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Abstract

Inertial loading of strings, beams and plates by mass travelling with near-critical ve-
locity has been a long debated. Typically, a moving mass is replaced by equivalent force
or an oscillator (with “rigid” spring) that is in permanent contact with the structure.
Such an approach leads to iterative solutions or imposition of artificial constraints. In
both cases rigid constraints result in serious computational problems. a direct mass
matrix modification method frequently implemented in the finite element approach
gave reasonable results only in the range of relatively low velocities. In this paper
we present the space-time approach to the problem. The interaction of the moving
mass/supporting structure is described in a local coordinate system of the space-time
finite element domain. Resulting characteristic matrices include inertia, Coriolis and
centrifugal forces. Simple modification of matrices in the discrete equations of motion
allows us to gain accurate analysis of a wide range of velocities, up to the velocity of the
wave speed. Numerical examples prove the simplicity and efficiency of the method. The
presented approach can be easily implemented in the classic finite element algorithms.

keywords: moving mass, inertial load, space-time finite element method, space-time approach,
finite element method, vibrations of string

1 Introduction

Inertial loads moving on strings, beams and plates with sub or super critical velocities are of
special interest to practising engineers. Theoretical and numerical solutions are applied to
problems with single or multi-point contact such as: train-track or vehicle-bridge interaction,
pantograph collectors in railways, magnetic railways, guideways in robotic technology, etc.
First the difference between the inertial loading and loading by moving mass-less force
must be emphasised. In the inertial load problem the moving mass is placed directly on the
structure (Fig. la), while the massless force represents the equivalent influence of inertia,
or is typically modelled as a spring-mass system load (Fig. 1b). The present paper deals
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Figure 1: Moving mass (a) and moving oscillator (b).

with the first type of loading. Commonly, differential equations derived for moving mass
problems are solved numerically by using finite element techniques. Yet, this approach has
considerable disadvantages. As long as a mass influence is considered as an equivalent force
system, computations can be performed with sufficient accuracy, but only in low range of
travelling speed (up to 0.2 of the wave speed in a string). The moving object is joined to the
string or beam with a spring/absorber system. Then the "equivalent" force is determined,
with the assumption of relatively high stiffness of the spring. This results in some serious
numerical difficulties. On the other extreme, the "soft way" contact is assumed [1]. The
formulation of numerical procedures requires establishing force equilibrium in discrete time
points. Governing differential equations are not consequently considered in the time inter-
vals. Although time integration is performed by relatively accurate procedures, the physical
problem is treated separately from the time integration scheme. This is the reason why
strongly nonlinear problems cannot be easily solved by traditional approaches.

Analysis of the moving mass problem is widely presented in the literature. The closed
solution exists in the case of mass moving on a massless string [2, 3]. Otherwise the final
results are obtained numerically, although the solution is preceded by complex analytical
calculations. In numerous references, authors treat the problem in a low range of the mass
speed. In such a case, the results are sufficient, even if the inertial term contributing to
moving mass is not correctly treated by the time integration method. Simply, the moving
mass influence, in such cases, is minor compared with static displacements.

Theoretical approaches were intensively published, starting from the beginning of the
twentieth century (for example [4, 5, 6]). Smith [7] proposed the purely analytical solution
for the inertial moving load, however, in the case of the massless string only. Broad analysis
of moving loads was given in [3, 8]. In recent contributions complex problems of structures
subjected to the moving inertial load [9] or oscillator [10, 11, 12| were analysed. Variable
speed of the load was considered for example in [13, 14, 15]. Unfortunately, the beam was
subjected there to the massless forces. The equivalent dynamic mass influence is analysed
in [16]. The infinitely long string subjected to a uniformly accelerated point mass was also
treated [17] and analytical solution of the problem concerning the motion of an infinite string
on Winkler foundation subjected to an inertial load moving at a constant speed was given
[18].

Measurements of the wave speed in railway tracks treated as beams show values 800-1000
km/h. In the case of soaked ground the speed can decrease to 500 km/h or less. Dynamic
influence of the moving load significantly increases the structure deflection. The highest
dynamic contribution determines the critical speed of motion. Practically, the critical mass
speed equals to 0.4-0.5 of the wave speed. This is the range of modern vehicle motion.



