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Abstrat

The paper presents a method for omputing the response of a 1D elasti ontinuum

supported by a set of semi-ative visous dampers and indued by a load travelling

over it. The magnitude of the moving fore has been assumed to be onstant by

neglet of the inertia fores. Full analytial solution is based on the power series

method and is given in an arbitrary time interval. The time-marhing sheme allows

us to ontinue a solution in suessive layers with initial onditions taken from

the end of previous stages. The semi-ative open loop ontrol strategy is proposed.

Shapes of damping funtions are de�ned as a form of pieewise onstant funtion.

The ontrol strategy is suboptimal and it outperforms the passive ase. Numerial

results are presented for the ases of a string and a Bernoulli-Euler beam.

Key words: travelling load, vibration ontrol, semi-ative ontrol, vibrations of

a string

1 Introdution

Problems of a load travelling along strutures, suh as strings, beams or plates

at a higher range of speed, are of partiular interest to pratising engineers. A

higher speed range means the speed at whih suessive passages of a moving

load through the struture signi�antly inrease amplitudes of displaements,

up to in�nity in the ase of ritial speed values. In the ase of a string the

onsidered speed an be within the range of 0.3 to 1.0 of the wave speed.

Analytial and numerial solutions are applied to problems with a single or
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multi-point ontat, suh as train-trak or vehile-bridge interation, panto-

graph olletors in railways, magneti levitation railways, guideways in roboti

tehnology, et.

Inreasing demand requires new tehnologial solutions. Strutures with exter-

nal ontrol of parameters an resist a load in a more e�ient way. Strutures

with lassial passive ontrol are replaed by new, ative or semi-ative ontrol

systems. Old, weak strutures an be reinfored by supplementary supports

with magneto- or eletro-rheologial dampers ontrolled externally (Figures 1,

2). Ative or semi-ative ontrol of strutural vibrations plays an important

role in the ase of dynami in�uene of external standing or travelling loads.

Ative methods of ontrol are, unfortunately, energy-onsuming and ompli-

ated in pratial appliations. Moreover, a poor ontrol system an supply

energy in the antiphase and in extreme ases an damage the struture. We

will fous our researh on semi-ative systems omposed of dampers, whih

require lower energeti e�ort.

Several evaluation riteria are subjets of interest. One of them desribes the

displaement in time of the midpoint. This riterion determines the resistane

of the struture to deformations. Others desribe displaement veloities or

aelerations in time at the follower point under the travelling load. In those

ases we an ontrol the travel omfort, minimising the vertial dynamis of the

vehile. In our investigations we will onentrate on all the riteria mentioned

above.

The semi-ative ontrol funtions that represent evaluation of oe�ients of

visous damping in time are ontinuous and bounded in a general ase. In

pratial use they an be expressed by a pieewise onstant funtion. The

numerial optimisation of the ontrol in the ase of a higher number of those

onstants annot be arried on e�iently. The variation of all the parameters of

the damping ontrol funtion in a disrete form will result in extremely lengthy

omputation time. Numerial analysis and lassial methods of optimisation

fail. We must elaborate a new e�ient approah on the basis of the analysis

of the di�erential equation or its solution.

In this paper we present the analytial solution of a semi-ative ontrol of vi-

brations in a string subjeted to a travelling load. The string is supported by

a set of visous dampers. The method allows us to solve the problem analyti-

ally and express the ontinuous solution in a form useful for further analysis

of the in�uene of damping funtions on displaements and its derivatives.

Whole time domain is split into time intervals. Full analytial solution in time

interval in a form of power series is given. The time-marhing sheme allows

us to proeed to suessive layers with initial onditions taken from the end

of previous stages. The global solution an be written in a form with damping

oe�ients given as a vetor. Thus the in�uene of a partiular damper on the
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�nal global solution an be simply investigated. This fully analytial algorithm

and the analytial form of the solution allow us to examine quantitatively the

in�uene of a pieewise onstant damping on vibrations. Further work ould

enable us to determine the general e�ient strategy of the ontrol instead of

a partiular numerial solution, useless for investigations.

Analysis of the moving load problem is ommonly presented in the literature.

The travelling load an be one of two types: non-inertial (massless) or inertial.

