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Chapter 4

Optimal control problems described by PDEs

by Czesław Bajer1, Andrzej Myśliński2, Antoni

Żochowski2 and Bartłomiej Dyniewicz1

4.1 Introduction

The mathematical theory of optimal control of processes governed by ordinary or

partial differential equations has rapidly emerged into a separate field of the applied

mathematics. The optimal control of ordinary differential equations is of interest in

the field of aviation and space technology, robotics, chemical processes and power

plants to name just a few of the various applications. However in many cases the

processes to be optimized cannot be adequately modeled by the ordinary differential

equations. Therefore for description of such processes partial differential equations

(PDEs), involving functions of several variables, have to be formulated. The list

of applications of the PDEs includes, among others, sound, electrostatics, electro-

dynamics, heat conduction, diffusion, advection, electromagnetic waves, elasticity

or fluid problems, freezing processes and many other physical, biological or finan-

cial phenomena. These seemingly distinct different phenomena can be formalized

identically in terms of PDEs, which shows that they are governed by the same under-

lying dynamic. Just as ordinary differential equations often model one-dimensional

dynamical systems, partial differential equations often model multidimensional sys-

tems. There are many types of partial differential equations [111, 317]. Some lin-

ear, second-order partial differential equations can be classified as parabolic, hy-

perbolic or elliptic. Others such as the Euler-Tricomi equation have different types

in different regions. The classification provides a guide to appropriate initial and

boundary conditions, and to smoothness of the solutions. Here we confine to the

two-dimensional elliptic ones as the model equations.

The mathematical analysis of optimal control problems for systems described by

the partial differential equations consists in the investigation of the:

1. existence, uniqueness and regularity of the solutions to the partial differential

equations,
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102 4 Optimal control problems described by PDEs

2. existence and regularity of the optimal control,

3. necessary optimality conditions and the adjoint equations,

4. second-order sufficient optimality conditions,

5. numerical methods for solving the optimal control problem and the partial dif-

ferential equation.

Since our main interest is in numerical methods for solving PDEs constrained

optimal control problems we confine to provide the necessary optimality conditions

for these problems. The discussion on other topics the reader can find in the litera-

ture (see [16, 17, 29, 53, 56, 81, 86, 90, 92, 102, 106, 111, 154, 155, 160, 166, 172,

181, 186, 194, 248]).

In this chapter first we recall the notion of Sobolev spaces and Sobolev imbed-

dings theorems used as the main tool in the analysis of PDEs. The existence results

for linear and nonlinear abstract elliptic problems are also recalled. As a special case

of these abstract problems the model second order linear elliptic boundary value

problems in the operator and variational forms are formulated. Next the optimal

control problems for the second order elliptic PDEs are considered. The optimal

control existence results as well as the first order necessary optimality condition for

this class of optimal control problems where control to state operator is used are

recalled. Finally the first order necessary optimality condition for optimal control

problems governed by the second order linear elliptic equations is formulated using

Lagrange multiplier techniques.

4.2 Functional spaces

Consider domain Ω ⊂RN , N = 2,3. Assume this domain is bounded and is enough

regular, i.e., it has at least Lipschitz continuous boundary Γ . This boundary consists

from two disjoint parts Γ1 and Γ2 such that Γ = Γ1 ∪Γ2 and Γ̄1 ∩ Γ̄2 = /0. Following

[248] let us introduce the required functional spaces.

Let N denote a set of integers and k ∈ N∪ {0}. Then C k(Ω) denotes the set

of all continuous real functions defined in Ω , whose derivatives up to the order k

are continuous in Ω . C ∞(Ω) =
⋂∞

k=0 C k(Ω). C k
0 (Ω), k ≥ 0, k is an integer, stands

for the subset of C k(Ω) containing all functions vanishing in a neighbourhood of

the boundary Γ . By C (Ω̄) we denote the Banach space of all functions which are

continuous on the closure Ω̄ and are endowed with the norm

‖ f‖
C (Ω̄) = sup

x∈Ω
| f | . (4.1)

C k(Ω̄), k ≥ 1, where k is an integer, denotes the space of all functions which have

the first k derivatives continuous in Ω̄ , equipped with the norm

‖ f‖
C k(Ω̄) =

k

∑
|α|=0

∑
α

‖Dα f‖
C (Ω̄). (4.2)
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Here

Dα f =
∂ α1 ...∂ αN

∂x
α1
1 ...∂x

αN
N

f =
∂ |α|

∂x
α1
1 ...∂x

αN
N

f , (4.3)

where α = (α1, ...,αN), αi ≥ 1, 1 ≤ i ≤ N, are integers and | α |= α1 +α2 + ...+
αN . C k

0 (Ω̄) denotes the subset of C k(Ω̄) containing all functions vanishing in a

neighbourhood of Γ . C ∞(Ω̄) =
⋂∞

k=0 C k(Ω̄). D(Ω) is the linear space of infinitely

many times differentiable functions with compact support in Ω . The sequence φk

converges to φ in D(Ω) if and only if there exists a compact set Ō ⊂ Ω such that

for all k = 1,2, ..., support φk ⊂ Ō and for all α derivatives

Dα φk → Dα φ uniformly on Ō for k→ ∞. (4.4)

4.2.1 L p spaces

By L p(Ω), 1≤ p<∞, we denote the Banach space of all real measurable functions

whose p− th power is integrable in the sens of Lebesgue, with the norm

‖ f‖L p(Ω) = (
∫

Ω
| f |p dx)

1
p . (4.5)

For p = 2 the resulting space is a Hilbert space with the inner - product

(u,v) =
∫

Ω
uvdx ∀u,v ∈L

2(Ω). (4.6)

For p = ∞ the norm is defined as,

‖ f‖L ∞(Ω) = esssupx∈Ω | f | . (4.7)

Recall from [2] Hölder inequality. For any functions f ∈L p(Ω), g∈L q(Ω) hold

‖ f g‖L 1(Ω) ≤ ‖ f‖L p(Ω) ‖g‖L q(Ω),
1

p
+

1

q
= 1, p≥ 1. (4.8)

4.2.2 Sobolev spaces

Sobolev spaces are the main tool in modern analysis of boundary value problems

[2]. They appear naturally in solving boundary value problems and in calculus of

variation. For detailed description of Sobolev spaces see [2, 16, 154, 166, 248].