Numerical approaches implemented in the commercial codes are acceptable only for low
speed. Moreover, the moving mass is usually introduced as a set of oscillators, joined elas-
tically or viscoelastically to the main structure. Rigidity of the artificial string cannot be
high enough due to the computational limitations. This coupled non-linear problem must
be solved iteratively or by imposition of complex constraint. The dynamic problem can
be solved in one iteration per time step, however, with the loss of accuracy, and what is
essential, only in the low speed range.

The dynamic problem can be considered as a sequence of static solutions, performed step-
by-step with a prescribed time increment. At a low velocity of the mass (approximately up
to 0.1 of the critical speed and up to 0.2 of the wave speed in the unloaded and unballasted
structure) simple replacement of the mass from joint to joint, or from element to element,
can be applied with an error sufficiently low for engineering purposes. However, the error
dramatically increases with the travelling speed, and such an approach cannot be applied in
a general case. Direct modification of global characteristic matrices in the discrete system
is attractive since it allows us to avoid computational complexity as in the case of moving
oscillators or the imposition of supplementary constraints.

The paper [19] presents an early research in the field of discrete solutions of moving
mass problems. The beam was subjected to a moving concentrated mass together with
an oscillator. The moving mass was placed directly on the beam contributed load terms
obtained by the chain rule derivation, called also the Renaudot formula. The problem was
solved typically in two stages. The beam forced kinematically on the oscillator motion,
and then the oscillator acted with a force to the beam. While zeroing the oscillator mass
one should obtain solutions for pure mass motion. The presented results cannot be simply
compared with analytical solutions in higher speed range.

In the next paper [20], the moving oscillator is being considered. The solution with spring
stiffness tending to infinity should approach the solution with moving mass. Unfortunately,
final numerical tests exhibit significant errors for higher spring stiffness. In [21] the moving
inertial load is distributed on a given segment. The approach is similar to the Filho solution
[19], in the case of zero oscillator mass. Increasing mass velocity decreases the accuracy of the
results. Another approach is presented in [9], where a declined beam element is considered.
The author proves that the influence of the Coriolis force is minor, when compared with
total beam response. The numerical solution obtained with the above method for the string
vibration problem is divergent (Fig. 2). In the case of a beam the divergence rate is lower
then for a string, because of type of the differential equation.

Here, we must notice the difference in equations that describe beam and string motion.
In the case of beam motion, both of the Euler and Timoshenko type, we have a significant
influence of bending. The equation is a hyperbolic—parabolic type. In the case of string
motion, we have a hyperbolic equation with a pure wave propagation. This determines the
different features of the numerical solution of both problems. This is probably the reason
why numerical solutions of the problem of moving mass travelling on the string are rarely
presented in publications.

In this paper, we intend to discuss numerical aspects of moving mass, placed directly on
the structure. The influence of moving force alone is trivial, and this question will not be
discussed. The moving mass cannot be simply incorporated in the discrete formulation. The
space-time formulation [22, 23, 24, 25, 26, 27| is used to derive matrices which contribute to
the moving mass effect. Consequent formulation results in a proper time stepping scheme.
The space-time finite element formulation seems to be the best approach to formulate the
problem, and to derive respective characteristic matrices of the step-by-step procedure of
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Figure 2: Divergence of the numerical solution, based on [19], for the ratio m/pAL = 0.1.

time integration of the nonlinear motion equation. The analytical-numerical solution of
the problem exhibits discontinuity of the particle trajectory at the end support. This phe-
nomenon is visible in discrete solutions aswell. It results in an increasing solution error in
higher speed of the moving mass at the final stage of the motion.