The analysis of the moving massless fore is relatively simple and is treated

in numerous papers [1,2℄. We inlude in this group all the papers devoted to

the travelling osillator, i.e. a mass partile joined to the base with a spring

[9,13,14℄. Some authors desribe this type of a load as an inertial one. We

onsider it as a massless fore generated only by the partile's inertia. The

inertial load moving over the struture is less frequently reported in the lit-

erature [15,16,17℄. The losed solution exists in the ase of a mass moving on

a massless string [2,18℄. Otherwise the �nal results are obtained numerially,

although the solution is preeded by omplex analytial alulations. A new

and important feature of disontinuity of the inertial partile trajetory is ex-

hibited in [19℄. In numerous referenes authors treat the problem in a very low

range of the mass speed. In this ase results are su�ient, even if the inertial

term ontributing to moving mass is not orretly treated by the time inte-

gration method. Simply, the moving mass in�uene is trivial ompared with

stati displaements.

Purely numerial solutions of a group of engineering problems with travelling

massless load are relatively simple and every partiular ase an be omputed

without signi�ant omputational e�ort. The numerial results in the ase of

inertial loads, however, are not su�ient [20,21℄. Broad analysis of moving

loads was given in [2,22℄. In reent ontributions omplex problems of stru-

tures subjeted to a moving inertial load [23℄ or osillator [10,13,14℄ were also

analysed.

Numerial algorithms implemented in ommerial odes do not allow e�ient

analysis in the ase of the moving massless load, nor is the inertial moving load

implemented. Corret formulae for disrete analysis of moving mass problems

were published reently [24,25℄ and implemented in the analysis of train/trak

interation.

Numerous ative and semi-ative vibration ontrol methods are widespread

and some of them have been put into pratie reently. Most of them are

based on sky-hook or ground-hook onepts [7℄. These approahes are used for

semi-ative ontrol of the moving osillator problem in [8℄. Variable dampers

are inorporated in seismi isolation in [11,12℄. A theoretial approah to the

problem of ontrolled beam vibration damping, based on the method of op-

timal Lyapunov funtions, was presented in [6℄. In [26℄ the authors assumed
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the semi-ative ontrol applied to a sti�ness and to a damping. The ontrol

funtion led to maximum dissipation of the energy. Generally, the amplitude

level derease was to be ahieved. Passive damping of a Euler beam under

a moving load was presented in [27℄. The load of ylially travelling fores

was onsidered as a periodi one. The derease of the resonane peak was

obtained by a gradient method. The beam subjeted to a plaed harmoni

load was ontrolled by the ative method [28℄. The analysis of the frequeny

domain allowed the authors to redue the maximum of amplitudes. In the

next paper [29℄ the harmoni load at a �xed point was also applied. The on-

trol of sti�ness parameters allowed the redution of parametri vibrations.

The struture elements were ontrolled by on/o� state. The expeted e�et

with redued and shifted resonane urves was obtained. Ative damping of

strutures under travelling load was desribed in [30,31℄.

Most of the semi-ative methods identi�ed lead to feedbak ontrols deter-

mined by state-spae measures. In the ase of ontinuous systems suh an

observer design is often muh too ompliated. The alternative method is an

open-loop ontrol. It is of partiular use in problems where the exitation is

determined.

Preliminary investigation of the destination problem was published in [5℄. The

beam supported by two dampers exhibited lower amplitudes both in the mid-

point and under the travelling load. Higher frequeny modes, however, were

dominant in the transient stage.

2 Mathematial formulation

Formulation and solution of the problem presented in this setion are devel-

oped for a string, but the tehnique is not spei� to an 1D ontinuum and

an be applied to elements like Euler-Bernoulli or Timoshenko beams as well.

Let us onsider the system shown in Figure 3. The string is strethed and

simply supported by a set of ontrol dampers. The moving load is passing

along the string at a onstant veloity. The mass aompanying the travelling

load is small ompared with the mass of the string and is negleted. Thus we

assume a massless load. Reations of dampers are proportional to the veloity

of displaements in given points.

The transverse vibration of the string system shown in Figure 3 is governed

by the partial di�erential equation

−N
∂2u(x, t)

∂x2
+ µ

∂2u(x, t)

∂t2
= −

Z∑

i=1

bi(t)
∂u(ai, t)

∂t
δ(x−ai)+P δ(x−vt) , (1)
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where N is the fore strething the string, µ is the onstant mass density per

unit length, P is the onentrated fore passing the string at the onstant

veloity v, bi(t) is the ith damping oe�ient as a funtion of time, u(x, t)
is a transverse de�etion of the string at the point (x, t), Z is the number of

visous supports, ai is the ith �xed point of a damper and δ is the Dira delta.