Let s ≥ 0, be an integer and let p satisfying 1 ≤ p < ∞ be given. The Sobolev

space W s,p(Ω) is defined as the set of functions which belong to L p(Ω) together

with their derivatives up to order s, i.e.,
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W
s,p(Ω) = {φ ∈L

p(Ω) : Dα φ ∈L
p(Ω), ∀ | α | ≤ s}. (4.9)

The Sobolev space is equipped with the norm

‖ f‖p

W s,p(Ω)
=

s

∑
|α|=0

∑
α

‖Dα f‖L p(Ω), (4.10)

where the second summation is taken over all α1, ...,αN such that | α |= α1 +α2 +
...+αN . Sobolev spaces are also defined for real s≥ 0 [2]. Assume s=m+µ , m≥ 0,

is an integer, 0≤ µ ≤ 1. Function u belongs to W s,p(Ω) if and only if u∈W m,p(Ω)
and

‖u‖p

W s,p(Ω)
= ‖u‖p

W m,p(Ω)
+ ∑
|α |=m

∫ ∫
Ω×Ω

| Dα u(x)−Dα u(y) |p

‖x− y‖
(N+µ)p

RN

dxdy. (4.11)

The expressions:

| u |s,p= ( ∑
|α |=s

∫
Ω
| Dα u |p dx)

1
p , p ∈ [1,∞), (4.12)

| u |s,∞= ∑
|α|=s

‖Dα u‖L ∞(Ω), p = ∞, (4.13)

define the seminorms in the corresponding Sobolev spaces. W s,p(Ω) for p = 2 is a

Hilbert space. It is denoted by H s(Ω). W
s,p

0 (Ω), s > 0, is the closure of the space

D(Ω) in W s,p(Ω). Similarly, for p = 2, by H s
0 (Ω) we shall denote the completion

in the norm of H s(Ω) of smooth functions with the compact support. For real s> 0,

we denote by W −s,q(Ω), p ∈ [1,∞), the dual space of W
s,p

0 (Ω), where 1
p
+ 1

q
= 1.

The dual space of W
s,p

0 (Ω) is identified as a space of distributions in Ω .

We shall also need Sobolev spaces on manifolds, which are only boundaries of open

subsets of RN . Let Ω be an open subset of RN having C k,1 boundary Γ (for details

see [154, 248]). By O we denote a neighbourhood of a point x ∈ Γ such that O =
{(y1, ...,yN) | −a j < y j < a j, 1 ≤ j ≤ N} and {y1, ...,yN} denote new orthogonal

coordinates. Moreover O′ = {(y1, ...,yN−1) | −a j < y j < a j, 1 ≤ j ≤ N− 1}. Let

ϕ denote C k,1 continuous function describing the boundary Γ . Let us define also by

Φ(y) = {y1, ...,yN−1,ϕ(y1, ...,yN−1)}. Recall from [2, 154]:

Definition 4.1. Let Ω be a bounded open subset of RN with a boundary Γ of class

C k,1, where k is nonnegative integer. Let Γ0 be an open subset of Γ . A distribution u

on Γ0 belongs to W s,p(Γ0) with | s |≤ k+1 if u( Φ) ∈W s,p(O′∩Φ−1(Γ0∩O)) for

all possible O and ϕ .

It is well known, that C ∞(Ω̄) is dense in W s,p(Ω) and C ∞
0 (Ω̄) in W

s,p
0 (Ω),

p≥ 1, s≥ 0. In general, the space D(Ω) is not dense in W s,p(Ω) for real s≥ 0. Let

us recall from literature [154] two density results Lemmas for these spaces:
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Lemma 4.1. Let Ω be an open subset of RN with a continuous boundary and let

C ∞
c (Ω̄) denotes the space of C ∞ functions with compact support in RN restricted

to domain Ω . Then C ∞
c (Ω̄) is dense in W s,p(Ω) for s≥ 0.

Lemma 4.2. Let Ω be an open bounded subset of RN with a Lipschitz continuous

boundary. Then D(Ω) is dense in W s,p(Ω) for 0 < s≤ 1
p
.

Lemma 4.2 implies that, W
s,p

0 (Ω) is the same space as W s,p(Ω), when 0 < s ≤
1
p
. Let us also recall from [154, Theorem 1.4.3.1 p.25] the following continuation

Lemma:

Lemma 4.3. Let Ω be an open bounded subset of RN with a Lipschitz continuous

boundary. Then for every s > 0 there exists a continuous linear operator Ps from

W s,p(Ω) into W s,p(RN) such that Psu |Ω= u.

Under the assumptions of Lemma 4.3 we have W s,p(Ω) = W s,p(Ω̄). Moreover Ps

can be chosen independently of s. The continuation Lemma 4.3 and other contin-

uation Lemmas in [154] are powerful tools for extending results proved in RN to

similar results in a bounded domain with Lipschitz continuous boundary.

The following two inequalities are useful in investigating the ellipticity of bilin-

ear forms:

Poincare - Fridrichs inequality [2], [193, p. 2]. Let Γ be such that meas Γ > 0.

For every function f ∈H 1
0 (Ω) the following inequality holds

‖ f‖L 2(Ω) ≤ α‖∇ f‖L 2(Ω), (4.14)

with a constant α > 0 independent on f .

First Korn inequality [2, 166, 172, 248]. Let Γ0 ⊂ Γ be such that meas Γ0 > 0. For

every function u ∈ {v ∈H 1(Ω) : v = 0 on Γ0} the inequality

N

∑
i, j=1

‖εi j(u)‖
2
L 2(Ω) ≥ α‖u‖2

H 1(Ω), (4.15)

holds with a constant α > 0 independent of u where, a strain tensor εi j(u) is given

by

εi j(u) =
1

2
(

∂ui

∂x j

+
∂u j

∂xi

). (4.16)

4.2.3 Traces

Before we proceed to the Sobolev embedding theorem, let us recall the notion of a

trace of a function. Let γ be the operator, for enough smooth function u, defined by

γu = u|Γ . (4.17)
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The operator γ provides the restriction of u on the boundary Γ . We call it the trace

mapping. The function u|Γ is called a trace of the function u on the boundary Γ . If

Γ is C k,1, k ≥ 1, Lipschitz continuous boundary of a bounded open subset of RN ,

we can define a unit outward normal n = (n1,n2, ...,nN) which is of class C k−1,1.

The following theorem concerns the existence and properties of the trace mapping.

Theorem 4.1 ([154], Theorem 1.5.1.2, p. 37). Let Ω be a bounded open subset

of RN with a C k,1 boundary Γ . Assume that s− 1
p

is not an integer, s ≤ k + 1,

s− 1
p
= l +µ , where 0 < µ < 1, l ≥ 0 an integer. Then the mapping

u→{γu,γ
∂u

∂n
, ...,γ

∂ lu

∂nl
}, (4.18)

defined for u ∈ C k,1(Ω̄), has a continuous extension as an operator from

W
s,p(Ω) onto

l

∏
j=0

W
s− j− 1

p ,p(Γ ). (4.19)

This operator has a right continuous inverse which does not depend on p.

