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Abstract

Classical time integration schemes fail in vibration analysis of complex problems with moving
concentrated parameters. Moving mass problems and moving support problems belong to this
group. Commercial systems of dynamic simulations do not support such an analysis. Moreover,
the classical finite element method with the Newmark-type time integration method does not
allow us to obtain convergent results at all. The reason lies in the impossibility of full mathemat-
ical consideration of the time integration stage and the analysis of inertial terms of a travelling
mass. Both of them, unfortunately, are decoupled. In this paper we propose an efficient and
exact numerical approach to the problem by using the space-time finite element method. We
derive characteristic matrices of the discrete element of the string and the Bernoulli-Euler beam
that carry the concentrated mass. We present four types of virtual functions in time and we
apply two of them to the practical analysis. Displacements in time obtained numerically are
compared with semi-analytical results. Almost perfect coincidence proves the efficiency of the

approach.
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1 Introduction

The paper deals with the numerical approach to the problem of structural vibrations under a travel-
ling inertial load. Travelling non-inertial loads are unlikely to be solved by commercial codes. Such
problems are not implemented in most of them. Inertial loads are not implemented in computer
systems at all. Problems with travelling masses are of special interest in engineering practice. The

influence of the mass attached locally to the structure cannot be neglected. We can only mention



here the coupling of the 500 kg mass of the train wheel with a rail or a track. A similar case occurs
in problems concerning railway power collectors. The speed of the rail vehicle can reach the critical
value. In such a case the wave response significantly differs from the response of massless systems.

In the paper we present an algorithm for the moving mass analysis in the case of unidimensional
structures: a string or a bar and the Bernoulli-Euler beam. In the case of other types of structures
the approach is identical. We derive and list the matrices explicitly. The resulting characteristic
matrices can be directly applied to numerical algorithms. The principle of application of the space-
time finite element method to the problem with inertial travelling load was presented by [1] who
showed the way from the differential equation to the numerical scheme and the step-by-step formula
by use of the space-time element method. The solution was limited to the simplest problem of string
vibrations and to the use of the Dirac delta function as a virtual distribution of the velocity. The
quality of the solution could, however, be improved by the application of modified virtual functions
in the formulation. This paper will describe the solution of the problem with higher accuracy
formulas and apply them to more complex structures — beams.

The classical finite element approach to the moving mass problems with the Newmark time
integration method fails. The difficulty lies in the methodology of the solution of the variable
coefficients differential equation with the classical time integration method. In this case the spatial
discretisation is performed at a selected time point ;. Vertical acceleration is expressed in the
travelling point x = vt. The solution is obtained by introduction of the so-called Renaudot formula,
which in fact is the chain-rule derivative of the vertical displacement. Thus the acceleration in the

inertial term, for x = vt, results in three terms
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interpreted as the vertical acceleration, the Coriolis acceleration and the centrifugal acceleration,
respectively. The direct use of (1) in the differential equation governing the motion of the continuous
structure results in wrong formulas, since this mathematical step is executed rather automatically,
based on two separate mathematical stages: construction of the time integration scheme and con-
tribution of the moving mass term based on (1). Then characteristic matrices, i.e. mass, damping,
stiffness, etc., are established. They are related to time ¢; and do not contribute properly to the
influence of terms with variable coefficients.

A simple ad hoc mass splitting between neighbouring nodes (Figure 1) results in divergence as
well. In some cases, especially in beams, numerical solutions are limited, but very inaccurate. In
the case of string vibrations, governed by a purely hyperbolic differential equation, such a strategy
results in divergent solutions. The ad hoc lumping can be applied in one particular case only: the

mass must be replaced from node to node as a whole value. In practice, the mesh must be sized
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Figure 1: Ad hoc moving mass lumping in nodes.

in relation to the time step and mass velocity: Az = v At. It makes the solutions useless. We are
sure that classical time integration methods would result in correct formulas if they were preceded
by a correctly performed analysis. Unfortunately, up till now the authors have not been successful.