The boundary and initial onditions of the simply-supported and strethed

string are as follows:

u(0, t) = 0, u(l, t) = 0, u(x, 0) = 0, u̇(x, 0) = 0 . (2)

Eqn. (1) with onditions (2) will be solved by the method of the sine Fourier

transformation based on the following fundamental relations:

V (j, t) =
∫ l

0
u(x, t) sin

jπx

l
dx ,

u(x, t) =
2

l

∞∑

j=1

V (j, t) sin
jπx

l
.

(3)

Eah term of Eqn. (1) is multiplied by sin jπx
l
and then integrated with respet

to x in the interval [0, l]

∫ l

0

(

−N
∂2u(x, t)

∂x2
sin

jπx

l
+ µ

∂2u(x, t)

∂t2
sin

jπx

l

)

dx =

∫ l

0

(

−
Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai) + P sin

jπx

l
δ(x − vt)

)

dx .

(4)

Thus,

Nj2π2

l2
V (j, t) + µ V̈ (j, t) =

∫ l

0

(

−
Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai)

)

dx + P sin
jπvt

l
.

(5)

The integral term an be rewritten as

∫ l

0

(

−
Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai)

)

dx =

−
Z∑

i=1

bi(t)
∫ l

0

∂u(ai, t)

∂t
sin

jπx

l
δ(x − ai)dx = −

Z∑

i=1

bi(t)
∂u(ai, t)

∂t
sin

jπai

l
=

−
2

l

Z∑

i=1

∞∑

k=1

bi(t) V̇ (k, t) sin
kπai

l
sin

jπai

l
.

(6)
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Eqn. (5) is a system of ordinary di�erential equations

µ V̈ (j, t)+
2

l

Z∑

i=1

∞∑

k=1

bi(t) V̇ (k, t) sin
kπai

l
sin

jπai

l
+

Nj2π2

l2
V (j, t) = P sin

jπvt

l
.

(7)

Now we expet a solution of Eqn. (7) for an arbitrary shape of funtions bi(t).
It would be onvenient to make the oe�ients onstant. For this purpose we

de�ne all b(t) as step-shape funtions depited in Figure 4

b :

[

0,
l

v

]

→ [bmin, bmax] b(t) =







bp, ∀t ∈ (tp−1, tp], p = 1...s

0, t = 0
. (8)

With the following notations

πv

l
= ω, sin

jπai

l
sin

kπai

l
= αijk

Eqn. (7) is redued to the form

µ V̈ (j, t) +
2

l

Z∑

i=1

∞∑

k=1

bip V̇ (k, t) αijk +
Nj2π2

l2
V (j, t) = P sin(jωt) , (9)

where bip denotes the magnitude of the suspension of the ith damper in the

pth time interval.

Eqn. (9) is linear and desribes the nonhomogeneous system with onstant

oe�ients. The solution sought is the general solution, where integration

onstants an be simply represented by initial values C1j = V (j, 0), C2j =
V̇ (j, 0). The interval solutions an simply be ombined to a global one. Inves-

tigations prove that the standard method for solving the linear system, i.e. by

means of eigen-problems is not su�ient in this ase. The solving proedure

presented below is based on the power-series method. By denoting tp−1 by τ ,
the solution for t ∈ (tp−1, tp] is supposed to take the form

V (j, t) =
∞∑

n=0

dn(j)(t − τ)n , (10)

where dn(j) are unknown sequenes. Then

V̇ (j, t) =
∞∑

n=0

ndn(j)(t−τ)n−1, V̈ (j, t) =
∞∑

n=0

(n−1)ndn(j)(t−τ)n−2 , (11)
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and Eqn. (9) an be written as

µ
∞∑

n=0

(n − 1)ndn(j)(t − τ)n−2 +
2

l

Z∑

i=1

∞∑

k=1

∞∑

n=0

bip αijk ndn(k)(t − τ)n−1+

+
Nj2π2

l2

∞∑

n=0

dn(j)(t − τ)n = P sin(jωt) .

(12)

Representation of sin(jωt) in a power series gives

sin(jωt) = sin(jω(t − τ + τ)) =

sin(jω(t − τ)) cos(jωτ) + cos(jω(t − τ)) sin(jωτ) =

cos(jωτ)
∞∑

n=0

(−1)n(jω)2n+1(t − τ)2n+1

(2n + 1)!
+ sin(jωτ)

∞∑

n=0

(−1)n(jω)2n(t − τ)2n

(2n)!
.

