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Abstra
t

The paper presents a method for 
omputing the response of a 1D elasti
 
ontinuum

supported by a set of semi-a
tive vis
ous dampers and indu
ed by a load travelling

over it. The magnitude of the moving for
e has been assumed to be 
onstant by

negle
t of the inertia for
es. Full analyti
al solution is based on the power series

method and is given in an arbitrary time interval. The time-mar
hing s
heme allows

us to 
ontinue a solution in su

essive layers with initial 
onditions taken from

the end of previous stages. The semi-a
tive open loop 
ontrol strategy is proposed.

Shapes of damping fun
tions are de�ned as a form of pie
ewise 
onstant fun
tion.

The 
ontrol strategy is suboptimal and it outperforms the passive 
ase. Numeri
al

results are presented for the 
ases of a string and a Bernoulli-Euler beam.

Key words: travelling load, vibration 
ontrol, semi-a
tive 
ontrol, vibrations of

a string

1 Introdu
tion

Problems of a load travelling along stru
tures, su
h as strings, beams or plates

at a higher range of speed, are of parti
ular interest to pra
tising engineers. A

higher speed range means the speed at whi
h su

essive passages of a moving

load through the stru
ture signi�
antly in
rease amplitudes of displa
ements,

up to in�nity in the 
ase of 
riti
al speed values. In the 
ase of a string the


onsidered speed 
an be within the range of 0.3 to 1.0 of the wave speed.

Analyti
al and numeri
al solutions are applied to problems with a single or
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multi-point 
onta
t, su
h as train-tra
k or vehi
le-bridge intera
tion, panto-

graph 
olle
tors in railways, magneti
 levitation railways, guideways in roboti


te
hnology, et
.

In
reasing demand requires new te
hnologi
al solutions. Stru
tures with exter-

nal 
ontrol of parameters 
an resist a load in a more e�
ient way. Stru
tures

with 
lassi
al passive 
ontrol are repla
ed by new, a
tive or semi-a
tive 
ontrol

systems. Old, weak stru
tures 
an be reinfor
ed by supplementary supports

with magneto- or ele
tro-rheologi
al dampers 
ontrolled externally (Figures 1,

2). A
tive or semi-a
tive 
ontrol of stru
tural vibrations plays an important

role in the 
ase of dynami
 in�uen
e of external standing or travelling loads.

A
tive methods of 
ontrol are, unfortunately, energy-
onsuming and 
ompli-


ated in pra
ti
al appli
ations. Moreover, a poor 
ontrol system 
an supply

energy in the antiphase and in extreme 
ases 
an damage the stru
ture. We

will fo
us our resear
h on semi-a
tive systems 
omposed of dampers, whi
h

require lower energeti
 e�ort.

Several evaluation 
riteria are subje
ts of interest. One of them des
ribes the

displa
ement in time of the midpoint. This 
riterion determines the resistan
e

of the stru
ture to deformations. Others des
ribe displa
ement velo
ities or

a

elerations in time at the follower point under the travelling load. In those


ases we 
an 
ontrol the travel 
omfort, minimising the verti
al dynami
s of the

vehi
le. In our investigations we will 
on
entrate on all the 
riteria mentioned

above.

The semi-a
tive 
ontrol fun
tions that represent evaluation of 
oe�
ients of

vis
ous damping in time are 
ontinuous and bounded in a general 
ase. In

pra
ti
al use they 
an be expressed by a pie
ewise 
onstant fun
tion. The

numeri
al optimisation of the 
ontrol in the 
ase of a higher number of those


onstants 
annot be 
arried on e�
iently. The variation of all the parameters of

the damping 
ontrol fun
tion in a dis
rete form will result in extremely lengthy


omputation time. Numeri
al analysis and 
lassi
al methods of optimisation

fail. We must elaborate a new e�
ient approa
h on the basis of the analysis

of the di�erential equation or its solution.

In this paper we present the analyti
al solution of a semi-a
tive 
ontrol of vi-

brations in a string subje
ted to a travelling load. The string is supported by

a set of vis
ous dampers. The method allows us to solve the problem analyti-


ally and express the 
ontinuous solution in a form useful for further analysis

of the in�uen
e of damping fun
tions on displa
ements and its derivatives.

