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Chapter 12

Solving optimal control problems described by
PDEs

by Czesław Bajer1, Andrzej Myśliński2, Antoni

Żochowski2, Bartłomiej Dyniewicz1 and Dominik

Pisarski1

12.1 Introduction

The computational methods used in practice do not allow an accurate representa-

tion of the phenomena occurring in the processes described. Despite the effort and

engagement of the knowledge from many disciplines we can not describe all the

phenomena which occur. For this reason, we try to separate them from each other

and focus our attention on one single phenomenon. Often we are forced to go back

and accept the solution of simpler problems, which significantly deviates from our

initial expectations. We make simplifications every step of the calculation.

We must chose between statics and dynamics, linear or nonlinear description, and

finally take a solution method which satisfy our requirements. Solution methods ap-

plied to problems described by partial differential equations are treated in numerous

papers. The efficiency and accuracy of solutions are main two features that are taken

into account in numerical modelling. Numerical methods applied to such problems

can be divided into two main groups:

• methods based on the discretization of the differential equation (for example cen-

tral difference method),

• methods based on the discretization of the spatial and time domain of the problem

(finite element method, space-time finite element method).

Moreover, one method can be applied to space while the other to time.

While many of simplifications are intuitive and the degree of approximation is

assessed in a rather arbitrary manner, the degree of approximate validity of these

mathematical methods can usually be estimated well. Hence, there are a large variety

of computational tools. Mathematical methods that lead to numerical schemes can

be divided into three groups:

Strong form – description of the equations of motion is represented by a system

of differential equations in space and time, supplemented by boundary and initial
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348 12 Solving optimal control problems described by PDEs

conditions. Some computational methods reduce a strong system to a system of

algebraic equations.

Weak form – presents a problem in the form of a weighted integral equation.

This leads to a description of averaging over the field considered.

Variational form – presents a problem in the form of functional whose station-

arity conditions lead to a weak or strong form. The transition from one form to

another is done using the rules of the variational calculus.

Strong forms of description of phenomena have been used for a long time. New-

ton’s second law is an example. Solutions of the tasks described by strong forms

consist of a direct discretization of the differential equation, such as the finite differ-

ence method. Suitable differences replace the differential quotients. The basic defect

is the difficulty of its application for non-rectangular or non-circular areas, and for

problems which take into account the boundary conditions.

Therefore, formulations based on weak forms and variational forms have gained

greater popularity. The advantages of such a course of action are as follows:

• unification of procedures in various theoretical and engineering problems; func-

tionals are scalars, and as such do not depend on the reference system, which in

turn facilitates appropriate transformations,

• weak forms and variational forms are the basis for effective computer methods,

• with variational forms and weak forms the basic principles of mechanics, such

as energy conservation, conservation of mass, conservation of momentum and

angular momentum can easily be expressed,

• the error estimation is facilitated, and so is the determination of the stability and

the convergence of the numerical method employed.

Variational methods of solutions dominate methods based on strong forms. The lat-

ter are slowly beginning to address the conservation problems involved with historic

sites.

12.1.1 General information on classes of problems

Partial differential equations which describe problems of mathematical physics can

be divided into three main groups:

• elliptic differential equations that describe stationary problems, for example

∂ 2u(x,y)

∂x2
+

∂ 2u(x,y)

∂y2
= f (x,y) (12.1)

• parabolic differential equations that contain first time derivative and describe

problems of diffusion, heat transmission, etc., for example

∂ 2u(x)

∂x2
−

1

a2

∂u(x)

∂ t
= f (x, t) (12.2)
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• hiperbolic differential equations that contain second time derivative and describe

dynamic problems, for example

∂ 2u(x)

∂x2
−

1

c2

∂u2(x)

∂ t2
= f (x, t) (12.3)

All three groups are important from the viewpoint of engineering practice and re-

search. Treatment of physical phenomena in areas of complex shape is a charac-

teristic feature. In such areas known analytical methods leading to closed solutions

fail. In the group of approximate methods the finite element method gained a dom-

inant position, because of simplicity in engineering practice and a more intuitive

discretization of the domain.

A shortcoming of the finite difference method is an effort of the imposition of

constraints (boundary conditions). More difficult is also the interpretation of results,

and above all the determination of the parameters derived from state parameters. In

addition, basic variant of the finite difference method required a certain regularity

of the test domain. Ideally, when it consists of rectangular subdomains. The gener-

alization of the method for arbitrary areas developed by Orkisz [192, 261], gave a

powerful computational tool. Unfortunately, computational methods based on dis-

cretization of the differential equation lost with the finite element method, easier in

algorithmization.

Computational capabilities of the methods, used in practice and allowing for ef-

fective modification of the task, thus optimizing the solution or control of selected

parameters, result from the description method of the output. Due to the long expe-

rience of the authors related to programming and numerical solving of tasks, at this

stage we reject all the techniques associated with the discretization of differential

equations, and leave the finite element method as a tool to enable a relatively easy

modification of the mathematical model.

The important stage is the input of data. In the finite element method, regard-

less of the type of problem, five groups of information are required. They provide

fundamental information on the object, boundary conditions, and externally applied

load:

1. coordinates of nodal points in the mesh,

2. mesh topology, i.e. numbers of nodes in elements,

3. material data,

4. number of bodes with imposed boundary conditions and type of constraints,

5. external load (for example external forces, heat flux, etc.).

Computer packages for the numerical simulations are complex because phenomena

analyzed are complex. Creation of a computer program intended for a single, defi-

nite task takes 1–5 person-years (it is not applicable to the scope of simple tasks per-

formed in a limited range as part of work of graduate students). Relatively universal

commercial packages consume the equivalent of tens to hundreds of person-years

of work. And so they lack capacity to analyze many important problems, such as for

example elasticity in moving the external load [107, 19, 20].
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Due to the nature of the input data, we can separate the tasks in which we can

modify only selected structural parameters. In this group of optimization problems

we adjust strength parameters (mainly cross-sections) to minimize the cost of con-

struction, while ensuring the desired strength. School example is the selection of the

truss height and the type of its geometrical scheme, to cover the given gap. Mostly

we do this for problems described by elliptic differential equations.

Another task of border of control and optimization is described by the parabolic

equation the heating process in designated area to a certain temperature. In the pro-

cess of hardening, melting, casting, injection molding, etc. we want to achieve the

goal of spending the minimum of external energy. Moreover, the heating or cooling

process is also clearly defined in advance. We cool the object evenly and avoid dam-

aging residual internal stress. Important is the performance of the process in time.

These tasks are relatively well recognized experimentally by trial and error way. It

does not change the fact that more and more complex objects, heat treated, require

new trials.

The most difficult are the tasks described in hyperbolic equations. These are the

tasks of structural dynamics, vibration problems, wave problems. Here, on the one

hand side we describe the construction with the system of elliptic-parabolic differen-

tial equations, on the other side the term associated with time brings the hyperbolic

nature. These are, like the previous group’s tasks, the problems of evolutionary na-

ture. It is impossible to predict the effect of the process, without observation of the

entire path of transition to the final stage. Tasks of this group are computationally

very expensive with high risk associated with the instability of the solution.

Here we touch an essential feature of all three groups of tasks: nonlinearity of

equations describing the problem. In the simplest case this can be taken into account

the friction phenomenon or the contact of a portion of the edge to another part of

the structure or outer constraints. Energy functionals, by which we describe the

tasks are usually non-convex and we can not prove the existence and uniqueness

of solutions. For this reason, the process is discretized in time and we assume that

in time intervals variable parameters are constant. In this way we get piecewise

linear equations, whose features and properties we know. Unfortunately, we can not

give a global solution. For this reason the impact on the solution by changing the

parameters is extremely difficult. It is easy to exceed the limitations imposed by

stability criteria. Moreover, most of linearized tasks criteria are difficult to identify.

12.1.1.0.1 Available software

Let us compare here control problems described by ordinary differential equations

with control problems applied to partial differential equations. The fundamental fea-

ture that differs both groups is the computational complexity and cost of a single

solution of the engineering problem, in practice – the objective function.
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In the case of ODE the control problem takes about half of the total computa-

tional cost. The control problem in PDE takes few percent or less of the total cost.

The remaining incurred effort, i.e. the majority, is spent for performing engineering

computations.

The following facts must be underlined:

1. the solver of PDE systems for linear elliptic problems is relatively simple and

can be programmed by skillful users in reasonably time,

2. the graphical input and output for complex domains is time consuming and

depends on the computer architecture; it is usually considered as a separated

problem,

3. the mesh generation is also complex even in the case of 2-dimensional domains,

although numerous efficient procedures exist; in the case of 3-dimensional ob-

jects it can be a real challenge; in this case the generation of of a mesh must be

supplemented with efficient way of assignment of different material parameters

to each finite element.

