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Abstract

In the paper results of the analysis of high frequency
forced vibration of rolling wheelset interacting with rail
by means of springs carrying the the loading in three
directions of relative displacements (verical, lateral and
longitudinal) and a spin which models rotational resis-
tance are presented. A wheelset is modelled as a system
of two elastic wheels connected by a rigid axle. Wheel
tires are modelled as a elastic Rayleigh’s beams with
constant corvature, joined with the axle by continuous,
visco-elastic Winkler-type foundation.

The second approach was performed by the space—
time discrete modeling of the dynamic rail-wheel con-
tact problem. The space-time finite element method
was applied to the analysis of the induced corruga-
tions. An arbitrary mesh modification, both in time
and space, enables the easy modeling of rapidly varying
contact zone. The velocity formulation is used and the
discontinuity of the velocity in the contact is removed
by a special algorithm. Finally the discussed technique
was used to simulate interaction of the elastic wheel and
rigid rail. It was shown that the contact force oscillates
and the material of the wheel rotates oscillatory.

1 Introduction

In the railway transportation both the load carrying
capacity of carriages and speed of trains increase. It
causes new problems of exploitation: faster wear of rail
surfaces and wheel tires. Circular geometry of wheels
and plane surface of rail heads lose their perfection.
Both on the rail head and the wheel ring wave-shape
deformations can be observed. They are called corru-
gations. Even in low speed motion and light trains the
result of successful deformation of steel rail by the wheel
can be seen by the naked eye and requires frequent in-
tervention of technical services. The improper wear re-
sults in considerable increase of noise. In cities noise

generated by tramways or even underground trains neg-
atively effects the environment. In long distance trains
can be tiring for passengers. From the technological
point of view spurious effects of mechanical phenomena
shorten the life of large steel parts of mentioned mean
of transportation.

Another case where similar phenomenon occurs are
vehicle breaks and clutches. High frequency oscillations
generated between break shoes and disks or friction
disks of the clutch considerably reduce the life time of
elements. Besides a noise affects the environment by
tones heavy to carry down.

The aim of the work is the simulation and investiga-
tion of generation of corrugations and its influence on
the durability of rails. Particularly burdensome con-
ditions will be in the scope: self excitation in higher
(300 km/h) velocity range, influence of non-linear ma-
terial properties (visco-plasticity), non-linear friction,
torsional vibration of wheel/axle system, influence of
plate bending state for cone-shaped wheel, approach
to optimization of resulting parameters. The subject
is wide and several research centers in the world work
intensively in the field.

Both the polygonized contour of the wheel and the
waved surface of the rail will be simulated in the selected
tasks. The process of the destruction of wheels and rails
will be investigated.

The problem pointed is wide and has been under-
taken in several research and technological centers in
the world (USA, Japan, Germany, France). Different
hypotheses were assumed as a base of investigation.
Some of them can be easily rejected, others require in-
tensive theoretical and numerical tests. In the literature
the following cases are pointed as a source of corruga-
tions:

¢ imperfections in rail joints,

e cone form of wheels which results in different linear
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speed of left and right wheel; it causes snaking of
trains and generally, disturbs steady motion,

e periodical structure of rails (sleepers); instability
of motion on the periodically placed supports [1],

e contact problems between wheel and rail; stick and
slip sections which vary with high frequency (hor-
izontally) generate waves which deform elastically,
then plastically metal surfaces [2, 3, 4],

o residual stress caused by manufacturing and service
of rails and wheels [5],

e non-linear friction law in the stick zone [3],
o influence of material hardening [6],

o deformation of elements of wheel/axle as results of
impact during rolling motion,

e instability of wheelsets motion [7, 8].

2 Simple truck models

Theoretical formulations which are intended to provide
calculation models are generally limited to influencing
factors which seem to be important. The particular sig-
nificance of dynamic problems explains why increasing
attention has been paid to the study of oscilations with
the aid of theoretical calculation models which give a
better insight into the phenomenon of corrugation for-
mation.