The space of traces W
s− j− 1

p ,p(Γ ) is defined as in Definition 4.1.

4.2.4 Sobolev Embedding Theorems

The most outstanding result concerning the Sobolev spaces is the famous embedding

theorem derived by Sobolev himself. The main statement is the following:

Theorem 4.2 ( [2, 3, 154, 166, 172]). Let Ω be an open bounded subset of RN with

Lipschitz continuous boundary Γ . Then the following inclusion holds:

W
s,p(Ω)⊂W

t,q(Ω), (4.20)

for t ≤ s, q≥ p, s− N
p
= t− N

q
. Moreover

W
s,p(Ω)⊂ C

k,α(Ω), (4.21)

for k < s− N
p
< k+1, where α = s−k− N

p
, and k is a nonnegative integer. C k,α(Ω)

denotes the space of functions Hölder continuous together with their derivatives up

to the order k, with the Hölder constant equal α .

By Theorem 4.2 the following inclusions take place for k∈N and p∈ [1,∞) [2, 186]:

W
k,p(Ω)⊂L

q⋆(Ω) for
1

q⋆
=

1

p
−

k

N
, k <

N

p
,
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W
k,p(Ω)⊂L

q(Ω) for q ∈ [1+∞), k =
N

p
.

Moreover the inclusion

W
k,p(Ω)⊂L

q(Ω) for q ∈ [1,q⋆), k <
N

p
,

is compact.

The compactness of the embedding H 1(Ω) ⊂L 2(Ω) is known as the Rellich

theorem. The similar theorem can be formulated for the trace mapping. Note that,

one of many consequences of Sobolev’s embedding is the continuity of the functions

belonging to W s,p(Ω) where s > N
p

. It is even continuity up to the boundary which

allows to consider the values on the boundary of such functions. Similar theorem

can be formulated for the trace mapping (4.17). Recall [193, Theorem 1.1, p.2]:

Theorem 4.3. Let Ω ⊂RN be a bounded domain with a piecewise smooth bound-

ary Γ and let Γr be the intersection of Ω with an r - dimensional smooth hyperplane,

where r < N. Then for every function f ∈ W s,p(Ω), where s ≥ 1, p > 1, N > sp,

r > N− sp, there exists a trace f|Γr
on Γr such that,

f|Γr
∈L

q(Γr), q≤
pr

N− sp
, (4.22)

‖ f|Γr
‖L q(Γr) ≤ α‖ f‖W s,p(Ω). (4.23)

For N = sp, q can take any value from 1 ≤ q < ∞. If sp > N, then f ∈ C k(Ω̄),
k = s−1− [N

p
], and

‖ f‖
C k(Ω̄) ≤ α‖ f‖W s,p(Ω), (4.24)

where α is a positive constant independent of f . [N
p
] denotes the integer part of N

p
.

For N > sp, q < pr
N−sp

, the embedding of W s,p(Ω) in L q(Γr) is compact. Moreover,

if sp > N, the embedding of W s,p(Ω) in C k(Ω̄) is compact.

The following inclusions result from Theorem 4.3 for p ∈ [1,∞) [166, Theorem

1.13, p. 10]:

W
1,p(Ω)⊂L

q⋆(Γ ), where q⋆ =
N p− p

N− p
, 1≤ p < N,

W
1,p(Ω)⊂L

q(Γ ), for any q ∈ [1,∞), p≥ N.

The latter embedding is compact. For proofs of Theorems 4.2, 4.3 see, e.g., [2]. The

embedding theorems are used, among others, in analysis of boundary value prob-

lems. Assume we are able to build a solution to some given problem, which belongs

to W s,p(Ω) with s large enough. Then we know this solution is differentiable in the

usual sense up to order (strictly) less than s− N
p

.
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4.2.5 Green formula

Green’s formulas are an important tool in analysis and, particularly, in the theory

of boundary value problems for ordinary and partial differential operators. They are

used to transform differential equations in operator form into equivalent variational

form or vice-versa. They connect the values of the N-fold integral over a domain

Ω in an N-dimensional Euclidean space RN with an (N − 1)-fold integral along

the piecewise smooth boundary ∂Ω of this domain. These formulas are obtained by

integration by parts of integrals of the divergence of a vector field that is continuous

in Ω̄ = Ω ∪∂Ω and that is continuously differentiable in Ω . Green formula for the

second order elliptic operators is based on

Theorem 4.4. Let Ω be a bounded open subset of RN with a Lipschitz continuous

boundary Γ . Then for every u∈W 1,p(Ω) and v∈W 1,q(Ω) with 1
p
+ 1

q
= 1 we have

∫
Ω

Diuvdx+
∫

Ω
uDivdx =

∫
Γ

γuγvnidσ , (4.25)

where Diu = ∂u
∂xi

is the differential operator with respect to xi, 1≤ i≤ N, ni denotes

the i− th component of the normal vector n to the boundary Γ .

From (4.25) it follows that for u ∈H 2(Ω) and v ∈H 1(Ω)

∫
Ω

grad u grad v dx =−
∫

Ω
△uvdx+

∫
Γ

∂u

∂n
vds, (4.26)

where the symbol grad = (∂/∂x1, ...,∂/∂xN) denotes the gradient, △ = ∂ 2/∂x2
1 +

...+ ∂ 2/∂x2
N is the Laplacian and ∂/∂n stands for the normal derivative operator

along Γ .

4.3 Linear elliptic boundary value problems

Let V be a real Hilbert space and V ⋆ it’s dual. The norm and the scalar product in V

will be denoted by ‖.‖, and (., .), respectively. The value of f ∈V ⋆ at v ∈V will be

denoted by 〈 f ,v〉. The norm of f ∈V ⋆ is defined in a standard way:

‖ f‖V ⋆ = sup
v∈V, v6=0

〈 f ,v〉

‖v‖
. (4.27)

By a : V ×V →R we denote a bilinear form such that:

∃M > 0 : | a(u,v) | ≤M‖u‖‖v‖ ∀u,v ∈V (boundedness), (4.28)

∃α > 0 : | a(v,v) | ≥ α‖v‖2 ∀v ∈V (V - ellipticity ). (4.29)
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By an abstract linear elliptic equation we call a triplet {V,a, f} where f ∈V ⋆. Any

element u ∈V satisfying

a(u,v) = 〈 f ,v〉 ∀v ∈V, (4.30)

is called a (weak) solution of the linear equation. The existence and uniqueness of

solutions to the equation (4.30) follows from Lax - Milgram Lemma [86],

Lemma 4.4. Let the bilinear form a : V ×V → R be bounded and V − elliptic.

