
Spae-time approah to numerial analysisof a string with a moving massCzesªaw I. Bajer and Bartªomiej DyniewizInstitute of Fundamental Tehnologial Researh,Polish Aademy of Sienes,�wi�tokrzyska 21, 00-049 Warsaw, PolandNovember 30, 2013AbstratInertial loading of strings, beams and plates by mass travelling with near-ritial ve-loity has been a long debated. Typially, a moving mass is replaed by equivalent foreor an osillator (with �rigid� spring) that is in permanent ontat with the struture.Suh an approah leads to iterative solutions or imposition of arti�ial onstraints. Inboth ases rigid onstraints result in serious omputational problems. a diret massmatrix modi�ation method frequently implemented in the �nite element approahgave reasonable results only in the range of relatively low veloities. In this paperwe present the spae-time approah to the problem. The interation of the movingmass/supporting struture is desribed in a loal oordinate system of the spae-time�nite element domain. Resulting harateristi matries inlude inertia, Coriolis andentrifugal fores. Simple modi�ation of matries in the disrete equations of motionallows us to gain aurate analysis of a wide range of veloities, up to the veloity of thewave speed. Numerial examples prove the simpliity and e�ieny of the method. Thepresented approah an be easily implemented in the lassi �nite element algorithms.keywords: moving mass, inertial load, spae-time �nite element method, spae-time approah,�nite element method, vibrations of string1 IntrodutionInertial loads moving on strings, beams and plates with sub or super ritial veloities are ofspeial interest to pratising engineers. Theoretial and numerial solutions are applied toproblems with single or multi-point ontat suh as: train-trak or vehile-bridge interation,pantograph olletors in railways, magneti railways, guideways in roboti tehnology, et.First the di�erene between the inertial loading and loading by moving mass-less foremust be emphasised. In the inertial load problem the moving mass is plaed diretly on thestruture (Fig. 1a), while the massless fore represents the equivalent in�uene of inertia,or is typially modelled as a spring�mass system load (Fig. 1b). The present paper deals1
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Figure 1: Moving mass (a) and moving osillator (b).with the �rst type of loading. Commonly, di�erential equations derived for moving massproblems are solved numerially by using �nite element tehniques. Yet, this approah hasonsiderable disadvantages. As long as a mass in�uene is onsidered as an equivalent foresystem, omputations an be performed with su�ient auray, but only in low range oftravelling speed (up to 0.2 of the wave speed in a string). The moving objet is joined to thestring or beam with a spring/absorber system. Then the "equivalent" fore is determined,with the assumption of relatively high sti�ness of the spring. This results in some seriousnumerial di�ulties. On the other extreme, the "soft way" ontat is assumed [1℄. Theformulation of numerial proedures requires establishing fore equilibrium in disrete timepoints. Governing di�erential equations are not onsequently onsidered in the time inter-vals. Although time integration is performed by relatively aurate proedures, the physialproblem is treated separately from the time integration sheme. This is the reason whystrongly nonlinear problems annot be easily solved by traditional approahes.Analysis of the moving mass problem is widely presented in the literature. The losedsolution exists in the ase of mass moving on a massless string [2, 3℄. Otherwise the �nalresults are obtained numerially, although the solution is preeded by omplex analytialalulations. In numerous referenes, authors treat the problem in a low range of the massspeed. In suh a ase, the results are su�ient, even if the inertial term ontributing tomoving mass is not orretly treated by the time integration method. Simply, the movingmass in�uene, in suh ases, is minor ompared with stati displaements.Theoretial approahes were intensively published, starting from the beginning of thetwentieth entury (for example [4, 5, 6℄). Smith [7℄ proposed the purely analytial solutionfor the inertial moving load, however, in the ase of the massless string only. Broad analysisof moving loads was given in [3, 8℄. In reent ontributions omplex problems of struturessubjeted to the moving inertial load [9℄ or osillator [10, 11, 12℄ were analysed. Variablespeed of the load was onsidered for example in [13, 14, 15℄. Unfortunately, the beam wassubjeted there to the massless fores. The equivalent dynami mass in�uene is analysedin [16℄. The in�nitely long string subjeted to a uniformly aelerated point mass was alsotreated [17℄ and analytial solution of the problem onerning the motion of an in�nite stringon Winkler foundation subjeted to an inertial load moving at a onstant speed was given[18℄.Measurements of the wave speed in railway traks treated as beams show values 800�1000km/h. In the ase of soaked ground the speed an derease to 500 km/h or less. Dynamiin�uene of the moving load signi�antly inreases the struture de�etion. The highestdynami ontribution determines the ritial speed of motion. Pratially, the ritial massspeed equals to 0.4�0.5 of the wave speed. This is the range of modern vehile motion.2



