 10 20 30 40 50

Figure 9: Length of the element in time in the case of different steps of integration

h (vo = 0.1, a = 1.0).
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Displacement u(t) is described by an integral

u(t) =ug + /Otv dt . (38)

With respect to (35), (36) and (38) we have:

a T T ‘
/Q( )patdﬂ-l-/Dv EDuon-l—/[Dv ED/vdt]dQ-l— (39)

€9
/ (v Ty dQ = 0
Q
The next step is to introduce the interpolation formulas:
v=Nq and v:=N"q. (40)

Finally we have:
*\T t :| *\T a_N *\T .
{/Q[(DN) ED/O N di dQ+/Q(N) e dQ+/Q(N) N g+ (41)
/(DN*)T EeydQ =0
Q

If we assume as before the distribution of the virtual parameters which depend only
on the nodal parameters determined for ¢ = h, we will obtain in equation (41) the
upper half of the matrices M, K and the vector e equal to zero. Here we also can
steer the properties of the procedure by the parameter a.

A conclusion which concerns the numerical cost of the procedure should be em-
phasized. We must step back to the integration of the product of two functions of
which one is Dirac function. Such an integration in a volume Q in terms of varia-
bles z,y, z,t reduces the computation to the integration for the surface ¢ = ah over
spatial variables z,y, z only. It decreases the cost of computations comparing with
the classical, linear interpolation of virtual parameters in time.

In the case of equation (41) the domain of integration is reduced from the
space—time volume  to the spatial surface A(ah). The first integral contains the
term integrated over the interval [0,¢]. With respect to the above remark we must
integrate in [0, ah]. When the linear functions N are assumed, we can determine
the value of the integrated term for the point ¢t = ah/2 and multiply the result by
the length of interval ach. Then the stiffness matrix, inertia matrix and the initial
stress vector, which describe the space—time element, have the following forms:

K = //ah(DNah(x,y))TEDN(w,y,ah/Z)dxdy . ah (42)
M = // N7, (z,y aN("”af’ah)d dy (43)
7Z = ‘/‘/AahNa}L z,y)n. N(z,y,ah)dzdy (44)
e = [[ (PNu(e.) Eepdrdy (15)

12



—

\

Figure 10: Rectangular sample compressed with a constant velocity.

for t = ah. N, is a matrix of the interpolation functions determined on the
surface A, and N(z,y,-) is a matrix of the interpolation functions described for the
volume  and determined in a given moment (-). The change of limits of integration
simplifies the formulas which become more convenient for numerical calculations.
Another attempt of the introduction of virtual functions different from the first
order polynome was undertaken by Bohatier'. He assumed the virtual functions con-
stant in time. They depend on the values at the end of the time interval t = A and

lead to the convergent scheme. However, the stability is limited to b < 2v/3,/m/k.

5 Numerical example

The initial rectangular domain cut from the greater one by the axis of symmetry is
compressed with the constant velocity (Fig. 10). Viscoplastic behaviour of material
was assumed as in the work (Bohatier, 1992). Dimensions of the sample: h=7.7
cm, b=5 cm. Other constants: m=0.1, K=0.01, p=0.0. All the nodes at the upper
surface, except one at the right corner, are fixed. The nodes placed on the axis
of symmetry can slide. Generalized deformation is depicted in Fig. 11. A good
convergence with results obtained in (Bohatier, 1985) can be noticed.

1 Unpublished communication
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Figure 11: Generalized strain in the compressed rectangle.

6 Conclusions

In the paper we have found a new procedure for the time integration of the diffe-
rential equation of motion of the dynamical systems with continuous distribution
of displacements and velocities between two successive time intervals. Up to now
the requirement of continuity could be fulfilled by the space-time element method
which required the integration over time as well as over spatial domain. The obta-
ined scheme of time integration proves that accurate results can be obtained also
with a low numerical cost, preserving the continuity of investigated object in time.

More detailed analysis of the continuous approach would exhibit additional pro-
fits for geometrically non linear analysis. However, it is a separate problem.
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