The method can be considered as the extension of the traditional finite elements method
in the time domain. The first attempts at the space-time modelling of physical problems were
published in [28]. The definition of the minimized functional allowed the relationship between
time and spatial variables to derive in space—time subdomains. These subdomains can be
considered as space-time finite elements. Oden [29] proposed a general approach to the finite
element method. He extended the image of the structure in the time variable. Unfortunately,
this idea of non-stationary partition of structure on subspaces was not continued. We can
also recall some other publications [30, 31, 32, 33| as a historical background. Kaczkowski
introduced for the first time some abstract physical terms to mechanics: the equation of time-
work, mass as a vector quantity or a space-time rigidity [34, 35, 36]. Triangular elements of
string were elaborated. Then non-stationary partition of the structure and non rectangular
space-time elements [22, 23] enabled the solution of a new group of problems by the space-
time element method: problems with adaptive mesh [1, 24, 25|, contact problems [37, 38|,
and large deformations [39].

2 Formulation of the problem

Let us consider a string of the length [, cross-sectional area A, mass density p, tensile force
N, subjected to a concentrated mass m accompanied by a point force P (Fig. 3), moving
with a constant speed v,,,. The motion equation of the string under the moving inertial load
with a constant speed v,, has a form

0%u(x,t) LA 0%u(x,t)
0x? 0t?
We impose boundary conditions w(0,¢) = 0, u(l,t) = 0 and initial conditions u(x,0) =
0, du(z,t)/0t],_, = 0.
The problem can easily be solved analytically or numerically if P is the only travelling
factor. Respective closed solutions or solutions in a form of series expansion exist in such

O%u(vpt, t)

~N )

= )z —vnt) P — 0(x —v,t)m

4



Figure 3: Moving inertial load.

a case. However, in our paper we concentrate on the influence of the inertial moving term.
We only consider small displacements of the string.

3 Theoretical analysis

The general semi-analytical solution is given below for two reasons. First, we use it as
a reference solution to be compared with the numerical results. Secondly, we intend to
emphasize discontinuity of the mass trajectory at the end support. This important property
is visible both in semi-analytical, and numerical results and influences the response of more
complex systems. The final solution is obtained as a matrix differential equation of the
second order. Numerical integration results in the solution in a full range of the velocity. We
can mention here that exactly the same approach can be applied to a beam with a moving
mass.

3.1 Semi-analytical solution

We present, here an analytical approach, discussed in the extended form in [40]. Tt will be
a base for comparison of numerical results given in the following sections.

In order to reduce the partial differential equation to an ordinary differential equation,
we apply the Fourier sine integral transformation in a finite range < 0,1 >

l . 9 00
V(j,t) = /0 u(:p,t)smj%dx u(z,t) = 7 ZV], smT. (2)

Jj=1

The motion equation after the Fourier transformation is presented as:

V(i) + aZV(k‘,t) sinwyt sinw;t + QQZwk V(k,t) coswyt sinw;t +

k=1 k=1 (3)
+ Q*V — aZw V(k,t) sinwgt sinw;t = isinwt
k k J pA Jgbo
where
kmv JTv N 2m
= n L= UL 02 = — = - 4
Wk; l 9 CL)] l 9 pA l2 Y o pAl ( )



The analytical solution to this problem does not exist. We must solve this equation numeri-
cally. The equation (3) is written in a matrix form, where matrices M, C and K are square
matrices (7, k = 1...n)

MV +CV +KV =P (5)

where the matrices elements are as follows:

MUt . JTUpE

m;; = asin ;o sin T +0i5 (6)
cij = 207 70mY sip MY o 117 : (7)
l l l

P’ N j27r2v72n C1mupt . ot

kij = l—zp—Aéij — QT sin e sin T (8)
and the vector elements:
P 1TVt

pi = ,O_A sin ——— (9)

d;; is the Kronecker delta. When coefficients V' (j,t) are computed, displacements of the
string (2) constitute the solution of (1). It is the solution for a full range. We can calculate
displacement in each point of string and for all values of v,,.

3.2 Results of semi-analytical calculations

The integration of the equation (5) results in components which describe displacements in
time (2). Thus the time-space plot of the deflected string can be done (Fig. 4). Four
velocities v,,=0.3, 0.5, 1.0, 1.2 were selected. For our purpose we depict the mass trajectory
as a section of this 3-dimensional domain. Fig. 5 presents results for the same set of velocities.

