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Preface

Elimination of vibration is the important task in the period of rapid tech-
nological development. Although theoretical basis was created many years
ago, practical solutions are not sufficiently implemented. The vibration the-
ory and the control theory are the base of our further considerations.

The work was carried out at the Institute of Fundamental Technological
Research (IPPT), Polish Academy of Sciences, and at the Faculty of Auto-
motive and Construction Machinery Engineering (SIMR), Warsaw Univer-
sity of Technology. The research team consists mostly of the members of
the Laboratory of the Control and Dynamics of Structures. They represent
a wide scope of interest: mathematical analysis, mechanics, computational
dynamics, control theory, and experimental studies. Our research group
is involved in research in vibrations of mechanical systems. In a special
interest we place transport dynamics, vibration induced by moving loads,
both massless and inertial, coupled loads, dynamics of sandwich beams and
rotating shafts. Deep analytical investigations followed by numerical and ex-
perimental verifications resulted in some discovered phenomena. However,
engineering applications are a serious challenge. Theoretically simple and
clear analytical dependencies that prove efficiency of the solution, turn out
to be incorrect and ineffective in practice. Incorrect assumptions, material
parameters and constitutive laws are the common reason of the defeat, or at
least a decrease of the efficiency. Therefore experimental tests are on pair
with the analysis.

Semi-active control of vibrations enhances damping properties of struc-
tural elements. This technique can be performed in several ways. The fric-
tion or the damping are good examples of possible parametric control in the
differential equation. Magnetorheological dampers have become popular in
recent years. Unfortunately, the fluid contained in them exhibits disadvan-
tages. We will try to use alternatively elastomers and granular materials,
both controlled externally. And again theoretical derivations should be re-
lated to experiments.
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The book is addressed to PhD students, researchers, as well as engineers.
It covers the fields of control of structures in civil engineering and machinery
engineering. We hope that in the book the reader will find the theoretical
background of structural vibrations, optimal semi-active control strategies
and examples of numerical simulations of real engineering structures. Non-
classical materials will deliver data that could be used in further research.

The work was supported by the National Centre for Research and De-
velopment, Lider/26/40/L-2/10/NCBiR/2011.



Chapter1

Introduction

Vibration as a mechanical phenomenon occurs practically in all areas of our
life. The oscillatory motion about the equilibrium state is characterised by
several parameters. Our simple systematics divides the oscillatory motion
into two groups: oscillations with low or high frequency, in which the motion
of material points is considered, and waves, where a disturbance travels
through a material domain, accompanied by a transfer of energy. In both
cases we usually apply different methods of elimination of vibration.

The exploitation of existing engineering structures in terms of increased
operational requirements associated with an increase of the load and the fre-
quency of its occurrence, forces us to take into account in the design process
the effects associated with the dynamics of the structure. Technical devices
are more complex nowadays and are subjected to extreme loads. For ex-
ample an increase of the speed and weight of trains causes new problems,
so far poorly investigated. These adverse phenomena caused wave effects.
Wave processes play an increasingly important role in the rail vehicle-track
systems, as the travelling speed approaches some characteristic critical ve-
locity values. A sharp increase of vibration amplitude is a harmful external
effect. This in turn raises the noise level, increase of wear and reduction of
reliability and safety of the structure. One of many practical applications of
the research can be found in how to protect buildings from vibrations caused
by travelling rail vehicles in the case of wear of rolling surfaces (Fig. 1.1).

Moving sources of vibrations in transportation can not be entirely elimi-
nated. They are joined with the nature of rolling phenomenon, periodicity of
a track and waved wear of rolling surfaces of wheels and rails. This problem
has been studied extensively in many centres in the country and abroad. It
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Figure 1.1. Corrugated wheel and rail.

