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Abstract—In this paper the new approach to dynamic contact problems is described. The velocity

formulation was assumed and a new time integration scheme was elaborated. The spacevtime finite

element method used in derivation enables control of the accuracy (order of the error) and stability.

Methods for the solution of contact problems were discussed. A discretized approach, prepared for large

displacements and large rotations, enabled real engineering problems to be solved in a relatively short time.

I. INTRODUCTION

Classical approaches to time integration of differ—

ential equations of motion for dynamic or quasi—

dynamic problems are composed of two stages. First,

after the choice of the formulation, the discretization

of spatial domain is carried out. Then the resulting

numerical procedure is applied to integrate time

derivatives. More precisely, the system of partial

differential equations is replaced by the system of

ordinary differential equations with respect to time

and then another, strictly numerical method enables

the sequence of algebraic equations systems to be

obtained. Such an approach has some advantages: in

both stages the most efficient numerical tools can be

chosen, including analytical methods. Moreover, the

path from statics to dynamics is simple, since most

of the procedures applied are still valid. The solution

of the dynamic problem is reduced to the solution of

a sequence of static problems. We have here a great

number of contributions to the estimation of error,

stability analysis, efficiency, etc.

However, one disadvantage is the necessity of

application of stationary partition of the domain con-

sidered. The second limitation concerns the necessity

of application of the same numerical procedure to all

joints of the discrete mesh. Unconditionally stable

procedures allow the efficiency of calculation to be

increased but at the same time introduce the amplitude

and phase error, which is different in different zones

of the structure. Mesh refinement can improve the

precision, but on the other hand it can worsen the

effect of time integration. Local interference into the

method of integration in time, on the level of finite

element or material data data is, generally, impossible.

It is clear that the evaluation of solution methods

is diflicult and complex. The choice of the numerical
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tool depends on the problem to be solved, the type

of phenomenon which has to be investigated, the

precision required, the computer being used and

other factors.

Different kinds of description can be used for a

large deformation description. A material description

is necessary to take into account the solid deform-

ation. The more secure one for mechanical engineers

is the total Lagrangian description, where the

reference configuration is the initial configuration.

Difficulties come from the numerous transport

operations that have to be carried out during the

evolution of the deformation process. Furthermore,

when the boundary conditions change it complicates

their relation to the initial boundary.

The last remark requires the mechanical engineer

to update the configurate at each time step. then the

reference configuration becomes the configuration

at the beginning of the time step to. However, the

problem of tensor transport does not disappear.

Therefore another type of description seems to be

more suitable. The first requirement is to have no

transport term. This is the case of small perturbation

theory where the configuration at the beginning of

time step to is the reference configuration. This kind

of description is a step-by-stcp description. but if

the time step is not sufficiently short, the accuracy

of results is not certain. That is why we proposed in

Ref. [1] the estimation of the configuration at the end

oftime step t.. When the approximation is calculated

from the velocity field at t,l we have the explicit

method. When the approximation requires the un-

known velocity ficld at 1,, the method is implicit.

The space—time finite element method improves this

kind of description because of the continuity of the

domain estimation. It results in the possibility of

the Choice of any configuration as the reference
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Fig. 1. Description of the evolution of the domain

deformation.

configuration within the time step. If we have a linear

interpolation for displacements, the domain at t can

be simply described by the formula (the Minkowski

transformation) (Fig. l):

1—! 1—!

QI=QIU<I — 0)+f2,l O

  

h h s hzll‘ta- (I)

If we have a linear interpolation for the velocity,

Q, depends on x0, v0, v1:

  

x=x0+v0%(2—r)h+v1%h, (2)

where

r=t_t°, h=t,—t0, Q,={xo},h 0

Q,l={x0}+{v0:vlh}.

The solution of the velocity field will be searched

as a product ofa space function and a time function.

On this short background we can place the space—

time approximation. Essentially, the basic principle

of the method concerns the way of approximation.