Then the calculation part can be elaborated individually or the available open-source

package can be applied. Individual software gives the opportunity of interference

when the control procedure is elaborated. The possibility of using public domain

packages are extensive. There are probably over a hundred items. Some of them are

described in terms of the purpose and basic features. Most proposed are as follows:

Faep – complex finite element analysis with nonlinear problems,

Felt – in Fortran, applied to frames, 2D and 3D solids, statics [150], thermal

problems and dynamics,

FElib v. 3 and v. 4, written in Fortran,

FEC – library in C,

FELyX – library in C,

FEM2DLib – library in Fortran,

FEMLab2d – interactive FE package to 2D problems,

FEMLib – object oriented library in C++,

FEMOctave – library package to system Octave,

FEMSET – package to bar and frame analysis,

Free Finite Element Package – library in C,

FreeFEM, FreeFEM+, FreeFEM++, FreeFEM3D – library for adaptive Finite

Element Method,

GeoCrack – fluid flow in porous media,

KFEM – adaptation of FreeFEM to graphical Kde desktop environment),

MiniFEM – package for 2D problems,

ModFe – water flow in soil,

SEM2DPACK – in Fortran, for analysis of seismic wave propagation.

The vast majority of the packages were made as students and doctoral students

works. They are usually organized as a collection of procedures or semi-compiled
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imposition

of boundary conditions

matrices

assembly of global finite elements

solution of algebraic

system of equations

computation of suplementary

physical quantities

generation

of the mesh

graphical input

of results

graphical presentation
printing of results

data input

Fig. 12.1 Scheme of the computational process performed by the finite element method.

libraries. In the hands of their creators they can be relatively efficient. Unfortunately,

they have the following disadvantages, practically excluding them from wider use:

• they are written for individual purpose, arising in an evolutionary way from the

author’s acquired skills and knowledge of the subject, and often so are not useful

in a wider use,

• they do not have sufficient documentation and therefore the possible use must be

preceded by a time-consuming procedures for the diagnosis of contents; this cost

is comparable to writing our own procedures from the beginning,
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• procedures contain errors, of which the author are not aware, or deliberately left

them abandoning the testing stage and corrections; the use of them forces others

to adjust to the awkward style, programming (the division of tasks procedures,

characteristic parameters of objects, etc.) often can not be compatible, especially

if we use modules from different sources.

For this reason it is extremely difficult to adapt for own needs publicly available

programs. Their use is usually limited to the repetition of tasks similar to the test

examples, delivered together with source procedures. On the other side commercial

codes are well documented and allow solve various problems. The variety of prob-

lems that can be treated by commercial software usually exhausts assumed aim.

There is a reason why commercial software packages are expensive, and their im-

plementation – laborious. Experience shows that the time devoted to write raw code

represents 5–10% of the total time spent on creating a finished, efficient, and well

documented computer program. Therefore, the average statistical efficiency of pro-

grammers is 5 standard code instructions par day. It is not surprising that the creators

of publicly available sources of codes do not take the effort to pass tests and docu-

mentation stage.

12.1.1.0.2 Bar structure vs. plane structures and solids

Control problems applied to bar structures (ie. trusses, grids, frames) can be divided

into two groups:

• optimization of the geometry (lengths of elements, cross-sectional areas of bars),

• control of vibrations of structures:

– characteristic modes of vibrations,

– vibrations under oscillatory load applied to selected points,

– vibrations under a moving non-inertial and inertial load,

– coupling of vibrations between two structures.

2- and 3-dimensional problems additionally enable the control of heat conduction,

diffusion and filtration in porous media. Nowadays bar structures do not cause dif-

ficulties.

12.1.1.0.3 Use of the available software

We can not count on making full use of public domain software. Worth consideration

are therefore the following solutions:

1. use of the existing two-dimensional mesh generator and creation of the own

solver for tasks of two-dimensional unsteady heat flow and elasticity,

2. use of the existing two-dimensional mesh generator program and available finite

element solver for respective tasks,

3. stay in the research area of bars and preparing data in a form.
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Because of the given objective of the project we take into account only the packages

that allow the calculation in batch mode. We exclude programs that run graphically

and issuing the results graphically. In the case of graphical service is not easy to

run the code on the remote machine in browser mode. In the case of 2-D problems

we propose the procedure as in Figure 12.2. In discretization it is sufficient to use

discretization

of the domain

modification of the problem

(control)

solution of the

problem

preliminary description

of the problem

Fig. 12.2 Scheme of the solution of 2D problems.

the program triangle (Figure 1.4). It works by adapting created triangle mesh to

given contour lines. In different subdomains we can get different mesh densities.

The degree of elongation of triangles is also restricted. Numerous set of parameters

allows to obtain the desired result.

Inconsistent numbering of nodes is a drawback of the creation performed with

triangle. Some numbers have no equivalents in the resulting table of nodal numbers

and their coordinates. Before using the resulting array the renumbering of nodes

numbers must be performed with supplementary procedure. The program is use-

ful in two dimensional problems since the mesh generation is time consuming and

elaboration of own mesh generators for arbitrary contours is complex.

12.1.2 Active control of mechanical structures described by

partial differential equations

Lightweight structures have been intensively investigated in recent years. Optimal

design with low weight is insufficient in the case of dynamic behaviour of the struc-

ture. There are some approaches to the decrease of the vibration level.

• Passive vibration absorbers — the idea is performed by means of dynamic vibra-

tion absorbers as a set of additional masses flexibly attached to the main system.
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Both transverse and rotational types of absorbers can be applied. The out of phase

vibration of dynamic absorbers results in elimination of vibration of the structure.

• Active control — the control forces are generated by electric actuators imposed

on the tendons or on a stiff cantilever fixed to the end of the beam [135, 293].

The actuators can generate both transverse control force and bending moment. It

enables to control the predominant lowest vibration modes of the beam whereas

the piezo-electric actuators are used to control higher ones. The possibility of

unstable behaviour in the case of improper design is the disadvantage of such a

solution.

• Semi-active damping — the control of the damping of viscous dampers installed

in the structure [259]. The span of the beam is supported by viscous dampers.

They can be attached to rigid foundation or hanged on a system of tendons. The

damping properties are changed according to the position of the travelling load or

other, more complex observation of the beam response. Such a control is always

stable.

The following are the possible applications of optimal controls for the selected dy-

namic systems. We will present the concepts of the use of methods of optimal con-

trols of discrete systems to some of the proposed tasks. Each of them is the unique

solutions and certainly the attempt of implementation will be attractive. The tasks

are grouped and dealt with separately, because each of them requires a different

approach in the formulation of the problem and the optimization.

We can give the following examples of problems:

1. The class of active controls of continuous systems subjected to travelling load

can contain particular tasks:

a. Optimal trajectories of passing load (straightness).

b. Minimization of deflection of structures under a moving load.

c. Minimization of deflections of a structure to preserve minimum of the en-

ergy expense.

d. Optimal control of the vehicle suspension.

2. The class of active controls of continuous systems under a given load, subjected

at a set of stationary points contains the following tasks:

a. Optimal reduction of structural vibrations.

b. Optimal transition of the system from one dynamical state to another.

3. The class of active controls of continuous systems subjected to small distur-

bance can contain:

a. Stabilization of the system with possible use of optimal Lyapunov func-

tions.

4. Transport problem:

a. Reduction of vibrations of guideways, bridges, and railway tracks.

b. Multiple-beam systems that absorbe vibrations [271].

c. Strings and cables supporting moving loads.
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12.1.2.0.4 Examples of problems

Ad. 1a. The perspective of applications to various production processes where pre-

cise movement in a straight line is much essential, the implementation of the rec-

tilinear trajectory of passage can be attractive. Active and semi-active control of

beams or plates elements can significantly correct the quality of such trajectories.

State of the system would be defined by the coordinates of displacements from

the equilibrium position. The moving load can be accepted as a force of constant

value travelling along a beam or plate with constant velocity. Any spatial distribution

of the actuators would be an external control system. Cost function can be expressed

by the integral of the deflections module calculated by the trajectory of the motion.

Can also be minimized maximum deflections of the trajectory curve. Such a problem

would fall to the category of controls in an open system, and control quality index

would be calculated at time corresponding to the length of travel time. The control

functions operate on symmetric compact set. As a result of proper discretization the

problem can be formulated according to the assumptions for Maximum Principle.

For the numerical solutions used to algorithms for nonlinear optimal control with

appropriate integration of the system with coupled variable. The result would be the

optimal control courses of the actuators applied to the system. Appropriate definition

of penalty function which fulfil the assumption of a limited set of values of control

functions.

The method of discretization significantly affects the computational aspects of

the problem. If you take the modal coordinate space as the state space it should be

adequately define the system load vector, which is a nonlinear operator of the addi-

tional state variable. It is de facto the time coordinate. This is a classic trick that is

used in the transition from the non-autonomous system to the autonomous system.