was shown that, despite the smooth surface and a rectilinear motion of the
wheel axis, we observe oscillations of contact forces [3]. With the increase of
rolling speed the number of oscillations related to the circumference of a cir-
cle decreases, increasing the amplitude of vibration and amplitude of the
contact force. Also, in the direction transverse to the direction of rolling of
wheels we deal with excitation of vibrations of the track and the sub-grade.
The wheel rolling on the road or on the track is affected by a complex load.
Dynamic phenomena cause changes in the relationship of individual compo-
nents. Some of the forces act in a manner similar to the stationary type,
the other in an oscillatory way, or short-term, for example, while driving
through irregularities (Fig. 1.2). Research carried out in our team enabled
to describe the phenomenon of lateral slip [15]. On the base of experimen-
tal data recorded on the foundation of the subway track, on the sleeper of
the classical railway and on the laboratory stand the existence of double
periodic vibrations induced by lateral slipping was proven. This type of
phenomenon increases the amplitude of vibration and noise caused by pass-
ing trains. Another important factor is the thermal expansion of the rails.
In our climate the temperature of rails during the year varies significantly
and the interval may exceed 70◦C. In tracks made in non-contact technol-
ogy, axial internal stresses arise. The increase of compressive stress in rails
increases their eigen-frequencies, shifting ranges of frequency response and
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Figure 1.2. Vertical accelerations of the axle box of a rail vehicle on the track at
different velocities.

decay bands. These bands play a key role in the propagation of travelling
waves caused by passing trains, increasing amplitudes of rail vibrations. The
increase of vibrations worsens traction properties, reducing its lifetime and
produces noise propagating in the ground and air. The increase of the speed
and mass of trains in the future will intensify this effect.

Various smart materials can be used in technical applications that require
dynamic control. The most popular are the following:

• Piezoelectric materials that produce a voltage when stress is ap-
plied. This effect is reversible. A voltage applied to the sample will
produce mechanical strain. Suitably designed structures made of these
materials can bend, expand or contract under the voltage.

• Thermoresponsive polymer materials that exhibit a drastic and
discontinuous change of their physical properties with temperature.

• Magnetorheological and electrorheological fluids that exhibit
increased viscosity under magnetic or electric field. MR fluids are made
of iron particles in oil that form chains along the magnetic field lines
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and therefore they resist to shear perpendicularly to chains. ER fluids
contain mineral particle rearranged in the electric field induced by high
voltage, but low current.

• Ferrofluids which are liquids that become strongly magnetized in the
presence of a magnetic field. The size of particles differs ferrofluid from
magnetorheological fluid. MR fluids contain micrometre-scale particles
while ferrofluids have nanoparticles that are suspended by Brownian
motion and generally will not settle under normal gravity conditions.

• Magnetorheological elastomers that are rubber-like materials con-
taining ferromagnetic particles, allowing the increase of stiffness under
magnetic field.

• Ionic polymer-metal composites (IPMCs) are synthetic nanoma-
terials that exhibit deformations under an applied voltage or electric
field. From this point of view they can be considered as artificial mus-
cles. IPMCs are composed of a ionic polymer like Nafion or Flemion.
Under an applied voltage, 1–5 V for a 1×4 cm sample, 0.2 mm thick,
ion migration and redistribution due to the imposed voltage across
a strip of IPMCs result in a bending deformation.

• Granular materials controlled by underpressure, that exhibit signif-
icant change of stiffness under atmospheric pressure when small under-
pressure is applied to the envelope containing granules. The increase
of inter-granular friction is observed and that is why the material can
be used to fill shared structural elements.

In the further chapters we will present the control of mechanical vibrations
with magnetorheological fluids, magnetorheological elastomers, and granular
materials.

1.1. Research Fields

Problems with vibrations occur practically in all areas of life. Some of them,
still important, are gradually dominated by others. Evolution of technology
and social requirements change the interest of researchers. Let us take a look
at issues that are of special interest.

Structure health monitoring In this item we place damage detection
based on dynamic response of a structure of its elements. People for
ages have captured anomalies using the senses of hearing and touch.
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Nowadays we try to do the same automatically. We want to localize
a damage and determine its size. A detection of instantaneous param-
eters, for example loads or temperature influences is also important
for exploitation. The proper detection of both the structure parame-
ters and external instantaneous factors allows us to avoid progressive
wear or destruction. In power engineering sensors can be placed in
pylons and energetic cables loaded by ice and forced by wind. Off-
shore structures exposed to wind and waves are intensively examined
to avoid environmental contamination. The same technology is ap-
plied in aviation. Sensors immediately report excessive vibrations of
vital elements of a plane. This field of research is being increasingly
developed.

Dynamics of bridges This item is extensively investigated, especially for
damage detection. Old bridges must carry increasing loads and re-
sist to vehicles at higher speed. The cost of reconstruction is high,
especially if it doubles due to construction detours. This question is
joined with the influence of the intensity of the traffic, instability of
a span under dynamic course, wind induced vibrations of the bridge
deck, human structure interaction in slender cable structures, or influ-
ence of temperature effects. The damage detection based on dynamic
responses induced by a traffic load nowadays is the most attractive
domain.

