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Streszczenie

W pracy przedstawiono numeryczne aspekty modelowania zjawiska kontaktu
tocznego. Uwzgledniono sprezysto-lepkie zawieszenie kola toczacego sie po szty-
wnym podlozu. Wykazano, ze podczas toczenia pojawia sie oscylacyjny ruch mate-
rialu wokét osi obrotu. Istotne zjawiska wiaza sie ze strefa kontaktu oraz tarciem.
Numeryczna symulacja zjawiska falowego napotyka na trudnosci zwiazane z dyskre-
tyzacja obwodu kola oraz nieciagloscia predkosci w chwili kontaktu. Zaproponowano
spos6b modelowania, pozwalajacy uzyskaé¢ zadawalajace wyniki. Podano przyklady
obliczen z wykorzystaniem réznych podejsé.

1 Introduction

The road transportation in many countries is overcrowded and for therefore the attention
is focused now on the railay systems. In the railway transportation both the load carrying
capacity and speed of trains increased consederably in recent years. It involves new
problems of exploitation: faster wear of rail surfaces and wheel tires. Circular geometry
of wheels and plane surface of rail heads lose their perfect shape. Both on the rail head and
the wheel ring wave-shaped deformations can be observed. They are called corrugations.
Several papers published by the authors [1, 2, 3] of this paper deal with the wear, especially
generated by the phenomena in the contact zone. In cities noise generated by tramways
or even underground trains effects the environment. In long distance trains it can be
tiring for passengers. From the technological point of view spurious effects of mechanical
phenomena decrease the life time of rail and wheels.
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Another case where similar phenomenon occurs are vehicle breaks and clutches. High
frequency oscillations generated between break shoes and friction disks or disks of the
clutch considerably reduce the life time of elements.

In publications dealing with numerical modelling of rolling contact problem the wave
analysis is not popular. The aim of this work is the presentation of the numerical questions
met in discrete analysis. It is the discontinuity of the boundary conditions in the contact,
rotation of the geometry and the stress field in the time integration process, discretization
of the boundary by a polygon line and the influence of the boundary nodes on the dynamic
response. Further problems are the following: self excitation in higher (300 km/h) velocity
range, influence of non-linear material properties (visco-plasticity), non-linear friction,
torsional vibration of wheel/axle system, influence of plate bending state for cone-shaped
wheel, approach to optimization of resulting parameters. We can see that the subject is
complex and that is why research centers in the world work intensively in the field.

Different hypotheses were assumed as a base of investigation. Some of them can be
easily rejected, others are intensively investigated. In the literature the following cases
are pointed as a source of corrugations:

e imperfections in rail joints,

e cone form of wheels which results in different linear speed of left and right wheel; it
causes snaking of trains and generally, disturbs steady motion,

e periodical structure of rails (sleepers); instability of motion on the periodically
placed supports [4],

e contact problems between wheel and rail; stick and slip zones which vary with
high frequency (horizontally) and generate waves which deform elastically, then
plastically both contact surfaces [5, 6, 7],

e residual stress caused by manufacturing and service of rails and wheels [8],

e non-linear friction law in the stick zone [6],

e influence of material hardening [9],

e deformation of elements of wheel/axle as a result of the impact during rolling motion,
e instability of wheel-sets motion [10, 11],

e strong hits of a perfectly round wheel rolling on the waved rail [12].

The important contribution to the problem was published in [11, 13, 14]. The physical
continuous model is treated analytically. The wheel tire is modeled by the elastic curved
Rayleigh’s beam joined with the axle by means of the continuous elastic Winkler type
foundation. The elastic foundation constituting the wheel disk carries out the load in
three directions: circumferential, radial and vertical to the plane of the wheel. Curved
beam theory ensure the real shape of the cross-section. Visco-elastic properties of the
wheel material are described by the Kelvin-Voigt model. Frequency response functions for
forced vibrations of the railway wheel (Fig. 1) proves the significant amplitude increase
for the frequency 100 Hz with the velocity 200 km/h. There is no doubt that wave
propagation analysis is essential.
We try to prove that
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Figure 1: Frequency response functions for rotating railway wheel.

e in the steady rolling the waves generate periodic stress concentration on the surfane
of the wheel,

e the contact force is periodic with relatively high frequency,

e circumferential oscillations with moderate frequency occur and in such a case the
friction law can flow on the final results.