Contrary to the classical approach, the space-time finite element method allows us to perform
consequently the solution of the variable coefficient differential equation in time interval [t;, t;11].
The time stepping formula is derived together with the analysis of the travelling mass vertical accel-
eration. This last feature requires a more complex mathematical analysis. The typical approach to
the space-time element method with a Dirac delta virtual function allows us to derive characteristic
matrices in the step-by-step procedure. In this case, however, the product of Dirac delta virtual
function and the second Dirac delta function describing the concentrated moving mass must be
integrated over space and time. Although the resulting time stepping scheme is unconditionally
stable with respect to the time step, the accuracy for longer time steps can be insufficient. Be-
low, we consider other virtual functions which result in relatively simple interpretation and ensure
higher-order accuracy.

The space-time finite element approach differs from the classical finite element method. First
of all, in a classical approach the spatial and temporal discretisation are carried on separately.
The space domain of the structure is discretized, for example, by the finite element method, finite
difference method, boundary element method, etc. Time integration is performed by a difference
method. The Newmark method or a derivative method, i.e. the central difference scheme and
trapezoidal rule, is usually applied at this stage. Well-known classical methods of integration of the
differential equations like Runge-Kutta methods, Adams methods and others can also be placed in
this group. A classical approach to the vibration analysis of the structure can shortly be written

by relations which describe the global (i.e. both in space and in time) interpolation of fundamental



Figure 2: Space-time subdomain.

quantities:
q(x,t) = N(x) T(t) qe - (2)

N(x) is the interpolation formula applied to space, for example, shape functions in the FEM, and

T(t) is a time interpolation of the nodal quantity q. = [q;, q;11]7 in two while limiting the time
interval [t;,t;+1]. Let us examine the uncoupling of both functions. The space-time finite element

approach is described by the following interpolation:

q(x,t) = N(x,t) qe - (3)

N(x,t) is the matrix interpolation function defined in a space-time subdomain (Figure 2). We
emphasise here that the form of Eqn. (3) is more general than (2) and the classical finite element
approach can be considered as a particular case of the space-time element method. In the space-time
approach a non-stationary discretisation can also be used. In the case of a stationary mesh and
in problems without damping, one can write a pass from one approach to another. Characteristic
matrices, however, differ. In a general case both approaches differ. This also occurs in the case
of spatial elements carrying the travelling mass. Here the second fundamental difference must be
emphasised: the finite element approach uses the difference schemes for time integration while the
space-time approach uses the integral formulas in formulation of the resulting time stepping schemes.

We have said that the string solution diverges even at low velocity range and with small ratio
of the moving mass to the span mass. In Figure 3 the moving mass to string mass ratio was equal
to 0.1 and the mass velocity was below 0.2 of the wave speed in the string. In practice these
values are relatively low. Real problems require both parameters to be even greater than one. We
should be able to simulate the following technical problems: vibrations of railway tracks, vehicle
passing over bridges, pantograph collectors in railways, magnetic railways, guideways in robotic
technology, gun barrel, airfield plates, etc. In the case of a beam or a plate, numerical solutions are

usually limited, because of parabolic terms in the differential equation. They are, however, highly
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Figure 3: Divergence of the existing numerical solutions.

inaccurate. Several papers deal with the discrete analysis of the moving mass problem [2, 3, 4].
Unfortunately, the authors do not present numerical results obtained for the inertial load. A simple
massless force or oscillator is used in theirdemonstration, or theoretical and experimental results
are only compared. All of the so-called mass forces finally are replaced by massless loads. What is

more, the analytical derivations do not consider correctly the fundamental inertial term

0%u(vt, t)
at?

O(x —vt)m
in the solution of the differential equation [5, 6] (compare with |7, 8|). Here w is the string deflection
and m is the mass moving with the constant velocity v.