Then for any f ∈V ⋆ there exists a unique solution u ∈V to the equation (4.30) and

‖u‖ ≤
1

α
‖ f‖V ⋆ . (4.31)

The bilinear form a defines a linear mapping A : V →V ⋆ :

a(u,v) = (Au,v) ∀u,v ∈V. (4.32)

The abstract linear equation (4.30) is equivalent to the operator equation:

Au = f in V ⋆. (4.33)

From (4.28), (4.29) it follows, that A∈L (V,V ⋆) and A−1 ∈L (V ⋆,V ). The element

u satisfying (4.33) is called a strong solution to this operator equation.

Before we introduce an abstract variational inequality, let us recall notions of a

closed subset and a convex subset of V . Let K be nonempty subset of V . Recall

Definition 4.2. A set K ⊂ V is said to be convex if λu1 +(1−λ )u2 ∈ K for every

u1,u2 ∈ K, λ ∈ (0,1).

Definition 4.3. A set K ⊂V is called closed if un → u strongly in V , un ∈K, implies

that u ∈ K.

By an abstract elliptic inequality we call a triplet {K,a, f} where a : V ×V →R is

a bilinear form and f ∈V ⋆. Any element u ∈ K satisfying:

a(u,v−u)≥ ( f ,v−u) ∀v ∈ K, (4.34)

is called a (weak) solution to the abstract elliptic inequality {K,a, f}. The following

analogy of Lemma 4.4 can be proved [2]

Lemma 4.5. Let K be nonempty closed convex subset of V and let a : V ×V →R

satisfy (4.28), (4.29). Then for any f ∈ V ⋆, (4.34) has a unique solution u ∈ K.

Moreover if ui are solutions to (4.34) for fi, i = 1,2, then

‖u1−u2‖ ≤
1

α
‖ f1− f2‖V ⋆ . (4.35)

In many problems the bilinear form a is symmetric in V , i.e.,

a(u,v) = a(v,u) ∀u,v ∈V. (4.36)



i

i

110 4 Optimal control problems described by PDEs

In this case problems (4.30) and (4.34) are equivalent to an abstract minimization

problem of the following quadratic functional J : V →R defined by:

J(v) =
1

2
(Av,v)− ( f ,v), (4.37)

on V or K, respectively. The equivalence between the problems (4.30) and (4.34)

and the minimization of the functional (4.37) is given in []

Lemma 4.6. Let a bilinear form a satisfy (4.28), (4.29) and (4.36). Then

(i) u solves (4.30) if and only if

J(u) = min
v∈V

J(v). (4.38)

(ii) u solves (4.34) if and only if

J(u) = min
v∈K

J(v). (4.39)

4.4 Nonlinear elliptic problems

In this section some basic results concerning the existence of solutions to nonlinear

elliptic equations and inequalities are recalled. These results generalize Lemmas

4.4, 4.5, 4.6 concerning the existence of solutions to the linear elliptic equations or

inequalities.

Let V be a reflexive Banach space and V ⋆ its dual space. Let T : V → V ⋆ be a

mapping, in general, nonlinear. We shall look for the solutions of the following

equation

T (u) = f in V ⋆ ⇔ 〈T (u),v〉 = 〈 f ,v〉 ∀v ∈V, (4.40)

or the inequality

u ∈ K : 〈T (u),v〉 ≥ 〈 f ,v〉 ∀v ∈ K, (4.41)

where f ∈V ⋆ is a given element and K is a nonempty, closed and convex subset of

V . Recall [166, p. 37]:

Definition 4.4. The operator T : V →V ⋆ is monotone if

〈T (u)−T (u1),u−u1〉 ≥ 0 ∀u,u1 ∈V. (4.42)

Definition 4.5. T is strongly monotone in V if there exists a strictly increasing func-

tion α : [0,∞)→R such that α(0) = 0, limt→∞ α(t) = ∞ and for any u,v ∈ V the

following condition holds:

〈T (u)−T (v),u− v〉 ≥ α(‖u− v‖)‖u− v‖. (4.43)

Definition 4.6. T is locally Lipschitz continuous in V if there exists a positive con-

stant M(r) such that for any u,v ∈ Br = {v ∈V | ‖v‖ ≤ r} the following condition
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holds

‖T (u)−T (v)‖V ⋆ ≤M(r)‖u− v‖. (4.44)

The existence and uniqueness of solutions to (4.40) and (4.41) follows from:

Theorem 4.5 ([166], Theorem 1.31, p. 37). Let T : V → V ⋆ be strongly monotone

and locally Lipschitz in V . Then the equation (4.40) and the inequality (4.41) have

unique solutions u ∈V and u ∈ K, respectively, for any right hand side f ∈V ⋆.

We shall need a notion of Gateaux derivative of a functional.

Definition 4.7. Let V be a normed space and let J : V →R be any functional. The

functional J is called directionally differentiable at a point u ∈ V in the direction

v ∈V if for any v ∈V there exists a unique element DJu(v) such that

DJu(v) = lim
t→0+

J(u+ tv)− J(u)

t
, (4.45)

called directional derivative. The limit (4.45) is called the Gateaux differential if it

holds for any t → 0. DJu is called Gateaux derivative of the functional J at a point

u ∈ V . The functional J is called differentiable if it has the derivative DJu at every

point u ∈V .

T : V → V ⋆ is called the potential operator if there exists a functional Ψ : V →R,

called the potential of T , which is Gateaux differentiable at any point u∈V and such

that its Gateaux derivative DΨ(u) = T (u) for any u ∈ V . In this case the equation

(4.40) and the inequality (4.41) has the following form

u ∈V : 〈DΨ(u),v〉 = 〈 f ,v〉 ∀v ∈V, (4.46)

u ∈ K : 〈DΨ(u),v−u〉 ≥ 〈 f ,v〉 ∀v ∈ K. (4.47)

These problems are related to the minimization of the functional Ψ in V and K

respectively. The proof of the following theorem can be found in literature [166]:

Theorem 4.6. Let Ψ : V →R be the potential of an operator T such that

for any u,v,z ∈V fixed, the function

t → 〈DΨ(u+ tv),z〉 is continuous in R , (4.48)

〈DΨ(u+ v),v〉−〈DΨ(u),v〉 ≥ α(‖v‖)‖v‖, (4.49)

with the function α having the same properties as in Definition 4.5. Then there exists

unique solutions to the following minimization problems:

u ∈V : Ψ(u) = min
v∈V

Ψ(v), (4.50)

u ∈ K : Ψ(u) = min
v∈K

Ψ(v). (4.51)