Characteristic functions (i.e. displacements, velocities)

are described in space—time sub-domains by nodal

parameters:

u(x, I) = N(x. 0% (3)

where N(x, t) is the matrix ofinterpolation functions,

which depends on spatial and time variables. Such

an approach assumes the continuous distribution

of characteristic quantities in the whole space—time

domain Q, in which the structure is considered

Q = {x, t :xe V(t), 0 <1 < 00}. In discrete time t,,

1': 1,2,..., we can use different bases of nodes

(limited by certain restrictions) and, according to this

C. Bajer and C. Bohatier

feature, we can adjust the mesh to our current

requirements. The following facilities can be

gained:

0 mesh redistribution according to the error distri-

bution, which varies in time;

o relocation of the condensed mesh together with

moving load;

0 the use of different forms of meshes (different from

the multiplex type, which is a result of evolution

of the spatial mesh in the time layer); some meshes

have certain interesting properties;

0 simple individual formulation of properties of time

integration, separately for each finite element;

0 in a particular case the space—time approximation

can be reduced to the classical solution method,

based on the evolution of the material mesh.

The last point can be developed to the statement,

that the space—time approximation and the method

of the space—time finite elements can be considered

as a generalization of the finite element method

(which in fact is directly applied only to spatial

domain).

The first attempt at real space—time discretization

was done by Oden [2]. He proposed a general

approach to the finite element method and extended

the imaging of the structure on time variables.

Unfortunately, this interesting idea of the non-

stationary partition of the structure on subspaces was

not continued. In some papers [3—6] the authors

formulated problems with space and time treated

equally. However, in the final stage the discretization

was carried out separately for time and space (for

example, Ref. [7]). Independently of the researchers

mentioned above, Kaczkowski in his papers [8. 9]

introduced for the first time some abstract physical

terms to mechanics: the equation of time work,

mass as a vector quantity or a space—time rigidity.

The synthesis of the new approach can be found in

Ref. [10] and stability considerations in Refs [11, 12].

In the last publication the authors described space—

time elements, which lead to unconditionally stable

solution schemes. Unfortunately. they could be

applied only for the space—time forms, which are

rectangular in time, obtained as a vector product of

spatial doman and time interval. In the following

works research turned to non-rectangular shapes [13.

14] and applied the approaches to different problems

[1548]. The state of the art in the space~time finite

element method can be found in Refs [l9~2l].

2. VELOCITY FORMULATION

One degree offreedom system

Let us consider free vibration ofa simple oscillator

dv

ma + kx —— 0. (4)
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The virtual power principle applied to eqn (4) gives

the following equation:

d

(ml+kx>v*=0 or w*=0. (5)

The principle of virtual work can be written then

I

f9*dt=w*=0. (6)

0

Real velocity is linearly distributed in the time

interval (0 St Sh)

l l

U=<1—z)vo+zvl.

The displacement x(t) is described by the integral

x(t)=x0+fv dt. (8)

0

As a virtual velocity we can assume several functions.

Here we choose a function that tends to the Dirac

distribution, which depends on the parameter a

(0 S a < l) and only on the velocity 1)]:

v*=lv|5(%—a>. (9)

11 is a constant which normalizes the distribution v*:

iv, = 1. The choice of the Heaviside function H for

description of the velocity 0*,

t

v*=lv,H(E—a>,

gives the momentum equation.

Equation (4) is multiplied by 0*, with respect to

eqns (7) and (8). The equation of virtual work

obtained is now integrated over the time interval.

Simple calculation results in the following formulae:

(10)

l—k—hz[l—(l—-ot)2]
2m

x0.

(1‘)

Displacement x. in a successive moment is determined

from the velocity 00 and v1:

  

X1=-’Co+h[(1 ~l3)vo+llvil- (12)

One can verify that the energy is preserved for

[3 =1 —a. With respect to this we can write the

stepping scheme

 

] 20m 2K

{L71} __ 2 + 06th h(12K + 2) v0

x. _ 2km + 2) 2m — 1) x0
_—— 1

3h aztc +2 CXZK +2 + (13)
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Fig. 2 The displacement amplitude for selected

parameters a.

where K = th/m. The 2 x 2 transfer matrix T defined

in eqn (13) allows the stabilty condition for )1 —>00 to

be found. Eigenvalues of T are:

az—l+i‘/2a2~l

2 — a2

 

lim Am:

had] ' at

(14)

and their modules are

1, iffl/zsasl

lim Mm] = l

haoc —2./a‘—40L2+2, if0<a<\/§/2.

a

(15)

We can notice that for a = 1/2

1|

XI=XQ+J‘ vdta

0

where v is defined by eqn (7). Both the modules

are equal to one when a >\/§/2. This important

inequality allows us to assume for calculations the

unconditionally stable procedure.

