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tInertial loading of strings, beams and plates by mass travelling with near-
riti
al ve-lo
ity has been a long debated. Typi
ally, a moving mass is repla
ed by equivalent for
eor an os
illator (with �rigid� spring) that is in permanent 
onta
t with the stru
ture.Su
h an approa
h leads to iterative solutions or imposition of arti�
ial 
onstraints. Inboth 
ases rigid 
onstraints result in serious 
omputational problems. a dire
t massmatrix modi�
ation method frequently implemented in the �nite element approa
hgave reasonable results only in the range of relatively low velo
ities. In this paperwe present the spa
e-time approa
h to the problem. The intera
tion of the movingmass/supporting stru
ture is des
ribed in a lo
al 
oordinate system of the spa
e-time�nite element domain. Resulting 
hara
teristi
 matri
es in
lude inertia, Coriolis and
entrifugal for
es. Simple modi�
ation of matri
es in the dis
rete equations of motionallows us to gain a

urate analysis of a wide range of velo
ities, up to the velo
ity of thewave speed. Numeri
al examples prove the simpli
ity and e�
ien
y of the method. Thepresented approa
h 
an be easily implemented in the 
lassi
 �nite element algorithms.keywords: moving mass, inertial load, spa
e-time �nite element method, spa
e-time approa
h,�nite element method, vibrations of string1 Introdu
tionInertial loads moving on strings, beams and plates with sub or super 
riti
al velo
ities are ofspe
ial interest to pra
tising engineers. Theoreti
al and numeri
al solutions are applied toproblems with single or multi-point 
onta
t su
h as: train-tra
k or vehi
le-bridge intera
tion,pantograph 
olle
tors in railways, magneti
 railways, guideways in roboti
 te
hnology, et
.First the di�eren
e between the inertial loading and loading by moving mass-less for
emust be emphasised. In the inertial load problem the moving mass is pla
ed dire
tly on thestru
ture (Fig. 1a), while the massless for
e represents the equivalent in�uen
e of inertia,or is typi
ally modelled as a spring�mass system load (Fig. 1b). The present paper deals1



a b

v

v

m

m
m

m

Figure 1: Moving mass (a) and moving os
illator (b).with the �rst type of loading. Commonly, di�erential equations derived for moving massproblems are solved numeri
ally by using �nite element te
hniques. Yet, this approa
h has
onsiderable disadvantages. As long as a mass in�uen
e is 
onsidered as an equivalent for
esystem, 
omputations 
an be performed with su�
ient a

ura
y, but only in low range oftravelling speed (up to 0.2 of the wave speed in a string). The moving obje
t is joined to thestring or beam with a spring/absorber system. Then the "equivalent" for
e is determined,with the assumption of relatively high sti�ness of the spring. This results in some seriousnumeri
al di�
ulties. On the other extreme, the "soft way" 
onta
t is assumed [1℄. Theformulation of numeri
al pro
edures requires establishing for
e equilibrium in dis
rete timepoints. Governing di�erential equations are not 
onsequently 
onsidered in the time inter-vals. Although time integration is performed by relatively a

urate pro
edures, the physi
alproblem is treated separately from the time integration s
heme. This is the reason whystrongly nonlinear problems 
annot be easily solved by traditional approa
hes.Analysis of the moving mass problem is widely presented in the literature. The 
losedsolution exists in the 
ase of mass moving on a massless string [2, 3℄. Otherwise the �nalresults are obtained numeri
ally, although the solution is pre
eded by 
omplex analyti
al
al
ulations. In numerous referen
es, authors treat the problem in a low range of the massspeed. In su
h a 
ase, the results are su�
ient, even if the inertial term 
ontributing tomoving mass is not 
orre
tly treated by the time integration method. Simply, the movingmass in�uen
e, in su
h 
ases, is minor 
ompared with stati
 displa
ements.Theoreti
al approa
hes were intensively published, starting from the beginning of thetwentieth 
entury (for example [4, 5, 6℄). Smith [7℄ proposed the purely analyti
al solutionfor the inertial moving load, however, in the 
ase of the massless string only. Broad analysisof moving loads was given in [3, 8℄. In re
ent 
ontributions 
omplex problems of stru
turessubje
ted to the moving inertial load [9℄ or os
illator [10, 11, 12℄ were analysed. Variablespeed of the load was 
onsidered for example in [13, 14, 15℄. Unfortunately, the beam wassubje
ted there to the massless for
es. The equivalent dynami
 mass in�uen
e is analysedin [16℄. The in�nitely long string subje
ted to a uniformly a