Whole time domain is split into time intervals. Full analyti
al solution in time

interval in a form of power series is given. The time-mar
hing s
heme allows

us to pro
eed to su

essive layers with initial 
onditions taken from the end

of previous stages. The global solution 
an be written in a form with damping


oe�
ients given as a ve
tor. Thus the in�uen
e of a parti
ular damper on the
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�nal global solution 
an be simply investigated. This fully analyti
al algorithm

and the analyti
al form of the solution allow us to examine quantitatively the

in�uen
e of a pie
ewise 
onstant damping on vibrations. Further work 
ould

enable us to determine the general e�
ient strategy of the 
ontrol instead of

a parti
ular numeri
al solution, useless for investigations.

Analysis of the moving load problem is 
ommonly presented in the literature.

The travelling load 
an be one of two types: non-inertial (massless) or inertial.

The analysis of the moving massless for
e is relatively simple and is treated

in numerous papers [1,2℄. We in
lude in this group all the papers devoted to

the travelling os
illator, i.e. a mass parti
le joined to the base with a spring

[9,13,14℄. Some authors des
ribe this type of a load as an inertial one. We


onsider it as a massless for
e generated only by the parti
le's inertia. The

inertial load moving over the stru
ture is less frequently reported in the lit-

erature [15,16,17℄. The 
losed solution exists in the 
ase of a mass moving on

a massless string [2,18℄. Otherwise the �nal results are obtained numeri
ally,

although the solution is pre
eded by 
omplex analyti
al 
al
ulations. A new

and important feature of dis
ontinuity of the inertial parti
le traje
tory is ex-

hibited in [19℄. In numerous referen
es authors treat the problem in a very low

range of the mass speed. In this 
ase results are su�
ient, even if the inertial

term 
ontributing to moving mass is not 
orre
tly treated by the time inte-

gration method. Simply, the moving mass in�uen
e is trivial 
ompared with

stati
 displa
ements.

Purely numeri
al solutions of a group of engineering problems with travelling

massless load are relatively simple and every parti
ular 
ase 
an be 
omputed

without signi�
ant 
omputational e�ort. The numeri
al results in the 
ase of

inertial loads, however, are not su�
ient [20,21℄. Broad analysis of moving

loads was given in [2,22℄. In re
ent 
ontributions 
omplex problems of stru
-

tures subje
ted to a moving inertial load [23℄ or os
illator [10,13,14℄ were also

analysed.

Numeri
al algorithms implemented in 
ommer
ial 
odes do not allow e�
ient

analysis in the 
ase of the moving massless load, nor is the inertial moving load

implemented. Corre
t formulae for dis
rete analysis of moving mass problems

were published re
ently [24,25℄ and implemented in the analysis of train/tra
k

intera
tion.

Numerous a
tive and semi-a
tive vibration 
ontrol methods are widespread

and some of them have been put into pra
ti
e re
ently. Most of them are

based on sky-hook or ground-hook 
on
epts [7℄. These approa
hes are used for

semi-a
tive 
ontrol of the moving os
illator problem in [8℄. Variable dampers

are in
orporated in seismi
 isolation in [11,12℄. A theoreti
al approa
h to the

problem of 
ontrolled beam vibration damping, based on the method of op-

timal Lyapunov fun
tions, was presented in [6℄. In [26℄ the authors assumed
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the semi-a
tive 
ontrol applied to a sti�ness and to a damping. The 
ontrol

fun
tion led to maximum dissipation of the energy. Generally, the amplitude

level de
rease was to be a
hieved. Passive damping of a Euler beam under

a moving load was presented in [27℄. The load of 
y
li
ally travelling for
es

was 
onsidered as a periodi
 one. The de
rease of the resonan
e peak was

obtained by a gradient method. The beam subje
ted to a pla
ed harmoni


load was 
ontrolled by the a
tive method [28℄. The analysis of the frequen
y

domain allowed the authors to redu
e the maximum of amplitudes. In the

next paper [29℄ the harmoni
 load at a �xed point was also applied. The 
on-

trol of sti�ness parameters allowed the redu
tion of parametri
 vibrations.