The amplitude of the velocity is almost exact.

In turn the error of the displacement amplitude

arises from the phase error. It is the elongation of

the period of vibration. which appears when a large

time step It is applied. In such a case the system

is more elastic and it responds to increase in the

displacement amplitude. The error of displacement

amplitude for selected values of time step related

to the period of vibrations T is depicted in Fig. 2.

We should emphasize that the formulation by the

virtual work theorem does not lead to the

Galerkin method for the space—time interpolation

formulation.

General case of linear elasticity (small rotations)

For the arbitrary problem of elasticity we can

apply the same procedure as in the case of the

one-degree-of-freedom system.

If we denote the strain c as

e = %(grad u + gradT u) (17)
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and the stress a as

a = E5, (18)

and if we assume the distribution of the virtual

velocity v*, the equation of the virtual power

expressed in terms of velocity will have the general

following form for any behavior:

a
Jplv*dQ=—Jazé*dQ+va*dQ, (19)
n at n n

where f contains all the volume forces. Displacement

u(t) is described by the integral

(20)
0

u(t) = u0+ ledt.

With respect to eqns (17), (18) and (20) we can

develop the form of eqn (19):

*T a! 67*T 2Lo ) p61 <1!”va )Egujdo

‘0

+J [(Qv*)TE§2 J, v d1] d9

9 0

=j (v*)Tf d9. (21)

(2

Here 9 is a differential operator (whose form depends

on the type of the structure) with respect to spatial

coordinates and f is the external load.

3. UNILATERAL CONTACT AND FRICTION

The unilateral contact conditions can be enforced

by numerous methods [22]. We can classify them into

three groups.

Category I: geometrical constraint methods [1]

o The explicit projection method is easy to carry out,

but mass conservation is not satisfied during the

deformation process. The contact forces are not

directly known. Figure 3 shows the elementary

example where the loose mass is visualized after

projection onto the contact surface of points that

penetrate.

o The implicit projection method leads to a good

  
rigid solid

  

   

 

loose mass

deformable solid

Fig. 3. The explicit projection method.
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control of mass conservation. The contact forces

are not directly known, but it is possible to value

their reduction by the contribution of their distri—

butions. It is necessary to control the sign of the

normal forces to allow the contact point the possi—

bility to leave or keep the contact. This method

can be improved by the introduction of modified

unilateral constraints restriction of the geometrical

motion (geometrical soft way method) and then

have some similarity to the penalty method on this

displacement for velocity formulation (dual soft

way method).

Category 2: penalty methods

0 Penalty on normal displacement constraints with

the displacement formulations [23]: this kind of

method is adapted for incremental description and

for small increments of deformation.

0 Penalty on normal velocity constraints with

velocity formulation: this method is limited to the

point that keeps contact because of the numerical

instability in the case of variation of the contact

status.

0 Penalty on normal displacement constraints with

velocity formulation: the normal displacement is

only significant for the contact status, the normal

displacement is calculated by the integration of

the velocity. We call this method the dual soft way

method because of the physical analogy of the

possibility of a little penetration associated with a

proportional normal force directed in the opposite

direction. This method is well adapted when the

contact term does not become the preponderant

term.

Category 3: mixed methods [24. 27, 25]

o The Lagrangian methods lead to an increased

equation system which is more ill conditioned.

Most of time the convergence is poor. For this

reason the augmented Lagrangian methods

improve the numerical convergence.

0 The augmented Lagrangian method with Usawa‘s

algorithm leads to an iterative process of the

solution with two separate problems: velocity

problem classically dimensioned, and a contact

force problem with the velocity as a parameter.

0 The formulation as a complementary problem with

variational inequality is used in Ref. [26]. It is very

efficient for the systems of rigid solids. In Ref. [27]

it has been applied in deformable solid problems.

Our choice here is either the implicit projection

method or the soft way method.

3.1. Unilateral contact conditionsidlflerent modeling

methods

We introduce here the motion of reference solid.

5x is the displacement P0Pl (Fig. 4):

ll

(5x=J vdt (22)
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deformable solid

reference solid

Fig. 4. Configuration before the starting of deformation

process and evolution of the point P.

and

u,,=6x'n—d. (23)

The gap d denoted QK in the Fig. 4 is calculated by:

d = (P, P0 — P, Q) - n. (24)

F is the contact force, compounded by a normal force

related to the unilateral contact and a tangential force

related to the friction phenomena.