The most significant facto is rail or wheel tire vibra-
tion under the action of moving and oscillating load.
Bogacz et al. [9] examined the rail modelled as the
Bernoulli-Euler or Timoshenko beam on an elastic foun-
dation subjected to a moving oscillating force.

The equations of the Timoshemko beam motion re-
garding the effects of shear deformation and rotary in-
ertia are given as follows:

0% Ow 0%
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The solution of (1) can be written in the form:

W (Ro,7) = Wi(Ro)coswT + Wa(Ro)sinwr  (2)

The solution and disscussion of essential differences be-
tween the solutions for various velocities V' and frequen-
cies ) are given by Bogacz et al. [9]. An example of
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Figure 1: Displacement of the beam.

displacements for t = 0, t = T/8,t = T/4, t = 3T/8,
t = 2m/w is presented in Fig. 1.

3 Dynamic stability of the wheel

3.1 Physical and mathematical model of
the wheel

The wheel tire is modeled by the elastic curved
Rayleigh’s beam joined with the axle by means of the
continuous elastic Winkler type foundation. The elas-
tic foundation constituting the wheel disc carries out
the load in three directions: circumferential, radial and
vertical to the plane of the wheel. Curved beam theory
ensures the real shape of the cross-section. Visco-elastic
properties of the wheel material are described by the
Kelvin-Voigt model

Oug;
qg; = — (k‘onj + Cja—;)]>

where g¢;, uo;, (j =1, 2, 3) — reactions and displace-
ments of elastic foundation in circumferential, radial
and vertical direction, kj;, c¢; — stiffness and damping
in elastic foundation. The following coordinate systems
are assumed in the 3-D mathematical model of rotating
railway wheel (2):

3)

e polar system ¢, R with the pole in the wheel cen-
ter, rigidly connected with the rotating wheel; by
means of three coordinates the geometrical axis of
the tire has been described,

e polar system 7, R, with a pole in the wheel center,



Figure 2: Coordinate systems and exciting forces.

used for the description of the rotational motion of
the wheel,

e rectangular system of coordinates &,7n,( with the
origin O on geometrical axis of the tire and a po-
sition given by spatial coordinates ¢ or ¢1; &,1,C
constitute tangential, normal and binormal direc-
tions to the undeformed axis of the wheel; this co-
ordinate system allows to describe displacements,
internal and external forces and a cross-section of
the wheel tire.

The geometrical axis of the wheel tire were modified by
the geometrical centers of gravity of undeformed wheel-
tire cross-sections. Assuming the angular velocity of
the wheel ¢ to be constant, the relation between ¢, R
and 1, R has the following form:

(4)

The problem is more complex now due to the the curved
beam and greater number of dimensions. Detailed ex-
amination of the of the problem in the case of two di-
mensions was described in [10].

The system of coupled differential equations which
describe forced vibrations of the wheel tire rotating with
the velocity g, including visco—elasticity can be written
in polar coordinates ¢, R in the form:
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where:
u, v, w—displacements of point O in directions

67 n, Ca

J-rotation angle of the wheel tire cross-

section related to £ direction,
m;—reduced masses of the wheel tire of the
disc,
s;—reduced mass moments of the first or-

der,
k;, t;—wheel tire and disc reduced stiffness,

a;, di—damping equivalent coefficients of the
wheel tire and disc,
ge, gn, gc—external forces distributed continuously
along the geometrical axis of the wheel
tire,
mg, My, m¢—external moments distributed continu-
ously along the geometrical axis of the

wheel tire.
The system of equations (7) is the mathematical 3-

dimensional model of the wheel rotating with the veloc-
ity ¢o. The first two equations refer to the motion of
the wheel tire in its plane (circumferential and flexural



radial vibrations). The vibrations in the wheel plane
and vibrations out of the wheel plane are coupled by
means of elastic and inertial forces.