The stru
ture elements were 
ontrolled by on/o� state. The expe
ted e�e
t

with redu
ed and shifted resonan
e 
urves was obtained. A
tive damping of

stru
tures under travelling load was des
ribed in [30,31℄.

Most of the semi-a
tive methods identi�ed lead to feedba
k 
ontrols deter-

mined by state-spa
e measures. In the 
ase of 
ontinuous systems su
h an

observer design is often mu
h too 
ompli
ated. The alternative method is an

open-loop 
ontrol. It is of parti
ular use in problems where the ex
itation is

determined.

Preliminary investigation of the destination problem was published in [5℄. The

beam supported by two dampers exhibited lower amplitudes both in the mid-

point and under the travelling load. Higher frequen
y modes, however, were

dominant in the transient stage.

2 Mathemati
al formulation

Formulation and solution of the problem presented in this se
tion are devel-

oped for a string, but the te
hnique is not spe
i�
 to an 1D 
ontinuum and


an be applied to elements like Euler-Bernoulli or Timoshenko beams as well.

Let us 
onsider the system shown in Figure 3. The string is stret
hed and

simply supported by a set of 
ontrol dampers. The moving load is passing

along the string at a 
onstant velo
ity. The mass a

ompanying the travelling

load is small 
ompared with the mass of the string and is negle
ted. Thus we

assume a massless load. Rea
tions of dampers are proportional to the velo
ity

of displa
ements in given points.

The transverse vibration of the string system shown in Figure 3 is governed

by the partial di�erential equation

−N
∂2u(x, t)

∂x2
+ µ

∂2u(x, t)

∂t2
= −

Z∑

i=1

bi(t)
∂u(ai, t)

∂t
δ(x−ai)+P δ(x−vt) , (1)
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where N is the for
e stret
hing the string, µ is the 
onstant mass density per

unit length, P is the 
on
entrated for
e passing the string at the 
onstant

velo
ity v, bi(t) is the ith damping 
oe�
ient as a fun
tion of time, u(x, t)
is a transverse de�e
tion of the string at the point (x, t), Z is the number of

vis
ous supports, ai is the ith �xed point of a damper and δ is the Dira
 delta.

The boundary and initial 
onditions of the simply-supported and stret
hed

string are as follows:

u(0, t) = 0, u(l, t) = 0, u(x, 0) = 0, u̇(x, 0) = 0 . (2)

Eqn. (1) with 
onditions (2) will be solved by the method of the sine Fourier

transformation based on the following fundamental relations:

V (j, t) =
∫ l

0
u(x, t) sin

jπx

l
dx ,

u(x, t) =
2

l

∞∑

j=1

V (j, t) sin
jπx

l
.

(3)

Ea
h term of Eqn. (1) is multiplied by sin jπx
l
and then integrated with respe
t

to x in the interval [0, l]

∫ l

0

(

−N
∂2u(x, t)

∂x2
sin

jπx

l
+ µ

∂2u(x, t)

∂t2
sin

jπx

l

)

dx =

∫ l

0

(

−
Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai) + P sin

jπx

l
δ(x − vt)

)

dx .

(4)

Thus,

Nj2π2

l2
V (j, t) + µ V̈ (j, t) =

∫ l

0

(

−
Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai)

)

dx + P sin
jπvt

l
.

(5)

The integral term 
an be rewritten as

∫ l

0

(

−
Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai)

)

dx =

−
Z∑

i=1

bi(t)
∫ l

0

∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai)dx = −

Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπai

l
=

−
2

l

Z∑

i=1

∞∑

k=1

bi(t) V̇ (k, t) sin
kπai

l
sin

jπai

l
.

(6)
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Eqn. (5) is a system of ordinary di�erential equations

µ V̈ (j, t)+
2

l

Z∑

i=1

∞∑

k=1

bi(t) V̇ (k, t) sin
kπai

l
sin

jπai

l
+

Nj2π2

l2
V (j, t) = P sin

jπvt

l
.