Moreover, (4.50) is equivalent to (4.40) and (4.51) to (4.41).
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4.5 Second order elliptic equations

We shall deal mainly with the second order elliptic or parabolic equations. Recall

from [193, 317] the general form of the second order elliptic operator A in the

domain Ω :

A y =−
n

∑
i, j=1

∂

∂x j

(ai j(x)
∂y

∂xi

)+
n

∑
i=1

bi(x)
∂y

∂xi

+ c(x)y, (4.52)

where x ∈Ω , y = y(x). Moreover ai j(x),bi(x), i, j = 1, ...,n and c(x) are given mea-

surable functions on RN satisfying for some constants κ > 0 and K ∈ (0,+∞) for

all values of the arguments and ζ ∈RN conditions, i.e.,

| b |+ | c |≤ K, c≤ 0,

ai j(x) ∈L
∞(Ω), ai j = a ji, (4.53)

κ2 | ζ |2≤ ai j(x)ζiζ j ≤ κ−1 | ζ |2,

where b = (b1, ...,bn). Moreover it is assumed that there is a function ω(ε),ε ≥ 0,

such that ω(0+) = 0 and for all i, j = 1,2, ...,n, x,y ∈Rn, we have

| ai j(x)−ai j(y) |≤ ω(| x− y |).

Consider the second order elliptic boundary value problem in domain Ω : find a

function y such that

A y−λy = f in Ω , (4.54)

where f = f (x) is a given function in Ω . Recall from [193] the following existence

result:

Theorem 4.7. There exists constants λ0 ≥ 1 and N depending only on p ∈ (1,+∞),
K,κ,ω,n such that the estimate

λ‖y‖L p(Ω)+λ 1/2‖
∂y

∂x
‖L p(Ω)+‖

∂ 2y

∂x2
‖L p(Ω) ≤ N‖A y−λy‖L p(Ω),

holds true for any y ∈ W 2,p(Ω) and λ ≥ λ0. Furthermore for any λ ≥ λ0 and

f ∈L p(Ω) there exists a unique y ∈W 2,p(Ω) satisfying (4.54).

The following boundary condition is imposed on function y on the boundary ∂Ω of

domain Ω :

W y = g(x), (4.55)

where g is a given function and the boundary operator W is defined as

W y = α(x)
∂y

∂n
+β (x)y, (4.56)
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where
∂y
∂n

denotes the normal derivative of function y on ∂Ω . Functions α(x) and

β (x) are given functions on ∂Ω . Remark that for α(x) = 0 condition (4.55) becomes

Dirichlet condition and for β (x) = 0 becomes Neumann condition. We can also split

the boundary ∂Ω into two disjoint parts

∂Ω = ∂DΩ ∪∂NΩ , (4.57)

and impose Dirichlet or Neumann boundary conditions on ∂DΩ or ∂NΩ respec-

tively, i.e.,

y = gD on ∂DΩ ,
∂y

∂n
= gN on ∂NΩ , (4.58)

where gD and gN are a given functions.

4.5.1 Model elliptic equation

Let us apply the results of Section 4.5 to the model problem. As a model elliptic

equation we shall consider the Poisson equation

−△ y+ y = f in Ω , (4.59)

with boundary conditions

y = 0 on ∂DΩ and
∂y

∂n
= u on ∂NΩ , (4.60)

where f ∈L 2(Ω) is a given function, y denotes the unknown (state) function. Func-

tion u ∈L 2(∂NΩ) we shall call the control function defined on ∂Ω . Boundary ∂Ω
is assumed to be smooth enough with outward pointing unit normal n.

Since in system (4.59)-(4.60) the control function u acts on the boundary of do-

main Ω this system is called the boundary control problem. In the PDEs control

theory are also considered distributed control systems where the control function u

acts in the whole domain Ω or its subdomain. In this case f = u or f = u+F , where

F is a given function.

The existence of the unique solution to (4.59)-(4.60) follows from Theorem 4.7.

For the sake of finite element approximation we shall consider the boundary value

problem (4.59)-(4.60) in the variational form [166, 172, 186, 193, 248]. Using Green

formula (4.25) we transform the boundary value problem (4.59)-(4.60) into the

equivalent one: for a given function u find y ∈V satisfying:

a(y,ϕ) = l(u;ϕ) ∀ϕ ∈V, (4.61)

where the bilinear form a(·, ·) : V ×V →R and the linear form l(u; ·) : V →R for

given u ∈U is defined by
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a(y,ϕ) =
∫

Ω
(∇y∇ϕ + yϕ)dx, (4.62)

l(u;ϕ) =
∫

Ω
f ϕdx+

∫
∂N Ω

uϕds, (4.63)

and V is a subspace of Sobolev space H 1(Ω) defined as follows

V = {v ∈H
1(Ω) : v = 0 on ∂Ω}.

For a given u ∈ L 2(∂NΩ) the existence of a unique solution y ∈ V to the state

system (4.61) follows from Lax-Milgram Lemma 4.4.

Recall, the application of the Lax-Milgram Lemma 4.4 to the homogeneous

Dirichlet boundary value problems requires the application of the Friedrich’s in-

equality (4.14). The application of this Lemma to the boundary value problem with

the mixed boundary condition (4.56) requires additional assumption of the form:

∫
Ω

λ 2dx+
∫

∂Ω

α(x)

β (x)

2

ds > 0,

providing the functions defined as in (4.54) and (4.56) satisfy λ (x) ∈ L ∞(Ω),
α(x),β (x) ∈L ∞(∂Ω) and β (x) 6= 0.

4.6 Necessary optimality conditions for ODE constrained

optimal control problems

Let us formulate the optimal control problem for system governed by PDEs. We

have to define the set of admissible functions as well as the cost functionals.

We denote by U a space of control functions and by Uad ⊂ U a bounded, closed

and convex set of admissible controls. Taking into account boundary value systems

(4.54)-(4.56) or (4.61) we can consider either distributed control where the control

function depends on x ∈ Ω or the boundary control where the control function de-

pends on x∈ ∂Ω . Therefore a natural choice for the control space U is Hilbert space

L 2(Ω) or L 2(∂Ω). One can consider also parameter control problem where the

coefficients of the elliptic operator are control functions.

Usually the control function u ∈U is assumed bounded, i.e., for almost every x in

Ω or ∂Ω it holds

umin(x)≤ u(x)≤ umax(x), (4.64)

where umin(x) and umax(x) are given bounded functions. The set of admissible con-

trols we define as follows

Uad = {u ∈U ;u satisfies (4.64)}. (4.65)

We shall consider the cost functional J(y,u) = J(u) : Uad →R defined as follows:
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J(y,u) = α1J1(y,u)+α2J2(y,u)+
α3

2
R(u), (4.66)

where α1 ≥ 0, α2 ≥ 0 and α3 > 0 are given real constants such that α2
1 +α2

2 6= 0.

