
XXIII SYMPOSIUM - VIBRATIONS IN PHYSICAL SYSTEMS- Poznan-Bedlewo 2008

 

MOVING INERTIAL LOAD AND NUMERICAL MODELLING
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Abstract

The paper presents the numerical approach to the moving mass prob—

lem. We consider the string and beam discrete element carrying a

mass particle. In the literature efficient computational methods can

not be found. The same disadvantage can be observed in commercial

codes for dynamic simulations. Classical finite element solution fails.

The space—time finite element approach is the only method which now

results in convergent solutions and can be successfully applied in prac—

tice. Characteristic matrices and resulting solution scheme are briefly

described. Examples prove the efficiency of the approach.
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Introduction

Classical problems of structures subjected to a moving force were intensively treated

in recent years. Closed analytical solutions can be found for example in We

must mention here that numerous publications deal with the problem, starting

from the 18th century. Numerical application of the moving force is also relatively

simple. The force for example can be distributed between neighbouring nodes in

the mesh with the ratio varying in time and depending on the position of the

particle. The problem of inertial moving load applied to discrete systems and

efficiently solved unfortunately is practically not reported. Inertial force, which

should be considered as a couple of a force and a mass is usually replaced by a

spring-mass system. Finally the problem is solved as a problem with a massless

force. This approach is characteristic of significant error, which raises to the ratio

1:3 comparing with the accurate solution, in the case of the speed between 0.8

and 1.0 of the wave speed (Fig. 1). We must also emphasize that the ad—hoc mass

distribution between neighbouring nodes simply fails. In the case of the beam at

low speed ranges and low ratio of the moving mass to the beam mass results exhibit

errors. Unfortunately, Such formulations exist in spite of a wrong formulation and

analysis.

In the paper we present the numerical approach to the moving inertial load

problem. Classical finite element method with Newmark time integration scheme

mentioned in [2, 3] fails. The space—time finite element method is the only method

which enables us to describe the mass passing through the spatial finite element in

a continuous way. We present the solution in the case of a string and a Bernoulli-

Euler beam. The reader should be familiar with the basics of the space—time finite

element approach described in velocities [4, 5].
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Figure 1: Displacements under the moving mass from the semi—analytical solution

(left) and under the rigid oscillator (right).

The motion equation of a string under a moving inertial load with a constant

speed 1} has a form

82u(x,t) 821433715)

(9x2 8152

We assume initial conditions u($,0) = 0, M3370) = 0 and boundary conditions

u(07t) = u(l,t) = 0.

82141115725)
N W2 . (1)

 

: pA : 5(20 vt)P 6(20 vt)m

 

1. String element carrying moving mass

The last term 6(x — vt) 777,82u(vt7 t)/6t 2 in the motion equation (1) describes the

inertial moving mass. (9 2a(vt7 10/3 15 2 is the vertical acceleration of the moving mass

and at the same time the acceleration of the point of the string in which the mass is

temporarily placed (it is :r = 330 +vt). The acceleration of the mass 8 2u(vt, 29/6132

moving with a constant velocity 117 according to the Renaudot formula (which in

fact is the chain rule of differentiation), results in three terms:

02u(vt,t) = (‘32u(w, t) + 21} 82u(a:,t) + U2 (9%(33, t) t (2)

(9t2 (9t2 8508?? 8$2

Thus we can separate the transverse acceleration, the Coriolis acceleration, and the

centrifugal acceleration, respectively. This is the so—called Renaudot notation for

the constant speed 11. Another one7 the so—called Jakushev notation (or approach)

finally gives the same result in our case of the constant mass m.

In our space—time finite element method we formulate equations in terms of

velocities. The mass acceleration 8 211(vt7 15) /8t 2 is expressed in terms of velocities

as well:

35:1;t 33:11t ac:vt

82u(vt,t) _ 811(vt7t) _ 8v(:r,t) 8v($,t)

at? at at + U ' (3)
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The first term on the right-hand side of (2) states the real inertia (when multiplied

by m) and the second term (also multiplied by m) expresses forces similar to

damping forces.

In the final stage three resulting matrices are responsible for transverse iner-

tia (the matrix has the form of the inertia matrix), damping forces (the matrix

multiplied by the velocity vector has a form similar to the Coriolis forces) and stiff-

ness (potential) forces (the matrix, if multiplied by the velocity vector, has a form

similar to the centrifugal forces). The third matrix appears as a result of initial

displacements in the time interval.

Let us now follow this idea and treat numerically the right-hand side inertial term

of The same mathematical steps as in the case of pure string enables us to

integrate the inertial term

/Oh/ObN*m5(:r—vt)

First we must formulate the virtual power t

equation. Then it is integrated in the space—

time domain. The resulting virtual work

equations allows us to derive required metri—

ces in the time stepping scheme. We use the

linear interpolation of the velocity in space

and in time. The virtual velocity 11*:

1 _ g
b .

a qp
b

(5) time finite element domain.