elerated point mass was alsotreated [17℄ and analyti
al solution of the problem 
on
erning the motion of an in�nite stringon Winkler foundation subje
ted to an inertial load moving at a 
onstant speed was given[18℄.Measurements of the wave speed in railway tra
ks treated as beams show values 800�1000km/h. In the 
ase of soaked ground the speed 
an de
rease to 500 km/h or less. Dynami
in�uen
e of the moving load signi�
antly in
reases the stru
ture de�e
tion. The highestdynami
 
ontribution determines the 
riti
al speed of motion. Pra
ti
ally, the 
riti
al massspeed equals to 0.4�0.5 of the wave speed. This is the range of modern vehi
le motion.2



Numeri
al approa
hes implemented in the 
ommer
ial 
odes are a

eptable only for lowspeed. Moreover, the moving mass is usually introdu
ed as a set of os
illators, joined elas-ti
ally or vis
oelasti
ally to the main stru
ture. Rigidity of the arti�
ial string 
annot behigh enough due to the 
omputational limitations. This 
oupled non-linear problem mustbe solved iteratively or by imposition of 
omplex 
onstraint. The dynami
 problem 
anbe solved in one iteration per time step, however, with the loss of a

ura
y, and what isessential, only in the low speed range.The dynami
 problem 
an be 
onsidered as a sequen
e of stati
 solutions, performed step-by-step with a pres
ribed time in
rement. At a low velo
ity of the mass (approximately upto 0.1 of the 
riti
al speed and up to 0.2 of the wave speed in the unloaded and unballastedstru
ture) simple repla
ement of the mass from joint to joint, or from element to element,
an be applied with an error su�
iently low for engineering purposes. However, the errordramati
ally in
reases with the travelling speed, and su
h an approa
h 
annot be applied ina general 
ase. Dire
t modi�
ation of global 
hara
teristi
 matri
es in the dis
rete systemis attra
tive sin
e it allows us to avoid 
omputational 
omplexity as in the 
ase of movingos
illators or the imposition of supplementary 
onstraints.The paper [19℄ presents an early resear
h in the �eld of dis
rete solutions of movingmass problems. The beam was subje
ted to a moving 
on
entrated mass together withan os
illator. The moving mass was pla
ed dire
tly on the beam 
ontributed load termsobtained by the 
hain rule derivation, 
alled also the Renaudot formula. The problem wassolved typi
ally in two stages. The beam for
ed kinemati
ally on the os
illator motion,and then the os
illator a
ted with a for
e to the beam. While zeroing the os
illator massone should obtain solutions for pure mass motion. The presented results 
annot be simply
ompared with analyti
al solutions in higher speed range.In the next paper [20℄, the moving os
illator is being 
onsidered. The solution with springsti�ness tending to in�nity should approa
h the solution with moving mass. Unfortunately,�nal numeri
al tests exhibit signi�
ant errors for higher spring sti�ness. In [21℄ the movinginertial load is distributed on a given segment. The approa
h is similar to the Filho solution[19℄, in the 
ase of zero os
illator mass. In
reasing mass velo
ity de
reases the a