The linear non-autonomous problem transform to the non-linear autonomous prob-

lem, it can be directly applied the Pontriagin Maximum Principle. When integral

indicator of quality specified only the state of a system, as previously mentioned,

the form of a Hamiltonian system can be expected that the optimal control will take

a bang-bang form. Suitable numerical methods can be used here to find the optimal

switching times.

Ad. 1b. From the viewpoint of reduction strength of the structure deflections at

specific points in the structure may be attractive. The development of transport, in-

cluding high speed trains entails the construction of new, more durable structures or

strengthen existing ones. Increasing requirements for speed and weight of vehicles

require renovation of bridges, overpasses, railway and subway tracks. Actuators ap-

ply to the structure can significantly reduce the amplitude of the vibrations caused

by moving loads. Indicator of quality control can be expressed a maximum deflec-

tion or have the integral form of the displacements calculated at selected points of

the structure. Another approach suggested by the standards of construction vibra-

tions would require to determine the quality controls by the integral of the velocity

in the most sensitive points of the structure. Minimization of quality functionals so

defined, would allow for finding controls, which much improve the life of the struc-
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ture. Computational technique can be based on the formulation of the Pontriagin

Maximum Principle.

Ad. 1c. This is a standard example of the minimum-square problem. Quality

functional includes the energy spent on control. This energy is expressed by the cor-

responding quadratic form. In this optimal control problem formulation we obtain

control functions dependent on the state variables - the closed-loop control. Solution

of the Riccati equation would provide the terms of the control in a closed form.

Ad. 1d. The problem would be to find a control function responsible for the func-

tioning of the actuator in a vehicle suspension travelling along a construction. This

is a problem so-called moving oscillator. Its practical significance need for a com-

fortable passage through structures such as viaducts, bridges or plate is explained.

The system can be expressed in the form of discrete modal space. The dynamics is

described by a linear system of equations of motion for time-dependent coefficients.

Assuming the quadratic performance index control can be expressed as a subsidiary

of state variables. The disadvantage of this approach is that the matrix K in Riccati

equation is time dependent and must be calculated separately for each position of

the oscillator.

Ad. 2a. In many cases, the work of machines associated with excitation of vibra-

tions in the foundation. Wherever there can not be applied directly to the effective

isolation of contact with the ground and machine, you can consider the problem of

active vibration damping using actuators to support the whole system, ie the founda-

tion with the machine. Therefore can be considered plate subjected to an excitations

at fixed points. Excitations may have set of known progress. The main class here

would be the harmonic excitations. The plate may be simply supported on a fixed

foundation and/or based on on a set of controllable actuators. Optimal control of

such a system can be understood as an optimal reduction of vibration amplitudes

at selected points of the plate. Appropriate for this task would be discrete model

developed using finite element method. Operation of excitations and controls would

be described by the vectors with nonzero components in locations corresponding

position in space. Indicator of quality control would have the integral form of dis-

placement or velocity of selected components of the state. On the occasion could

be included the components determining the energy expenditure in control. After

switching to an autonomous system we obtain nonlinear optimal problem formu-

lated according to the direct application of Maximum Principle.

Ad. 2b. Here can be considered to carry out a continuous system from one state to

another in minimum time. Discrete model obtained by finite element method would

be a state variables system subjected to controlled external forces. Solution of the

time-optimal problem can get by using the Maximum Principle. Consider appropri-

ate limitations should be here at the state and control. Another problem would be to

carry the system from one state to another within a specified time, but with a min-

imum expenditure of energy. Should use the appropriate form performance index

such as the quadratic form with controls. Direct integration of differential equations

of state and coupled variables would result in an optimal courses for controlled

forces.
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Ad. 3a. The problem could concern the stability of the continuous system. Many

structures in the course of their work is subjected to external excitations of un-

known disturbances. The use of active controls can increase the area of stability or

improve the speed of convergence to equilibrium. The problem would be to find

a suitable Lyapunov function, assuming a priori the form of such a quadratic form.

Rate of convergence, expressed by the appropriate norm would be functional, which

the extremum seeking. Controls may bang-bang form and dependent of Lyapunov

function. The result is a control program in an open system. The necessary for calcu-

lations would be appropriate numerical procedure determines the optimal Lyapunov

function for each point in time. The problem can also develop on the case when the

disturbances are expressed by certain functions of time.

Ad. 4a, 4b. Semi-active control, of the issues so far, are the group most up to

date, and the methods of solving them are not yet widely known. The share of these

problems in the project would certainly be an important novel element, trying to

implement them would be an interesting experiment.

The forces generated by the active dampers give the bilinear term in differen-

tial equations that is linear due to the state and control function. Suitable numerical

algorithms for the optimization of such controls may be used. When the cost is deter-

mined by the integral state, a Hamilitonian form usually conclude that the character

of optimal controls are bang-bang type. In the case of moving loads are sufficiently

effective control with only one switching, the problem can be reduced quite easily

so the non-linear programming. Consider two approaches to the continuous system

discretization. FEM model provides a direct possibility to construct the observer and

the closed-loop control. In this case for the purpose of use of existing algorithms for

integration of coupled equations can be also formulate the problem for the Maxi-

mum Principle. Discrete model in modal space can be reduced to an autonomous

nonlinear system.

Ad. 4c. The problem of the moving oscillator can also be seen in the category

of semi-active control. The essence of this strategy is the control parameters of the

vehicle suspension, in order to passage realized comfort trajectory, ie the smallest

accelerations in the vertical direction. In such cases, heuristic methods sky-hook,

ground-hook are usually adapted. The challenge here would be an appropriate for-

mulation and solution of optimal control problem.

Control of temperature distribution in the systems describe by partial differential

equations.

Problems may include warm-up bars, plates and three-dimensional solids. The

optimal control problem can be formulated in the following form: choose a strategy

for providing heat to the system in order to carry it from the state A to state B in

a short time and using only the small portion of energy. Quality indicator will be

to an appropriate integral of the sum of one and the quadratic form corresponding

to the input of energy. Control operate on a compact set. As a result we obtain the

optimal trajectories of the inputs and time required for the implementation of a fixed

problem. Discrete model could be provided by finite element method.
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12.1.3 Literature review

Most of the observable natural and physical processes are modelled by using Partial

Differential Equations (PDE). For only few of them the solution can be represented

in a closed analytical form. Therefore, the key for conveying PDE models into real

applications lies in the development of numerical algorithms that result in approx-

imated solutions. The rate of complexity grows even higher for the optimization

problems, where constraints are given as PDEs. For these problems crucial, before

choosing the relevant numerical method, is to resolve the issue of existence and

uniqueness of solutions. This is the reason why most of the optimization problems

are formulated in such a way that the objective function is convex and the set of

admissible decision parameters is compact. As we will show later, the convex prob-

lems are also more convenient for numerical treatment due to the fact, that in case

of quadratic objective function, the insertion of the adjoint state, used for gradient

evaluation, comes very natural and the adjoint PDE reflects the original system.

The study of optimal control goes back to 1950s. In that time two important ad-

vances were made. One was Dynamic Programming, founded by Richard Bellman

[30]. Dynamic Programming is a procedure that reduces the search for an opti-

mal control function to finding the solution of a partial differential equation (the

Hamilton–Jacobi–Bellman Equation) [336]. The other was the Pontryagin Maxi-

mum Principle [138], a set of necessary conditions for a control function to be op-

timal. Based on these theories numerous computational techniques were developed

in the 1960s and 1970s [173]. With the exception of simplest cases, however, it is

impossible to express controls in an explicit feedback form. Large parts of the the-

ory taken from of finite-dimensional optimal control was successfully applied to the

systems governed by PDEs.

There is a good number of works on the various aspects of the optimization un-

der PDE constraints. For the comprehensive study a reader is refereed to the mono-

graphs by Lions [210] and Troltzsch [317]. The books contain deep investigations

on existence of linear and semilinear PDEs, existence of optimal controls, neces-

sary optimality conditions and adjoint equations, second-order sufficient optimality

conditions s well as introduction to numerical methods. The up-to-date quadratic

optimal control theory for PDEs over a finite or infinite time horizon, and related dif-

ferential (integral) and algebraic Riccati equations can be found in the two-volumes

book by Lasiecka and Triggiani [197]. Interesting work on the problems of shape

optimization of nonlinear PDEs is published in the monograph by Mysliński [248].