The problem of a string vibration is not trivial. First of all we must emphasise the discontinuity
of the mass particle trajectory moving on the string, at the end support. This phenomenon was
reported in the literature for the first time in [7, 8] and was mathematically proved in the case
of a massless string. In the case of the inertial string, the discontinuous motion of the mass was
demonstrated. We can observe but we cannot prove the discontinuity of the string at the end
support. We can, however, expect high gradients of the solution and that they will be accompanied
by problems with discrete solutions.

The only efficient discrete solution of the problem with moving mass being in direct contact
with a string or a beam can so far be performed only with the use of the space-time finite element
method. Fundamentals of this approach are discussed in detail in numerous references. The dis-
placement formulation is presented in |9, 10|. The stationary and non-stationary discretisation of
the time space, stability problems and applications can be found in [11, 12]. The velocity formu-
lation developed in this paper is presented in [13, 14]. Below we describe the method briefly. In
further sections, the influence of virtual functions on the accuracy of the solution of the moving

mass problem will be discussed. The space-time finite element characteristic matrices of the element



/ 4
-1 4
’
’
&
o
= >
N
&
&
R 7 2 X

4

/
X0, .

Figure 4: Mass trajectory in time-space.

carrying the mass particle will be given. The accuracy of displacements in the middle of the span

and under the mass will be demonstrated in comparison with semi-analytical results.

2 Basics of the space-time finite element approach formulated in

velocities

The reader is referred here at least to [13, 14]. Below, the main idea of the formulation in the case
of the string will be given in brief.

The space-time approach requires the description of the phenomenon in the space-time interval.
We consider not only states at times ¢; and ¢;11 that limit the time interval, but also its interior.
We can assume various functions of the virtual distribution of the phenomenon. Moreover, we can
incorporate a special function that describes the action of the particular factor in space and in time.
In our case the mass moving along a given trajectory in time-space is the point of interest (Figure
4).

We consider the well-known equation of the string vibration

02%u(z,t) 0%u(z,t)
ECE pA ot?

0%u(vt,t)

N ot2? (4)

= d(xz—vt)P — d(x—vt)m

in the space-time domain Q={(z,t): 0 <z <b, 0 <t < h}. bis the length of the spatial finite
element and h is the time step. In the next part for simplicity we consider the uniform equation.
The equation of the virtual power is obtained by multiplying the motion equation by the virtual
velocity v*(z,t). For simplicity we consider here a uniform differential equation. The total virtual

power in {2 is given as the integral

hopb 0%u 0%u ou



Here 1 denotes internal damping coefficient. The displacement u(z,t) and the derivative du/Jx are

expressed in terms of a velocity v(z,t):

u(z,t) = up(x) —i—/o v(x,t)dt, 8uéxx,t) = ¢eo(x) —i—/o v(x, t)dt . (6)

€p is a strain at the beginning of the time step. Node numbering in the space-time element is

presented in Figure 4. Integrating (5) by parts with respect to x results in the equation

L OV ov* Ju v* . B
pA//QvatdQ—i—N// 92 92 //Q&Esodﬁ—n//gvvdﬂ—(). (7)

We assume a linear variation of the velocity v = Ju /0t with = and t:

4

(@, t) =Y Ni(x,t)v; . (8)

=1

In the domain Q the shape function N = [Ny, ..., N4| has the form:
1 1 1 1
N = [bh(:v—b)( h), —%x(t—h) , —%(az—b)t, bha;t] . 9)
Displacements are computed from the velocity equation by integration
t t
u(z,t) = u(z,0) + / (N1v1 + ... + Nyvg) dt = u(z,0) + / N*dtv . (10)
0 0

The derivative du/dx can also be computed from (10).
The proper choice of virtual functions v* is a fundamental question of the space-time approach.
Different functions result in solution schemes of different properties: accuracy and stability. We

propose a simple form with distribution § in ¢ = ah (Figure 5a).
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Figure 5: Virtual functions: a — Dirac delta shape, b — hat shape, ¢ — triangle shape, d — roof shape.

v (2,1) = 8(t — ah) [(1 - %)vg + %04 . (11)

Required derivatives of virtual v* and real v functions can be determined from (8) and (11)