(13)

Then we have

µ
∞∑

n=0

(n + 1)(n + 2)dn+2(j)(t − τ)n+

+
2

l

Z∑

i=1

∞∑

k=1

∞∑

n=0

bip αijk (n + 1)dn+1(k)(t − τ)n +
Nj2π2

l2

∞∑

n=0

dn(j)(t − τ)n =

P cos(jωτ)
∞∑

n=0

(−1)n(jω)2n+1(t − τ)2n+1

(2n + 1)!
+

+ P sin(jωτ)
∞∑

n=0

(−1)n(jω)2n(t − τ)2n

(2n)!
.

(14)

It is ommonly known that for every sequene γn, the following equation is

satis�ed:

∞∑

n=0

γn(t − τ)n =
∞∑

n=0

γ2n(t − τ)2n +
∞∑

n=0

γ2n+1(t − τ)2n+1 . (15)
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Finally Eqn. (14) is rewritten in the form

µ
∞∑

n=0

(2n + 1)(2n + 2)d2n+2(j)(t − τ)2n +
Nj2π2

l2

∞∑

n=0

d2n(j)(t − τ)2n +

+
2

l

Z∑

i=1

∞∑

k=1

bip αijk

∞∑

n=0

(2n + 1)d2n+1(k)(t − τ)2n+

+ µ
∞∑

n=0

(2n + 2)(2n + 3)d2n+3(j)(t − τ)2n+1 +
Nj2π2

l2

∞∑

n=0

d2n(j)(t − τ)2n+

+
2

l

Z∑

i=1

∞∑

k=1

bip αijk

∞∑

n=0

(2n + 2)d2n+2(k)(t − τ)2n+1 =

P cos(jωτ)
∞∑

n=0

(−1)n(jω)2n+1(t − τ)2n+1

(2n + 1)!
+ P sin(jωτ)

∞∑

n=0

(−1)n(jω)2n(t − τ)2n

(2n)!
.

(16)

Comparing equivalent terms, we obtain the system of reurrene equations

µ (2n + 1)(2n + 2)d2n+2(j) = −
2

l

Z∑

i=1

∞∑

k=1

bip αijk(2n + 1)d2n+1(k)+

−
Nj2π2

l2
d2n(j) + P sin(jωτ)

(−1)n(jω)2n

(2n)!
,

µ (2n + 2)(2n + 3)d2n+3(j) = −
2

l

Z∑

i=1

∞∑

k=1

bip αijk(2n + 2)d2n+2(k)+

−
Nj2π2

l2
d2n+1(j) + P cos(jωτ)

(−1)n(jω)2n+1

(2n + 1)!
,

(17)

and d0(j) = V (j, τ), d1(j) = V̇ (j, τ).

Numerial results exhibiting the onvergene rate of the obtained solution are

presented next. In the analysis we use 60 modes and 40 terms in a power

series. The following data were assumed: µ = 1, l = 1, N = 0.5, P = 0.1, v =
0.2
√

N
µ
, Z = 1, a1 = 0.5l. The suspension magnitude is assumed to be onstant

and equal to one (b1p = 1, ∀p = 1, ..., s). Figure 5 presents the solution at

x = l/2. Curves are plotted for various numbers of intervals s = 59, 61 and

65. For a lower number of time intervals and greater time inrements the

solutions diverge.

To extend the radius of onvergene, more terms in a power series have to be

taken into aount. Figure 6 shows the solution of the previous problem for

s = 25 and the number of terms in a power series equal to 98 and 100. The

dashed line represents the solution obtained by the �nite element method.
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3 Control strategy

In this setion we present a ontrol method based on the analysis and respe-

tive numerial results of the solution. Further, we investigate the e�ieny

of the proposed ontrol strategy by means of values of de�ned payo�s. The

advantage of the derived analytial solution is its ontinuity, whih o�ers the

possibility to de�ne the performane index in the integral form.