2 Numerical approach

The task is divided into stages, which enable us to investigate the phenomenon selectively.
We consider the wheel suspended rigidly, elastically with damping or rolling over the waved
surface (Fig. 2). In the early approach the coordinate system was bound with the rotating

Figure 2: Problems investigated numerically.



wheel. In such a case the mesh geometry was practically fixed while the contact boundary
conditions were subject to rotation (Fig. 2a). The elastic suspension disabled the same
approach without relatively complicated new formulation. That is why in further tests
(Fig. 2b) we assumed the classical approach, with the fixed coordinate system.

2.1 Velocity in the contact

A There are many ways in which boundary con-
ditions can be taken into account. We used two
of them. In the first one the contact conditions

— At J t are imposed on displacements. The time integra-

- o ; tion scheme should have displacements as the main
MC te tn unknown vector to be solved. Thus we preserve the
continuity of displacement field. The second method

[15] uses the velocity formulation. In this case the

Figure 3: Relative normal velocity houndary conditions imposed to the velocity result

in the time interval [t, t]. in penetration, unless more complex algorithm is as-

sumed.

Now let us discuss the discontinuity of the velocity in contact. This discontinuity
shown in Fig. 3 can be removed. It is necessary to impose the relations derived from the
contact conditions to the motion equation in the time step proceeding the detection of
the body penetration, i.e. in time ¢y if the penetration was detected in t;. The imposed
restrictions have to reduce the velocity of the point to such a value vy, for which in the
next time step v; = 0 and z; = Zeon: (Fig. 4). In the simplest case shown in Fig. 4 the
velocity at ¢y must get the value

Figure 4: Reduction of the velocity near the contact: continuous line — free motion, dashed
line — motion with constraints.

_ il')conth_ r_1 _ (1 _ 5) v . (1)

The parameter [ is used in the difference relation which determins the displacement

Vo

z1 =20 + [(1 — B)vo + Bui] At (2)
The resulting position of the point is
To = (1 - ﬂ).I,l + ﬁxcont + (1 - ﬁ)Qhﬂ),l. (3)

At t = t; the velocity v; equals to 0 and z; equals to Z ..
It should be emphasized that the reduction of the velocity before the contact results
in decreasing the energy of the system. It can be implemented in two ways: by imposing
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Figure 5: The scheme of the rolling wheel and the spatial mesh assumed in calculation.

the constraint on the velocity of a specified joint or by imposing a predefined breaking
force. Both approaches are equivalent since the value of the force is equal to the reaction
of contact force in the case of the condition imposed on the velocity of the point. The
breaking force acts during the step At. As the effect the node hits an obstacle with the
lower velocity and the impact returns less of the momentum after the reflection. The
momentum taken off must be given back to the system in the first step in which the point
moves freely after the contact.

2.2 The space-time modeling of contact problem

Dynamic contact problems are characteristic of fast varying contact domains. In some
problems the precise definition of the contact zone is of fundamental importance. Contact
phenomena with friction that involve vibration of the stick and slip type require both the
small time step of the integration of the differential equation of motion and refined mesh
in that region. The finite element method gained its popularity since it is relatively simple
and universal in applications. However, in certain problems the F.E.M. is difficult since its
discrete form does not allow to investigate the problem with the required precision. For
example, the varying contact zone, extended between two nodes in spatial mesh requires
subintegration of resulting matrices to evaluate more precisely friction contribution. Much
more natural approach is to modify the spatial mesh and subintegrate the differential
equation in time, in required regions only.

The spatial adaptation of the mesh in structural dynamics can rarely be found in the
literature (for example [16, 17, 18]). However, the simplest interpolation of displacement,
velocity and acceleration vectors were discussed there with particular reference to addi-
tional joint. Such a discontinuous path to the refined /coarsened mesh changes the problem
under consideration: local and global stiffness and temporary distribution of acceleration
and velocity, compared with the problem solved with the constant mesh. The adaptation
procedure may incorporate greater error than the simple classical computation. It is well
visible if higher modes are not damped. Although smoothing by physical or numerical
damping enhances the quality of the solution, we can not accept such a technique without
restrictions.

The basics of the space-time finite element method was described in [5, 19, 20, 21].
First the displacement formulation was developed. Then the same idea was extended to
derive velocity formulas [22, 15, 23, 24].



2.3 Example and results

In the numerical analysis of the rolling contact problem we shall limit the investigation to
the range where the contact occurs. Other factors such as friction, plastic deformation,
hardening, can simply be added following the classical scheme. As an example we take
the wheel with the radius R=10 cm, thickness 1 cm, made of steel (£=2.05-10" N/m?,
v=0.3, p=7.83 g/cm?®). It rolls on the rigid base with an angular speed w. The linear
velocities taken into account were of the range 90-180 km/h. The elastic material in plane
stress was assumed. The domain was discretized with 864 triangles and 469 nodes (Fig.
5). The uniform mesh density was applied for the reason of wave nature of the process
and stress concentration passing throughout the domain.