Infrastructure systems and historical structures Damages caused by
vibrations in surrounding infrastructure are particularly acute in vul-
nerable historic buildings. Historic brick buildings are fragile, very sus-
ceptible to deformation. The low susceptibility of the material, which
does not succumb to excessive momentary or long-term deformation
is the main reason of damages. The negative impact of infrastructure
on the surrounding buildings, particularly in historic sites, forces us
to take action to reduce the adverse external effects. We assume the
concept of modification of the track structure, to enable influencing
its dynamic properties. The size of the load, the speed of motion,
the effect of dynamic coupling, as well as external temperature which
incorporates axial forces in rails, can be considered as variable factors.

Energy harvesting Power recuperation from vibrating objects is in focus
of researches. There exist some devices that can generate small amount
of power to activate electric circuits far from energy sources. There are
attempts of transforming vibration of the oceanic wave motion into
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electric power. If the process is widespread, we will be able to reduce
the emission of carbon dioxide produced by marine transportation. We
will also be able to substitute the conventional thermal power plant by
ocean wave power generators. Deep water floating wind turbines can
also be a good example of new environments for known mechanical
devices. Practically all kinds of motion can be used for changing the
mechanical energy into electricity. We can also use: oscillations of
a vehicle, vibrations of footbridges, pedestrian steps transformed in
boots, etc.

The solution to the problem is not evident. From one point of view
we want to retrieve energy from vibrating structures and the higher
is the vibration, the more energy will be recovered. From another
point of view, oscillations consume energy. Only in the case when
vibrations are inevitable we can develop this technology. Otherwise,
the reinforcement of the structure, for example the bridge, reduces the
energy spent for passage. Then less can be restored.

Railway transport Railway transportation returns as a vital link in the
economy. Increasing requirements focus attention on technical prob-
lems. The crucial goals are: safety, reduced wear of rolling surfaces,
noise reduction, protection of surrounding buildings against para-seis-
mic vibrations. Research is mainly based on experiments. Computer
simulations are complex since various factors must be taken into ac-
count in a proper formulation of the problem. They are: material non-
linearity with plasticity of materials and strength hardening, friction,
contact between rolling wheels and rails, dynamics, wave phenomena
(especially arising from periodicity of the track and interaction between
moving contact points induced both by a track and a vehicle), complex-
ity of a rail vehicle and the whole train, and difficulty in determining
the ballast and the soil parameters.

Earthquake engineering Civil engineering constructions are designed
to carry gravitational forces. Vertical loads contribute most to load
schemes. Horizontal forces are significant in bridge cranes, wind load
of masts, high buildings, bridges, etc. Incidental but important kine-
matic loads are contributed by earthquakes. Their significant compo-
nents are horizontal. Constructions are sensitive to such a load. Civil
engineers admit two ways in designing: rigid structures that can resist
to kinematic excitation and flexible structures that permit large rota-
tions in pre-designed joints and large horizontal displacements. Such
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a predicted scenario of deformations can not take into account in ad-
vance every unknown excitation. We must steer the random process
towards provided schemes. Intelligent technologies should do it for us.

Damping and base isolation systems This item is common in machin-
ery engineering and civil engineering. The subject is relatively well
explored. Computer simulations facilitate the task. Recently passive
damping of vibrations has been replaced with semi-active control. In-
telligent materials are developed and progressively applied. New ma-
terials, for example shape memory materials or those having reverse
characteristics are extensively developed.

1.2. Solution Methods

In dynamics we use two types of analyses. The first one is the eigenvalue
problem. We determine natural frequencies of vibrations and related natu-
ral forms. This task is relatively simple and for discrete analysis it requires
stiffness and inertial coefficients or matrices. We usually search for the first
several eigenvalues of the matrix. They correspond to first natural frequen-
cies and we compare them with frequencies of possible excitation, to avoid
resonant coincidence. The giant number of degrees of freedom is not a con-
dition of high accuracy of results. Even a coarse discretisation results in
quite precise result. Unfortunately, poor knowledge of the art of computer
modelling forces the growth of the power of computing tools.

