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1. SUMMARY

In the paper results of the analysis of high frequency forced vibration of rolling wheelset
interacting with rail by means of springs carrying the loading in three directions of relative
displacements (verical, lateral and longitudinal) and a spin which models rotational resis-
tance are presented. A wheelset is modelled as a system of two elastic wheels connected
by a rigid axle. Wheel tires are modelled as a elastic Rayleigh’s beams with constant
corvature, joined with the axle by continuous, visco-elastic Winkler-type foundation. The
second approach was performed by the space-time discrete modeling of the dynamic rail-
wheel contact problem. The space-time finite element method was applied to the analysis
of the induced corrugations. The technique was used to simulate interaction of the elastic
wheel and rigid rail. It was shown that the contact force oscillates and the material of the
wheel rotates oscillatory. Finally the rolling of the waved wheel on the rail was modelled
and it proved the considerable increase of the contact force due to microshocks.

2. INTRODUCTION

In the railway transportation both the load carrying capacity of carriages and speed of
trains increase. It causes new problems of exploitation: faster wear of rail surfaces and
wheel tires. Circular geometry of wheels and plane surface of rail heads lose their perfec-
tion. Both on the rail head and the wheel ring wave-shape deformations can be observed.
They are called corrugations. Even in low speed motion and light trains the result of suc-
cessful deformation of steel rail by the wheel can be seen by the naked eye and requires
frequent intervention of technical services. The improper wear results in considerable
increase of noise. In cities noise generated by tramways or even underground trains nega-
tively effects the environment. In long distance trains can be tiring for passengers. From
the technological point of view spurious effects of mechanical phenomena shorten the life
of large steel parts of mentioned mean of transportation.

Another case where similar phenomenon occurs are vehicle breaks and clutches. High
frequency oscillations generated between break shoes and disks or friction disks of the
clutch considerably reduce the life time of elements. Besides a noise affects the environ-
ment by tones heavy to carry down.

The aim of the work is the simulation and investigation of generation of corrugations
and its influence on the durability of rails. Particularly burdensome conditions will be
in the scope: self excitation in higher (300 km/h) velocity range, influence of non-linear
material properties (visco-plasticity), non-linear friction, torsional vibration of wheel /axle



system, influence of plate bending state for cone-shaped wheel, approach to optimization
of resulting parameters. The subject is wide and several research centers in the world
work intensively in the field.

Both the polygonized contour of the wheel and the waved surface of the rail will be
simulated in the selected tasks. The process of the destruction of wheels and rails will be
investigated.

The problem pointed is wide and has been undertaken in several research and techno-
logical centers in the world (USA, Japan, Germany, France). Different hypotheses were
assumed as a base of investigation. Some of them can be easily rejected, others require
intensive theoretical and numerical tests. In the literature the following cases are pointed
as a source of corrugations:

e imperfections in rail joints,

e cone form of wheels which results in different linear speed of left and right wheel; it
causes snaking of trains and generally, disturbs steady motion,

e periodical structure of rails (sleepers); instability of motion on the periodically
placed supports [1],

e contact problems between wheel and rail; stick and slip sections which vary with high

frequency (horizontally) generate waves which deform elastically, then plastically

metal surfaces [2, 3, 4],

residual stress caused by manufacturing and service of rails and wheels [5],

non-linear friction law in the stick zone [3],

influence of material hardening [6],

deformation of elements of wheel /axle as results of impact during rolling motion,

instability of wheelsets motion [7, 8].

3. SIMPLE TRUCK MODELS

Theoretical formulations which are intended to provide calculation models are generally
limited to influencing factors which seem to be important. The particular significance
of dynamic problems explains why increasing attention has been paid to the study of
oscilations with the aid of theoretical calculation models which give a better insight into
the phenomenon of corrugation formation.

The most significant facto is rail or wheel tire vibration under the action of moving
and oscillating load. Bogacz et al. [9] examined the rail modelled as the Bernoulli-Euler
or Timoshenko beam on an elastic foundation subjected to a moving oscillating force.