Numerial approahes implemented in the ommerial odes are aeptable only for lowspeed. Moreover, the moving mass is usually introdued as a set of osillators, joined elas-tially or visoelastially to the main struture. Rigidity of the arti�ial string annot behigh enough due to the omputational limitations. This oupled non-linear problem mustbe solved iteratively or by imposition of omplex onstraint. The dynami problem anbe solved in one iteration per time step, however, with the loss of auray, and what isessential, only in the low speed range.The dynami problem an be onsidered as a sequene of stati solutions, performed step-by-step with a presribed time inrement. At a low veloity of the mass (approximately upto 0.1 of the ritial speed and up to 0.2 of the wave speed in the unloaded and unballastedstruture) simple replaement of the mass from joint to joint, or from element to element,an be applied with an error su�iently low for engineering purposes. However, the errordramatially inreases with the travelling speed, and suh an approah annot be applied ina general ase. Diret modi�ation of global harateristi matries in the disrete systemis attrative sine it allows us to avoid omputational omplexity as in the ase of movingosillators or the imposition of supplementary onstraints.The paper [19℄ presents an early researh in the �eld of disrete solutions of movingmass problems. The beam was subjeted to a moving onentrated mass together withan osillator. The moving mass was plaed diretly on the beam ontributed load termsobtained by the hain rule derivation, alled also the Renaudot formula. The problem wassolved typially in two stages. The beam fored kinematially on the osillator motion,and then the osillator ated with a fore to the beam. While zeroing the osillator massone should obtain solutions for pure mass motion. The presented results annot be simplyompared with analytial solutions in higher speed range.In the next paper [20℄, the moving osillator is being onsidered. The solution with springsti�ness tending to in�nity should approah the solution with moving mass. Unfortunately,�nal numerial tests exhibit signi�ant errors for higher spring sti�ness. In [21℄ the movinginertial load is distributed on a given segment. The approah is similar to the Filho solution[19℄, in the ase of zero osillator mass. Inreasing mass veloity dereases the auray of theresults. Another approah is presented in [9℄, where a delined beam element is onsidered.The author proves that the in�uene of the Coriolis fore is minor, when ompared withtotal beam response. The numerial solution obtained with the above method for the stringvibration problem is divergent (Fig. 2). In the ase of a beam the divergene rate is lowerthen for a string, beause of type of the di�erential equation.Here, we must notie the di�erene in equations that desribe beam and string motion.In the ase of beam motion, both of the Euler and Timoshenko type, we have a signi�antin�uene of bending. The equation is a hyperboli�paraboli type. In the ase of stringmotion, we have a hyperboli equation with a pure wave propagation. This determines thedi�erent features of the numerial solution of both problems. This is probably the reasonwhy numerial solutions of the problem of moving mass travelling on the string are rarelypresented in publiations.In this paper, we intend to disuss numerial aspets of moving mass, plaed diretly onthe struture. The in�uene of moving fore alone is trivial, and this question will not bedisussed. The moving mass annot be simply inorporated in the disrete formulation. Thespae-time formulation [22, 23, 24, 25, 26, 27℄ is used to derive matries whih ontribute tothe moving mass e�et. Consequent formulation results in a proper time stepping sheme.The spae-time �nite element formulation seems to be the best approah to formulate theproblem, and to derive respetive harateristi matries of the step-by-step proedure of3
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N , subjeted to a onentrated mass m aompanied by a point fore P (Fig. 3), movingwith a onstant speed vm. The motion equation of the string under the moving inertial loadwith a onstant speed vm has a form

−N
∂ 2u(x, t)

∂ x 2
+ ρA

∂ 2u(x, t)

∂ t 2
= δ(x− vmt)P − δ(x− vmt)m

∂ 2u(vmt, t)

∂ t 2
. (1)We impose boundary onditions u(0, t) = 0, u(l, t) = 0 and initial onditions u(x, 0) =