The second type of analysis is a group of initial boundary value problems.
We perform the discretisation in the same way as in the eigenvalue problem.
Additionally we must prescribe boundary conditions to avoid free motion of
the structure or its parts. Moreover, a pair of initial conditions, i.e. for ex-
ample initial velocities and initial displacements of all nodes, must be given.
Then the process of time integration of the differential motion equation al-
lows us to create step-by-step the animation, and survey for domains with
exceeded stresses (Fig. 1.3).

A more general approach to time integration can be carried on with the
space-time finite element approach [1, 2, 4, 7]. An essential feature which
distinguish the space-time element method from traditional approaches to
solving initial-boundary problems is its discretisation of the differential equa-
tion. Classically, two-step interpolation is used. The spatial variables are
separated from the time. Therefore, in the first stage, the system of partial
differential equations is transformed into a system of ordinary differential
equations in time of the basic state variables, and further purely numeri-
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Figure 1.3. Dynamic problem as a series of static tasks.

cal procedures are applied for the integration of the differential equations
in time. This approach has its advantages, mainly due to the possibility of
selecting the most effective tools separately for each stage, including strict
methods. In addition, the passage from the static to the dynamic solution
is simpler. Most numerical procedures for static analysis are easy to use in
this situation. In fact, the solution to the dynamics reduces to the solution
of a set of static tasks. The control of the estimation error and the uncondi-
tional stability of the solution due to the time step involved in the integration
of the differential equation are also significant. All this makes the most pop-
ular methods, i.e., the finite element method combined with the method of
integration over time, e.g. the Newmark method, a permanent part of the
practise of simulation calculations.

One of the drawbacks of the classical approach is the need for partition
(discretisation) of the considered spatial area which is constant in time (sta-
tionary). In this case, the local adaptation of the mesh to the processes
involved (e.g., the development of plastic zones, zones of contact, propa-
gation of cracks, the movement of the load) is very difficult. The existing
methods of adaptation, including multigrid methods, or moving meshes, are
an attempt to adapt a numerical process to a phenomenon, and to remove
this defect.

The second major drawback is usually the use of the same procedure in
time integration for all mesh nodes of the structure. Although it is possible to
use locally procedures for the time integration of differential equations with
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higher accuracy, in order to describe all variables of the physical phenomena
within the same time interval, we generally do not improve the numerical
model of the problem.

The space-time approximation opens up new opportunities by applying
simplicial space-time subdomains (Fig. 1.4).

Figure 1.4. Examples of multiplex and simplex elements of one-, two-, and three-
dimensional objects.

Of course all the complexities of the calculations can not categorically
determine the advantages and disadvantages of the different groups of meth-
ods. Artificial damping of higher frequency vibrations by one method of
calculation is a defect in wave problems, but an advantage in the analysis
of structural vibrations. The selection of a computational tool is carried
out based on the type of task, the phenomena under examination, the re-
quired accuracy of the arithmetical operations which can be performed on
the computer, and non-substantive factors (e.g., the availability of numerical
procedures, one’s own experiences, etc.).

The space-time approximation of solutions to dynamic problems lacks
some of these drawbacks of the classical numerical methods. However,
the method is not perfect. In essence, it reduces to the fact that func-
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tions w, characterising a solution, are described in space-time sub-areas
through nodal parameters qe (Fig. 1.5)

w(x, t) = N(x, t)qe. (1.1)

Figure 1.5. Continuous representation time of a dynamic problem.

The matrix N(x, t) is a matrix of interpolation functions, depending on
the spatial variables and the time. In the classical approach the spatial
discretisation uses the interpolation formula w(x, t) = N(x)qe(t). The
space-time approach assumes a continuous distribution of characteristic func-
tions, such as displacement or velocity, in the whole space-time domain
Ω = {x, t : x ∈ V (t), 0 ≤ t < ∞} where the structure is considered. In
discrete time ti, i =0, 1, 2, . . . , we can use different bases of nodes (with
certain restrictions), and therefore adapt the mesh to current requirements.
This has the following possibilities:

• the possibility of redistributing the mesh, depending on the changing
distribution of the approximation error,

• moving the zone of a mesh refinement together with a travelling load,

• the ability to adjust the sides of the elements to characteristic lines
determined in the space-time domain: the front of the plastic area, the
front of the material phase change, in particular — the possibility of
modelling a moving edge of a body,
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• the use of mesh shapes other than the space-mesh multiplexed meshes:
multiplexed networks are the result of an evolution of the spatial grid in
the layer of time and the corresponding elements have the same number
of nodes in the initial and final time; other meshes, such as simplices,
have new, important properties; simplex elements with dimension n
have n + 1 nodes at the initial time and i + 1 nodes at the final time
(i = 0, 1, . . . , n),

• the possibility of individual formulation of the time integration in an
active manner for each spatial element,

• the particular case of space-time approximation can give a classical
method of solution, based on fixed grid nodes (evolving only with the
material).