ura
y of theresults. Another approa
h is presented in [9℄, where a de
lined beam element is 
onsidered.The author proves that the in�uen
e of the Coriolis for
e is minor, when 
ompared withtotal beam response. The numeri
al solution obtained with the above method for the stringvibration problem is divergent (Fig. 2). In the 
ase of a beam the divergen
e rate is lowerthen for a string, be
ause of type of the di�erential equation.Here, we must noti
e the di�eren
e in equations that des
ribe beam and string motion.In the 
ase of beam motion, both of the Euler and Timoshenko type, we have a signi�
antin�uen
e of bending. The equation is a hyperboli
�paraboli
 type. In the 
ase of stringmotion, we have a hyperboli
 equation with a pure wave propagation. This determines thedi�erent features of the numeri
al solution of both problems. This is probably the reasonwhy numeri
al solutions of the problem of moving mass travelling on the string are rarelypresented in publi
ations.In this paper, we intend to dis
uss numeri
al aspe
ts of moving mass, pla
ed dire
tly onthe stru
ture. The in�uen
e of moving for
e alone is trivial, and this question will not bedis
ussed. The moving mass 
annot be simply in
orporated in the dis
rete formulation. Thespa
e-time formulation [22, 23, 24, 25, 26, 27℄ is used to derive matri
es whi
h 
ontribute tothe moving mass e�e
t. Consequent formulation results in a proper time stepping s
heme.The spa
e-time �nite element formulation seems to be the best approa
h to formulate theproblem, and to derive respe
tive 
hara
teristi
 matri
es of the step-by-step pro
edure of3
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e of the numeri
al solution, based on [19℄, for the ratio m/ρAL = 0.1.time integration of the nonlinear motion equation. The analyti
al-numeri
al solution ofthe problem exhibits dis
ontinuity of the parti
le traje
tory at the end support. This phe-nomenon is visible in dis
rete solutions aswell. It results in an in
reasing solution error inhigher speed of the moving mass at the �nal stage of the motion.The method 
an be 
onsidered as the extension of the traditional �nite elements methodin the time domain. The �rst attempts at the spa
e-time modelling of physi
al problems werepublished in [28℄. The de�nition of the minimized fun
tional allowed the relationship betweentime and spatial variables to derive in spa
e�time subdomains. These subdomains 
an be
onsidered as spa
e-time �nite elements. Oden [29℄ proposed a general approa
h to the �niteelement method. He extended the image of the stru
ture in the time variable. Unfortunately,this idea of non-stationary partition of stru
ture on subspa
es was not 
ontinued. We 
analso re
all some other publi
ations [30, 31, 32, 33℄ as a histori
al ba
kground. Ka
zkowskiintrodu
ed for the �rst time some abstra
t physi
al terms to me
hani
s: the equation of time-work, mass as a ve
tor quantity or a spa
e-time rigidity [34, 35, 36℄. Triangular elements ofstring were elaborated. Then non-stationary partition of the stru
ture and non re
tangularspa
e-time elements [22, 23℄ enabled the solution of a new group of problems by the spa
e-time element method: problems with adaptive mesh [1, 24, 25℄, 
onta
t problems [37, 38℄,and large deformations [39℄.2 Formulation of the problemLet us 
onsider a string of the length l, 
ross-se
tional area A, mass density ρ, tensile for
e
N , subje
ted to a 
on
entrated mass m a

ompanied by a point for
e P (Fig. 3), movingwith a 
onstant speed vm. The motion equation of the string under the moving inertial loadwith a 
onstant speed vm has a form

−N
∂ 2u(x, t)

∂ x 2
+ ρA

∂ 2u(x, t)

∂ t 2
= δ(x− vmt)P − δ(x− vmt)m

∂ 2u(vmt, t)

∂ t 2
. (1)We impose boundary 
onditions u(0, t) = 0, u(l, t) = 0 and initial 
onditions u(x, 0) =