0, ∂ u(x, t)/∂ t |t=0 = 0.The problem an easily be solved analytially or numerially if P is the only travellingfator. Respetive losed solutions or solutions in a form of series expansion exist in suh4
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Figure 3: Moving inertial load.a ase. However, in our paper we onentrate on the in�uene of the inertial moving term.We only onsider small displaements of the string.3 Theoretial analysisThe general semi-analytial solution is given below for two reasons. First, we use it asa referene solution to be ompared with the numerial results. Seondly, we intend toemphasize disontinuity of the mass trajetory at the end support. This important propertyis visible both in semi-analytial, and numerial results and in�uenes the response of moreomplex systems. The �nal solution is obtained as a matrix di�erential equation of theseond order. Numerial integration results in the solution in a full range of the veloity. Wean mention here that exatly the same approah an be applied to a beam with a movingmass.3.1 Semi-analytial solutionWe present here an analytial approah, disussed in the extended form in [40℄. It will bea base for omparison of numerial results given in the following setions.In order to redue the partial di�erential equation to an ordinary di�erential equation,we apply the Fourier sine integral transformation in a �nite range < 0, l >

V (j, t) =

∫ l

0

u(x, t) sin
jπx

l
dx u(x, t) =

2

l

∞
∑

j=1

V (j, t) sin
jπx

l
. (2)The motion equation after the Fourier transformation is presented as:

V̈ (j, t) + α
∞
∑

k=1

V̈ (k, t) sinωkt sinωjt + 2α
∞
∑

k=1

ωk V̇ (k, t) cosωkt sinωjt +

+ Ω2 V (j, t) − α
∞
∑

k=1

ω2
k V (k, t) sinωkt sinωjt =

P

ρA
sinωjt ,

(3)where
ωk =

kπvm
l

, ωj =
jπvm
l

, Ω2 =
N

ρA

j2π2

l2
, α =

2m

ρA l
. (4)5



The analytial solution to this problem does not exist. We must solve this equation numeri-ally. The equation (3) is written in a matrix form, where matries M, C and K are squarematries (j, k = 1...n)
MV̈ +CV̇ +KV = P , (5)where the matries elements are as follows:

mij = α sin
iπvmt

l
sin

jπvmt

l
+ δij , (6)

cij = 2α
jπvmt

l
sin

iπvmt

l
cos

jπvmt

l
, (7)

kij =
i2π2

l2
N

ρA
δij − α

j2π2v2m
l2

sin
iπvmt

l
sin

jπvmt

l
, (8)and the vetor elements:

pi =
P

ρA
sin

iπvmt

l
, (9)

vi = V (i, t) . (10)
δij is the Kroneker delta. When oe�ients V (j, t) are omputed, displaements of thestring (2) onstitute the solution of (1). It is the solution for a full range. We an alulatedisplaement in eah point of string and for all values of vm.3.2 Results of semi-analytial alulationsThe integration of the equation (5) results in omponents whih desribe displaements intime (2). Thus the time-spae plot of the de�eted string an be done (Fig. 4). Fourveloities vm=0.3, 0.5, 1.0, 1.2 were seleted. For our purpose we depit the mass trajetoryas a setion of this 3-dimensional domain. Fig. 5 presents results for the same set of veloities.The analysis of results exhibits a jump of the mass in the neighbourhood of the endsupport. In the paper [40℄ the disontinuity of the mass trajetory near the end support wasmathematially proven. The proof an be given in the ase of massless string. This solutionenabled us to prove the jump of the trajetory in the whole range of the speed 0 < vm ≤ c.This onlusion has minor pratial meaning sine we onsider the small displaement asefor whih (∂u/∂t)2 << 1. Yet, it is important for further numerial investigations andonlusions. What is more, this exhibited property results in signi�ant inonvenienes indisrete solutions.In the ase of inertial string the pure mathematial proof annot be given. Numerialintegration of the seond order di�erential equation (5) results in a similar feature. Onean notie signi�ant disontinuity range. Spae-time plots demonstrate wave fronts andre�etions both from supports and the moving mass. Espeially for vm=0.5c the movingmass approahes the end support in a phase of deep vertial displaement. In spite of lowonvergene of the sum (2) good auray of results was obtained. We an notie the sharpedge of the wave and re�etion from both supports. Moreover, the wave re�etion from thetravelling mass is easily visible, espeially for the ase vm = 1.2c. Both the mass trajetory,and waves are depited.A global analytial solution an be onsidered as a referene solution. It is relativelysimple. Although it is valid for the whole range of the speed vm (sub-ritial, ritial andover-ritial), it an be used only in a limited range of pratial problems.6
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Figure 5: Displaements omputed semi-analytially with Eqn. (5) at various speeds.4 Spae-time �nite element approahThe numerial analysis of the problem of the moving inertial load an be performed withthe use of the spae-time �nite element method.4.1 Disretization of the stringWe onsider Eqn. (1) in the spae-time domain Ω= {(x, t): 0 ≤ x ≤ b, 0 ≤ t ≤ h}. Theequation of the virtual power is obtained by multiplying (1) by the virtual veloity v∗(x, t).The total virtual power in Ω is equal to
∫ h