The cost functionals J1 and J2 deal with the distributed control and boundary control

problem, respectively. The term R(u) denotes a regularization functional depending

on the control function u only. This term is added to ensure the radial unboundedness

of the cost functional as well as the existence of the optimal solutions to the optimal

control problem. The regularization term in the form of the bound imposed on the

norm of the control function may be also added to the admissible set Uad ensuring its

compactness in the control space U [217]. In the majority of practical applications

the cost functionals are quadratic therefore we confine to consider the quadratic cost

functionals only having the following form:

J1(y,u) =
∫

ω
(Cy(u)− yd)

2dx, (4.67)

J2(y,u) =
∫

∂Ω
(Cy(u)− yd)

2ds, (4.68)

R(u) =
∫

Ω
(Nu,u)dx or R(u) =

∫
∂Ω

(Nu,u)ds, (4.69)

where C and N are given real numbers, yd is a given function, a set ω is a given

subset of Ω .

The functionals (4.67) and (4.68) are called in literature tracking type functionals.

It means that the aim of the optimal control problem is to find such control function

u that the distance between the solution y to the state problem and the prescribed

function yd measured by L 2 norm is minimal. In many industrial based optimal

control applications also other types of the cost functionals are considered including,

among others, the total energy of the system, the compliance or the stress of the

construction [217], the fundamental frequency of the free vibrations of the body or

the drag of the body moving in a fluid.

The dependence of the cost functional (4.66) on the control function u is indirect:

the cost functional depends on the solution y to the boundary value problem, i.e.,

(4.59) -(4.60) or (4.61), and on the other hand this solution y depends on the control

function u appearing on the right hand side of the state equation. In order to deal

directly with the control function u only we can introduce control-to-state operator

S [317, p. 50] defined as the mapping S : U ∋ u→ y(u) ∈ V ⊂L 2(Ω). Therefore

y(u) = Su and the cost functionals (4.67) and (4.68) can be written, respectively, as

f1(u) =
∫

ω
(CSu− yd)

2dx, (4.70)

f2(u) =
∫

∂Ω
(CSu− yd)

2ds. (4.71)

The use of the operator S has the advantage that the adjoint operator S⋆ also acts in

the space L 2(Ω). Using (4.70) - (4.71) we can replace the cost functional (4.66) by

the equivalent reduced functional
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f (u) = α1 f1(u)+α2 f2(u)+
α3

2
R(u), (4.72)

in terms of the control function u only.

Using (4.64), (4.65) and (4.72) an optimal control problem takes the form: find

control function u⋆ ∈Uad such that,

f (u⋆) = min
u∈Uad

f (u). (4.73)

Remark this optimal control problem is formulated in terms of the control function

u only. Due to operator S the solution y to the PDEs problem can be calculated, i.e.,

y⋆ = y(u⋆) = Su⋆.

4.6.1 Basic results for the reduced optimal control problems

Let us recall from [317, Therem 2.14, p. 50] the following existence result for prob-

lem (4.73):

Theorem 4.8. Let {U,‖ · ‖U} and {H,‖ · ‖H} denote the Hilbert spaces and let a

nonempty, closed, bounded, and convex set Uad ⊂U as well as some yd ∈ H and

constant N ≥ 0 be given. Then the quadratic Hilbert space optimization problem

min
u∈Uad

f (u)
de f
=

1

2
‖Su− yd‖

2
H +

N

2
‖u‖2

U (4.74)

admits an optimal solution u⋆. If N > 0 or S is injective, then the solution is uniquely

determined.

Let us formulate the first order necessary optimality condition for the optimal con-

trol problem (4.73). Recall first from [317, Lemma 2.21, p. 63] the fundamental

result:

Lemma 4.7. Let C denote a nonempty and convex subset of a real Banach space U

and let the real-valued mapping f be Gateaux differentiable in an open subset of U

containing C. If u⋆ ∈C is a solution to the problem

min
u∈C

f (u), (4.75)

then it solves the variational inequality

f ′(u⋆)(u−u⋆)≥ 0 ∀u ∈C. (4.76)

f ′(·) denotes Gateaux derivative of f (·) defined by (4.45). Conversely, if u⋆ ∈ C

solves the variational inequality (4.76) and f is convex then u⋆ is a solution to the

minimization problem (4.75).
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This Lemma states a necessary and in the case of convexity also sufficient first-

order necessary optimality condition. Applying this result to the problem (4.74) we

get [317]:

Lemma 4.8. Let real Hilbert spaces U and H, a nonempty and convex set Uad ⊂U,

some yd ∈ H, and a constant N ≥ 0 be given. Moreover let S : U → H denote a

continuous linear operator. Then u⋆ ∈Uad is a solution to the optimization problem

(4.74) if and only if u⋆ solves the variational inequality:

(S⋆(Su⋆− yd)+Nu⋆,u−u⋆)U ≥ 0 ∀u ∈Uad , (4.77)

where S⋆ denotes the adjoint operator of the operator S.

Remark the inequality (4.77) is equivalent to

(Su⋆− yd ,Su−Su⋆)H +N(u⋆,u−u⋆)U ≥ 0 ∀u ∈Uad ,

which avoids the adjoint operator S⋆.

4.6.2 The Lagrange method

Lagrange multiplier technique is usually used to find solution of the constrained

optimal control problems. Let us describe this technique in general form and next

use it to formulate the necessary optimality condition for PDEs constrained optimal

control problems.

4.6.3 Saddle point problem formulation

Consider the constrained minimization problem of the form: find u⋆ ∈ K ⊂V mini-

mizing the cost functional J(·) : V →R over a cone K in the space V :

min
v∈K

J(v) (4.78)

For the sake of simplicity, assume the closed convex set K ⊂V is given as

K = {v ∈V : f (v)≤ 0, g(v) = 0}, (4.79)

where f : V → Λ1 is convex Gateaux differentiable function, g : V → Λ2 is lin-

ear Gateaux differentiable function, Λ1, Λ2 are reflexive Banach spaces. Function

g may be interpreted as a PDE constraint and function f as the unilateral varia-

tional inequality. Using Lagrange multipliers approach we replace the constrained

minimization problem (4.78) by the unconstrained minimization problem for the

associated Lagrangian.
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Denote by λ∼1 ∈Λ set
1 and λ∼2 ∈Λ set

2 the Lagrange multipliers associated with the

constraints in (4.79) where

Λ set
1 = {λ∼1 ∈Λ ⋆

1 : λ∼1 ≥ 0}, Λ set
2 = Λ ⋆

2 .