0, ∂ u(x, t)/∂ t |t=0 = 0.The problem 
an easily be solved analyti
ally or numeri
ally if P is the only travellingfa
tor. Respe
tive 
losed solutions or solutions in a form of series expansion exist in su
h4
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Figure 3: Moving inertial load.a 
ase. However, in our paper we 
on
entrate on the in�uen
e of the inertial moving term.We only 
onsider small displa
ements of the string.3 Theoreti
al analysisThe general semi-analyti
al solution is given below for two reasons. First, we use it asa referen
e solution to be 
ompared with the numeri
al results. Se
ondly, we intend toemphasize dis
ontinuity of the mass traje
tory at the end support. This important propertyis visible both in semi-analyti
al, and numeri
al results and in�uen
es the response of more
omplex systems. The �nal solution is obtained as a matrix di�erential equation of these
ond order. Numeri
al integration results in the solution in a full range of the velo
ity. We
an mention here that exa
tly the same approa
h 
an be applied to a beam with a movingmass.3.1 Semi-analyti
al solutionWe present here an analyti
al approa
h, dis
ussed in the extended form in [40℄. It will bea base for 
omparison of numeri
al results given in the following se
tions.In order to redu
e the partial di�erential equation to an ordinary di�erential equation,we apply the Fourier sine integral transformation in a �nite range < 0, l >

V (j, t) =

∫ l

0

u(x, t) sin
jπx

l
dx u(x, t) =

2

l

∞
∑

j=1

V (j, t) sin
jπx

l
. (2)The motion equation after the Fourier transformation is presented as:

V̈ (j, t) + α
∞
∑

k=1

V̈ (k, t) sinωkt sinωjt + 2α
∞
∑

k=1

ωk V̇ (k, t) cosωkt sinωjt +

+ Ω2 V (j, t) − α
∞
∑

k=1

ω2
k V (k, t) sinωkt sinωjt =

P

ρA
sinωjt ,

(3)where
ωk =

kπvm
l

, ωj =
jπvm
l

, Ω2 =
N

ρA

j2π2

l2
, α =

2m

ρA l
. (4)5



The analyti
al solution to this problem does not exist. We must solve this equation numeri-
ally. The equation (3) is written in a matrix form, where matri
es M, C and K are squarematri
es (j, k = 1...n)
MV̈ +CV̇ +KV = P , (5)where the matri
es elements are as follows:

mij = α sin
iπvmt

l
sin

jπvmt

l
+ δij , (6)

cij = 2α
jπvmt

l
sin

iπvmt

l
cos

jπvmt

l
, (7)

kij =
i2π2

l2
N

ρA
δij − α

j2π2v2m
l2

sin
iπvmt

l
sin

jπvmt

l
, (8)and the ve
tor elements:

pi =
P

ρA
sin

iπvmt

l
, (9)

vi = V (i, t) . (10)
δij is the Krone
ker delta. When 
oe�
ients V (j, t) are 
omputed, displa
ements of thestring (2) 
onstitute the solution of (1). It is the solution for a full range. We 
an 
al
ulatedispla
ement in ea
h point of string and for all values of vm.3.2 Results of semi-analyti
al 
al
ulationsThe integration of the equation (5) results in 
omponents whi
h des
ribe displa
ements intime (2). Thus the time-spa
e plot of the de�e
ted string 
an be done (Fig. 4). Fourvelo
ities vm=0.3, 0.5, 1.0, 1.2 were sele
ted. For our purpose we depi
t the mass traje
toryas a se
tion of this 3-dimensional domain. Fig. 5 presents results for the same set of velo
ities.The analysis of results exhibits a jump of the mass in the neighbourhood of the endsupport. In the paper [40℄ the dis
ontinuity of the mass traje
tory near the end support wasmathemati
ally proven. The proof 
an be given in the 
ase of massless string. This solutionenabled us to prove the jump of the traje
tory in the whole range of the speed 0 < vm ≤ c.This 
on
lusion has minor pra
ti
al meaning sin
e we 
onsider the small displa
ement 
asefor whi
h (∂u/∂t)2 << 1. Yet, it is important for further numeri
al investigations and
on
lusions. What is more, this exhibited property results in signi�
ant in
onvenien
es indis
rete solutions.In the 
ase of inertial string the pure mathemati
al proof 
annot be given. Numeri
alintegration of the se
ond order di�erential equation (5) results in a similar feature. One
an noti
e signi�
ant dis
ontinuity range. Spa
e-time plots demonstrate wave fronts andre�e
tions both from supports and the moving mass. Espe
ially for vm=0.5c the movingmass approa
hes the end support in a phase of deep verti
al displa
ement. In spite of low
onvergen
e of the sum (2) good a