Vibrations are excited by harmonic point forces act-
ing at the contact point S. Spin moment M, was also
taken into account as a source of excitation. The pos-
itive senses of exciting force was assumed according to
the senses of axes £,7,( (Fig. 2). The solution of the
system of equations (7) describing forced vibration of
the rotating wheel is postulated in the coordinate sys-
tem ¢, R in the form:

1 1 ,
u(p,t) = %Tm(t) + - Z T11(t)cosngr + Tha(t)sinnepy

n=1
(8)
The amplitude A, of vibration of point O can be ex-
pressed as follows:

2
1 aq > .
Au(pr) = - 70 + Z(alncosncpl + agsmnwl]
n=1
bo ?
+ 50 + Z(blncosmpl + basinnepy 9)
n=1

The displacements v, w, ¥ and the amplitudes A,, Ay,
Ay are found in the same way.

3.2 Numerical results

Frequency response functions obtained by numerical
calculations in the case of forced vibrations of the rail-
way wheel is depicted in Fig. 3. Characteristics refer
to the the point O for the coordinate ¢; = 7. Am-
plitudes A, (7), A,(7), Ay(r) were determined for the
first eleven modes of vibrations and their values were
given in dB assuming the reference level 107! m.

The numerical analysis was performed for the nomi-
nal wheel diameter 0.95 m and for the angular velocities
(o of the wheel which correspond to the linear veloci-
ties 0, 200 and 400 km/h in the rolling motion. Other
numerical results can be found in [11].

In the case of the velocity about 200 km /h the ampli-
tude with the frequency about 100 Hz are considerably
higher then in the case 0 km/h of 400 km/h.

4 Space-time element analysis

4.1 The space—time modeling of contact

problem

Dynamic contact problems are characteristic of fast
varying contact domains. In some problems the pre-
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Figure 3: Frequency response functions for rotating rail-
way wheel.

cise definition of the contact zone is of fundamental
importance. Contact phenomena with friction that in-
volve vibration of the stick and slip type require both
the small time step of the integration of the differen-
tial equation of motion and refined mesh in that region.
The finite element method gained its popularity since it
is relatively simple and universal in applications. How-
ever, in certain problems the F.E.M. is difficult since
its discrete form does not allow to investigate the prob-
lem with the required precision. For example, the vary-
ing contact zone, extended between two nodes in spa-
tial mesh requires subintegration of resulting matrices
to evaluate more precisely friction contribution. Much
more natural approach is to modify the spatial mesh
and subintegrate the differential equation in time, in
required regions only.

The spatial adaptation of the mesh in structural dy-
namics can rarely be found in the literature (for ex-
ample [12, 13, 14]). However, the simplest interpola-
tion of displacement, velocity and acceleration vectors
were discussed there with particular reference to ad-
ditional joint. Such a discontinuous path to the re-
fined/coarsened mesh changes the problem under con-
sideration: local and global stiffness and temporary dis-
tribution of acceleration and velocity, compared with
the problem solved with the constant mesh. The adap-
tation procedure may incorporate greater error than the
simple classical computation. It is well visible if higher



Figure 4: Spatial mesh assumed in calculation.

modes are not damped. Although smoothing by phys-
ical or numerical damping enhances the quality of the
solution, we can not accept such a technique without
restrictions.

The basics of the space—time finite element method
was described in [2, 15, 16, 17]. First the displacement
formulation was developed. Then the same idea was
extended to derive velocity formulas [18, 19, 20, 21].