This last point can be expanded to a statement that space-time approxima-
tion and the resultant space-time element method are a generalisation of the
finite element method, classically referred to a real space. By the real space
we mean the space of spatial variables x, y, z, in contrast to space-time,
which is described by the spatial variables x, y, z, and the time t.

1.3. Vibration Control

Self-adaptive structures are currently extensively investigated. Properly de-
signed structures allow significant improvement of dynamic properties of
systems, comparing to their passive equivalents. First, the structure gains
higher load carrying capacity with the same weight. Second, we obtain
lower displacements, and thus we improve the fatigue strength, increasing
the safety of the structure. Therefore the synergy of a layered structure and
semi-active controlled smart material in many cases will reduce the weight
and the cost of the structure. Properly selected control strategy applied
to some factors of the structure enables us to use this type of innovative
solutions in numerous practical applications.

Lightweight structures have been intensively investigated in recent years.
Optimal design with low weight is insufficient in the case of dynamic be-
haviour of the structure. There are some approaches to decreasing vibration
level.

Passive vibration absorbers The idea is performed by means of dynamic
vibration absorbers as a set of tuned mass dampers. Both transverse
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and rotational types of absorbers can be applied. They are efficient in
the case of instantaneous increase of amplitudes or in shocks.

Active control Control forces are generated by electric or hydraulic actu-
ators imposed to selected points or to tendons [19]. The actuators can
generate both transverse control force and bending moment. It enables
us to control the predominant lowest vibration modes of the structure
whereas the piezo-electric actuators are used to control higher ones.
The possibility of unstable behaviour in the case of improper design is
the disadvantage of this solution. Applications are energy consuming.

Semi-active damping The control is performed by viscous dampers in-
stalled in the structure [16]. For example the span of the beam can be
supported by viscous dampers. The damping properties are changed
according to displacements of selected points or to other, more complex
observation of the structure response. Such a control always results in
stable responses.

Semi-active structural control has been intensively studied for many years in
the team. The literature devoted to control techniques is numerous. The use
of semi-active supports for the structure subjected to a moving load was first
proposed by Bajer and Bogacz in [8]. By means of numerical simulations the
authors demonstrated that in a wide range of travel velocities the switch-
ing damping strategies outperform standard passive solution. The idea was
then extended by Pisarski and Bajer in [17] and [18], where by introducing
rigorous analysis and optimisation techniques the authors concluded that
even one switching action in each damper can provide smooth load passages.
The total deflection of the load trajectory from the straight line was reduced
up to 50%. This research was continued by Dyniewicz et al. [7, 9, 10, 13].
Adaptive damping has also been successfully applied to torsionally vibrating
systems [11, 12]. Periodic activation of rotary magneto-rheological dampers
effected the reduction of vibration amplitudes to a greater extent than in
the case of the passive solution. The developed control concept has been
successfully verified experimentally. Elaborated stabilisation algorithms are
used in devices such as the coal mills or helicopter rotors.

1.4. Vibrating Structures

Various sources induce vibrations. Usually they are classified in two groups:
natural sources and effects of human activity. In the first group we can place
wind blows, waves in water reservoirs, earthquakes. Human activity is much



1.4 Vibrating Structures 23

more extensive. The industrial and home machinery, vehicles, vibrations
induced by drive systems, suspension and motion over waved road or periodic
track, etc.

In all the cases we focus our attention on structural elements that are
essential for our life comfort. They are buildings, bridges, tracks, gener-
ally infrastructure, machines, vehicles, planes, but also ultrasonic devices,
musical instruments etc.

Let us look at some engineering problems that can be treated with semi-
active control.