(7)

Now we expe
t a solution of Eqn. (7) for an arbitrary shape of fun
tions bi(t).
It would be 
onvenient to make the 
oe�
ients 
onstant. For this purpose we

de�ne all b(t) as step-shape fun
tions depi
ted in Figure 4

b :

[

0,
l

v

]

→ [bmin, bmax] b(t) =







bp, ∀t ∈ (tp−1, tp], p = 1...s

0, t = 0
. (8)

With the following notations

πv

l
= ω, sin

jπai

l
sin

kπai

l
= αijk

Eqn. (7) is redu
ed to the form

µ V̈ (j, t) +
2

l

Z∑

i=1

∞∑

k=1

bip V̇ (k, t) αijk +
Nj2π2

l2
V (j, t) = P sin(jωt) , (9)

where bip denotes the magnitude of the suspension of the ith damper in the

pth time interval.

Eqn. (9) is linear and des
ribes the nonhomogeneous system with 
onstant


oe�
ients. The solution sought is the general solution, where integration


onstants 
an be simply represented by initial values C1j = V (j, 0), C2j =
V̇ (j, 0). The interval solutions 
an simply be 
ombined to a global one. Inves-

tigations prove that the standard method for solving the linear system, i.e. by

means of eigen-problems is not su�
ient in this 
ase. The solving pro
edure

presented below is based on the power-series method. By denoting tp−1 by τ ,
the solution for t ∈ (tp−1, tp] is supposed to take the form

V (j, t) =
∞∑

n=0

dn(j)(t − τ)n , (10)

where dn(j) are unknown sequen
es. Then

V̇ (j, t) =
∞∑

n=0

ndn(j)(t−τ)n−1, V̈ (j, t) =
∞∑

n=0

(n−1)ndn(j)(t−τ)n−2 , (11)
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and Eqn. (9) 
an be written as

µ
∞∑

n=0

(n − 1)ndn(j)(t − τ)n−2 +
2

l

Z∑

i=1

∞∑

k=1

∞∑

n=0

bip αijk ndn(k)(t − τ)n−1+

+
Nj2π2

l2

∞∑

n=0

dn(j)(t − τ)n = P sin(jωt) .

(12)

Representation of sin(jωt) in a power series gives

sin(jωt) = sin(jω(t − τ + τ)) =

sin(jω(t − τ)) cos(jωτ) + cos(jω(t − τ)) sin(jωτ) =

cos(jωτ)
∞∑

n=0

(−1)n(jω)2n+1(t − τ)2n+1

(2n + 1)!
+ sin(jωτ)

∞∑

n=0

(−1)n(jω)2n(t − τ)2n

(2n)!
.

(13)

Then we have

µ
∞∑

n=0

(n + 1)(n + 2)dn+2(j)(t − τ)n+

+
2

l

Z∑

i=1

∞∑

k=1

∞∑

n=0

bip αijk (n + 1)dn+1(k)(t − τ)n +
Nj2π2

l2

∞∑

n=0

dn(j)(t − τ)n =

P cos(jωτ)
∞∑

n=0

(−1)n(jω)2n+1(t − τ)2n+1

(2n + 1)!
+

+ P sin(jωτ)
∞∑

n=0

(−1)n(jω)2n(t − τ)2n

(2n)!
.

(14)

It is 
ommonly known that for every sequen
e γn, the following equation is

satis�ed:

∞∑

n=0

γn(t − τ)n =
∞∑

n=0

γ2n(t − τ)2n +
∞∑

n=0

γ2n+1(t − τ)2n+1 . (15)
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Finally Eqn. (14) is rewritten in the form

µ
∞∑

n=0

(2n + 1)(2n + 2)d2n+2(j)(t − τ)2n +
Nj2π2

l2

∞∑

n=0

d2n(j)(t − τ)2n +

+
2

l

Z∑

i=1

∞∑

k=1

bip αijk

∞∑

n=0

(2n + 1)d2n+1(k)(t − τ)2n+

+ µ
∞∑

n=0

(2n + 2)(2n + 3)d2n+3(j)(t − τ)2n+1 +
Nj2π2

l2

∞∑

n=0

d2n(j)(t − τ)2n+

+
2

l

Z∑

i=1

∞∑

k=1

bip αijk

∞∑

n=0

(2n + 2)d2n+2(k)(t − τ)2n+1 =

P cos(jωτ)
∞∑

n=0

(−1)n(jω)2n+1(t − τ)2n+1

(2n + 1)!
+ P sin(jωτ)

∞∑

n=0

(−1)n(jω)2n(t − τ)2n

(2n)!
.