The analysis of results exhibits a jump of the mass in the neighbourhood of the end
support. In the paper [40] the discontinuity of the mass trajectory near the end support was
mathematically proven. The proof can be given in the case of massless string. This solution
enabled us to prove the jump of the trajectory in the whole range of the speed 0 < v,, < c.
This conclusion has minor practical meaning since we consider the small displacement case
for which (Ou/dt)? << 1. Yet, it is important for further numerical investigations and
conclusions. What is more, this exhibited property results in significant inconveniences in
discrete solutions.

In the case of inertial string the pure mathematical proof cannot be given. Numerical
integration of the second order differential equation (5) results in a similar feature. One
can notice significant discontinuity range. Space-time plots demonstrate wave fronts and
reflections both from supports and the moving mass. Especially for v,,—0.5¢ the moving
mass approaches the end support in a phase of deep vertical displacement. In spite of low
convergence of the sum (2) good accuracy of results was obtained. We can notice the sharp
edge of the wave and reflection from both supports. Moreover, the wave reflection from the
travelling mass is easily visible, especially for the case v,, = 1.2c. Both the mass trajectory,
and waves are depicted.

A global analytical solution can be considered as a reference solution. It is relatively
simple. Although it is valid for the whole range of the speed v,, (sub-critical, critical and
over-critical), it can be used only in a limited range of practical problems.
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Figure 4: Simulation of the string motion under the mass moving at v,,=0.3¢, 0.5¢, 1.0c and
1.2¢.
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Figure 5: Displacements computed semi-analytically with Eqn. (5) at various speeds.

4 Space-time finite element approach

The numerical analysis of the problem of the moving inertial load can be performed with
the use of the space-time finite element method.

4.1 Discretization of the string

We consider Eqn. (1) in the space-time domain Q= {(z,t): 0 < x <b, 0 <t < h}. The
equation of the virtual power is obtained by multiplying (1) by the virtual velocity v*(x, ).
The total virtual power in €2 is equal to

O*u °u  Ou
// (x,1) (/)A((%Q—Na2 nat)d:cdt—o (11)

71 denotes internal damping coefficient. Integrating (11) by parts with respect to x results in

ov* Ou v* . B
pA//v dQ + N// o I //ansodﬁ—n//gvvdﬁ—O. (12)

We assume linear variation of velocity v = Ju/0t with = and t:

4

vz, t) = Z Ni(z,t)v; . (13)

i=1

In the domain € the shape function N = [Ny, ..., Ny] has a form:

N = blh(a:—b)( ), —%gx S WL o VL (14)



Displacements are computed from velocities by integration

t t
u(z,t) = u(z,0) + / (Nyvy + ...+ Nyvg) dt = u(z,0) + / N*vdt . (15)
0 0
Finally we have
(0.1) = 0, 0) + 2o o)+ L) 4 Lot - (16)
u(x u(x — (v —va— vz +vg) + —(—v1 +v v+ v3) + Uit .
; 50 2= U3+ U) + p(=vHv2) + o (v + v 1
Derivative u/dz can also be computed
t? ¢ du
ou/dx = 5o, — (v — vy — vz +vyg) + E(—vl + vg) + i — |¢=0 - (17)

The proper choice of virtual functions v* is a fundamental question of the space-time ap-
proach. Different functions result in solution schemes of different properties: accuracy and
stability. We propose a simple form with distribution § in ¢t = ah

vz, t) = 5(t — ah) [(1 - %)vg + % e (18)
Required derivatives of virtual v* and real v functions can be determined from (18) and (13)
ov*
or g(—v?, +v4) (19)
vz 1
E :%(vl—vg—vg+v4)+ﬁ(—v1+vg) . (20)