Reader interested, in particular, application of PDEs control is encouraged to

study the problems of parametric optimization in mechanical systems. Intensive re-

searches on the semi-active control of systems represented by PDE have opened a

lot of unsolved problems. One of them occurs if the cost functional is limited to a

fixed period of time. The switching scheme for control is given in implicit form,

and it depends on state and adjoint state variables. Solving the Two-Point Boundary

Value Problem is time consuming and in general difficult to solve in the case of a

multidimensional problem for vibrating system. Another open problem that occurs

in the case of systems described by PDE is a stability and control of a switched
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system. The asymptotic stability of a switched system can be proven in the simplest

cases only. The extensive research on these problems was treated in terms of the Lie

algebra, and it was done by D. Liberzon et al. in the following works [244], [245].

12.1.4 A few motivating examples

Among the variety of different optimal control problems several of them seem to

be typical, in particular, those that consist of linear PDEs and quadratic objective

functions. We present here a few examples of boundary and distributed control.

We start with a typical academic problem. Then we present some more complex

problems that are related to real engineering issues.

12.1.4.1 Boundary control: optimal stationary heating

We consider a body that occupies some two or three-dimensional spatial domain.

The body can be heated or cooled and the heat source, which is a control parameter,

is applied to its boundary. The goal is to find a control u(x) such that the resulting

stationary temperature distribution y(x,u) is as close as possible to some specified

distribution yd(x). The model used in this example is a simplified under the assump-

tion that the heat conduction parameter is constant. The optimal control problem is

written as follows

min

[

J =
1

2

∫

Ω
(y(x,u)− yd(x))

2
dx +

α

2

∫

Γ
u2 ds(x)

]

,

subject to the constraints −∆y = 0 on Ω ,

∂y

∂n
= λ (u− y) on Γ ,

u ∈U .

(12.4)

The state equation in (12.4) is of elliptic type and the problem is called a linear-

quadratic elliptic boundary control problem.

12.1.4.2 Distributed control: optimal vibrations

Here we consider a vibrating object subjected to force distributed on its surface.

The state of such a system is transversal displacement y(x,u, t) and the control input

u(x, t) is force density acting in the vertical direction. The objective of control is

the excite the desired vibrations, here denoted by yd(x, t). We assume a finite time

horizon. The optimization problem can be written in the following form
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min

[

J =
1

2

∫ T

0

∫

Ω
(y(x,u, t)− yd(x, t))

2
dxdt .+

α

2

∫ T

0

∫

Ω
(u(x, t))2 dxdt

]

, (12.5)

subject to the constraints
∂ 2y

∂ t2 −∆y = u on Ω ,

y(t = 0) = y0 on Ω , (12.6)

∂y
∂ t |t=0

= y1 on Ω

y = 0 on Γ

u ∈U . (12.7)

This problem is referred as linear quadratic hyperbolic control problem with dis-

tributed control. The treatment of these type of problems is much more difficult,

due to the weaker smoothing properties of the associated solutions [317].

12.1.4.3 Identification of a source of pollution

The following example was presented in [184]. It shows how an optimal control

problem can be used to identify the source of a pollution flow. The author consid-

ered a river or a lake with polluted water. The state of the system reflects pollution

concentration, and it is denoted by y(x, t). The location of pollution source is denoted

by a ∈ Ω and it is a parameter to be determined. s(t) is the flow rate of pollution

and it is assumed to be known while yobs is the measured state. The optimization

problem is as follows

min

[

J =
∫ T

0

∫

Ω
(y(x, t)− yobs)

2
dΩdt

]

,

subject to the constraints
∂y

∂ t
−∆y+V ·∇y+σy = s(t)δa on Ω × [0,T ] ,

∂y

∂ t
= 0 on Γ × [0,T ] ,

y(x,y) = y0 on Ω .

(12.8)

The state equation is of parabolic type. The control parameter is a two or three-

dimensional vector of space coordinates.
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12.1.4.4 Optimization of moving load trajectories

The current trend to lightening structures requires new and more efficient methods

to decrease the vibration levels. In large-scale engineering structures like bridges or

viaducts that span gaps, beams must resist loads due to heavy and fast vehicles. The

construction of new bridges of sufficiently higher load carrying capacity is usually

limited by costs. Moreover, static strengthening can be restricted for technological

reasons. Existing old weak structures can be reinforced by supplementary supports

with magneto or electro-rheological dampers controlled externally (see the Figure

12.3).

Fig. 12.3 Optimization of moving load trajectory.

The optimization problem can be stated as follows. For the semi-active dampers

find a control policy such that the moving load trajectory is close to the straight line.

Formally, this can be written as following

min

∫ t f

0
[w(vt, t)]2 dt (12.9)

subject to the constraints

EI
∂ 4w(x, t)

∂x4
+ µ

∂ 2w(x, t)

∂ t2
=−

m

∑
i=1

ui(t)
∂w(x, t)

∂ t
δ (x−ai)+Pδ (x− vt)

w(x = 0, t) = 0 , w(x = l, t) = 0 ,

(

∂ 2w(x, t)

∂x2

)

|x=0,x=l

= 0

w(x, t = 0) = 0 , ẇ(x, t = 0) = 0 ,

where w(vt, t) is the vertical deflection of the Euler-Bernoulli beam under the trav-

elling load and the decision parameter u is the vector of damping coefficients.
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The idea of straight-line passage is based on the principle of a two-sided lever.

The first part of the beam which is subjected to a moving load is supported by

semi-active damper placed on the rigid base. The last damper is active while the

second is passive. At this stage, a part of the beam is turned around its centre of

gravity, levering the right hand part with a passive damper attached. The temporal

increment of displacements on the right hand part of the beam enables us to exploit

it during the second stage of passage.

To the potential application of semi-active damping methods, we can also in-

clude the robotic systems, in particular the linear guideways. The straight or pre-

cisely controlled trajectory of a moving object is essential in some technological

processes such as cutting (flame, plasma, laser, textile, waterjet, glass cutting) or

bonding (glueing, welding, soldering). Other especially suited areas of application

for linear guideway systems are large-format plotters and scanners for various indus-

tries as well as devices in medical and semiconductor technologies. New solutions

can accelerate procedures and decrease the mass and size of guideways supporting

carriages.
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Fig. 12.4 Extremal deflection trajectory and controls.

Extensive studies on the problem are presented in the papers [21], [22]. Here

we recall only the major result: For a wide range of system parameters there ex-

ists at least one semi-active switching control method such that it outperforms the

best passive (uncontrolled) case. The near optimal solution requires a finite num-

ber of switchings for every control. The optimization was performed on the finite-

dimensional model by introducing a relevant adjoint state. The numerical example is

presented in the Figure 12.4. Solid line indicates the optimal trajectory that strongly

outperforms passive case.
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12.1.5 Convex problems with PDE constraints: solving

methodology

Most of the numerical algorithms developed for optimization of partial differential

equations are dedicated to convex problems, in particular, for the problems, where

the objective function is quadratic. There are few reasons for this. The major is that

the convex problem has a unique solution, and therefore, the gradient methods can

be used. Moreover, the quadratic functions enable us to derive simple formulas for

the gradients by introducing adjoint state. It is also worth mentioning that for such

a case, the partial differential equation for the adjoint state reflects the properties of

to the state equation. It this section we present in brief a methodology for solving

a convex quadratic optimal control problem for the partial differential equation of

elliptic type.

Let us consider the following optimization problem

min

[

J =
1

2
‖y(x,u)− yd(x)‖

2
L2(Ω)+

α

2
‖u‖2

L2(Ω)

]

,

subject to the constraints Ay(x,u) = f (x)+u on Ω ,

By(x,u) = g(x) on Γ .

(12.10)

Here x, y and yd stand for coordinate vector, state and desired state, respectively. The

decision (or control) parameter to be optimized is denoted by u∈U . The domain and

its boundary are Ω and Γ (see the Figure 12.5). The operators A (differential) and

B (differential or algebraic) determine the major PDE and the boundary conditions.