ura
y of results was obtained. We 
an noti
e the sharpedge of the wave and re�e
tion from both supports. Moreover, the wave re�e
tion from thetravelling mass is easily visible, espe
ially for the 
ase vm = 1.2c. Both the mass traje
tory,and waves are depi
ted.A global analyti
al solution 
an be 
onsidered as a referen
e solution. It is relativelysimple. Although it is valid for the whole range of the speed vm (sub-
riti
al, 
riti
al andover-
riti
al), it 
an be used only in a limited range of pra
ti
al problems.6
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Figure 5: Displa
ements 
omputed semi-analyti
ally with Eqn. (5) at various speeds.4 Spa
e-time �nite element approa
hThe numeri
al analysis of the problem of the moving inertial load 
an be performed withthe use of the spa
e-time �nite element method.4.1 Dis
retization of the stringWe 
onsider Eqn. (1) in the spa
e-time domain Ω= {(x, t): 0 ≤ x ≤ b, 0 ≤ t ≤ h}. Theequation of the virtual power is obtained by multiplying (1) by the virtual velo
ity v∗(x, t).The total virtual power in Ω is equal to
∫ h

0

∫ b

0

v∗(x, t)

(

ρA
∂2u

∂t2
−N

∂2u

∂x2
− η

∂u

∂t

) dx dt = 0 . (11)
η denotes internal damping 
oe�
ient. Integrating (11) by parts with respe
t to x results in

ρA

∫∫

Ω

v∗
∂v

∂t
dΩ+N

∫∫

Ω

∂v∗

∂x

∂u

∂x
dΩ +

∫∫

Ω

∂v∗

∂x
ε0 dΩ− η

∫∫

Ω

v∗v dΩ = 0 . (12)We assume linear variation of velo
ity v = ∂u/∂t with x and t:
v(x, t) =

4
∑

i=1

Ni(x, t) vi . (13)In the domain Ω the shape fun
tion N = [N1, . . . , N4] has a form:
N =

[

1

bh
(x− b)(t− h) , −

1

bh
x(t− h) , −

1

bh
(x− b)t ,

1

bh
x t

]

. (14)8



Displa
ements are 
omputed from velo
ities by integration
u(x, t) = u(x, 0) +

∫ t

0

(N1v1 + . . .+N4v4) dt = u(x, 0) +

∫ t

0

N∗ v dt . (15)Finally we have
u(x, t) = u(x, 0) +

xt2

2bh
(v1 − v2 − v3 + v4) +

x

b
(−v1 + v2) +

t2

2h
(−v1 + v3) + v1t . (16)Derivative ∂u/∂x 
an also be 
omputed

∂u/∂x =
t2

2bh
(v1 − v2 − v3 + v4) +

t

b
(−v1 + v2) +

dudt |t=0 . (17)The proper 
hoi
e of virtual fun
tions v∗ is a fundamental question of the spa
e-time ap-proa
h. Di�erent fun
tions result in solution s
hemes of di�erent properties: a

ura
y andstability. We propose a simple form with distribution δ in t = αh

v∗(x, t) = δ(t− αh)
[

(1−
x

b
)v3 +

x

b
v4

]

. (18)Required derivatives of virtual v∗ and real v fun
tions 
an be determined from (18) and (13)
∂v∗