We notice that the Dirac ¢ term in the subintegral function reduces the integration in €2 to
the integration over 0 < z < b. Finally the Eqn. (12) can be written in the following matrix

form:
b
_ z_l) x 1 T T 1
A (3 T r d
P /0[ s th o W bh] v

L - 2t 2t P
N bl |— =<2, —— 4+, —, —|d — 21
YV [ %] l2bh TS TR AT 2bh} . (21)
bz
—n/ {—(ggﬁ— 1)] {(:c—b)(t—h)’ _a:(t—h)’ _(a:—b)t’ x_t] L 0
0 z bh bh bh 7 bh| |,
The resulting matrices are listed below
1 1 1 1
_opb |73 T6 |3 6| 1
M = F[_l e 1]_E[_MS|MS] (22)
6 3 6 3
w g@[aﬂ—%)—ﬂﬂ—%)| T —%]:
b l—a(l-9) a(l-9| -2 2
042
=h |:a(1 - _)Ks | ?Ks:| (23)
l—a 1l-a a o
3 6 3 6
C = nb [1_—0‘ La ‘ . o ] [(1—a)Cs | aCy] (24)
6 3 6 3



M, K, and C are the space-time inertia, stiffness and viscous damping matrices, respectively.
We notice that they are composed of two square matrices, each of a dimension equal to the
number of degrees of freedom in a spatial finite element. Matrices M;, K, and C, have
the same or similar form to respective matrices derived traditionally from the classical finite
element approach. The final form of the motion equation establishes the force equilibrium
on the edge of the element domain 2. Vector v contains nodal velocities v; at the initial
time ¢ = t; and v;;; at the final time ¢t = ¢; + h.

Vi

(M+C+K){ }—i—e:O or K'v4+e=0 . (25)

Vi1

The velocity vector v;,; is the only unknown vector in the above step-by-step equation.
Finally we must compute displacements q; ;. We use the formula

Qiv1 =4 +h[Bvi + (1 = 3) Vi) (26)

The stability analysis results in 5 =1 — «.

4.2 Discretization of the string element carrying moving mass

The last term 6(z — v,,t) m O ?u(vy,t, t)/0t? in the motion equation (1) describes the inertial
moving mass. 0 2u(v,,t,t)/0t? is the vertical acceleration of the moving mass and at the same
time the acceleration of the point of the string in which the mass is temporarily placed (it is
T = To+v,t). The acceleration of the mass 9 *u(v,,t,t)/dt? moving with a constant velocity
Um, according to the Renaudot formula (which in fact is the chain rule of differentiation),
results in three terms:

Pu(vpt,t)  O%u(w,t)
ot? o

OPu(z,t) , O0*u(x,t)
2 " o

r=vmt r=vmt

(27)
r=vmt
Thus we can separate the transverse acceleration, the Coriolis acceleration, and the centrifu-
gal acceleration, respectively. This is the so-called Renaudot notation for the constant speed
Um. Another one, the so-called Jakushev notation (or approach) finally gives the same result
in our case of the constant mass m.

In our space-time finite element method we formulate equations in terms of velocities.

The mass acceleration % is expressed in terms of velocities aswell:
DPu(vmt, t) Ov(vmt, ) Ov(z,t) dv(z,t) (28)
= = ’Um
ot? ot ot ox

T=vmt Tr=vmt

The first term on the right-hand side states the real inertia (when multiplied by m) and the
second term (also multiplied by m) expresses forces similar to damping forces.

In the final stage three resulting matrices are responsible for transverse inertia (the matrix
has the form of the inertia matrix), damping forces (the matrix multiplied by the velocity
vector has a form similar to the Coriolis forces) and stiffness (potential) forces (the matrix,
if multiplied by the velocity vector, has a form similar to the centrifugal forces). The third
matrix appears as the result of initial displacements in the time interval.

10
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Let us now follow this idea and treat numerically the right-hand side inertial term of (1).
The same mathematical steps as in the case of pure string enables us to integrate the inertial

term - )
t,t
/ / N*md(x — vp,t) 9 ulwo +2vm .Y dx,dt . (29)

We consider first the integral term of (15). We use the same linear interpolation of the
velocity (13). The virtual velocity v*:

v%aszﬂnzaa—mwF:%]% (30)

Consequent integration results in two matrices: the moving mass inertia matrix K,,

_m[_a_ﬁ)? —m—m)‘ (1-k) H<1—H)]

™ b 2 k(1 —k) K2 (31

—k (1 —K) —K

where k = (xg + v, ah) /b, o is a starting position of the mass in the space-time element (at
t =t) (see Fig. 6), and the moving mass damping matrix C,,

rmm[—u—mﬂrw%<1—ma—ﬁ> —(1-r)p @—@6].