Consequent integration results in two ma—

trices: the moving mass inertia matrix Km

[—(1—n)2 —r<;(1—/-c) ]

in (1 i If)

where K; = ($0 + vah)/b, $0 is a starting position of the mass in the space-time

element (at t = to) (see Fig. 2)7 and the moving mass damping matrix Cm

my 1H1 1H]. 1/9 1—HT[< )< fl)( >< fi)‘( )fi( Maya)

82u(3:0 + vt, t)

8252 dm,dt. (4)

 

11* $.23 =N*' =6tiah

( ) qp ( ) [ Figure 2: Mass path in the space—

(1—H)2
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m KL(1—l€)
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h

2 (6)
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l€ 

 

Cm

—H (1 — B) H (1 — B) wfi 1-66

Let us now consider the contribution of u($,0) being the constant term of the

integration in time. We integrate by parts the Virtual work

h b 2 h b *

112/ / 11*8 uodmdt = 7112/ / av auO

0 0 0 0

—d d

8x2 8x 80: w t

  

(8)
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Since displacements of the left and right node of the element are expressed by

m; 2 u% + h[,6v1 +(17 @713] and UR = 11% + h[,6v2 + (1 7mm]. we can derive the

required duo /d:c

0 0
duo uRiuL uRiuL
dx_ b _ b ;Z[fiv1+fiv27(lifi)v3+(1ifi)v4l (9)

 

Matrix Km is the stiffness mass matrix

ihmvz [ fi —fi 1—fi —(1—fi)

KW 62 *5 [3 *(1ifi) 1’5

 

(10)

 

The term (11% — [LCD/b in (9) multiplied by mUZ/b results in initial nodal forces 6

in the space—time layer.

2. Beam element carrying moving mass

We remember that Virtual time function v* in the hat shape is constant in time

and in the case of the Bernoulli-Euler beam has the following form

2 3

v;1($,t)=(173:—2+2%> 113+...<,b3+...v4+...<p4 (11)

We recognize here the well known shape functions that describe displacements (or

velocities) in terms of nodal displacement and nodal rotations. The same interpo-

lation formulas are applied as real spatial shape functions. Then the the elements

of the matrix Mm can be computed. We present here the analysis in the case of

the first element (-)11 0f the inertia matrix only.

m h b
$2 $3 2

(Mm)11 : —E/0 /0 6(w—w0—vt) <1—3b—2 ——2b—3> dxdt :

  

m h b ($0 + 7102 ($0 W vt)3 2 (12)

= —E/O f0 [1—3b—2+2b—3] dxdt

We introduce the substitution:

5 = $0 2— m and d5 = gdt. (13)

The coefficient (Mm)11 can be written then

m h 2 m b 4 9 h

(Mm)11:—E 0 (1 — 352 + 233) ds:—E; ($87 — 236 + 385 + s4 — 283 + s) O

 

(14)
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Figure 3: Displacements under moving mass * space—time finite element solution

for a : 0.5 (upper) and a : 1.0 (lower) compared with analytical solution.

3. Numerical results

In our tests the string was discretized by a set of 200 finite elements. The time step

h was equal to (9/4011. It means that the mass passes from joint to joint in 40 time

steps. Results obtained by the space—time finite element method are presented in

Fig. 3.

Higher velocity can also be considered. Fig. 4 presents displacements in time

of the particle for 0.9 S v/c S 1.2. We notice a good coincidence of the plot with

the expected zero line. We can recall only for information the plot of oscillator

displacements moving over the span. The oscillator spring stiffness was assumed to

be high enough, to simulate a rigid contact of the mass with the string. Results are

depicted in Fig. l. The solution is significantly worse than results obtained with

the method presented in this paper.
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Figure 5: Displacements under the mass

moving on the Bernoulli—Euler beam at

the speed 11:01, 0.2, ..., 0.6 (numerica:

and semi—analytical results).

  

Figure 4: Displacements under the mass

moving on a string for 1) equal to 0.9, 1.0,

1.1 and 1.2 c.
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Numerical results of displacements in time of the Bernoulli-Euler beam are

presented in Fig. 5. The following data were applied: E:1.0, A:1.07 I:0.01, l:l.0,

p:1.07 m:1.0, and P:1.0. We emphasize here that numerical results perfectly

coincide with semi—analytical solution in a wide range of the mass velocity. We

applied non—dimensional speed 1) up to 0.6, which corresponds with the 0.4 of the

critical speed. The critical speed means the speed of the force travelling in a cyclic

way through a beam and increases the vertical deflection to infinity. In the case of

the moving mass the critical speed has considerably lower value and in our example

we approaches to it.

4. Conclusions

We deal with the problem of the numerical treatment of the moving mass problem.

The solution presented in the paper shows the way of mathematical analysis which

results in a universal time stepping procedure. It enables us to solve the problem

with the arbitrary speed. The solution in the case of the string exhibits discontinu—

ous mass trajectory [67 7] at the end support. This fact influences high gradients of

the solution at the final stage of the motion. This phenomenon is the paradoxical

property of the differential equation (1) since considering boundary conditions we

intuitively expect smooth curves. Numerical results of the string vibrations exhibit

good accuracy7 comparing with semi—analytical solution. In the case of the beam

the coincidence of both curves is perfect.

The solution presented in the paper is the only correct end efficient numerical

solution of the moving mass problem in the literature.
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