Finally f and g are the functions of x or constants. Let us assume that v is the global

Ω : Ay = f + u

Γ : By = g

Fig. 12.5 State and boundary equations.

minimizer for the problem (12.10). Then for every u ∈ U the following condition

is satisfied
〈

dJ(y,u)

du
,v−u

〉

≥ 0 , (12.11)

where 〈·〉 is the inner product in Hilbert space. The term
dJ(y,u)

du
stands for the deriva-

tive of objective function with respect to control and will appear later as the gradient
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∇uJ for finite-dimensional model approximation. First we tend to reformulate the

condition (12.11) such that the derivative is given in explicit form. After differenti-

ation of J we rewrite (12.11) as follows

〈y(x,u)− yd(x),y(x,v)− y(x,u)〉+α 〈u,v−u〉 ≥ 0 , (12.12)

We introduce the adjoint state p that solves the following equations

A∗p = y− yd on Ω ,

Cp = 0 on Γ ,

(12.13)

where A∗ is the operator adjoint to A. By using (12.13) we can rewrite the first term

in (12.12) as follows

〈y(x,u)− yd(x),y(x,v)− y(x,u)〉L2(Ω) = 〈A
∗p,y(x,v)− y(x,u)〉L2(Ω) . (12.14)

Based on Green’s theorem we have

〈Ay, p〉L2(Ω)−〈y,A
∗p〉L2(Ω) = 〈y,Cp〉L2(Γ )−〈By, p〉L2(Γ ) (12.15)

and therefore (12.14) can be written as follows

〈y(x,u)− yd(x),y(x,v)− y(x,u)〉L2(Ω) = 〈p,A(y(x,v)− y(x,u))〉L2(Ω)+

+ 〈p,B(y(x,v)− y(x,u))〉L2(Γ )−〈Cp,y(x,v)− y(x,u)〉L2(Γ ) .
(12.16)

Using the boundary condition p = 0 on Γ we finally get

〈y(x,u)− yd(x),y(x,v)− y(x,u)〉L2(Ω) = 〈p, f + v− f −u〉L2(Ω) =

= 〈p,v−u〉L2(Ω) .
(12.17)

The condition (12.11) can now be written in the following form

〈p+αu,v−u〉 ≥ 0 . (12.18)

From (12.18) we can see that the gradient of objective function with respect to

control is a simple linear function of adjoint state and control

dJ(y,u)

du
= p+αu . (12.19)

This formula allows us to build the computational algorithm based on steepest de-

scent method. The algorithm uses projection P on the set of admissible controls U .

If for instance this set is bounded by two values umin and umax then the projection

can be computed as follows

P(·) = max{umin, min{umax, ·}} . (12.20)
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In order to familiarize a reader with the presented methodology we present a sim-

ple example below. The physical object is a stretched membrane subjected to some

external pressure. Let us assume that we can generate an additional pressure that

acts on some specified area (see the Figure 12.6) of the membrane. The idea is to

find a distribution for this additional pressure such that the resulting total membrane

deflection stays as close as possible to the the common value which we denote by

yd . Adopting the following notation: x1,x2 –spatial coordinates, y–membrane de-

flection, f –external pressure, u–controlled pressure, T –membrane tension, the op-

timization problem can be written as follows

Γ : y = g

Ω : −∆y = 1

T
f

ω : −∆y = 1

T
u

Fig. 12.6 State and boundary equations for the membrane example.

min

[

J =
1

2

∫

Ω
(y(x1,x2,u)− yd)

2
dx1dx2 +

α

2

∫

ω
u2 dx1dx2

]

,

subject to the constraints

−∆y(x1,x2,u) =
1

T
f (x1,x2) on Ω ,

−∆y(x1,x2,u) =
1

T
u on ω ,

y(x1,x2,u) = g(x1,x2) on Γ .

(12.21)

We introduce the adjoint state equation as follows

−∆ p =
1

T
(y− yd) on Ω ,

p = 0 on Γ .

(12.22)

12.2 Mesh generators

There are several efficient mesh generators in 2 or 3-dimensional domains. It is not

our goal to test or evaluate them. We intend to show the real efficiency in our con-
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trol problems. Two-dimensional domains can be partitioned into finite elements with

the internal Felt mesh generator corduroy or external triangle. Three-dimensional

domains can be split by both corduroy or external gmsh [146]. The last one is uni-

versal and can be used to meshing and visualization of data in 2 and 3 dimensional

domains.

12.2.1 Internal mesh generator: corduroy

The in-built Felt mesh generator allows us to spread a mesh over the given contour.

The boundary line can contain holes. The contour is described by a counter clock-

wise polygon while holes by clockwise polygons. Two examples are given below.

The first one gives the mesh depicted in Figure 12.7. The second one describes the

mesh with two holes (Figure 12.8).

start-node = 1

start-element = 1

triangular mesh

element-type = ctg

boundary = [

(0,50)

(20,10)

(40,0)

(40,50)

(55,70)

(95,70)

(115,50)

(115,0)

(135,10)

(155,50)

(155,90)

(115,160)

(170,404)

(122,404)

(67,160)

(0,90)

]

end

triangular mesh

boundary = [

(0,0)

(20,0)

(20,10)

(0,10)
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Fig. 12.7 Single computational pass.
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Fig. 12.8 Generated mesh without and with nodal numbers.

]

hole = [

(6,3)

(6,7)

(8,7)

(8,3)

]

hole = [
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(12,3)

(12,7)

(14,7)

(14,3)

]

end

The automatic mesh point generation together with quadrilateral elements can be

produced from the file given below. The resulting mesh is depicted in Figure 12.9.

start-node = 1

start-element = 1

quadrilateral grid

start = (0,0)

end = (10,3)

x-number = 20

y-number = 6

x-rule = linear

y-rule = linear

end

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

Fig. 12.9 Example of the quadrilateral linear mesh.

The next example results in the mesh shown in Figure 12.10.

start-node = 1

start-element = 1

quadrilateral grid

start = (0,0)

end = (10,3)

x-number = 20

y-number = 6

x-rule = logarithmic

y-rule = reverse-logarithmic
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end

 0
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 3

 0  2  4  6  8  10

Fig. 12.10 Example of the logarithmic mesh.

12.2.2 External mesh generator: triangle

The stand-alone program triangle allows us to create a complex mesh based on

various data delivered. It was written by Jonathan Richard Shevchuk. Triangle gen-

erates:

• exact Delaunay triangular mesh,

• constrained Delaunay triangular mesh,

• conforming Delaunay triangular mesh,

• Voronoi diagrams,

• high-quality triangular meshes.

The command can be supplemented with several options, which allows us to

control the meshing process: mesh density, regularity, maximum triangle area con-

straint, regional attributes, etc.

12.3 Elasticity problem

As a test example we will consider a hip joint implant. Nowadays, there are over

100 million people aged over 50 in the USA and Europe. One of the consequences
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of aging is deterioration of bone quality; also, gradual loss of bone mass is observed,

starting from 30 – 40 years. One of the frequent consequences of aging of the skele-

tal system are degenerative changes often occurring in the hip and the knee, which

may lead to even serious handicap.

Human joints like hip, knee, elbow, etc. have very complicated geometry. To an-

alyze stress states existing in such joints before and after arthroplasty it is necessary

to apply numerical methods like FEM. Usually on the basis of computer tomogra-

phy images the three–dimensional meshes of FE are elaborated. The next problem is

to model the properties of bones including possibly their anisotropy, and in the case

of implants, the behaviour of the system bone–cement–implant or bone–implant for

cementless protheses.

The aim of the present example is to show some elements of optimal choice of

the implanted stem geometry. They mainly deal with stress and displacement anal-

ysis in the hip joint, after arthroplasty. In the same way both cement and cementless

prostheses can be analyzed. The influence of stem dimensions is discussed. An op-

timality criterion ensures that stress distribution is optimal comparing with healthy

hip joint. Moreover, the stress distribution in the neighbourhood of the prosthesis

can be neither extremely low (to avoid stress shielding) nor extremely elevated (to

prevent decohesion).

12.3.1 Stress distribution analysis in healthy and diseased bones

Both 2 and 3 dimensional analysis carried on with the finite element method shows

the distribution of stresses in the bone. Nowadays even complex form of the bone or

implant–bone couple does not exhibit considerable difficulties. Even simple radiol-

ogy enables to prepare the real geometry in a particular case (Figure 12.12). Tomog-

raphy allows almost automatic passage from the human body to the finite element

geometric model (Figure 12.11). 2-D model of the bone is extremely simplified. It

enablesus us only to exhibit the strategy that can guide the engineer through the opti-

mization details. In practical use 3-D model should be elaborated. The investigation

should give the answer about the placement of the implant in the trabecular bone.

Bone rebuilding ability should be also taken in the optimization process. More, the

X-ray pictures show the density change in parts of a bone and in the same way the

lower relative load carrying capacity. The external contour can be simply determined

in most parts. The difficulty appears in the contact region between the acetabulum

located in the pelvis and the head of the bone. The internal contour determines the

places where the density (i.e. X-ray transmission) has a predefined low value. Since

bone density and bone mineralization change continuously and the bone is laced

with voids, the internal contour is much more complex. If the contour line separate

voids or liquid–like media, the precision has minor role. However, in the trabecular

bone, where we have mostly the lattice structure, rigid enough with low average

material density, the proper geometrical and material data are important.



i

i

372 12 Solving optimal control problems described by PDEs

Fig. 12.11 Contour lines of the hip joint obtained by the tomography.

Fig. 12.12 Hip joint implant.
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Although for researches the realistic and precise model is not so important, in

the case of diseased bones both the geometry and material properties may differ

considerably from the typical ones.