Λ ⋆
1 (resp. Λ ⋆

2 ) denotes a dual space of Λ1 (resp. Λ2). Let us introduce the Lagrangian

L (., ., .) : V×Λ set
1 ×Λ set

2 →R associated with the problem (4.78):

L (v,λ∼1 ,λ∼2 ) = J(v)+ 〈λ∼1 , f (v)〉Λ⋆
1×Λ1

+ 〈λ∼2 ,g(v)〉Λ⋆
2×Λ2

. (4.80)

Problem (4.78) is equivalent [317] to the problem

min
v∈V

max
λ∼1 ∈Λ1, λ∼2 ∈Λ2

L (v,λ∼1 ,λ∼2 ). (4.81)

Applying [81, Theorem 4.18, p. 226, Theorem 5.3, p. 252] and [109, Theorems 1.5,

1.6, 2.2 p. 174 - 179] to problems (4.78) or (4.81) we can formulate the following

necessary optimality condition:

Lemma 4.9. Let V, Λ1, Λ2 be reflexive Banach spaces, and K ⊂ V be a set given

by (4.79). Assume the functional J : V → R is lower semicontinuous, function f :

V→ Λ1 is convex and lower semicontinuous, function g : V→ Λ2 is linear, sets K,

Λ set
1 , Λ set

2 have a nonempty interior. Then there exist a saddle point (u⋆,λ ⋆
1 ,λ

⋆
2 ) ∈

K×Λ set
1 ×Λ set

2 of the Lagrangian L defined as follows: for all v∈K and λ∼1 ∈Λ set
1 ,

λ∼2 ∈Λ set
2 holds,

L (u⋆,λ∼1 ,λ∼2 )≤L (u⋆,λ ⋆
1 ,λ

⋆
2 )≤L (v,λ ⋆

1 ,λ
⋆
2 ). (4.82)

Assume moreover that functional J : V→R and functions f : V→Λ1, g : V→Λ2 are

Gateaux differentiable. Then a saddle point (u⋆,λ ⋆
1 ,λ

⋆
2 ) ∈ K×Λ set

1 ×Λ set
2 satisfies,

(DJu⋆ +λ ⋆
1 D fu⋆ +λ ⋆

2 Dgu⋆)(v−u⋆)≥ 0 ∀v ∈ K, (4.83)

f (u⋆)(λ∼1 −λ ⋆
1 )≤ 0 ∀λ∼1 ∈Λ set

1 ,λ ⋆
1 ≥ 0, f (u⋆)≤ 0, (4.84)

g(u⋆)λ ⋆
2 = 0, g(u⋆) = 0. (4.85)

DJu⋆ denotes Gateaux derivative of the functional J with respect to u at a point u⋆

defined by (4.45).

4.6.4 Adjoint state approach

We apply Lemma 4.9 to formulate the necessary optimality condition for the sec-

ond order elliptic PDEs constrained problems. Let Uad and J(y,u) be the set of the

admissible controls and the cost functional given by (4.66) and (4.65), respectively.

For the sake of simplicity we set α1 = 1 and α2 = 0 in (4.66), i.e., we confine to
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consider the distributed control only. We also assume there are no constraints on the

control function u, i.e., U =Uad = L2(Ω).
By V we denote a subspace of the Sobolev space H 1(Ω)

V = {v ∈H
1(Ω) : v = gD on ∂DΩ}.

For a given u ∈ Uad we denote by y ∈ V the solution to the second order elliptic

equation:

a(y,ϕ) = l(u;ϕ) ∀ϕ ∈V, (4.86)

where the following bilinear form a(, ·, ·) : V ×V →R and the linear form l(u; ·) :

V →R are defined by

a(y,ϕ) =
∫

Ω
[

n

∑
i, j=1

ai j(x)
∂y

∂xi

∂ϕ

∂x j

+
n

∑
i=1

bi(x)
∂y

∂xi

ϕ + c(x)yϕ]dx, (4.87)

l(u;ϕ) =
∫

Ω
(u+ f )ϕdx+

∫
∂N Ω

gNϕds. (4.88)

Consider an optimal control problem: find u⋆ ∈Uad such that

J(y⋆,u⋆) = min
u∈Uad

J(y,u). (4.89)

Due to (4.86) problem (4.89) is the constrained minimization problem. In order

to formulate the necessary optimality condition for this problem let us first apply

directly (4.76). Under our assumptions the derivatives of the cost functional (4.66)

with respect to y or u are equal to:

∂J(y,u)

∂y
h =

∂J1(y,u)

∂y
h ∀h ∈V, (4.90)

∂J(y,u)

∂u
h =

∂J1

∂u
h+

∂J1(y,u)

∂y

dy

du
h+

α3

2

dR(u)

du
h ∀h ∈U, (4.91)

where the rules for total differentials where applied. Remark in order to calculate

(4.91) one has to calculate the derivative
dy
du

of y with respect to u. In order to do

it one has to differentiate the state equation (4.86) with respect to u and to use the

inverse of the elliptic operator. Usually the calculation of the inverse elliptic operator

is complicated and too costly for numerical calculations.

In order to simplify the formulation of the necessary optimality condition as well as

to avoid the use of the inverse operator let us introduce the adjoint state and apply

the Lagrange method.

Using Lagrange multiplier p ∈ V as well as the Lagrangian function L (·, ·, ·) :

V ×U×V →R for the optimization problem (4.89):

L = L (y,u, p) = J1(y,u)+
α3

2
R(u)+a(y, p)− l(u; p), (4.92)



i

i

120 4 Optimal control problems described by PDEs

we can transform it into the unconstrained minimization problem: find (y⋆,u⋆, p⋆)∈
V ×U×V satisfying:

L (y⋆,u⋆, p⋆) = max
p∈V

min
u∈Uad

L (y,u, p). (4.93)

The Lagrange multiplier p associated with the boundary value problem constraint

(4.86) is called also the adjoint state and besides mathematical has also many phys-

ical or economic interpretations.