∂x
=

1

b
(−v3 + v4) , (19)

∂v

∂t
=

x

bh
(v1 − v2 − v3 + v4) +

1

h
(−v1 + v3) . (20)We noti
e that the Dira
 δ term in the subintegral fun
tion redu
es the integration in Ω tothe integration over 0 ≤ x ≤ b. Finally the Eqn. (12) 
an be written in the following matrixform:

ρA

∫ b

0

[

−
(

x
b
− 1

)

x
b

] [

x

bh
−

1

h
, −

x

bh
, −

x

bh
+

1

h
,

x

bh

] dx+

+N

∫ b

0

[

−1
b
1
b

] [

t2

2bh
−

t

b
, −

t2

2bh
+

t

b
, −

t2

2bh
,

t2

2bh

] dx∣∣∣
∣

t=αh

− (21)
− η

∫ b

0

[

−(x
b
− 1)
x
b

] [

(x− b)(t− h)

bh
, −

x(t− h)

bh
, −

(x− b)t

bh
,
xt

bh

] dx∣∣∣
∣

t=αh

= 0 .The resulting matri
es are listed below:
M =

ρb

h

[

−1
3

−1
6

−1
6

−1
3

∣

∣

∣

∣

∣

1
3

1
6

1
6

1
3

]

=
1

h
[−Ms | Ms] (22)

K =
Nh

b

[

α(1− α
2
) −α(1− α

2
)

−α(1− α
2
) α(1− α

2
)

∣

∣

∣

∣

∣

α2

2
−α2

2

−α2

2
α2

2

]

=

= h

[

α(1−
α

2
)Ks |

α2

2
Ks

] (23)
C = ηb

[

1−α
3

1−α
6

1−α
6

1−α
3

∣

∣

∣

∣

∣

α
3

α
6

α
6

α
3

]

= [(1− α)Cs | αCs] (24)9



M, K, andC are the spa
e-time inertia, sti�ness and vis
ous damping matri
es, respe
tively.We noti
e that they are 
omposed of two square matri
es, ea
h of a dimension equal to thenumber of degrees of freedom in a spatial �nite element. Matri
es Ms, Ks, and Cs havethe same or similar form to respe
tive matri
es derived traditionally from the 
lassi
al �niteelement approa
h. The �nal form of the motion equation establishes the for
e equilibriumon the edge of the element domain Ω. Ve
tor v 
ontains nodal velo
ities vi at the initialtime t = ti and vi+1 at the �nal time t = ti + h.
(M+C+K)

{

vi

vi+1

}

+ e = 0 or K∗ v + e = 0 . (25)The velo
ity ve
tor vi+1 is the only unknown ve
tor in the above step-by-step equation.Finally we must 
ompute displa
ements qi+1. We use the formula
qi+1 = qi + h[β vi + (1− β)vi+1] (26)The stability analysis results in β = 1− α.4.2 Dis
retization of the string element 
arrying moving massThe last term δ(x−vmt)m∂ 2u(vmt, t)/∂ t

2 in the motion equation (1) des
ribes the inertialmoving mass. ∂ 2u(vmt, t)/∂ t
2 is the verti
al a

eleration of the moving mass and at the sametime the a

eleration of the point of the string in whi
h the mass is temporarily pla
ed (it is

x = x0+vmt). The a

eleration of the mass ∂ 2u(vmt, t)/∂ t
2 moving with a 
onstant velo
ity

vm, a

ording to the Renaudot formula (whi
h in fa
t is the 
hain rule of di�erentiation),results in three terms:
∂2u(vmt, t)

∂t2
=

∂2u(x, t)

∂t2

∣

∣

∣

∣

x=vmt

+ 2vm
∂2u(x, t)

∂x∂t

∣

∣

∣

∣

x=vmt

+ v2m
∂2u(x, t)