To avoid multiple rotations of matrices

R [107N] effected by the rotation of the structure
e and in the same time the accumulation of
0.4 1 round-off errors the rotation of the rigid
034 base over the fixed wheel was assumed.

All the forces arising from the circular mo-
tion were introduced. In the first stage
0.1 the wheel, which turns is settled slowly on
b | mg therigid base (in numerical simulation the

20 = 28 % % 0 base which turns presses slightly the fixed

wheel). The depth of penetration (flatten-
Figure 6: Contact force in successive turns ing) reaches finally d=0.1 cm (Fig. 5). In
in the case of w=0.3-10"2 rad/s order to avoid the influence of the initial

conditions and to reduce the effect of wave
reflections and interference the comparatively large numerical damping was assumed. The
value of the parameter y [15] was equal to 0.2 and it corresponded to the logarithmic decre-
ment of damping A = 0.03. In practice it allowed to damp vibration according to the first
eigenform and the period T &~ 80 ps in 95% during the first 1/4 turn of the wheel.

The elastic-plastic material with hardening was assumed in computation. The second
invariant of stresses Jo was integrated in successive phases of the full turn. It enables us
to show the distribution of stresses in the material [9]. Final form of the diagram depends
on problem parameters. In the presented example corrugations are successfully flattened.
However, in the case of other material coefficients concentrations of stresses under the
wheel surface increases.

Computation shows that the contact force vary, even when the motion is steady and
well damped. Selected part of a wheel turn with the speed w=0.3-10"3 rad/s is presented
in Fig. 6. The stresses in the rotating disk in two speeds are depicted in Fig. 7. The
analysis exhibits the periodical distribution of the wear on the wheel surface which can
occur during exploitation. The number of contact force oscillations decreases along with
the increase of the speed. It was observed for example in [25, 26] for a rubber wheel.
However, in those publications the authors treat the problem as an eigenvalue problem.
They do not solve the initial boundary problem. The estimated diagram of the relation
between the number of oscillations in one full turn and the velocity w is shown in Fig.
8. The value of the contact force increases with the increase of the velocity w. The
investigation was performed for a full turn of the wheel. If the number of waves due to
a turn is not an integer (i.e. the phase shift occurs after each turn), then the diagram is
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Figure 8: Number of cycles of the reaction and its maximal value in relation of the angular
velocity w.

disturbed in the vicinity of the lower point of the wheel, from which the solution starts
and on which is finished.

3 Elastic suspension

The problem depicted in Fig. 2b was solved with the use of unstructured mesh (Fig. 9).
The radius of the wheel R = 50 cm. The depth of the penetration was 0.4 cm. The
number of joints on the circumderence exceeded 200. High flattening of the wheel in the
contact area did not eliminated the influence of boundary joints on the reaction force (Fig.
11). Selected eigenfrequencies are related to the well known forms with increasing number
of wave on the surface (Fig. 10). Vertical reaction in the centre of the wheel, in which
the elastic suspension is placed is depicted in Fig. 12. We can notice peaks that exceed
the average value of reaction. Since the numerical and physical damping imposed to the
system was significant, we expect the physical origin of these peaks. Reliable answer
would be done if the full animation of displacement and velocity field was performed.
Horizontal displacement of the contact point related to the angular way is depiceted in
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Figure 11: Vertical force slightly influenced by the mesh.

Fig. 13. Jumps of curves coincide with peaks of reaction in Fig. 12.

4 Conclusions

The efficient method for analysis of dynamic contact problem is presented. The soft
way method [15] with modified contact condition described by velocities provides for a
convenient treatment of the dynamic contact problem, even in the case of large time
steps. The presented method is successfully applied to the problem of corrugations. Even
in the simplest case of the material property one can notice the oscillation of the contact
force. The resulting stress distribution is stationary if the observation is carried out
in the rotating coordinate systems and for the particular value of the angular velocity.
If the plastic material was used, the deformation would polygonize the wheel surface
permanently. Then successive passages of the wheel over the rail increase the wear by
the dynamic feedback [27]. The friction introduced to the contact region can changes
quantitative relations. It is shown that neither imperfections of rail junctions nor periodic
placement of sleepers generate corrugations. Simple stationary motion is disturbed by
the propagation of waves from the contact point. In our case the load is introduced
kinematically. In the real problem, despite of different type of loading, the situation can
be similar due to considerable inertia of the wheel-set.
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