The equations of the Timoshemko beam motion regarding the effects of shear defor-
mation and rotary inertia are given as follows:
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The solution of (1) can be written in the form:
W Ry, 7) = Wi(Ry)coswT + Wa(Rp)sinwr (2)

The solution and disscussion of essential differences between the solutions for various ve-
locities V' and frequencies €2 are given by Bogacz et al. [9]. An example of displacements



fort=0,t=T/8,t=T/4,t=3T/8, t = 2w /w is presented in Fig. 1.
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Figure 1: Displacement of the beam.  scribed by the Kelvin-Voigt model

Ouyg;
4 == (’fjuw + Cja—;]) (3)

where ¢;, ugj, (j =1, 2, 3) — reactions and displacements of elastic foundation in circumfer-

ential, radial and vertical direction, k;, ¢; — stiffness and damping in elastic foundation.
The following coordinate systems are as-

sumed in the 3-D mathematical model of ro-
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tating railway wheel (Fig. 2): 30 P’\"

e polar system ¢, R with the pole in the wheel A3
center, rigidly connected with the rotating wheel; ‘g

by means of three coordinates the geometrical AA

axis of the tire has been described,
e polar system ¢, R, with a pole in the wheel
center, used for the description of the rotational
motion of the wheel,
e rectangular system of coordinates &, n, ( with
the origin O on geometrical axis of the tire and
a position given by spatial coordinates ¢ or ¢y;
&,n, ¢ constitute tangential, normal and binor-
mal directions to the undeformed axis of the
wheel; this coordinate system allows to describe displacements, internal and external
forces and a cross-section of the wheel tire.

The geometrical axis of the wheel tire were modified by the geometrical centers of
gravity of undeformed wheel-tire cross-sections. Assuming the angular velocity of the
wheel ¢ to be constant, the relation between ¢, R and ¢, R has the following form:
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Figure 2: Coordinate systems and excit-
ing forces.
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The problem is more complex now due to the the curved beam and greater number of
dimensions. Detailed examination of the of the problem in the case of two dimensions
was described in [10]. The system of coupled differential equations which describe forced
vibrations of the wheel tire rotating with the velocity ¢y, including visco—elasticity can
be written in polar coordinates ¢, R in the form:
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where:
u, v, w-displacements of point O in directions &, 7, (,

Y-rotation angle of the wheel tire cross-section related to & direction,
m;—reduced masses of the wheel tire of the disc,
s;—reduced mass moments of the first order,
ki, t;—wheel tire and disc reduced stiffness,
a;, di—damping equivalent coefficients of the wheel tire and disc,
ge, Gy, gc—external forces distributed continuously along the geometrical axis of the

wheel tire,
me, my, me—external moments distributed continuously along the geometrical axis of

the wheel tire.

The system of equations (5) is the mathematical 3-dimensional model of the wheel
rotating with the velocity ¢g. The first two equations refer to the motion of the wheel tire
in its plane (circumferential and flexural radial vibrations). The vibrations in the wheel
plane and vibrations out of the wheel plane are coupled by means of elastic and inertial
forces.

Vibrations are excited by harmonic point forces acting at the contact point S. Spin
moment M, was also taken into account as a source of excitation. The positive senses of
exciting force was assumed according to the senses of axes &, 7, (Fig. 2). The solution of
the system of equations (5) describing forced vibration of the rotating wheel is postulated
in the coordinate system ¢, R in the form:

1 .
u(p,t) = —Tw + = D Z Ti1(t)cosnp, + Tio(t)sinng; (6)



The amplitude A,, of vibration of point O can be expressed as follows:

1]]a e ) 2 b > . 2
Ay(pr) = - { [50 + Z(alncosmpl + a2smmp1] + [50 + Zl(blncosnapl + bQSlnnng] }
n—=

n=1
(7)
The displacements v, w, ¥ and the amplitudes A,, A,, Ay are found in the same way.

4.2 Numerical results

Frequency response functions obtained
by numerical calculations in the case
of forced vibrations of the railway wheel
is depicted in Fig. 3. Characteristics

o v=200 km/h
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The numerical analysis was per- 2‘3:
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eter 0.95 m and for the angular ve- = T e
locities ¢ of the wheel which corre- 3 ] rarie raees
spond to the linear velocities 0, 200 T o @ wm wme | s
and 400 km/h in the rolling motion. Frequency [z

Other numerical results can be found  Figure 3: Frequency response functions for rotat-
in [11]. In the case of the velocity ing railway wheel.

about 200 km/h the amplitude with
the frequency about 100 Hz are considerably higher then in the case 0 km/h of 400 km /h.

5. Space-time element analysis

5.1 The space—time modeling of contact problem

Dynamic contact problems are characteristic of fast varying contact domains. In some
problems the precise definition of the contact zone is of fundamental importance. Con-
tact phenomena with friction that involve vibration of the stick and slip type require both
the small time step of the integration of the differential equation of motion and refined
mesh in that region. The finite element method gained its popularity since it is relatively
simple and universal in applications. However, in certain problems the F.E.M. is difficult
since its discrete form does not allow to investigate the problem with the required preci-
sion. For example, the varying contact zone, extended between two nodes in spatial mesh
requires subintegration of resulting matrices to evaluate more precisely friction contribu-
tion. Much more natural approach is to modify the spatial mesh and subintegrate the
differential equation in time, in required regions only.