0

∫ b

0

v∗(x, t)

(

ρA
∂2u

∂t2
−N

∂2u

∂x2
− η

∂u

∂t

) dx dt = 0 . (11)
η denotes internal damping oe�ient. Integrating (11) by parts with respet to x results in

ρA

∫∫

Ω

v∗
∂v

∂t
dΩ+N

∫∫

Ω

∂v∗

∂x

∂u

∂x
dΩ +

∫∫

Ω

∂v∗

∂x
ε0 dΩ− η

∫∫

Ω

v∗v dΩ = 0 . (12)We assume linear variation of veloity v = ∂u/∂t with x and t:
v(x, t) =

4
∑

i=1

Ni(x, t) vi . (13)In the domain Ω the shape funtion N = [N1, . . . , N4] has a form:
N =

[

1

bh
(x− b)(t− h) , −

1

bh
x(t− h) , −

1

bh
(x− b)t ,

1

bh
x t

]

. (14)8



Displaements are omputed from veloities by integration
u(x, t) = u(x, 0) +

∫ t

0

(N1v1 + . . .+N4v4) dt = u(x, 0) +

∫ t

0

N∗ v dt . (15)Finally we have
u(x, t) = u(x, 0) +

xt2

2bh
(v1 − v2 − v3 + v4) +

x

b
(−v1 + v2) +

t2

2h
(−v1 + v3) + v1t . (16)Derivative ∂u/∂x an also be omputed

∂u/∂x =
t2

2bh
(v1 − v2 − v3 + v4) +

t

b
(−v1 + v2) +

dudt |t=0 . (17)The proper hoie of virtual funtions v∗ is a fundamental question of the spae-time ap-proah. Di�erent funtions result in solution shemes of di�erent properties: auray andstability. We propose a simple form with distribution δ in t = αh

v∗(x, t) = δ(t− αh)
[

(1−
x

b
)v3 +

x

b
v4

]

. (18)Required derivatives of virtual v∗ and real v funtions an be determined from (18) and (13)
∂v∗

∂x
=

1

b
(−v3 + v4) , (19)

∂v

∂t
=

x

bh
(v1 − v2 − v3 + v4) +

1

h
(−v1 + v3) . (20)We notie that the Dira δ term in the subintegral funtion redues the integration in Ω tothe integration over 0 ≤ x ≤ b. Finally the Eqn. (12) an be written in the following matrixform:

ρA

∫ b

0

[

−
(

x
b
− 1

)

x
b

] [

x

bh
−

1

h
, −

x

bh
, −

x

bh
+

1

h
,

x

bh

] dx+

+N

∫ b

0

[

−1
b
1
b

] [

t2

2bh
−

t

b
, −

t2

2bh
+

t

b
, −

t2

2bh
,

t2

2bh

] dx∣∣∣
∣

t=αh

− (21)
− η

∫ b

0

[

−(x
b
− 1)
x
b

] [

(x− b)(t− h)

bh
, −

x(t− h)

bh
, −

(x− b)t

bh
,
xt

bh

] dx∣∣∣
∣

t=αh

= 0 .The resulting matries are listed below:
M =

ρb

h

[

−1
3

−1
6

−1
6

−1
3

∣

∣

∣

∣

∣

1
3

1
6

1
6

1
3

]

=
1

h
[−Ms | Ms] (22)

K =
Nh

b

[

α(1− α
2
) −α(1− α

2
)

−α(1− α
2
) α(1− α

2
)

∣

∣

∣

∣

∣

α2

2
−α2

2

−α2

2
α2

2

]

=

= h

[

α(1−
α

2
)Ks |

α2

2
Ks

] (23)
C = ηb

[

1−α
3

1−α
6

1−α
6

1−α
3

∣

∣

∣

∣

∣

α
3

α
6

α
6

α
3

]