There are two main reasons of prosthesis loosening:

• biological, strongly depended on the individual predispositions, which should

be investigated on the microscopic level; wear of the implant, caused both by

the biological factors and mechanical factors (for example friction), migration of

wear debris to the contact surface of bone, cement and steel, slacken rebuilding

of the bone,

• mechanical, when the stress limits are exceed; it results in the fatigue, especially

in the case of cyclic load, crack propagation and material fragmentation.

12.3.2 Optimization problem

The following data must be prepared for the 2-dimensional modelling:

• bone and implant contours geometry,

• position of the implant in the bone,

• rigidity and strength distribution in the bone,

• destructive temperature limitations for cement prostheses,

• heat generation in cemented regions,

• geometrical constraints to avoid penetrations by steel stem and ensure tissue nu-

trition.

The full study of the problem is complex and exceeds the scope of the chapter. We

will only show the simple geometrical optimization.

The boundary conditions in the form of zero values of the solution (displace-

ments) was applied to the lower edge of the area. The head of the prosthesis is

loaded with concentrated force. Three sub-areas were selected: the bone of fine and

coarse mesh and area of the endoprosthesis. The relevant material constants were

introduced as for bone and steel. The objective function was assumed as the follow-

ing

min[max(σmax−σmin)], (12.23)

where σmax and σmin are maximal and minimal principal stresses in finite elements,

respectively.

We can apply here a lot of possible functions, depending on the aim, that can be

defined in term of nodal or elemental parameters. For example it can be:

• minimum of the greatest principal stress,

• minimum of the greatest shear stress,

• minimum of the stress diversity in the domain,

• minimum of the surface of the contact between the bone and the steel stem, with

the given level of stresses,

• minimum of the surface of endoprothesis,
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Fig. 12.13 Contours of bone and implant, nodes distribution and finite elements in the domain.

• mane other derived from the wide mechanical results obtained from a single finite

element solution.

The contour of the stem prosthesis is altered. It is parameterized with four parame-

ters x1, . . . ,x4. The restrictions are as follows:

0≤ xi ≤ 1, i = 1, . . . ,4 (12.24)

x1,x2,x3,x4 ≥ 0,8 (12.25)

0≤ x2
1 + x2

2 + x2
3 + x2

4 ≤ 12 . (12.26)

The starting point was assumed at xi = 0.5, i = 1, . . . ,4. Final stresses are depicted

in Figure 12.14.
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Fig. 12.14 Resulting stresses σx, σy, τxy, σmax, σmin.
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12.4 Thermal problems

We consider here a heat transfer problem, reduced to the stationary state, described

by the equation

∇T (x,y) = q(x,y) , (12.27)

with boundary conditions

T (x,y) = T̃ , (x,y) ∈ ΓT , (12.28)

and

p(x,y) = p̃, (x,y) ∈ Γp, (12.29)

We can impose boundary conditions of a different type:

• specified heat flux

q̇ =−k
dT

dn
(12.30)

• insulation
dT

dn
= 0 (12.31)

• convection

h(T∞−T0) =−k
dT

dn
(12.32)

• radiation

εσ(T 4
sur−T 4

0 ) =−k
dT

dn
(12.33)

12.4.1 Geometry definition

There are two possible ways of the definition of two-dimensional contours:

• use of built-in mesh generator in Felt [150] package,

• use of external mesh generator triangle.

12.4.2 Structure of the computational process

12.4.3 Single computational pass

The scheme in Figure 12.15 presents computational stages in temperature control

problem. Below segments of the solution are described:

task.cdr is the basic definition of the geometry for the mesh generator,

corduroy generates the simple input file for the Felt program,
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task.cdr

task.000

task.flt

task.wyn
task.map

task.net

task_map.eps
task_net.eps

task.gnu

corduroy

felt

grafika.pl

manual edition

grafika.pl

gnuplot

Fig. 12.15 Single computational pass.

task.000 is the basic task file that must be manually supplemented with remaining

problem data,

task.flt is the final Felt input file,

grafika.pl is the graphical output procedure that allows us to verify the geometry

contained in both ’task.000’ and ’task.flt’; it produces the mesh in gnuplot format

task.net; if is used to results, it produces a table of parameters task.map that can

be transformed into coloured map of solution parameters,

task.wyn contains results of single step of computations,

task.gnu is a gnuplot file that is used to generate final PostScript graphical files

task net.eps and task map.eps.

This set of procedures is specially immersed in the Ipopt optimization procedure.
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12.4.4 Examples of structures

We consider the mesh as shown in Figure 12.8.
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Fig. 12.16 Resulting map of temperature.

12.4.4.1 Control problem

Thermal elements only have one degree of freedom per node. It is the nodal temper-

ature. Prescribed and initial temperatures are assigned using constraints, Tx=, and

Ty=, respectively. Heat sources are specified as an external load placed on the right-

hand-side vector of the resulting system of algebraic equations, using nodal forces

(Fx=). For uniform heat sources, simply apply the same value to all nodes.

Let us consider a rectangular plate, insulated at the top and at the bottom. The left

edge is held at a fixed temperature of 100 degrees and the other three are exposed

to a free stream temperature of 50 degrees. The control function J determines the

difference between the given temperature distribution T̃ (x,y) and actually computed

one T (x,y):

J =
1

2

∫

Ω

(

T (x,y)− T̃ (x,y)
)2

dxdy . (12.34)

A table of nodal temperatures at thermal equilibrium is given as results. The input

file for Felt [150] taken from the Felt Web pages has the following form:

problem description
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title="Heat Transfer"

nodes=5 elements=4 analysis=static-thermal

nodes

1 x=0 y=0 constraint=insulated

2 x=2 y=0 constraint=free

3 x=2 y=2

4 x=0 y=2 constraint=insulated

5 x=1 y=1 constraint=free

ctg elements

1 nodes=[1,2,5] material=steel

2 nodes=[1,5,4]

3 nodes=[4,5,3]

4 nodes=[2,3,5] load=convection

material properties

steel t=1 kx=25 ky=25

distributed loads

convection values=(1,20) (2,50)

constraints

insulated Tx=100

free Tx=u

end

We must prepare several insertions. They contain informations to be taken into

account in the control program:

• The number of variables under control

n=8;

• Lower and upper bounds of all variables

x_L[i]=-2.0;

x_U[i]= 2.0;

The file can also give assignments to each variable. In such a case it has a form:

x_L[0]=-2.0;

x_U[0]= 2.0;

x_L[1]=-2.0;

x_U[1]= 2.0;

x_L[2]=-2.0;

x_U[2]= 2.0;

x_L[3]=-2.0;
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x_U[3]= 2.0;

x_L[4]=-2.0;

x_U[4]= 2.0;

x_L[5]=-2.0;

x_U[5]= 2.0;

x_L[6]=-2.0;

x_U[6]= 2.0;

x_L[7]=-2.0;

x_U[7]= 2.0;

• Initial values

x[0]=0.1;

x[1]=0.1;

x[2]=0.1;

x[3]=0.1;

x[4]=0.1;

x[5]=0.1;

x[6]=0.1;

x[7]=0.1;

Above the following parameters must be supplied: t – thickness, kx – conductivity

in steel in x direction, ky – conductivity in y direction,

For a ctg element the definition values=(1,20) (2,50) specifies a convection coef-

ficient (the load is named here ’convection’) of 20, a free stream temperature of 50,

and that the convection acts on the edge defined by local element node numbers 1

and 2 (i.e.. by global nodes 2 and 3).

12.5 Control of vibrations

Although the idea of passive vibration absorbers was well known in the machine in-

dustry and visible implementation could even be found in sport equipment as bows,

sky or tennis rackets, the application to civil engineering structures had minor im-

portance. The reason was that absorbers can not accumulate vibration for a longer

time. That is why in the global count vibration absorbers (passive dampers) were

not as promising as active dampers. Problems with actively controlled vibration

were investigated in [136, 134, 270]. The beam was subjected in the middle of the

span by the force generated by actuators. Open loop and closed loop control were

tested. However, the system of actuators seems to be hardly performed, since large

forces are required in real cases.

More efficient displacement decrease of the moving vehicle or beam structure can

be performed by the use of semi-active or active dampers. From the practical point

of view the arrangement in which we propose to change the damping parameters is

much more efficient than actuators. What is more, the dampers do not require power

supply as high as in the case of actuators [232].
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12.5.1 Membrane

12.5.1.1 Definition of the problem

Let us consider a square domain Ω1 that contains subdomain Ω2 (Figure 12.17. We

Ω2

Ω1

0.5 1.0 0.5

2.0

2
.0

1
.0

0
.5

0
.5

Fig. 12.17 Domain Ω1 and subdomain Ω2 of the test problem.

assume small displacements, i.e. significantly smaller than dimensions in x and y.