The spatial adaptation of the mesh in structural dynamics can rarely be found in the
literature (for example [12, 13, 14]). However, the simplest interpolation of displacement,
velocity and acceleration vectors were discussed there with particular reference to addi-
tional joint. Such a discontinuous path to the refined /coarsened mesh changes the problem
under consideration: local and global stiffness and temporary distribution of acceleration
and velocity, compared with the problem solved with the constant mesh. The adaptation



procedure may incorporate greater error than the simple classical computation. It is well
visible if higher modes are not damped. Although smoothing by physical or numerical

damping enhances the
restrictions.

quality of the solution, we can not accept such a technique without

The basics of the space—time finite element method was described in [2, 15, 16, 17].
First the displacement formulation was developed. Then the same idea was extended to
derive velocity formulas [18, 19, 20, 21].
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. 5.2 Example and results
- In the numerical analysis of the rolling contact problem
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OO e with the radius R=10 cm, thickness 1 cm, made of steel
R RERER SRR ke 7 2 3
o OREREEREAAR R - (E=2.05-10" N/m?, v=0.3, p=7.83 g/cm®). It rolls on
SRR . . L ; .
giégiggggﬁﬁ' - the rigid base with an angular speed w. The linear veloc-
N

N

: o ities taken into account were of the range 90-180 km/h.
The elastic material in plane stress was assumed. The

Figure 4: Spatial mesh as-  Jomain was discretized with 864 triangles and 469 nodes

sumed in calculation.

(Fig. 4). The uniform mesh density was applied for the

reason of wave nature of the process and stress concentration passing throughout the

domain.

Figure 5: Selected eigenforms of a disk.

Selected eigenfrequencies are related to the well known forms
with increasing number of wave on the surface (Fig. 5). To
avoid multiple rotations of matrices effected by the rotation
of the structure and in the same time the accumulation of
round-off errors the rotation of the rigid base over the fixed

wheel was assumed. All the forces arising from the circu-
lar motion were introduced. In the first stage the wheel,

Figure 6: The scheme of the Which turns is settled slowly on the rigid base (in numer-

rolling wheel problem.

finally d=0.1 cm (Fig.

ical simulation the base which turns presses slightly the
fixed wheel). The depth of penetration (flattening) reaches
6). In order to avoid the influence of the initial conditions and to

reduce the effect of wave reflections and interference the comparatively large numerical
damping was assumed. The value of the parameter v [19] was equal to 0.2 and it cor-
responded to the logarithmic decrement of damping A = 0.03. In practice it allowed to
damp vibration according to the first eigenform and the period T~ 80 us in 95% during
the first 1/4 turn of the wheel.



The elastic-plastic material with hardening was assumed in computetion. The second
invariant of stresses Jo was integrated in successive phases of the full turn. It enables us
to show the distribution of stresses in the material (Fig. 7). Final form of the diagram

n—2 n=3

n==8 n=14

n—=4

n=16
Figure 7: Succesive stages of the stress concentrations on the wheel surface.

depends on problem parameters. In the presented example corrugations are successfully
flatened. However, in the case of other material coefficients concentrations of stresses

under the wheel surface increases.
Computation shows that the contact force R [107N]

vary, even when the motion is steady and well o
damped. Selected part of a wheel turn with the
speed w=0.3-10"2 rad/s is presented in Fig. 8. 0.3

0.4 -

The analysis exhibits the periodical distribution 0z |
of the wear on the wheel surface which can oc- o1
cur during exploitation. The number of con-

tact force oscillations decreases along with the %0

increase of the speed. It was observed for exam- Figure 8:
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Contact force in successive

ple in [22, 23] for a rubber wheel. turns in the case of w=0.3-107° rad/s

However, in those publications the authors treat the
problem as an eigenvalue problem. They do not solve the
initial boundary problem. The estimated diagram of the
relation between the number of oscillations in one full turn
and the velocity w is shown in Fig. 9. The value of the
contact force increases with the increase of the velocity
w. The investigation was performed for a full turn of the
wheel. If the number of waves due to a turn is not an
integer (i.e. the phase shift occurs after each turn), then
the diagram is disturbed in the vicinity of the lower point
of the wheel, from which the solution starts and on which
is finished.
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Figure 9: Number of cycles
of the reaction and its max-
imal value in relation of the
angular velocity w.

6. ROLLING ALONG A RAIL WITH GEOMETRICAL IRREGULARITIES

6.1 The objectives of modelling and simulation

The next research line deals with the idea, that the rolling of the waved wheel on the flat
surface results in periodic shocks, depending on the geommetrical parameters [25]. The



investigation proved that the trajectory of the center of the rigid whel strongly depends
on the number of waves on the wheel (length of corrugations) and their amplitude.