81} T 1
%= bh — (v —vy — vz +vg) + E(_Ul + v3) , (12)
ov* 1



We note that the Dirac § term in the integrand reduces the integration in 2 to the integration over

0 < z <b. Finally, the Eqn. (7) can be written in the following matrix form:

-1

b 1 1
pA Jo [ = % —oh ok a0 ) AT
b
b -1 2 2 2 2 b [ —1
b b
+N [, . [;W - %, _;Th + %, —th—h, th—h] dx‘t:ah—FNfO ) go dx (14)
b %
(
U1
b | =D [@v)i—n)  ot-n) (b} .
=1 J {x e T %}dx‘t_&h 1 =0.
2 -
[ V4
The resulting matrices are listed below:
b 1 141 1 1
3 6| 3 6
M = 2 = - [-M, | M,] , (15)
h 1 1|1 1 h
"6 3| 6 3
« 6] a2 Ot2
Np | el=3%) —al=9) | T =%
K= =
2 2
a(1-9) a(-3)| -5 %
2
=hla(l- DK, | TK,| , (16)
2 2
l-a 1l-o a o
3 6 3 6
C = nb =[(1-a)Cs|aCy] . (17)
l-a 1l-«a a  a
6 3 6 3

M, K, and C are the space-time inertia, stiffness and viscous damping matrices, respectively. We
note that they are composed of two square matrices, each of a dimension equal to the number of
degrees of freedom in a spatial finite element. Matrices Mg, Kg, and Cg have the same or similar
forms to respective matrices derived traditionally from the classical finite element approach. The
final form of the motion equation establishes the force equilibrium on the edge of the element domain

Q. Vector v contains nodal velocities v; at the initial time ¢ = ¢; and v; 41 at the final time ¢t = ¢;+h.

V; V;
M+C+K){ +e;=F, or K’v+e;=F; or [Ki|Kg{ +e;=F;. (18)
Vit Vit+1

We add here (previously neglected for simplicity) the vector of external forces placed in nodes F;.
e; is a vector of nodal forces at the beginning of the time interval. It can be computed as a product
of a square matrix E (in the case of the simplest problems it is the stiffness matrix derived from

the finite element method) and the displacement vector q; at t;:

e, = E q; . (19)



The velocity vector v;41 is the only unknown vector in the above step-by-step equation. The final

solution is described by the scheme
Kipvip1 =Fip1—e, — K7 v; . (20)
Finally we must compute displacements q;+1. We use the formula
Qi+1 =q; + h[Bvi+ (1 = B) viy] . (21)

The stability analysis results in 8 = 1 — « for the Dirac delta virtual time functions.

3 Virtual shape functions in time

The method is identical to the analysis with the virtual function in the previous case (11). Let us
consider the properties of virtual functions in other forms. The accuracy and the stability of the
solution differ in each case. The question of the accuracy is important, especially in our case of the
mass moving across the space-time subdomain. Below we will give stiffness and inertia matrices in
the case of a bar in axial vibrations, derived with different virtual functions. We will also estimate

the approximation error.

3.1 Global equilibrium (hat function)

We claim the global equilibrium in the interval [0, h]. We assume the constant value function (for

example, equal to one) in the time interval (Figure 5b)

vt (2,t) = (1 — %)% + %m . (22)

Resulting stiffness and inertia matrices have the form

pan | 4 4] 4 -
K= —— 2
b 1 1| _1 1| (23)
3 3 6 6

1 1 1 1

pAb | =3 ~6 | 3 &
M= P22 24
h 1 _1 /|1 1 (24)

6 3 6 3

Displacements in time t;11 are computed from the average velocity q;+1 = q;+h [Bv; + (1 — B)viy1].
We obtain the stable solution in the wider range of the parameter g for 1/2 < g < 1.