= [(1− α)Cs | αCs] (24)9



M, K, andC are the spae-time inertia, sti�ness and visous damping matries, respetively.We notie that they are omposed of two square matries, eah of a dimension equal to thenumber of degrees of freedom in a spatial �nite element. Matries Ms, Ks, and Cs havethe same or similar form to respetive matries derived traditionally from the lassial �niteelement approah. The �nal form of the motion equation establishes the fore equilibriumon the edge of the element domain Ω. Vetor v ontains nodal veloities vi at the initialtime t = ti and vi+1 at the �nal time t = ti + h.
(M+C+K)

{

vi

vi+1

}

+ e = 0 or K∗ v + e = 0 . (25)The veloity vetor vi+1 is the only unknown vetor in the above step-by-step equation.Finally we must ompute displaements qi+1. We use the formula
qi+1 = qi + h[β vi + (1− β)vi+1] (26)The stability analysis results in β = 1− α.4.2 Disretization of the string element arrying moving massThe last term δ(x−vmt)m∂ 2u(vmt, t)/∂ t

2 in the motion equation (1) desribes the inertialmoving mass. ∂ 2u(vmt, t)/∂ t
2 is the vertial aeleration of the moving mass and at the sametime the aeleration of the point of the string in whih the mass is temporarily plaed (it is

x = x0+vmt). The aeleration of the mass ∂ 2u(vmt, t)/∂ t
2 moving with a onstant veloity

vm, aording to the Renaudot formula (whih in fat is the hain rule of di�erentiation),results in three terms:
∂2u(vmt, t)

∂t2
=

∂2u(x, t)

∂t2

∣

∣

∣

∣

x=vmt

+ 2vm
∂2u(x, t)

∂x∂t

∣

∣

∣

∣

x=vmt

+ v2m
∂2u(x, t)

∂x2

∣

∣

∣

∣

x=vmt

. (27)Thus we an separate the transverse aeleration, the Coriolis aeleration, and the entrifu-gal aeleration, respetively. This is the so-alled Renaudot notation for the onstant speed
vm. Another one, the so-alled Jakushev notation (or approah) �nally gives the same resultin our ase of the onstant mass m.In our spae-time �nite element method we formulate equations in terms of veloities.The mass aeleration ∂ 2u(vmt,t)

∂ t 2
is expressed in terms of veloities aswell:

∂2u(vmt, t)

∂t2
=

∂v(vmt, t)

∂t
=

∂v(x, t)

∂t

∣

∣

∣

∣

x=vmt

+ vm
∂v(x, t)

∂x

∣

∣

∣

∣

x=vmt

. (28)The �rst term on the right-hand side states the real inertia (when multiplied by m) and theseond term (also multiplied by m) expresses fores similar to damping fores.In the �nal stage three resulting matries are responsible for transverse inertia (the matrixhas the form of the inertia matrix), damping fores (the matrix multiplied by the veloityvetor has a form similar to the Coriolis fores) and sti�ness (potential) fores (the matrix,if multiplied by the veloity vetor, has a form similar to the entrifugal fores). The thirdmatrix appears as the result of initial displaements in the time interval.10
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Figure 6: Mass path in the spae-time �nite element.Let us now follow this idea and treat numerially the right-hand side inertial term of (1).The same mathematial steps as in the ase of pure string enables us to integrate the inertialterm
∫ h

0

∫ b

0

N∗mδ(x− vmt)
∂ 2u(x0 + vmt, t)

∂ t 2
dx, dt . (29)We onsider �rst the integral term of (15). We use the same linear interpolation of theveloity (13). The virtual veloity v∗:

v∗(x, t) = N∗ q̇p = δ(t− αh)

[

1− x
b

x
b

]

q̇p (30)Consequent integration results in two matries: the moving mass inertia matrix Km

Mm =
m

h

[

− (1− κ)2 −κ (1− κ)

−κ (1− κ) −κ2

∣

∣

∣

∣

∣

(1− κ)2 κ (1− κ)

κ (1− κ) κ2

]

, (31)where κ = (x0+ vmαh)/b, x0 is a starting position of the mass in the spae-time element (at
t = t0) (see Fig. 6), and the moving mass damping matrix Cm

Cm =
mvm
b

[

− (1− κ) (1− β) (1− κ) (1− β)

−κ (1− β) κ (1− β)

∣

∣

∣

∣

∣

− (1− κ) β (1− κ) β

−κβ κβ

]

. (32)Let us now onsider the ontribution of u(x, 0) in (15). We integrate by parts the virtualwork
v2m