(16)

Comparing equivalent terms, we obtain the system of re
urren
e equations

µ (2n + 1)(2n + 2)d2n+2(j) = −
2

l

Z∑

i=1

∞∑

k=1

bip αijk(2n + 1)d2n+1(k)+

−
Nj2π2

l2
d2n(j) + P sin(jωτ)

(−1)n(jω)2n

(2n)!
,

µ (2n + 2)(2n + 3)d2n+3(j) = −
2

l

Z∑

i=1

∞∑

k=1

bip αijk(2n + 2)d2n+2(k)+

−
Nj2π2

l2
d2n+1(j) + P cos(jωτ)

(−1)n(jω)2n+1

(2n + 1)!
,

(17)

and d0(j) = V (j, τ), d1(j) = V̇ (j, τ).

Numeri
al results exhibiting the 
onvergen
e rate of the obtained solution are

presented next. In the analysis we use 60 modes and 40 terms in a power

series. The following data were assumed: µ = 1, l = 1, N = 0.5, P = 0.1, v =
0.2
√

N
µ
, Z = 1, a1 = 0.5l. The suspension magnitude is assumed to be 
onstant

and equal to one (b1p = 1, ∀p = 1, ..., s). Figure 5 presents the solution at

x = l/2. Curves are plotted for various numbers of intervals s = 59, 61 and

65. For a lower number of time intervals and greater time in
rements the

solutions diverge.

To extend the radius of 
onvergen
e, more terms in a power series have to be

taken into a

ount. Figure 6 shows the solution of the previous problem for

s = 25 and the number of terms in a power series equal to 98 and 100. The

dashed line represents the solution obtained by the �nite element method.
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3 Control strategy

In this se
tion we present a 
ontrol method based on the analysis and respe
-

tive numeri
al results of the solution. Further, we investigate the e�
ien
y

of the proposed 
ontrol strategy by means of values of de�ned payo�s. The

advantage of the derived analyti
al solution is its 
ontinuity, whi
h o�ers the

possibility to de�ne the performan
e index in the integral form.

The 
onsidered model is shown in Figure 7 and it is des
ribed by the equation

EJ
∂4u(x, t)

∂x4
+ µ

∂2u(x, t)

∂t2
= −

2∑

i=1

bi(t)
∂u(ai, t)

∂t
δ(x−ai)+P δ(x−vt). (18)

We 
onsider the Bernoulli-Euler beam as a 
ontinuum with the following pa-

rameters: l = 2m, µ = 0.78kg/m, EJ = 104Nm2. A
tive dampers are �xed

to the beam at points a1=0.25l and a2=0.75l. The for
e P = 1000N is trav-

elling with the velo
ity v=0.7c, where c denotes so-
alled 
riti
al speed and

c = π/l
√

EI/µ.

The formulated system is 
lassi�ed as bilinear. Numerous te
hniques, whi
h

stem primarily from the 
al
ulus of variation, have been derived for the opti-

mal 
ontrol solution of su
h a system. Pontryagin's maximum prin
iple uses

Hamilton's equations and the Dynami
 Programming method leads to the

Bellman-Hamilton-Ja
obi partial di�erential equation. Based on these theo-

ries numerous 
omputational te
hni
s were developed in the 1960s and 1970s

[3℄. With the ex
eption of the simplest 
ases, however, it is impossible to ex-

press 
ontrols in an expli
it feedba
k form, owing to the 
ompli
ated nature

of the asso
iated swit
hing hypersurfa
es in the state spa
e. Di�
ulties in-


rease in the 
ase of the 
ontinuum that is transformed to a multidimensional

dis
rete system.