The onsidered model is shown in Figure 7 and it is desribed by the equation

EJ
∂4u(x, t)

∂x4
+ µ

∂2u(x, t)

∂t2
= −

2∑

i=1

bi(t)
∂u(ai, t)

∂t
δ(x−ai)+P δ(x−vt). (18)

We onsider the Bernoulli-Euler beam as a ontinuum with the following pa-

rameters: l = 2m, µ = 0.78kg/m, EJ = 104Nm2. Ative dampers are �xed

to the beam at points a1=0.25l and a2=0.75l. The fore P = 1000N is trav-

elling with the veloity v=0.7c, where c denotes so-alled ritial speed and

c = π/l
√

EI/µ.

The formulated system is lassi�ed as bilinear. Numerous tehniques, whih

stem primarily from the alulus of variation, have been derived for the opti-

mal ontrol solution of suh a system. Pontryagin's maximum priniple uses

Hamilton's equations and the Dynami Programming method leads to the

Bellman-Hamilton-Jaobi partial di�erential equation. Based on these theo-

ries numerous omputational tehnis were developed in the 1960s and 1970s

[3℄. With the exeption of the simplest ases, however, it is impossible to ex-

press ontrols in an expliit feedbak form, owing to the ompliated nature

of the assoiated swithing hypersurfaes in the state spae. Di�ulties in-

rease in the ase of the ontinuum that is transformed to a multidimensional

disrete system.

We propose an open loop ontrol strategy based on the onept presented in

Figure 2. The assumption made the ontrols b1(t), b2(t) pieewise onstant and
belonging to a losed set B. Numeri investigations proved that the bang-bang

ontrols exerted the fairest e�ieny. In this approah we do not pay attention

to optimal solutions in the sense of minimising the performane index with

respet to all admissible ontrols. We try rather to present ases where semi-

ative dampers may outperform passive ones. The goal is to design e�ient

ontrol so that the pratial realisation is the easiest way possible. For this

purpose and for simpliity we take into aount ontrols that are bang-bang

and only one swithing time for eah of them is assumed so that

b1(t) = bmaxU1(t) − bmaxU1(t − τ1), b2(t) = bmaxU1(t − τ2), (19)

where U1(t) is a unit step funtion and bmax = sup(B). In fat, damper No. 1
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is �rst swithed on then in time t = τ1 it turns into o� mode. The situation

for damper No. 2 is reversed. Below we de�ne the ost integrands suh that

they an determine travel omfort (ases 1, 3) or strutural damage (ase 2)

(1) Payoff1 =
∫ l/v

0
|u(vt, t)| dt

(2) Payoff2 = RMS(u̇(vt, t)) =

(

v

l

∫ l/v

0
(u̇(vt, t))2

dt

)1/2

(3) Payoff3 =
∫ l/v

0
|ü(vt, t)| dt

(20)

The task is to �nd pairs (τ1, τ2) that minimise osts

(τ1, τ2) = arg min
τ1,τ2∈[0,l/v]

Payoff(u(t), b1(t), b2(t)), (21)

where b1(t), b2(t) are de�ned as before. In Figure 8 we present mappings

(τ1, τ2) → Payoff1 and (τ1, τ2) → Payoff3. Numerial results exert the

existene of unique solutions of (21) for all ases. Extremal trajetories for

u(t), u̇(t), ü(t) with their ontrols are shown in Figures 9, 10, and 11, respe-

tively. By the passive ase we mean onstant damping b1(t) = bmax, b2(t) =
bmax,∀t ∈ [0, l/v]. In omputations we assumed bmax = 3 · 104 in all ases.

The best performane of the proposed strategy is observed in the �rst ase,

where the value of the ost funtional is dereased by more than 30% om-

pared with non-ative damping. For ases 2 and 3 we expet muh better

performane by applying ontrols with more than one swithing. Veloities

and aelerations inorporated into these osts inlude high-frequeny har-

monis that an be redued by high-frequeny swithing ontrols. Beause of

the signi�antly higher omplexity of the optimisation problem, omputing of

suh ontrols may be di�ult. Appropriate gradient methods may, however,

be useful [4℄. The appliation of existing and the development of new methods

for omputing higher dimensional swithing vetors are reserved for further

work.

4 Conlusions

In this paper the analytial solution of the response of a semi-ative ontrolled

1D ontinuum has been presented. The tehnique has been applied to exem-

plary ontrol systems inluding string and Euler-Bernoulli beams. The open-

loop ontrol strategy has been proposed and its performane has been veri�ed

for three di�erent ost integrands. Control strategy is simple for a pratial

design. Further optimisation is the ongoing researh topi of the authors.
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Figure 8. Cost funtionals as funtions of swithing times (ases 1 and 3).
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