F = F" + F,, (25)

where F,, = F - n is the normal force, F" = F, - n,

F, = F — F,, is the tangential force.

The general and systematic notation for the

junction between any solids in the system is presented

in Fig. 5.

In most real problems, at least a couple (some-

times more) of solids are deformable They have not

necessarily the same behavior.

Consequently, it is necessary to establish more

accurate notations in order to ensure a good

modeling of interactions between the solids. It is

very important to notice that the contact conditions

are formulated by the normal displacements. When

the velocity formulation is used, the formulation of

the contact conditions (non-penetration conditions)

is correct if (3x is calculated by the expression (22).

The unilateral contact conditions or Signorini

conditions are

11,,” S 0

Fm S 0

F," - uni, = 0, (26)

where the quantities are valued on the external

normal of the solid j; uni, =u,," 'n,, is the relative

displacement of the solid j with regard to the solid 1'
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Fig. 5. Interaction modeling at an estimation for the esti-

mated configuration within the time step of the deformation

process.

,- is the interaction of the solid 1‘

onto the solidj (Fig. 5). At this stage it is possible

to choose a method to solve the complementary

problem.

and F,” = F,” -n

3.1.1. The projection methods. Explicit projection:

during a time step the free boundary keeps the same

status. At the end of the time step, the point P,

that came through the boundary of the solid S2 is

projected onto the solid 52 at Q, and then it keeps

the contact status. The normal velocity is set equal

to zero and the tangential velocity is unchanged.

The sign of the nodal force can be controlled. It is

necessary to take small time step in order to keep

good accuracy during the deformation process.

Implicit projection: during a time step the same

status of contact points and free boundary points is

controlled. The point P, that came through the

boundary of the solid S2 at the estimated configur-

ation is projected onto the solid S2 at a point inside

the segment P, Q, , related to the dynamic conditions

of the solids S, and $2 estimated at time to, and then

it keeps the contact status. The normal velocity at the

end of the time step is settled equal to zero and the

tangential velocity is free to change, then a new

approximation of the configuration at the end of

the deformation process can be calculated. At each

contact point a control of the sign of the normal force

is made in order to determine the status free point or

contact point. The time step can be chosen to be much

larger during the deformation process than in the

explicit method.

3.1.2. The penalty methods. According to our

choice of the velocity formulation the penalty

methods of the normal displacement constraints lead

to the formulation of the normal force:

Fm, = Curi,,-H(_ um,- )’

where H(-) is the Heaviside distribution. C = 1/5 with

a small 6. The particularity of this method that we

call the soft way method is to take the velocity as a

main variable. The numerical method that can be

forward selected is particularly well adapted to this

modelling.
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3.1.3. Lagrangian methods. The Lagrangian

methods are formulated by a min—max problem:

L(v,F,‘,“)<L(v,F,,)<L(v*,F,,) (28)

where

L(v, F”) = 45(v) + (Fm v). (29)

(Fn, v) is a linear form, d>(v) is a convex functional

of the velocity field, E, is a Lagrangian multiplier that

is the normal force.

The augmented Lagrangian is described by the

formula

M
i
x
e
d
m
e
t
h
o
d
s

C
L((v, F") = L(v,Fn)+§ llun—diiz- (30)

The Usawa algorithm [17] leads to an easy

alternative solution of the mixed problem: an esti-

mation of the normal forces gives a new velocity

field. Then a new approximation of the normal force

can be calculated. The paper [24] proposes a good

way using the generalized Newton—Raphson method.

Table l is the abstract of methods for the unilateral

contact with the velocity formulation.

The notation (Dq), v*) defines the Géteaux

derivative of (p to the direction v*.

3.2. Friction law

The friction conditions can be defined as a

dissipation condition:

P
e
n
a
l
t
y
m
e
t
h
o
d
s

F,~v,<0. (31)

The friction law can be established with the

formulation:

F, = am), (32)

where Jflv) is a history functional of the velocity that

satisfies the same principles as the rheological law.