We propose an open loop 
ontrol strategy based on the 
on
ept presented in

Figure 2. The assumption made the 
ontrols b1(t), b2(t) pie
ewise 
onstant and
belonging to a 
losed set B. Numeri
 investigations proved that the bang-bang


ontrols exerted the fairest e�
ien
y. In this approa
h we do not pay attention

to optimal solutions in the sense of minimising the performan
e index with

respe
t to all admissible 
ontrols. We try rather to present 
ases where semi-

a
tive dampers may outperform passive ones. The goal is to design e�
ient


ontrol so that the pra
ti
al realisation is the easiest way possible. For this

purpose and for simpli
ity we take into a

ount 
ontrols that are bang-bang

and only one swit
hing time for ea
h of them is assumed so that

b1(t) = bmaxU1(t) − bmaxU1(t − τ1), b2(t) = bmaxU1(t − τ2), (19)

where U1(t) is a unit step fun
tion and bmax = sup(B). In fa
t, damper No. 1
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is �rst swit
hed on then in time t = τ1 it turns into o� mode. The situation

for damper No. 2 is reversed. Below we de�ne the 
ost integrands su
h that

they 
an determine travel 
omfort (
ases 1, 3) or stru
tural damage (
ase 2)

(1) Payoff1 =
∫ l/v

0
|u(vt, t)| dt

(2) Payoff2 = RMS(u̇(vt, t)) =

(

v

l

∫ l/v

0
(u̇(vt, t))2

dt

)1/2

(3) Payoff3 =
∫ l/v

0
|ü(vt, t)| dt

(20)

The task is to �nd pairs (τ1, τ2) that minimise 
osts

(τ1, τ2) = arg min
τ1,τ2∈[0,l/v]

Payoff(u(t), b1(t), b2(t)), (21)

where b1(t), b2(t) are de�ned as before. In Figure 8 we present mappings

(τ1, τ2) → Payoff1 and (τ1, τ2) → Payoff3. Numeri
al results exert the

existen
e of unique solutions of (21) for all 
ases. Extremal traje
tories for

u(t), u̇(t), ü(t) with their 
ontrols are shown in Figures 9, 10, and 11, respe
-

tively. By the passive 
ase we mean 
onstant damping b1(t) = bmax, b2(t) =
bmax,∀t ∈ [0, l/v]. In 
omputations we assumed bmax = 3 · 104 in all 
ases.

The best performan
e of the proposed strategy is observed in the �rst 
ase,

where the value of the 
ost fun
tional is de
reased by more than 30% 
om-

pared with non-a
tive damping. For 
ases 2 and 3 we expe
t mu
h better

performan
e by applying 
ontrols with more than one swit
hing. Velo
ities

and a

elerations in
orporated into these 
osts in
lude high-frequen
y har-

moni
s that 
an be redu
ed by high-frequen
y swit
hing 
ontrols. Be
ause of

the signi�
antly higher 
omplexity of the optimisation problem, 
omputing of

su
h 
ontrols may be di�
ult. Appropriate gradient methods may, however,

be useful [4℄. The appli
ation of existing and the development of new methods

for 
omputing higher dimensional swit
hing ve
tors are reserved for further

work.

4 Con
lusions

In this paper the analyti
al solution of the response of a semi-a
tive 
ontrolled

1D 
ontinuum has been presented. The te
hnique has been applied to exem-

plary 
ontrol systems in
luding string and Euler-Bernoulli beams. The open-

loop 
ontrol strategy has been proposed and its performan
e has been veri�ed

for three di�erent 
ost integrands. Control strategy is simple for a pra
ti
al

design. Further optimisation is the ongoing resear
h topi
 of the authors.
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Figure 1. Examples of passive and semi-a
tive 
ontrol in a bridge span under a trav-

elling load.
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Figure 5. Solutions 
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Figure 6. Solutions 
omputed for di�erent numbers of terms in a power series and


ompared with the FEM solution.

� -l

-

?

x

u(x,t)

\\�� \\��
?

P -
v

������� �������

�
���

�
���

b1(t) b2(t)

a1 a2

EJ

Figure 7. Euler-Bernoulli beam system supported with two vis
ous a
tive dampers.

Figure 8. Cost fun
tionals as fun
tions of swit
hing times (
ases 1 and 3).
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Figure 9. Extremal de�e
tion traje
tory and 
ontrols.
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Figure 10. Extremal velo
ity traje
tory and 
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