C,, = (32)

bl k-5 k(1—B) k8 %

Let us now consider the contribution of u(x,0) in (1

5).
work - )
0“u ov* Ju,
2 * 0 0
vm/O /0 v dzdt = / / 9% B (33)

Since displacements of the left and right node of the element are expressed by u; = u? +
h[Bv; + (1 — B)vs] and ug = u% + h[Bvs + (1 — B)vy), we can derive the required dug/dx

We integrate by parts the virtual

duy up—ur u%—ud h

dr b - b + E[_B'Ul + Bug — (1 = B)us + (1 — B)vy] (34)

Numbering of nodes is presented in Fig. 6. Matrix K,, is the stiffness mass matrix
K hmv?, | B =P )
" ~6 B | -(1-p 1-8

b2
11

(35)



The term (u% — u%)/b in (34) multiplied by mv?2, /b results in initial nodal forces e in the
space-time layer (25).

5 Numerical results

The numerical results obtained with the proposed space-time approach can be compared
with the analytical solution. Moreover, the spring-mass finite element solution can also be
plotted. In our tests the string was discretized by a set of 200 finite elements. The time
step h was equal to b/40v,,. It means, that the mass passes from joint to joint in 40 time
steps. We assume m—1.0, pA—1.0, [=1.0, N—=1. Results obtained by the space-time finite
element method are presented in Fig. 7. We notice that at lower speed, up to 0.3-0.4c the
coincidence with semi-analytical results is almost perfect. We observe the convergence of
results to the semi-analytical solution with decreasing time step and increasing number of
spatial elements. Unfortunately, the convergency rate is low. At higher speed the total
time of simulation is shorter and lower number of time steps is required to reach the end
support during the mass motion. All important features of resulting curves, especially high
gradients of displacements near the end support are represented then with lower accuracy.
The error analysis of the method allows us to say that in a general case the error is equal
to h*(1/2 — a) + Oh3. In the particular case a = 0.5 the error equals to 1/12h3 + Oh%.
However, in this case the time integration sheme of the space-time finite element method
is conditionally stable. The gap between numerical and semi-analytical results is visible in
both diagrams. The plot for a = 1/2 is visually better at higher speed range.

Higher velocity can also be considered. Fig. 8 presents displacements in time of the
particle for 0.9 < v,,/c < 1.2. We notice a good coincidence of the plot with the expected
zero line. Further examples prove the efficiency and accuracy of the approach. One can plot
the displacements of selected fixed points of the string. In such a case results exhibit very
good coincidence with the analytical-numerical approach.

We can compare our results with displacements of the contact point of the string under
the travelling oscillator (Fig. 9). We notice the significant difference, especially for higher
speed range, between semi-analytical results or space-time finite element approach and curves
obtained for the oscillator. Pure mass can not be replaced in computations by the oscillator
for problems of high moving mass influence, ie. for the velocity higher then 0.3-0.5 of the
wave speed and for moving mass to the string mass ratio higher then 0.2.

6 Conclusions

In this paper we dealt with numerical analysis of string vibrations under the moving inertial
load. We derived the matrix formula of the time integration procedure on the base of the
space-time finite element method. Solutions presented in the literature are derived from the
base of classical time integration schemes. Published results are acceptable for low speed of
the travelling mass. In such a case errors in formulations do not contribute visible difference
in results. In common practise massless force acting on the string in the form of oscillator is
applied. Such results are greatly underestimated, and for the velocity higher than 0.2-0.3¢
they cannot be taken into account.

The approach presented in this paper can be applied for the whole range of the speed, up
to the wave speed v,, = ¢. The precision of results is high. In the case of the speed higher than
the wave speed the particle’s trajectory is close to the theoretical zero line. Discontinuities

12
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at x = [ exhibited and proven analytically are easily visible in figures presenting numerical
trajectories.

The method presented in this paper can be successfully applied to other structures sub-
jected by inertial load: beams, frames, and plates. Moreover, the space-time finite element
approach can be adapted to classical time integration schemes (Newmark, etc.).
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