The friction law is chosen as the surface formulation

respectively either the considered solid behavior or

the intermediate continuum media. Examples of

friction law:

T
a
b
l
e

1
.
R
e
v
i
e
w
o
f
t
h
e
m
o
d
e
l
i
n
g
m
e
t
h
o
d
s

f
o
r

u
n
i
l
a
t
e
r
a
l
c
o
n
t
a
c
t
p
r
o
b
l
e
m
s

0 Coulomb law (see Ref. [28, Fig. 6])—when |F,|

<fl(u../€)H(un)| then I”, = 0 and E = Jflumvfi =

—f Hun/01104")! Sgn(v,)-

o Viscoplastic friction law (Fig. 7):

P
r
o
j
e
c
t
i
o
n
m
e
t
h
o
d
s

Fl: —aivrifl—lvr

or regularized

F,= —a|v.+vol”"v,. (34)

It should be emphasized that a friction law can

be established as a surface behavior law that can
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Fig. 6. Graph (1),, 17,) of the Coulomb friction law.

 

  

 

p=0

Fig. 7. Graph (v,,F,) of the viscoplastic friction:

Fuj = _a Ivy/iip— Ivar

come from a volume behavior law. The limit case of

viscoplastic friction when p =0 can be the Tresca

friction law or can become the Coulomb friction law

when at depends on the normal force. Its graph (F,, 0,)

is the same as for the Coulomb law.

3.3. Approximation of the contact surface

We denote by P3“ the position of the point,

predicted at time 11 by the velocity field for the

approximation k, by Q‘l’” the projection of the point

P3" on the contact area with respect to the normal n‘zkl’

to the reference solid (Fig. 8). When the analytical

equations of the reference solid are known, as in

the case of some forging tools, the normal can be

analytically determined.
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When the surfaces are discretized by differential

surface elements, the predicted normal is a normal to

the local differential surface element considered[l].

Pi“ is calculated by

t —t

‘x(k)=xo+(vo+'v<.*’)'———°,2 (35)

where n3‘? is the external normal to the reference solid

at P3".

The geometrical investigation phase, after a discret-

ization of the boundary surface by local plans [27]

leads to the prediction of the position of the point P3“

at time t1 and the approximation k. When the impact

point is close to several different surface elements, it is

necessary to consider all the constraints coming from

these possible contact areas.

The strategy of discretization seems to be better

when the shapes are complex, mainly when all the

considered solids are deformable. However is is poss-

ible to consider the discretization by other elements

than plans.

4. SPACE-TIME DISCRETIZATION

Velocity formulation

According to the general formulation (19), we

introduce the interpolation formulae

v=N(x,t)q and v*=N*(x,t)q*. (36)

Here we also take the distribution of virtual

parameters (1* which depends only on the nodal

parameters determined for t = h:

N*(x, t) = [0; N,,,(x, 5G — (37)

We should here recall that the vectors q, (1*, f are

composed of two subvectors. The first one is defined

for t = 0, the second one for t = h:

_{q|1=0}

q— .

q|l=h

(38)

reference solid 82

 

Fig. 8. Estimation of the unilateral contact force and friction force,
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Finally we have:

{I [(9N*)TE9 J] N d1] d9 +J (N*)Tp 95 d9} q

a o 9 at

+I (@N*)TEc0 d9

0

=J (N*)deQ. (39)

9

Since N"‘T is defined as the product of the Dirac

distribution (37) by a space—time interpolation func-

tion, the integration over the space—time domain Q is

reduced to only the integration in space. However,

shape matrices must be determined in particular

moments. Then eqn (39) has a simple form:

(K+M)t'1=F—e, (40)

where

K = J (9N1,,(x))TEEZN(x, och /2) dV - ah (41)

Var/1

MzflmemaN—(gt’flw (42)

e = (9N.;.(X))TE€0 d V (43)

F = fl N1,,(x)r(x) d V. (44)

Matrices K and M are the stiffness and mass matrices,

respectively, the vector e is the vector of initial (in a

given time interval) forces and F is the external load

vector.

Large rotations

Let us denote by d’0x the vector determined in to.