4.2 Example and results

In the numerical analysis of the rolling contact problem
we shall limit the investigation to the range where the
contact occurs. Other factors such as friction, plastic
deformation, hardening, can simply be added following
the classical scheme. As an example we take the wheel
with the radius R=10 cm, thickness 1 cm, made of steel
(E=2.05-10" N/m?, v=0.3, p=7.83 g/cm?). It rolls on
the rigid base with an angular speed w. The linear
velocities taken into account were of the range 90-180
km/h. The elastic material in plane stress was assumed.
The domain was discretized with 864 triangles and 469
nodes (Fig. 4). The uniform mesh density was applied
for the reason of wave nature of the process and stress
concentration passing throughout the domain. To avoid
multiple rotations of matrices effected by the rotation
of the structure and in the same time the accumula-
tion of round—off errors the rotation of the rigid base
over the fixed wheel was assumed. All the forces aris-
ing from the circular motion were introduced. In the
first stage the wheel, which turns is settled slowly on
the rigid base (in numerical simulation the base which

Figure 5: The scheme of the rolling wheel problem.
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Figure 6: Contact force in successive turns in the case
of w=0.3-10"2 rad/s

turns presses slightly the fixed wheel). The depth of
penetration (flattening) reaches finally d=0.1 cm (Fig.
5). In order to avoid the influence of the initial con-
ditions and to reduce the effect of wave reflections and
interference the comparatively large numerical damp-
ing was assumed. The value of the parameter v [19]
was equal to 0.2 and it corresponded to the logarithmic
decrement of damping A = 0.03. In practice it allowed
to damp vibration according to the first eigenform and
the period T ~ 80 us in 95% during the first 1/4 turn
of the wheel.

Computation shows that the contact force vary, even
when the motion is steady and well damped. First five
turns of the wheel with the speed w=0.3-10"2 rad/s is
presented in Fig. 6. The zoom onto the part of the
diagram is presented in Fig. 7. The elastic-plastic ma-
terial with hardening was assumed in computetion. The
second invariant of stresses J; was integrated in succes-
sive phases of the full turn. It enables us to show the
distribution of stresses in the material (Fig. 8). Final
form of the diagram depends on problem parameters.
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Figure 7: The part of the diagram of the contact force
in time.

In the presented example corrugations are successfully
flatened. However, in the case of other material coeffi-
cients concentrations of stresses under the wheel surface
increases.

The analysis exhibits the periodical distribution of
the wear on the wheel surface which can occur during
exploitation. The number of contact force oscillations
decreases along with the increase of the speed. It was
observed for example in [22, 23] for a rubber wheel.
However, in those publications the authors treat the
problem as an eigenvalue problem. They do not solve
the initial boundary problem. The estimated diagram
of the relation between the number of oscillations in
one full turn and the velocity w is shown in Fig. 9. The
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Figure 9: Number of cycles of the reaction and its max-
imal value in relation of the angular velocity w.

value of the contact force increases with the increase of
the velocity w.

The investigation was performed for a full turn of
the wheel. If the number of waves due to a turn is

not an integer (i.e. the phase shift occurs after each
turn), then the diagram is disturbed in the vicinity of
the lower point of the wheel, from which the solution
starts and on which is finished.

5 Conclusions

The efficient method for analysis of dynamic contact
problem is presented. The soft way method [19] with
modified contact condition described by velocities pro-
vides for a convenient treatment of the dynamic contact
problem, even in the case of large time steps. The pre-
sented method is successfully applied to the problem of
corrugations. Even in the simplest case of the material
property one can notice the oscillation of the contact
force. The resulting stress distribution is stationary if
the observation is carried out in the rotating coordinate
systems and for the particular value of the angular ve-
locity. If the plastic material was used, the deformation
would polygonize the wheel surface permanently. Then
successive passages of the wheel over the rail increase
the wear by the dynamic feedback [24]. The friction
introduced to the contact region can changes quantita-
tive relations. It is shown that neither imperfections of
rail junctions nor periodic placement of sleepers gener-
ate corrugations. Simple stationary motion is disturbed
by the propagation of waves from the contact point. In
our case the load is introduced kinematically. In the
real problem, despite of different type of loading, the
situation can be similar due to considerable inertia of
the wheelset.
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