The following equation describes the transverse displacements:

k∆w(x,y) = p(x,y), (x,y) ∈Ω1 . (12.35)

k is the rigidity of the membrane. It corresponds to the forces that tense the mem-

brane surface. k represents the force per unit length in the plane (x,y). p(x,y) is the

transverse force per unit area of the membrane. The boundary ∂Ω1 is fixed:

w(x,y) = 0 on ∂Ω1 . (12.36)

The deflection of the subdomain Ω2 is controlled. We impose the constraints

w(x,y) = w̃(x,y), (x,y) ∈Ω2 . (12.37)

Our problem can be written then in the form

k∆w(x,y) = p(x,y)+u(x,y), (x,y) ∈Ω1 . (12.38)

p(x,y) is defined on Ω1, u(x,y) is defined on Ω2.
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12.5.1.2 Finite element solution

We use the coarse triangular mesh as depicted in Figure 12.18. The description of
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Fig. 12.18 Mesh assumed in analysis.

the mesh geometry can be introduced in different ways: manually, by using the mesh

generator corduroy, triangle or other meshing tool. We simply used the following

corduroy file:

triangular mesh

boundary = [

(0,0)

(2,0)

(2,2)

(0,2)

]

end

Then we complete the resulting file with appropriate problem definitions:

• forces placed to nodes being in Ω2,

• material assigned to entire mesh or to selected finite elements,

• definitions of material parameters in the block ’material properties’,

• definitions of forces in the block ’forces’,

• definitions of boundary conditions in the block ’constraints’.

Below we show the exemplary model file.

problem description

title="membrane"

nodes=41 elements=64 analysis=static-thermal
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nodes

1 x=0 y=0 z=0 constraint=insulated

2 x=2 y=0 z=0 constraint=insulated

3 x=2 y=2 z=0 constraint=insulated

4 x=0 y=2 z=0 constraint=insulated

5 x=1 y=1 z=0 constraint=free force=force5

6 x=0 y=1 z=0 constraint=insulated

7 x=1 y=0 z=0 constraint=insulated

8 x=2 y=1 z=0 constraint=insulated

9 x=1 y=2 z=0 constraint=insulated

10 x=0.5 y=0.5 z=0 constraint=free force=force10

11 x=0.5 y=1.5 z=0 constraint=free force=force11

12 x=1.5 y=0.5 z=0 constraint=free force=force12

13 x=1.5 y=1.5 z=0 constraint=free force=force13

14 x=0.5 y=1 z=0 constraint=free force=force14

15 x=0 y=0.5 z=0 constraint=insulated

16 x=0.5 y=0 z=0 constraint=insulated

17 x=1 y=0.5 z=0 constraint=free force=force17

18 x=0 y=1.5 z=0 constraint=insulated

19 x=1 y=1.5 z=0 constraint=free force=force19

20 x=0.5 y=2 z=0 constraint=insulated

21 x=1.5 y=0 z=0 constraint=insulated

22 x=2 y=0.5 z=0 constraint=insulated

23 x=1.5 y=1 z=0 constraint=free force=force23

24 x=2 y=1.5 z=0 constraint=insulated

25 x=1.5 y=2 z=0 constraint=insulated

26 x=0.25 y=0.75 z=0 constraint=free

27 x=0.75 y=0.75 z=0 constraint=free force=force27

28 x=0.75 y=1.25 z=0 constraint=free force=force28

29 x=0.25 y=1.25 z=0 constraint=free

30 x=0.25 y=0.25 z=0 constraint=free

31 x=0.75 y=0.25 z=0 constraint=free

32 x=1.25 y=0.25 z=0 constraint=free

33 x=1.25 y=0.75 z=0 constraint=free force=force33

34 x=0.25 y=1.75 z=0 constraint=free

35 x=0.75 y=1.75 z=0 constraint=free

36 x=1.25 y=1.25 z=0 constraint=free force=force36

37 x=1.25 y=1.75 z=0 constraint=free

38 x=1.75 y=0.25 z=0 constraint=free

39 x=1.75 y=0.75 z=0 constraint=free

40 x=1.75 y=1.25 z=0 constraint=free

41 x=1.75 y=1.75 z=0 constraint=free

ctg elements

1 nodes=[23,13,36] material=steel

2 nodes=[26,10,14]

3 nodes=[34,20,4]

4 nodes=[29,18,6]

5 nodes=[5,27,17]

6 nodes=[17,33,5]

7 nodes=[5,33,23]

8 nodes=[19,37,9]

9 nodes=[16,31,10]
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10 nodes=[15,30,10]

11 nodes=[19,35,11]

12 nodes=[6,14,29]

13 nodes=[22,39,12]

14 nodes=[21,38,12]

15 nodes=[25,9,37]

16 nodes=[24,41,13]

17 nodes=[28,11,14]

18 nodes=[27,5,14]

19 nodes=[10,26,15]

20 nodes=[10,30,16]

21 nodes=[32,12,17]

22 nodes=[10,31,17]

23 nodes=[34,4,18]

24 nodes=[36,13,19]

25 nodes=[11,28,19]

26 nodes=[11,35,20]

27 nodes=[12,32,21]

28 nodes=[12,38,22]

29 nodes=[40,13,23]

30 nodes=[12,39,23]

31 nodes=[13,40,24]

32 nodes=[13,41,25]

33 nodes=[6,15,26]

34 nodes=[14,6,26]

35 nodes=[10,17,27]

36 nodes=[14,10,27]

37 nodes=[5,19,28]

38 nodes=[14,5,28]

39 nodes=[11,18,29]

40 nodes=[14,11,29]

41 nodes=[1,16,30]

42 nodes=[15,1,30]

43 nodes=[7,17,31]

44 nodes=[16,7,31]

45 nodes=[7,21,32]

46 nodes=[17,7,32]

47 nodes=[12,23,33]

48 nodes=[17,12,33]

49 nodes=[11,20,34]

50 nodes=[18,11,34]

51 nodes=[9,20,35]

52 nodes=[19,9,35]

53 nodes=[5,23,36]

54 nodes=[19,5,36]

55 nodes=[13,25,37]

56 nodes=[19,13,37]

57 nodes=[2,22,38]

58 nodes=[21,2,38]

59 nodes=[8,23,39]

60 nodes=[22,8,39]

61 nodes=[8,24,40]

62 nodes=[23,8,40]

63 nodes=[3,25,41]
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64 nodes=[24,3,41]

material properties

steel t=1 kx=25 ky=25

forces

force5 Fx=100.

force10 Fx=100.

force11 Fx=100.

force12 Fx=100.

force13 Fx=100.

force14 Fx=100.

force17 Fx=100.

force19 Fx=100.

force23 Fx=100.

force27 Fx=100.

force28 Fx=100.

force33 Fx=100.

force36 Fx=100.

constraints

insulated Tx=0

free Tx=u

end

12.5.1.3 Example 1

The membrane subjected to the point force F = 10 placed at the centre x = 1,y = 1

is depicted in Figure 12.19. We wish to subject the membrane to a set of additional

forces (control forces) placed in the subdomain Ω2 to decrease displacements and to

get the flat diagram of displacements in Ω2 : w(x,y) = 0.5625 (Figure 12.20). The

considered problem is represented by the DOML file given by Listing 12.1.
The Ipopt procedure allows us to obtain sufficiently accurate results if 10 it-

erations. 9 variables were controlled and the and computations with the accuracy

2 · 10−5 reduced the objective function to 0.15. Below we include the technical re-
port.

**************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.

Ipopt is released as open source code under the Common Public License (CPL).

For more information visit http://projects.coin-or.org/Ipopt

**************************************************************************

This is Ipopt version 3.6.0, running with linear solver ma27.

Number of nonzeros in equality constraint Jacobian...: 0

Number of nonzeros in inequality constraint Jacobian.: 0

Number of nonzeros in Lagrangian Hessian.............: 0

Total number of variables............................: 13

variables with only lower bounds: 0

variables with lower and upper bounds: 13

variables with only upper bounds: 0
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Fig. 12.19 Membrane displacements without control, under point forces F = 100.0 uniformly

applied to Ω1.

package Membrane

optimization Membrane_opt(spaceDims = 2, domain = omega1,

objective = res)

annotation(solver=’pdesolve’);

Space x = space[1], y = space[2];

Domain omega1(spaceDims=spaceDims,

boundaryPoints=[0,0; 0,2; 2,2; 2,0]);

Domain omega2(spaceDims=spaceDims,

boundaryPoints=[.5,.5; .5,1.5; 1.5,1.5; 1.5,.5]);

field Real w(free=true) in omega1;

field Real p = 100 in omega2;

field input Real u in omega2;

parameter Real res;

parameter Real k = 25;

equation

k*(der(w,x,x)+der(w,y,y)) = p + u;

res = integral((w-0.5625)ˆ2, omega2);

constraint

u = 0 in Boundary(omega1);

end Membrane_opt;

end Membrane;

Listing 12.1 Membrane problem example written in DOML
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x*(2-x)*y*(2-y)
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Fig. 12.20 Decreased displacements of the membrane (a) and required flattened displacements

with control (b).