C. Bajer and C. Bohatier

The vector d’x in time t is given as a result of

tangential transformation

d’x = gar d’0x. (45)

Differentiation of eqn (45) with respect to t results in

I

—x = ('w + 'D) d’xdt (46)

where the term ’W'dx is related to the rigid body

motion

'W = %(grad v ~ gradTv) (47)

and the term ’D’ dx is related to the pure deformation

’D = %(grad v + gradTv). (48)

After the decomposition

jnF = 10R :"Y, (49)

the relation between the 10R and ’W can be

determined as follows:

dfiR,
° R"—'W=0.
dt )

 

(50)

The integration of eqn (50) results in the matrix of

rotation in the interval [to, t]

1 —l_ -’W(I~!)

,OR —Ie 0, (51)

which can be developed in series with two terms

(t — to )2

2

jun ‘=I—(t — to)’W+ 'WI. (52)

The constitute relation for the hypoelastic material

is described by

(53)

     

Fig. 9. Deformed ring in successive moments.
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Fig. 10. The scheme of the compressed domain.

    

dJa/dt is the time derivative in corotational

coordinate system and D is the rotation rate

tensor. The deformation tensor in time t is described

as

a = no +j ED dt. (54)

0

After the space—time discretization of the velocity

vector (here linear distribution is assumed), in the

base related to the configuration t,,

a = (10R)~‘(ao +(1— a2) §)ED0[(:0R)-*1T

h
+ «25131), (55)

Fig. 11. Deformed mesh and generalized strain in the 10 steps (for t = 0, l0, 20, 30).
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where at = (t,- — to)/h, h = t1 — to. The deformation

determined by eqn (55) can be introduced to the

equation of virtual work.

5. EXAMPLES

The presented method is elficient both for the time

integration and the multi-contact analysis. Several

simple tests proved the accuracy and efficiency of the

approach. Here we will present only few examples

to show the variety of problems that can be simply

treated.

The first example concerns the elastic ring, which

falls down on the rigid base. Material data and

procedure parameters: E = 0.004, A = 4.0, I = 0.333,

p = 1.0, K: 1.2, v :01, At :25, v =0.0015. The

half of the ring was discretized by 32 spatial elements.

Successive forms of the ring are depicted in Fig. 9.

The contact conditions were fulfilled in two to three

iterations in every time step.

The next example which proves the efficiency of the

velocity formulation is taken from Ref. [1]. A quarter

of the eight-angular domain (Fig. 10) is compressed

with the constant velocity v = 0.1. The material

(Norton—Hoff model [29]) was assumed viscoplastic,

according to the relations enclosed in that paper. The

material constants were as follows: m = 0.1, K = 1,

p = 0.0. Time step At = 1, velocity v = 0.1.. On

the upper surface the friction proportional to the

tangential velocity u, was applied: T = —[i |v,|"‘ "'v,

                  
Fig. 12. The mesh of the deformed cylinder in successive

steps.

C. Bajer and C. Bohatier

(/3 = 0.05). The deformed mesh and generalized

strain is depicted in Fig. 1 l. The whole process of the

deformation was performed in 30 time increments. In

each time step the number of iterations was equal to

5—8 and caused by the material nonlinearities rather

than by the contact conditions.

The contact problem between the deformable body

and rigid body and between different parts of the

same body is illustrated in the next example. The

axi—symmetric tube is compressed with a constant

speed v = 180 km h"'. The viscoplastic material

with inertia is assumed according to the Norton—Hoff

model. The upper surface is hit by a infinitely rigid

base moving with a constant speed while the lower

surface is fixed. The mesh applied contains 1250

finite elements of axi-symmetric strain. The time of

calculation increases considerably with the increase in

number of contact zones. However, the convergence

in this middle scale problem is sufficiently good to

apply the method to real-scale three-dimensional

problems. Figure 12 presents the deformed mesh in

successive stages.

6. CONCLUSIONS

In this paper we proposed a new and more efficient

approach to the time integration process. The space—

time description of the displacement fields gives the

purely mathematical explanation of what quantities

can be taken in what intermediate moments in time

steps. Up to now numerical methods for the solution

of linear differential equations were taken in practice

and artificially adapted to non-linear equations of

mechanics. The presented velocity formulation allows

correct formulation of the problem of evolution by

the history of deformation.

The formulation of the equilibrium by the principle

of virtual power uses the theory of distribution. The

virtual velocity field is then taken a different way

from the Galerkin approach. The unilateral contact

conditions are defined by the geometrical constraints

associated with the displacement functions (described

by velocity). This approach is highly efficient for

evolutionary problems.
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