We expand the velocity and displacements into the Taylor series:
1 1
Vi1 = (1 — §w2h2 + O(h4)> v; + (—oﬂh + éof‘h?’ + (’)(h5)> u; (25)
1
Uip1 = (h - §w2h3(1 -0)+ C’)(h5)> v+ (1 - wrh?(1—6) + O(h4)) u; -

9



We estimate the error of the velocity e,
= O(h*) v + O(h°) u; (26)
and the error of the displacements ¢,
€u = [ 2p3 ( ﬁ) + 0(h5)] vi + [wW (; — 5) + 0<h4>} Us. (27)

8 = 1/2 results in the error proportional to 1/12 h3w?. This is the best choice for 3. The solution
scheme is unconditionally stable and exhibits the smallest error in comparison with other virtual

functions.

3.2 Triangular function

We assume triangular distribution of the virtual function in time interval [0, h] (Figure 5c¢)

" _ Tt Tt
v (z,t) = (1 E)h”3+gﬁv4' (28)

The stiffness and inertia matrices have the following coefficients:

5 5 1 1
Ko A s Tu | 8 T8 (29)
b _5 5 | _1 1|’
24 24 8 8
ap | =2 1| 11
wosl] 8 w
"3 6| 12 b

3.3 Roof function

The roof virtual shape function in time is composed of two triangles, as presented in Figure 5d:

o (o.t) = (1—%)3tvg + £3L oy with 0 <t <¢/2 (31)
’ (1—2)(—2 4 2)v3 + b(—%+2)v4 with t/2 <t <h
Stiffness and mass matrices are similar to those in the previous cases
17 17 7 7
k- EAR 9% T96 | 96 96 (32)
bo| w7 oz |7
96 96 96 96
1 1 11
pAb | 5 “1z | § T
M="—
ho | 1 1| 1 1 (33)
12 6 12 6

We apply the stability criterion to determine the range of validity of the parameter 8. It is 3/4 <
p<1

10



3.4 Dirac delta function (point equilibrium)

The distribution of the virtual function in a form of delta Dirac function was described in Section
2. Below we analyse the processes described by Eqns. (18, 21). The expansion of the velocity
and displacements into the Taylor series allows us to determine the error in comparison with the

expansion of sin and cos function, assumed to be the theoretical solutions of the problem
1 1
Vipl = <1 — aw?h? + §a3w4h4 + 0(h6)> v + <—w2h + §a2w4h3 + O(h5)> u; 5, (34)
1
Uip] = (h —whia(l —a) + O(h5)> v; + <1 —w?ha + §w4h4a3 + O(h6)> U .

The error of the velocity €, can be estimated

€y = [Uﬂh? <a — ;) + wihd <214 — ‘f) O(hG)} v; + [w4h3 <é — O;) O(h5)] u; - (35)

and the error of the displacements ¢,

€y = [w2h3 <a2 — é) - (9(h5)} v; + [w2h2 <; - a) + win? <214 — Oj) O(hG)} u;.  (36)

For a = 1/2 the second-order terms vanish. The error in this case is described by 1/12 h? + O(h?).
In this case, however, the procedure is conditionally stable and a sufficiently low time step must be
applied. In the case of large gradients or discontinuities of solutions, a refined mesh is usually used.
In such a case a conditional stability can be a serious limitation.

In the case of an unconditionally stable solution scheme we use o > \@/ 2. The error is pro-
portional to (v/2 — 1)/2h2. In practice we can consider this value as the error of the method with

Dirac delta virtual time function.

4 String element carrying a mass

The last term §(x — vt) m 0 2u(vt,t)/0t? in the motion equation (4) describes the inertial moving
mass. O2u(vt,t)/0t? is the vertical acceleration of the moving mass and, at the same time, the
acceleration of the point of the string in which the mass is temporarily placed (it is x = x¢ + vt).
The acceleration of the mass 0 2u(vt,t)/0t? moving with a constant velocity v, according to the
Renaudot formula (which in fact is the chain rule of differentiation), results in three terms:

PPu(vt,t)  O*u(w,t)

O*u(x,t) 5 0%u(z,t)
oz~ o !