Total number of equality constraints.................: 0

Total number of inequality constraints...............: 0

inequality constraints with only lower bounds: 0

inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 4.6547998e+00 0.00e+00 3.75e-02 0.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 4.6547998e+00 0.00e+00 3.56e-02 -4.3 3.61e-02 - 9.89e-01 3.81e-06f 19

2 4.5644531e+00 0.00e+00 3.70e-02 -0.4 1.02e-05 - 1.00e+00 1.00e+00f 1

3 4.5644529e+00 0.00e+00 3.70e-02 -2.5 1.02e-05 - 9.98e-01 1.00e+00f 1

4 4.5644449e+00 0.00e+00 3.70e-02 -2.5 1.02e-05 - 1.00e+00 1.00e+00f 1

5 4.5644304e+00 0.00e+00 3.69e-02 -4.4 3.70e-02 - 1.00e+00 1.00e+00f 1

6 4.5384396e+00 0.00e+00 3.62e-03 -5.1 9.09e+00 - 1.00e+00 1.00e+00f 1

7 6.2430818e-01 0.00e+00 3.58e-03 -6.4 9.36e-01 - 1.00e+00 1.00e+00f 1

8 5.9240639e-01 0.00e+00 1.46e-04 -6.9 2.25e+01 - 1.00e+00 1.00e+00f 1

9 1.5195497e-01 0.00e+00 1.15e-04 -8.3 1.02e+00 - 1.00e+00 1.00e+00f 1

10 1.4905032e-01 0.00e+00 4.42e-06 -9.7 3.12e+00 - 1.00e+00 1.00e+00f 1

Number of Iterations....: 10

(scaled) (unscaled)

Objective...............: 1.4905032436874999e-01 1.4905032436874999e-01

Dual infeasibility......: 4.4235098695713256e-06 4.4235098695713256e-06

Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00

Complementarity.........: 5.0422118675236915e-10 5.0422118675236915e-10

Overall NLP error.......: 4.4235098695713256e-06 4.4235098695713256e-06

Number of objective function evaluations = 33

Number of objective gradient evaluations = 11

Number of equality constraint evaluations = 0

Number of inequality constraint evaluations = 0

Number of equality constraint Jacobian evaluations = 0

Number of inequality constraint Jacobian evaluations = 0

Number of Lagrangian Hessian evaluations = 0

Total CPU secs in IPOPT (w/o function evaluations) = 0.010

Total CPU secs in NLP function evaluations = 0.000

EXIT: Optimal Solution Found.

Figure 12.21 depicts the deformed state under a set of control forces. In Table

12.1 computed nodal displacements are compared with assumed for the control. We
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notice that controlled variables have accurate values while remaining slightly differ.

Table 12.2 shows the values of control variables in the problem.

 0

 0.5

 1

 1.5

 2
 0

 0.5

 1

 1.5

 2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Fig. 12.21 Membrane after control.

Let us consider the same example discretized with the fine mesh (Figure 12.22).
The total number of unknown equals 332. The mesh contains 612 triangular ele-
ments. The inner square contains 96 points which are controlled. The Ipopt proce-
dure converges and after 790 steps the objective function reaches the value 2.157.
Results are depicted in Figure 12.23. We can notice the flat surface if the inner
square at the level 0.5625.
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Fig. 12.22 Refined mesh of the example.
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Table 12.1 Required and computed variables.

node required computed

1 0 0

2 0 0

3 0 0

4 0 0

5 0.56250000 0.56183

6 0 0

7 0 0

8 0 0

9 0 0

10 0.56250000 0.56212

11 0.56250000 0.56212

12 0.56250000 0.56212

13 0.56250000 0.56212

14 0.56250000 0.56221

15 0 0

16 0 0

17 0.56250000 0.56321

18 0 0

19 0.56250000 0.56321

20 0 0

21 0 0

22 0 0

23 0.56250000 0.56321

24 0 0

25 0 0

26 0.41015625 0.28133

27 0.56250000 0.56257

28 0.56250000 0.56257

29 0.41015625 0.28133

30 0.19140625 0.14053

31 0.41015625 0.28133

32 0.41015625 0.28133

33 0.56250000 0.56257

34 0.19140625 0.14053

35 0.41015625 0.28133

36 0.56250000 0.56257

37 0.41015625 0.28133

38 0.19140625 0.14053

39 0.41015625 0.28133

40 0.41015625 0.14053

41 0.19140625 1.0504
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Table 12.2 Final values of control variables.

node force

5 -0.040123

10 24.586242

11 24.586242

12 24.586242

13 24.586242

14 14.096711

17 14.096711

19 14.096711

23 14.096711

27 -0.002174

28 -0.002174

33 -0.002174

36 -0.002174

Total number of variables............................: 96

variables with only lower bounds: 0

variables with lower and upper bounds: 96

variables with only upper bounds: 0

Total number of equality constraints.................: 0

Total number of inequality constraints...............: 0

inequality constraints with only lower bounds: 0

inequality constraints with lower and upper bounds: 0

inequality constraints with only upper bounds: 0

iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls

0 1.5992910e+02 0.00e+00 6.68e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0

1 1.5992910e+02 0.00e+00 3.35e-01 -1.0 6.43e-01 - 9.79e-01 7.45e-09f 28

2 5.3582789e+01 0.00e+00 3.59e-01 -1.0 8.61e-09 - 1.00e+00 1.00e+00f 1

3 5.3582789e+01 0.00e+00 3.59e-01 -1.7 8.61e-09 - 1.00e+00 5.00e-01f 2

4 5.3582789e+01 0.00e+00 3.59e-01 -1.7 8.61e-09 - 1.00e+00 5.00e-01f 2

...

...

789 2.1566350e+00 0.00e+00 2.20e-05 -6.0 8.90e-04 - 1.00e+00 2.78e-309h10

790 2.1566350e+00 0.00e+00 9.32e-06 -6.0 8.90e-04 - 1.00e+00 1.00e+00f 1

Number of Iterations....: 790

(scaled) (unscaled)

Objective...............: 2.1566349782056600e+00 2.1566349782056600e+00

Dual infeasibility......: 9.3169975635287168e-06 9.3169975635287168e-06

Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00

Complementarity.........: 9.0909090909091433e-07 9.0909090909091433e-07

Overall NLP error.......: 9.3169975635287168e-06 9.3169975635287168e-06

Number of objective function evaluations = 165930

Number of objective gradient evaluations = 791

Number of equality constraint evaluations = 0

Number of inequality constraint evaluations = 0

Number of equality constraint Jacobian evaluations = 0

Number of inequality constraint Jacobian evaluations = 0

Number of Lagrangian Hessian evaluations = 0

Total CPU secs in IPOPT (w/o function evaluations) = 9.830

Total CPU secs in NLP function evaluations = 20.180
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EXIT: Optimal Solution Found.
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Fig. 12.23 Membrane after control – fine mesh.

The distribution of control function over Ω2 is depicted in Figure 12.24.
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Fig. 12.24 Distribution of the control function.

12.5.1.4 Example 2

In the second example boundary conditions were altered. Instead of the boundary

∂Ω1 fixed, we fix only four corners: (0,0), (2,0), (2,2), and (0,2). First iterations

improve the displacements distribution and the objective function decreases. The

sufficiently good solution is depicted in the first diagram in Figure 12.25. The sub-

domain Ω2 is flat, although more accurate solution is expected. Then the Ipopt pro-
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cedure starts to diverge. Successive plots in Figure 12.25 show that the final form is

far from perfect. Unfortunately, Ipopt announces that the optimal solution is found

and the objective function is two or four ranges higher than at the beginning.
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Fig. 12.25 Poor convergence of the control problem.
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Table 12.3 Objective function in dependence on the accuracy.

accuracy objective function No. of steps

1e-2 1.459972e+01 10

5e-3 2.011944e+01 32

2e-3 1.724331e+01 27

1e-3 1.818643e+01 35

5e-4 1.2364652e+03 3000 (terminated)

1e-4 2.1803947e+02 3000 (terminated)

We see that increased accuracy results in significantly longer computations and,

what is a little bit confusing, the final solution much more far from the accurate

results than in the case of lower accuracy (Table 12.3). In the case of low tolerance

parameter the maximum number of iterations was reached and computations were

terminated. This is the disadvantage of the optimization procedure Ipopt. However,

in this example we have 95 controlled variables. What is more, the optimized func-

tional is not convex. The objective function in successive iterative steps is depicted

in Figure 12.26.
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Fig. 12.26 Objective function vs. iterations.