6.2 The dynamic model

The model consists of the wheel mass, nonlinear spring, con-
verter, and a source of excitation. The spring stiffness is related
to the stiffness of a contact zone between the wheel and the rail,
determined on base of Hertz theory. The excitation is given by
geometrical irregularities of the rail profile (Fig. 10), which is
described by the function y,(x). The converter represents the re-
lationship between the input y,(x) and the output y&(z). yé&(x)
is the vertical position of the centre C of the rigid wheel rolling Figure 10: Scheme of a
along the rigid rail. In the symbol y&(z), the upper c stands for Wwheel rolling along the
constraints. The relationship is determined exclusively by the rough rail.
geometry of the circle and the rail profile.

The model simulates fast changing transients excited by a single rail roughness or a
high-frequency periodic motion caused by rail corrugations. A single irregularity and a
wave length of corrugations is assumed to be 2-5 cm of the length. Therefore, the dy-
namics of a massive and inert truck is not taken into account. The action of the truck on
the wheel is introduced by the static load P only. Thus the model cover the case when
the inertia force balances the static load and the wheel looses a contact with the rail and
then strikes it once or several times, depending on a model of impact.

10 —__a-gometrical points 1 - bvercal dsplacement 6.3 Results
0'5 N 0'5 s The model is simple. Its dynamical behaviour,
N s 0'0_ AN TAs//// however, is complex, especially when impacts
" \ [QLL /| between the wheel and rails occur. The in-
\ / 4’0 ; ertia force depends in a complex way on the
° oozs  (m oos ° ooz m oo axcitation y,(x), on the relationship between
o "“’\ 0 B yr(z) and y&(z), and on the dynamics of os-
o R I cillator consisting of the mass and the spring.
oo : 5o " In the simplest case, when the spring stiffness
0 L S - is infinitely large the inertia force @) in a con-
ol AN e o WS&%% strained motion is equal to
. . . d2yc
Figure 11: Contact kinematics for am- Q=-m—=£y? (8)

plitudes between 0.05 and 1 mm. dz?

where V' means the horizontal speed of the wheel centre C' (the train speed). According
to the above formula, the possibility of impacts grows fast with the increase of the train
speed.

The simulations prove the hypothesis that at a high train speed the impacts between
the wheel and the rail occur (Fig. 11, 12). Due to a relatively low wheel leaps and the
fact that they last less then several milliseconds this specific type of vertical motion of
the wheel cannot be simply observed. However, it has considerable contribution to the
wheel-rail interaction, and therefore increases the wear. It also changes the distribution
of the friction forces and a motion of a wheelset. This is another reason why dynamic
analysis of the wheel-rail system is required.



The inertia force may act in the same direction as the static load P. Simulations show
that the resulting pressure force between the rail and the wheel in short periods can be

several times greater than the static load.
The described model is based on the well

1.E05 pmmmannsm— 2E05
] Ho0kmh | el 1w known and experimentally verified Hertz the-
oE \ NANAVAVA ory of elastic contact and it is the advantage of
1605 /\~/\/ Y e [ \y\y\ the approach. One of the assumptions of Hertz
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0 W oos 0 bl e js small comparing with the radius of curva-
1645 — ——  ture of the body under the load. Therefore a
o | E® A [ == range of validity of the model is limited to the
| / \\ / \\ / \\ 0EH0 a cases which fulfil the assumptions of Hertz the-
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7. CONCLUSIONS
Figure 12: Time histories of constrains The efficient method for analysis of dynamic

y<(t) and vertical position of the wheel —contact probler_n is pre:sented. The soft'vx‘/ay
centre y (t) with different train speed V; method [19] with modified contact condition

and amplitude of the rail profile equal to dgscribed by velocities provid.es for a conve-

0 L. nient treatment of the dynamic contact prob-
llenilf even in the case of large time steps. The presented method is successfully applied to
the problem of corrugations. Even in the simplest case of the material property one can
notice the oscillation of the contact force. The resulting stress distribution is stationary
if the observation is carried out in the rotating coordinate systems and for the particular
value of the angular velocity. If the plastic material was used, the deformation would
polygonize the wheel surface permanently. Then successive passages of the wheel over the
rail increase the wear by the dynamic feedback [24]. The friction introduced to the con-
tact region can changes quantitative relations. It is shown that neither imperfections of
rail junctions nor periodic placement of sleepers generate corrugations. Simple stationary
motion is disturbed by the propagation of waves from the contact point. In our case the
load is introduced kinematically. In the real problem, despite of different type of loading,
the situation can be similar due to considerable inertia of the wheelset.
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