2 922

(37)
r=0t T=vt r=0vt

Thus we can separate the transverse acceleration, Coriolis acceleration, and centrifugal acceleration,
respectively. This is the so-called Renaudot notation for the constant speed v. Another one, the

so-called Jakushev notation or approach, finally gives the same result in our case of the constant

11



mass m.

In our space-time finite element method we formulate equations in terms of velocities. The mass

acceleration 82;?’;’15) is expressed in terms of velocities as well:
0?u(vt,t) Jv(z,t) ov(x,t) d [ou(zx,t) dug
_ et — | == — . 38
ot? ot |,_u v or |,_., + Yt [ or  |,_u + dx} (38)

After multiplication by m, the first term on the right-hand side of the equation states the real inertia
and the second term expresses the forces similar to damping forces.

In the final stage, three resulting matrices are responsible for: transverse inertia, damping forces,
and stiffness or potential forces, respectively. The first matrix has a form of the inertia matrix, the
second one, after multiplication by a velocity vector, has a form similar to Coriolis forces, and the
third one, when multiplied by v, has a form similar to centrifugal forces. We do not call these forces
directly, since in the case of straight motion of the mass particle along the bar in axial vibrations we
cannot have exactly centrifugal forces, for example. The mathematics are, however, identical. We

mention here only that the third matrix appears as a result of initial displacements in time interval.

Let us now follow this idea and treat numerically the right-hand side inertial term of (4). The

same mathematical steps as in the case of pure string enable us to integrate the inertial term

h b 2
/ / N*md(zx — xg — vt) M dzdt . (39)

Below we use the hat-shaped virtual functions in time. Respective matrices derived with Dirac
delta virtual functions are described in [1|. We consider first the integral term of (10). We use the

same linear interpolation of the velocity (8). The virtual velocity v*:

1-3
v(xz) =N"v, = 2 (40)

z

b
Consequent integration and rearrangement of terms result in characteristic matrices. The moving
mass inertia matrix M,, is given as

—(1-r)? —k(1—r)| A=r)? KQ—-k)

M, = — , (41)
h —k(1—k) — K2 k(1 —k) K2

where k = (xg+vh/2)/b. xq is a starting position of the mass in the space-time element (at ¢t = ()

(see Figure 4). The moving mass damping matrix C,,

—1(1-kK) $(1=-kr) | —3(1—-kK) L(1-k)
c,, = % ? ? ? ? . (42)
-y L Cin Lo

12



Let us now consider the contribution of u(x,t) and u(z,0) in (10). We integrate by parts

ho b
d t d
v/ / §(x —x9 —vt) — du(z,t) £ v*(z)dedt =
0 0 dt 8113 =0t dx (43)
h rb
ou(z,t) dug
2 ! bl *
= — 0(x —xg —0t) | ——— —_— dadt .
U/o/o (x — U)[ o xzvt—l-dxv(x)m
Finally we have the stiffness matrix K,,, of the moving mass particle m
2 1 -1 2 -2
K=" (44)
-1 1| -2 2
Since
x x
Uy = <1 — E) ug + 7l (45)
and
duo 1 1
-0 _ - z 46
1z U + U (46)
we can write the nodal force vector e,, of the moving mass
mv2 urp —up
—ur, +up

ur, and ug are the displacements in the left and right node in the spatial element. The vector e,

can also be written with components Fmwv? /beg.

5 Bernoulli-Euler beam element carrying a mass

The discrete beam element, in both the classical finite element method and space-time finite element
method, is more complicated than the string element. Derivation of matrices with the use of
Dirac delta virtual time functions are notionally difficult. The product of the Dirac-type virtual
function and the Dirac distribution of the mass in space, with the argument varying in time, cause
mathematical problems. In this section we use hat-shaped virtual functions in our analysis. They
are simple to analyse and are characteristic of lower error rate. The value of this function is constant
in time and respective derivatives and double integral can be computed relatively simply.
Mathematical steps will be performed here in the same way as in the string element carrying
mass. The beam element results in larger matrices with significantly complicated expressions. In the
following we will consider mathematically the first element of the inertia matrix only. All remaining
elements of M,,, can be computed matricially. Other matrices, ie. C,,, M,,, and E,, in (18), are

obtained in the same way. Matrices of the element carrying the mass differ in each time step since