∫ h

0

∫ b

0

v∗
∂2u0

∂x2
dxdt = −v2m

∫ h

0

∫ b

0

∂v∗

∂x

∂u0

∂x
dxdt (33)Sine displaements of the left and right node of the element are expressed by uL = u0

L +
h[βv1 + (1− β)v3] and uR = u0

R + h[βv2 + (1− β)v4], we an derive the required du0/dxdu0dx =
uR − uL

b
=

u0
R − u0

L

b
+

h

b
[−βv1 + βv2 − (1− β)v3 + (1− β)v4] (34)Numbering of nodes is presented in Fig. 6. Matrix Km is the sti�ness mass matrix

Km =
hmv2m
b2

[

β −β

−β β

∣

∣

∣

∣

∣

1− β −(1− β)

−(1 − β) 1− β

] (35)11



The term (u0
R − u0

L)/b in (34) multiplied by mv2m/b results in initial nodal fores e in thespae-time layer (25).5 Numerial resultsThe numerial results obtained with the proposed spae-time approah an be omparedwith the analytial solution. Moreover, the spring-mass �nite element solution an also beplotted. In our tests the string was disretized by a set of 200 �nite elements. The timestep h was equal to b/40vm. It means, that the mass passes from joint to joint in 40 timesteps. We assume m=1.0, ρA=1.0, l=1.0, N=1. Results obtained by the spae-time �niteelement method are presented in Fig. 7. We notie that at lower speed, up to 0.3-0.4c theoinidene with semi-analytial results is almost perfet. We observe the onvergene ofresults to the semi-analytial solution with dereasing time step and inreasing number ofspatial elements. Unfortunately, the onvergeny rate is low. At higher speed the totaltime of simulation is shorter and lower number of time steps is required to reah the endsupport during the mass motion. All important features of resulting urves, espeially highgradients of displaements near the end support are represented then with lower auray.The error analysis of the method allows us to say that in a general ase the error is equalto h2(1/2 − α) + Oh3. In the partiular ase α = 0.5 the error equals to 1/12h3 + Oh4.However, in this ase the time integration sheme of the spae-time �nite element methodis onditionally stable. The gap between numerial and semi-analytial results is visible inboth diagrams. The plot for α = 1/2 is visually better at higher speed range.Higher veloity an also be onsidered. Fig. 8 presents displaements in time of thepartile for 0.9 ≤ vm/c ≤ 1.2. We notie a good oinidene of the plot with the expetedzero line. Further examples prove the e�ieny and auray of the approah. One an plotthe displaements of seleted �xed points of the string. In suh a ase results exhibit verygood oinidene with the analytial-numerial approah.We an ompare our results with displaements of the ontat point of the string underthe travelling osillator (Fig. 9). We notie the signi�ant di�erene, espeially for higherspeed range, between semi-analytial results or spae-time �nite element approah and urvesobtained for the osillator. Pure mass an not be replaed in omputations by the osillatorfor problems of high moving mass in�uene, ie. for the veloity higher then 0.3-0.5 of thewave speed and for moving mass to the string mass ratio higher then 0.2.6 ConlusionsIn this paper we dealt with numerial analysis of string vibrations under the moving inertialload. We derived the matrix formula of the time integration proedure on the base of thespae-time �nite element method. Solutions presented in the literature are derived from thebase of lassial time integration shemes. Published results are aeptable for low speed ofthe travelling mass. In suh a ase errors in formulations do not ontribute visible di�erenein results. In ommon pratise massless fore ating on the string in the form of osillator isapplied. Suh results are greatly underestimated, and for the veloity higher than 0.2�0.3cthey annot be taken into aount.The approah presented in this paper an be applied for the whole range of the speed, upto the wave speed vm = c. The preision of results is high. In the ase of the speed higher thanthe wave speed the partile's trajetory is lose to the theoretial zero line. Disontinuities12
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Figure 7: Displaements under moving mass � spae-time �nite element solution for α = 0.5(upper) and α = 1.0 (lower) ompared with semi-analytial solution.
13



-2

-1.5

-1

-0.5

 0

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u/
uo

vt/L

v=0.9
v=1.0
v=1.1
v=1.2

Figure 8: Displaements under moving mass for vm equal to 0.9, 1.0, 1.1 and 1.2 c.

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u/
uo

vt/L

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 9: Finite element solution � displaements of the string under the osillator for thespeed v=0.1�1.0. 14
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