In order to formulate first order necessary optimality condition let us calculate the

derivatives of (4.93) with respect to p,y,u:

∫
ω

∂L (y,u, p)

∂ p
ϕdx = a(y,ϕ)− l(u,ϕ) ∀ϕ ∈V, (4.94)

∫
ω

∂L (y,u, p)

∂y
ϕdx =

∫
Ω
[

n

∑
i, j=1

ai j(x)
∂ p

∂xi

∂ϕ

∂x j

+
n

∑
i=1

bi(x)
∂ϕ

∂xi

p+ c(x)pϕ]dx (4.95)

+
∫

ω

∂J1(y,u)

∂y
ϕdx ∀ϕ ∈V,

∫
ω

∂L (y,u, p)

∂u
ϕdx =

∫
ω
(

∂J1(y,u)

∂y

dy

du
+

α3

2

dR(u)

du
− p)ϕdx ∀ϕ ∈U. (4.96)

The adjoint state p ∈V is defined as satisfying the condition:

∫
ω

∂L (y,u, p)

∂y
ϕdx = 0 ∀ϕ ∈V, (4.97)

what implies the adjoint equation

a(p,ϕ) =−
∫

ω

∂J1(y,u)

∂y
ϕdx ∀ϕ ∈V. (4.98)

The derivative (4.96) contains the derivative
dy
du

. Regard that setting ϕ = dy
du

h, h∈U ,

in (4.98) we obtain

a(p,
dy

du
h) =−

∫
ω

∂J1(y,u)

∂y

dy

du
hdx ∀h ∈U, (4.99)

Differentiating (4.86) with respect to u and setting ϕ = p we have

a(p,
dy

du
h) =

∫
ω

phdx ∀h ∈U, (4.100)

Using (4.99) and (4.100) in (4.96) we obtain
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∫
ω

∂L (y,u, p)

∂u
ϕdx =−

∫
ω
(

α3

2

dR(u)

du
− p)ϕdx ∀ϕ ∈U. (4.101)

The introduction of the adjoint state has two advantages: the first order necessary

optimality conditions simplify and the use of the derivative of the state function with

respect to the control function and the inverse elliptic operator is avoided. Moreover

the form o the cost functional gradient or directional derivative also simplifies.

Remark that at optimal point u⋆, from (4.86) and (4.89) it follows that the derivative

(4.101) is equal to:

∫
ω

∂L (y⋆,u⋆, p⋆)

∂u
ϕdx =

∫
ω

∂J(y⋆,u⋆)

∂u
ϕdx =

∫
ω
(p⋆−

α3

2

∂R(u⋆)

∂u
)ϕdx. (4.102)

The gradient determined by (4.102) is called the reduced gradient.

Based on Lemma 4.9 the first order necessary optimality condition for problem

(4.89) takes the form: if u⋆ ∈U is an optimal solution to the problem (4.89) then

there exists Lagrange multiplier p⋆ ∈V such that the following conditions hold:

a(y⋆,ϕ) = l(u⋆;ϕ) ∀ϕ ∈V, (4.103)

a(p⋆,ϕ) =−
∫

ω

∂J(y⋆,u⋆)

∂y
ϕdx ∀ϕ ∈V. (4.104)

∫
ω

∂J(y⋆,u⋆)

∂u
ϕdx =

∫
ω
(p⋆−

α3

2

∂R(u⋆)

∂u
)ϕdx ∀ϕ ∈V. (4.105)

4.6.5 Model optimal control problem

Let us apply the Lagrange multiplier technique from the previous subsection to for-

mulate the necessary optimality conditions for the model boundary optimal control

problem.

We denote by Uad ⊂U =L 2(Ω) the set of admissible controls given by (4.64). The

cost functional J(·) transforms J(·) : U →R and is given by

J(y(u))
de f
=

1

2

∫
ω
(y(u)− yd)

2dx+
1

2
α

∫
∂N Ω

u2ds. (4.106)

The optimal control problem is formulated as follows: find u⋆ ∈Uad such that

J(u⋆) = min
u∈Uad

J(y(u)), (4.107)

where y(u) ∈ V denotes the solution to the state equation (4.61) depending on u ∈
Uad , yd ∈ L 2(Ω) denotes a given function and α > 0 is a given constant. The

second term in the goal functional (4.106) is added to ensure the existence of optimal

solution to the problem (4.107).
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The Lagrangian function L (., ., ., ., .) : V ×U ×V ×U ×U → R for the problem

(4.107) has the form:

L (y,u, p,λ1,λ2) =
1

2

∫
ω
(y(u)− yd)

2dx+
1

2
α

∫
∂N Ω

u2ds+

a(y, p)− l(u; p)+
∫

∂N Ω
(λ1(umin−u)+λ2(u−umax))ds (4.108)

The derivatives of the Lagrangian (4.108) have the form

∫
ω

L (y,u, p,λ1,λ2)

∂y
ϕ =

∫
ω
(y(u)− yd)ϕdx+a(p,ϕ) ∀ϕ ∈V, (4.109)

∫
ω

L (y,u, p,λ1,λ2)

∂u
ϕ =

∫
ω
(y(u)− yd)

dy(u)

du
hdx+α

∫
∂N Ω

uhds− l(h; p)+ (4.110)

∫
∂N Ω

(−λ1h+λ2h)ds ∀h ∈U,

∫
ω

L (y,u, p,λ1,λ2)

∂ p
ϕ = a(y,ϕ)− l(u;ϕ) ∀ϕ ∈V, (4.111)

∫
ω

L (y,u, p,λ1,λ2)

∂λ1
ϕ =

∫
∂N Ω

(umin−u)hds ∀h ∈U, (4.112)

∫
ω

L (y,u, p,λ1,λ2)

∂λ2
ϕ =

∫
∂N Ω

(u−umax)hds ∀h ∈V. (4.113)

The adjoint function p ∈V is defined as an element satisfying:

∫
Ω
(∇p∇ϕ + pϕ)dx =

∫
Ω
(y− yd)ϕdx ∀ϕ ∈V. (4.114)

Therefore the necessary optimality condition takes form: if u⋆ ∈Uad is an optimal

solution to (4.61) there exists Lagrange multipliers (p⋆,λ ⋆
1 ,λ

⋆
2 ) ∈ V ×U ×U such

that the following conditions hold:

∫
Ω
(∇y⋆∇ϕ + y⋆ϕ)dx =

∫
Ω

f ϕdx+
∫

∂N Ω
u⋆ϕds ∀ϕ ∈V, (4.115)

∫
Ω
(∇p⋆∇ϕ + p⋆ϕ)dx =

∫
Ω
(y⋆− yd)ϕdx ∀ϕ ∈V, (4.116)

∫
∂N Ω

(p⋆−αu⋆)ϕds = 0 ∀ϕ ∈V, (4.117)

∫
∂N Ω

(λ̃1−λ ⋆
1 )(umin−u⋆)ds≤ 0, ∀λ̃1 ∈U, λ ⋆

1 ≥ 0, (4.118)
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∫
∂N Ω

(λ̃2−λ ⋆
2 )(u

⋆−umax)ds≤ 0, ∀λ̃2 ∈U, λ ⋆
2 ≤ 0, (4.119)

where y⋆ = y(u⋆).