13



the position of the mass particle varies in time. Thus the global matrices must be established in
each time step.
We remember that virtual time function v* in the hat shape is constant in time and in the case

of the Bernoulli-Euler beam it has the following form:

1;2 .1;3
v;kn(x7t):(1_3b2+2b3> vt ... P33+ ... vat ... Pg . (48)

We recognise here the well-known shape functions that describe displacements (or velocities) in
terms of nodal displacement and nodal rotations. The same interpolation formulas are applied as
real spatial shape functions. Then the elements of the matrix M,,, can be computed. We present

here the analysis in the case of the first element (-)11 of the inertia matrix only.

2
M)y, = — //5:z—xo—vt)<1—3l)2+2b3) dzdt =

+ot)2 (o +ot)?]? 9)
m IL’O [ i) v
= —— 1-3 2 dadt .
h /0 /0 | e
We introduce the substitution:
t
_xozr” dds=2dr . (50)
The coefficient (M,;,)11 can be written then as
h h
m 2 mb (4 9
M = —— 1-352+253)7ds = ——— [ 25" —25° 4 =55 + 51 — 263 51
(Min) 1y ho( s*+2s%)"ds hv<78 s—|—5s+s s—i—so (51)
Now we return to the variable t:
(M), = — mb To + vt 7_2 To + vt 6+9 To + vt 5+ To + vt 4_
hv 7 b b 5 b b
. P (52
To+v To+v
-2
(5
0
Taking into account the integration limits we have the following form:
(M), = 56066 [5600° (4k° — 12k° + 9x* + 4k® — 6K% + 1) + 280b*v*h? (10K* —
(53)
=20 K%+ 9% 4+ 25 — 1) + 21620 h* (2067 — 205+ 3) + 5oOR"|
where
h/2
K = 73,:0 +bv / . (54)

Complete matrices carrying mass particles M,,, C,,, K,,, and E,, in the solution (18), (19) are
large. They are listed in the Appendix. We must remember that the first three matrices join velocity
vectors in two successive whiles and are composed of two square submatrices, left and right. They
have dimensions nx2n, where n is the total number of degrees of freedom of the structure. Matrix
E,, has a dimension n xn. All matrices given in the Appendix are established for the m = 1, so

they must be multiplied by real value m. We have also introduced ¢ = vh/b and « given by (54).
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Figure 6: Finite element solution — displacements of the string under the oscillator, with the velocity

v=0.1—-1.0c.

6 Numerical results

Numerical results obtained with the proposed space-time approach can be compared with the semi-
analytical solution. We add for information only the plot of oscillator displacements moving over the
string (Figure 6). The oscillator spring stiffness was assumed to be high enough to simulate a rigid
contact of the mass with the string. Its value was 108 — 10'° times higher than the string vertical
stiffness. For higher values, the numerical divergence appeared in the iterative solution. Especially
in higher speed ranges the differences of results in comparison with semi-analytical results are
noticeable. That is the reason why such an approach cannot be used in analysis or considered in
practice.

In our tests performed with the space-time element method the string was discretised by a set
of 200 finite elements. The time step h was equal to b/40v. It means that the mass passes from
joint to joint in 40 time steps. The following data were assumed: the length of the string I=1,
the cross-section area A=1, the tension N=1, the mass density p=1, the moving mass m=1, and
the point force P—1. The following boundary conditions were assumed: u(0,t) = u(l,t) = 0.
Results obtained by the space-time finite element method are presented in Figure 7. First of all,
the numerical solutions exist and they converge to the exact solution. The convergence with the

increasing number of finite elements and decreasing time step is slower for higher mass speed range.
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Figure 7: Displacements under the moving mass — space-time finite element solution for a virtual
Dirac function with a = 0.5 (left) and a virtual hat function (right), compared with the semi-

analytical solution.

