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Abstract

Lateral vibrations of two parallel cantilever beams joined at their free ends by a viscoelastic member are studied experimentally and
theoretically. A dynamic model of the structure is proposed. It fits the experimental data well and allows to estimate the shear modulus
and damping coefficient of the member. The model can be useful for the development of semi-active control strategies for double-beam
systems with controllable damping members.
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1. Introduction

Systems of two parallel elastic beams can be found in various
devices and structures – examples include aircraft wing spars,
double-beam cranes, bridge spans, or linear guideways in plot-
ters. Recently semi-active methods of vibration suppression for
such systems have been developed. In Ref. [1] the controlled
delamination of a two-layer beam is employed for the releasing
of strain energy accumulated in the deformed structure. The re-
search Ref. [2] deals with semi-active damping of two beams
joined by elastomer composite with iron particles, whose stiff-
ness and dissipative properties increase when it is exposed to
magnetic field. A simple switching strategy allows to reduce vi-
brations more effectively than in the case of the elastomer perma-
nently activated. A similar system is experimentally investigated
in Ref. [3], however in this study an elastic hermetic container
filled with granules and subjected to underpressure acts as the
damping member.

The scope of the research is to provide a dynamic model for
systems analyzed in two former papers.

2. Experiment

The scheme of the investigated system is depicted in Fig. 1.
Two aluminum beams of length L = 700 mm, width b = 25 mm
and thickness d = 2 mm are mounted in parallel in a clamped
configuration and joined at their free ends by a damping mem-
ber made of MS-polymer adhesive. When the beams are de-
flected, the member undergoes shear deformation, which is the
main source of elastic and dissipative forces in the system. The
mass of the member amounts to 2M = 18 g, length 2a = 33
mm, height 2h = 15 mm, and width equals to b. In order to
keep the gap between the beams constant over their lengths, two
lightweight rolls were placed at distances of x1 = 230 mm and
x2 = 470 mm from the support. Three laser displacement sen-
sors were aimed at the system at distances 230, 460 and 695 mm.
An initial deflection of the system was applied, and after releasing
of the structure, the vanishing free vibrations were recorded.
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Figure 1: Scheme of the analyzed system.

3. Model

Lateral vibrations in x-y plane are studied, and w1,2(x, t)
denote displacements of beams in direction y. The beams are
considered linear Bernoulli-Euler cantilevers, subjected to both
internal and external viscous damping. Gravity acts perpendicu-
larly to x-y plane, so its influence can be neglected.

The anti-buckling rolls are treated as linear springs of stiff-
ness Kr = 20000 N m−1, which generate transverse forces

Fr1,2 = −Kr(w1(x1,2, t)− w2(x1,2, t)). (1)

By assumption, the member is made of the Kelvin-Voigt ma-
terial characterized by shear stress-strain relation τ = Gϕ+G∗ϕ̇,
whereG [Pa] is the Kirchhoff modulus andG∗ [Pa s] is the damp-
ing coefficient. The member is modelled as a two-link diagonal
truss, exerting forces to both beams as depicted in Fig. 2. It is
short enough to neglect its rotary inertia, but the mass is included.
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Figure 2: Forces generated by the truss and acting on the beams.
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It is assumed that the end parts of both beams (i.e. over the
damping element) remain almost straight, their slopes of deflec-
tion are approximately equal to ϕ, and the value of ϕ is small, so
sin(ϕ) ' ϕ and cos(ϕ) ' 1. Then the components of elastic
forces in the assumed coordinates amount to

F /
e,x = −Gb

2
(w̃ + 2aϕ) , F /

e,y = −Gbh
2a

(w̃ + 2aϕ) ,

F \e,x =
Gb

2
(w̃ − 2aϕ) , F \e,y = −Gbh

2a
(w̃ − 2aϕ) , (2)

where

w̃ = w1(L− a, t)− w2(L− a, t),

ϕ =
1

2

(
∂w1

∂x
(L− a, t) + ∂w2

∂x
(L− a, t)

)
(3)

The components of dissipative forces are given by analogous for-
mulas, in which G is replaced with G∗, and w̃, ϕ – with their
time derivatives.

The dynamics of the system is governed by two classical
equations of lateral beam vibrations, with additional point forces
generated by the springs and the truss. The following equation
describes the motion of beam 1(
ρA+MδL−a

)∂2w1

∂t2
+ EI

∂4w1

∂x4
+ E∗I

∂5w1

∂x4∂t
+ c

∂w1

∂t
+

− Fr1δx1 − Fr2δx2 − P
∂2w1

∂x2
+

− F /
e,yδL − F \e,yδL−2a − F /

d,yδL − F
\
d,yδL−2a = 0, (4)

where A = bd is the cross-sectional area of the beam, I =
bd3/12 – the second moment of an area, E∗ denotes the internal
damping coefficient of aluminum, and c is the external damping
coefficient of air. The value P = F

/
e,x + F

\
e,x + F

/
d,x + F

\
d,x

denotes the sum of forces generated by the truss and acting on the
beam in direction x. It is assumed that all axial forces are con-
centrated at the beam tip, because part of the beam over the truss
is a short, so its slope is small.

A dynamic equation of beam 2 is analogous. The sign at the
axial force changes to „+”, because if one beam is being com-
pressed, the other one is stretched. Obviously the „−” sign at
transverse forces is replaced with „+”. The points, where the
forces generated by the truss act, are swapped.

4. Verification

A continuous problem was discretized using the Galerkin
procedure based on the cantilever beam eigenfunctions. The
number of 8 base vectors was enough to provide a satisfactory
accuracy of the approximate solution. The resultant set of ordi-
nary equations was solved using the Fehlberg method.

Firstly, the stiffness and dissipative properties of the single
aluminum beam were estimated basing on free vibrations induced
in the first mode. The obtained values are EI = 1.01 N m2,
E∗I = 0.00026 N m2 s and c = 0.01283 Pa s. Afterwards,
the model of a double-beam system was fitted to the experimen-
tal data. This data was acquired from the free vibration trial, with
an initial tip deflection of 49 mm, and lasting 6.3 seconds. The
fitting quality was measured by Pearson correlation coefficient
between empirical and theoretical time responses, averaged over
sensors S1, S2 and S3. The values of G and G∗ which maxi-
mize the quality criterion were chosen as estimators. A simple
optimization technique based on the systematic search yielded to
G = 365 kPa and G∗ = 6.683 kPa s. The optimal value of mean
correlation coefficient equal to 0.988 indicates that the model fits
the experimental data well.

Figure 3 presents the comparison of empirical and theoretical
time series of transverse displacements at the position of sensor
S3, and over the whole time of the trial. In Fig. 4 the deflection

of the beam is shown over its entire length. The dots denote the
actually measured displacement during the selected moments of
the first cycle. The first cycle was chosen because of the high-
est deflection, which yielded to the strongest and easily observed
S-shaped deformations of the beam.

Figure 3: Empirical (dots) and theoretical (line) free vibrations at
position of sensor S3.

Figure 4: Empirical (dots) and theoretical (lines) beam deflection
during the first cycle of free vibrations.

5. Conclusions

A dynamic model of the system of twin cantilever beams con-
nected at their free ends by an elastomer damping member is pro-
posed. The model fits the experimental data well. The Kirchhoff
modulus and shear damping coefficient of the elastomer are iden-
tified. The proposed model can be a basis for the development of
optimal control strategies for double-beam systems with adaptive
damping members. It may be also useful for establishing such
geometrical and physical parameters of these systems supposed
to provide the highest efficiency of vibration suppression.
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