∂x2

∣

∣

∣

∣

x=vmt

. (27)Thus we 
an separate the transverse a

eleration, the Coriolis a

eleration, and the 
entrifu-gal a

eleration, respe
tively. This is the so-
alled Renaudot notation for the 
onstant speed
vm. Another one, the so-
alled Jakushev notation (or approa
h) �nally gives the same resultin our 
ase of the 
onstant mass m.In our spa
e-time �nite element method we formulate equations in terms of velo
ities.The mass a

eleration ∂ 2u(vmt,t)

∂ t 2
is expressed in terms of velo
ities aswell:

∂2u(vmt, t)

∂t2
=

∂v(vmt, t)

∂t
=

∂v(x, t)

∂t

∣

∣

∣

∣

x=vmt

+ vm
∂v(x, t)

∂x

∣

∣

∣

∣

x=vmt

. (28)The �rst term on the right-hand side states the real inertia (when multiplied by m) and these
ond term (also multiplied by m) expresses for
es similar to damping for
es.In the �nal stage three resulting matri
es are responsible for transverse inertia (the matrixhas the form of the inertia matrix), damping for
es (the matrix multiplied by the velo
ityve
tor has a form similar to the Coriolis for
es) and sti�ness (potential) for
es (the matrix,if multiplied by the velo
ity ve
tor, has a form similar to the 
entrifugal for
es). The thirdmatrix appears as the result of initial displa
ements in the time interval.10
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Figure 6: Mass path in the spa
e-time �nite element.Let us now follow this idea and treat numeri
ally the right-hand side inertial term of (1).The same mathemati
al steps as in the 
ase of pure string enables us to integrate the inertialterm
∫ h

0

∫ b

0

N∗mδ(x− vmt)
∂ 2u(x0 + vmt, t)

∂ t 2
dx, dt . (29)We 
onsider �rst the integral term of (15). We use the same linear interpolation of thevelo
ity (13). The virtual velo
ity v∗:

v∗(x, t) = N∗ q̇p = δ(t− αh)

[

1− x
b

x
b

]

q̇p (30)Consequent integration results in two matri
es: the moving mass inertia matrix Km

Mm =
m

h

[

− (1− κ)2 −κ (1− κ)

−κ (1− κ) −κ2

∣

∣

∣

∣

∣

(1− κ)2 κ (1− κ)

κ (1− κ) κ2

]

, (31)where κ = (x0+ vmαh)/b, x0 is a starting position of the mass in the spa
e-time element (at
t = t0) (see Fig. 6), and the moving mass damping matrix Cm

Cm =
mvm
b

[

− (1− κ) (1− β) (1− κ) (1− β)

−κ (1− β) κ (1− β)

∣

∣

∣

∣

∣

− (1− κ) β (1− κ) β

−κβ κβ

]

. (32)Let us now 
onsider the 
ontribution of u(x, 0) in (15). We integrate by parts the virtualwork
v2m

∫ h

0

∫ b

0

v∗
∂2u0

∂x2
dxdt = −v2m

∫ h

0

∫ b

0

∂v∗

∂x

∂u0

∂x
dxdt (33)Sin
e displa
ements of the left and right node of the element are expressed by uL = u0

L +
h[βv1 + (1− β)v3] and uR = u0

R + h[βv2 + (1− β)v4], we 
an derive the required du0/dxdu0dx =
uR − uL

b
=

u0
R − u0

L

b
+

h

b
[−βv1 + βv2 − (1− β)v3 + (1− β)v4] (34)Numbering of nodes is presented in Fig. 6. Matrix Km is the sti�ness mass matrix

Km =
hmv2m
b2

[

β −β

−β β

∣

∣

∣

∣

∣

1− β −(1− β)