We can see significantly better accuracy of solutions with the hat virtual functions.

Numerical results of displacements in time of the Bernoulli-Euler simply-supported beam are
presented in Figure 8. The following data were applied: E=1.0, A=1.0, [=0.01, [=1.0, p=1.0,
m—1.0, and P=1.0. The following boundary conditions were assumed in this example: u(0,t) =
u(l,t) = 0. Additionally, natural boundary conditions were supplied by element interpolation
functions: «”(0,t) = u”(l,t) = 0. Vertical displacements are related to the static deflection of
the middle of the span under the force placed in z = [/2. We note the perfect coincidence of the
numerical analysis with the hat-shape virtual functions and semi-analytical curves. The Dirac-shape
virtual functions result in a small error. Significant decrease of the time step reduces the difference,
however, and all three curves coincide.

In the next example, the cantilever beam was subjected to the travelling inertial load. The data
were taken from the previous example. The boundary conditions were assumed as follows: u(0,t) =
u'(0,t) = 0. Additionally, natural boundary conditions were supplied by element interpolation
functions: u”(l,t) = v (I,t) = 0. Figure 9a shows the deflection of the point following the mass
and Figure 9b — the deflection of the free end of the beam. Displacements are related to the static
deflection of the free end of the beam under the force placed in z = I.

We emphasise here that numerical results perfectly coincide with the semi-analytical solution
in a wide range of the mass velocity. We applied non-dimensional speed v= up to 0.5, which
corresponds with 0.3 of the critical speed. The critical speed means the speed of the force travelling
in a cyclic way through a beam, when the vertical deflection increases to infinity. In the case of

a moving mass, the critical speed has considerably lower value, and in our example we come close
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Figure 8: Displacements under the mass moving on the Bernoulli-Euler simply-supported beam at

the speed v=0.1, 0.2, ..., 0.5 (numerical and semi-analytical results).

to it.

7 Conclusions

In the paper we propose the space-time element approach to problems with a moving mass. The
classical finite element approach does not allow us to obtain satisfactory results. They fail in the
case of a string and exhibit very large errors in the case of beams. Typically applied methods of
time integration, for example, the Newmark method, fail since the moving inertia term cannot be
considered in a continuous way in the time interval. Complex analysis could be performed with the
space-time approach. Various virtual functions in time can be applied. They result in a solution
scheme characteristic of different accuracy. It is well demonstrated in the case of the mass trajectory
plots. At the final stage of the motion the trajectories exhibit jumps (see [8]). In Figure 10 we show
the convergence of the semi-analytical solution with increasing number of terms in a series. The
jump of the trajectory should also be sufficiently accurate in numerical representations. Jumps in
every case of numerical analysis are poorly represented by numerical solutions. In our problem, in
the higher speed range jumps are visible in solutions with sufficiently small error. A shorter time
step increases the accuracy.

Figure 7 demonstrates that the hat virtual function results in a better convergence. The choice
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of the virtual time step in the form of a hat, instead of the Dirac delta type of this function,
significantly improves the quality of the solution. Both cases, i.e. the Dirac delta virtual function
with a@=1/2 and the hat-shaped virtual function, exhibit theoretically the same estimated error
of the method. The two sets of results differ, however. We can say that the error is contributed
by and accumulated with different speed because of other stages of the solution scheme: velocity
computation or displacement restitution.

Solutions given in the paper are efficient in discrete vibration analysis with travelling mass.
Although the problem deals with the mass moving with the constant speed, the same mathematical
procedure can be used to derive characteristic matrices in the case of the mass moving with a varying
speed. In this case, only additional terms describing the influence of the motion acceleration along
the structure must be taken into account. In the present paper these terms are equal to zero.

The perfect coincidence with the semi-analytical solutions proves the efficiency of the space-time

approach. The solution method can easily be implemented in the classical finite element code.
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