−(1 − β) 1− β

] (35)11



The term (u0
R − u0

L)/b in (34) multiplied by mv2m/b results in initial nodal for
es e in thespa
e-time layer (25).5 Numeri
al resultsThe numeri
al results obtained with the proposed spa
e-time approa
h 
an be 
omparedwith the analyti
al solution. Moreover, the spring-mass �nite element solution 
an also beplotted. In our tests the string was dis
retized by a set of 200 �nite elements. The timestep h was equal to b/40vm. It means, that the mass passes from joint to joint in 40 timesteps. We assume m=1.0, ρA=1.0, l=1.0, N=1. Results obtained by the spa
e-time �niteelement method are presented in Fig. 7. We noti
e that at lower speed, up to 0.3-0.4c the
oin
iden
e with semi-analyti
al results is almost perfe
t. We observe the 
onvergen
e ofresults to the semi-analyti
al solution with de
reasing time step and in
reasing number ofspatial elements. Unfortunately, the 
onvergen
y rate is low. At higher speed the totaltime of simulation is shorter and lower number of time steps is required to rea
h the endsupport during the mass motion. All important features of resulting 
urves, espe
ially highgradients of displa
ements near the end support are represented then with lower a

ura
y.The error analysis of the method allows us to say that in a general 
ase the error is equalto h2(1/2 − α) + Oh3. In the parti
ular 
ase α = 0.5 the error equals to 1/12h3 + Oh4.However, in this 
ase the time integration sheme of the spa
e-time �nite element methodis 
onditionally stable. The gap between numeri
al and semi-analyti
al results is visible inboth diagrams. The plot for α = 1/2 is visually better at higher speed range.Higher velo
ity 
an also be 
onsidered. Fig. 8 presents displa
ements in time of theparti
le for 0.9 ≤ vm/c ≤ 1.2. We noti
e a good 
oin
iden
e of the plot with the expe
tedzero line. Further examples prove the e�
ien
y and a

ura
y of the approa
h. One 
an plotthe displa
ements of sele
ted �xed points of the string. In su
h a 
ase results exhibit verygood 
oin
iden
e with the analyti
al-numeri
al approa
h.We 
an 
ompare our results with displa
ements of the 
onta
t point of the string underthe travelling os
illator (Fig. 9). We noti
e the signi�
ant di�eren
e, espe
ially for higherspeed range, between semi-analyti
al results or spa
e-time �nite element approa
h and 
urvesobtained for the os
illator. Pure mass 
an not be repla
ed in 
omputations by the os
illatorfor problems of high moving mass in�uen
e, ie. for the velo
ity higher then 0.3-0.5 of thewave speed and for moving mass to the string mass ratio higher then 0.2.6 Con
lusionsIn this paper we dealt with numeri
al analysis of string vibrations under the moving inertialload. We derived the matrix formula of the time integration pro
edure on the base of thespa
e-time �nite element method. Solutions presented in the literature are derived from thebase of 
lassi
al time integration s
hemes. Published results are a

eptable for low speed ofthe travelling mass. In su
h a 
ase errors in formulations do not 
ontribute visible di�eren
ein results. In 
ommon pra
tise massless for
e a
ting on the string in the form of os
illator isapplied. Su
h results are greatly underestimated, and for the velo
ity higher than 0.2�0.3cthey 
annot be taken into a

ount.The approa
h presented in this paper 
an be applied for the whole range of the speed, upto the wave speed vm = c. The pre
ision of results is high. In the 
ase of the speed higher thanthe wave speed the parti
le's traje
tory is 
lose to the theoreti
al zero line. Dis
ontinuities12
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Figure 7: Displa
ements under moving mass � spa
e-time �nite element solution for α = 0.5(upper) and α = 1.0 (lower) 
ompared with semi-analyti
al solution.
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at x = l exhibited and proven analyti
ally are easily visible in �gures presenting numeri
altraje
tories.The method presented in this paper 
an be su

essfully applied to other stru
tures sub-je
ted by inertial load: beams, frames, and plates. Moreover, the spa
e-time �nite elementapproa
h 
an be adapted to 
lassi
al time integration s
hemes (Newmark, et
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