1.4.1. Structures under Moving Loads

In the literature we can find complete analytical solutions of the constant
force moving along a structure, which is characterised by zero inertia. An
excellent summary of these works is given by Frýba in his monograph [14],
discussing in detail the majority of these works. Unfortunately, the influ-
ence of inertia is essential, especially in the case of wave problems. If we
consider small displacements in our mathematical model, the discontinuity
of the trajectory of a moving material point near the end support appears.
At points of discontinuity one should expect a sharp increase of the speed of
transverse displacements and forces acting on the system. In practice, this
corresponds to an impact near the end support. Such effects are observed
in reality. Semi-analytical solutions are not very versatile. Assumption of
other boundary conditions forces an elaboration of a new method of calcula-
tion. Semi-analytical solutions are not suitable in engineering applications.
However, they are well suited for the verification of numerical solutions.
Problems show up when we perform computer simulations. In the case of
wave problem numerical description of the moving inertial loads requires
great mathematical care. Otherwise we get a wrong solution. Nowadays
there are no commercial computing packages that would enable direct simu-
lation of loads, both gravity and inertial, moving at high velocity. Inclusion
of inertia of the moving load requires not only modification of the right-
hand side vector in the system of equations, but also selected parts of global
matrices of inertia, damping and stiffness of the system, step by step. The
first study discussing the influence of inertia of the moving mass is given
in [20]. It relates to an inertial load moving at constant speed on the Eu-
ler beam. Further works are also related to beams or plates in which the
nodal displacements and rotation angles are interpolated by cubic polyno-
mials. Application of displacements interpolation at nodes by the 3rd order
polynomial poses no problem with the derivation of the matrix responsible
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for the description of the travelling mass particle. Unfortunately, the Euler
beam equation is not a purely wave equation. The study of wave phenom-
ena is possible by using a more complex model of the Timoshenko beam
in which the vibration equation takes into account the influence of lateral
forces and moments of inertia on the line deflection of a beam. Independent
interpolation of displacements and rotation angles of the Timoshenko beam
causes serious problems. Linear interpolation of nodal physical parameters
with shape functions precludes designation of a centrifugal acceleration of
a moving mass particle. In our previous works [5, 6], we presented a method
for determining matrices responsible for the description of the moving mass
of the space-time finite element method using linear interpolation. Origi-
nal finite elements carrying a moving mass particle were elaborated. In the
literature correct solutions for this group of problems were reported in [7].

1.4.2. Shafts

Rotating elements always generate vibrations. Unbalance is sometimes re-
quired. However, usually we eliminate sources of centrifugal forces as much
as possible. We also tend to distribute uniformly in time the torque. This is
important in the transfer of power in a variety of devices: generators in power
plants, high-speed turbines, wind turbines, etc. Wind turbines work under
turbulent and unpredictable environmental conditions. Controlled influence
on mechanical properties of rotating machines is essential. A good way is
to modify the inertia distribution of the shaft by adding supplementary ro-
tating masses. It can be done by means of a magnetorheological clutch.
Mistuning allows to avoid resonant frequencies. Another method involves
the control of the motor supply. Other techniques reduce clearances in gears
and transmission of drive.

1.4.3. Control of Sandwich Structures

Sandwich structures with a core made of an intelligent material can be used
to stabilise motion of various types of structures. One of the branches of
applications is the aerospace industry. Aerospace engineering is based on
layered structures with viscoelastic core. Modern airliners are built in nearly
50% of the layered structures. The ability to modify the internal layer param-
eters allows us to influence dynamic properties of the structure. The increase
of load carrying capacity and requirement of reduction of the weight of air-
planes will lower fuel consumption per transported ton. This allows us to
reduce cost of flights or increase the range of airliners. Lower fuel consump-
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tion enables to reduce the emission of harmful gases into the atmosphere.
Another possible application of adaptive layered construction is the sta-

bilisation of the offshore oil platforms. Unexpected load increase, e.g. during
a severe storm can cause damage to the structure. The platform adapting to
a new situation will prevent ecological disasters associated with the oil spill,
not to mention the financial loss. The new design of the drilling platform
would also enlarge regions of extraction in the area so far uneconomic, due
to the hard work conditions.

The automotive industry may also be a potential recipient of the smart
layered solutions. Vibrations generated by the vehicle drive system and the
suspension could be suppressed by the self-adaptive absorbers. Such solu-
tions enable to improve the travelling comfort. Statistics show that drivers
fatigue is one of the leading factors of car accidents. However, it seems that
the most important potential recipient of intelligent sandwich structure ap-
plications are modern bridges. Only in the United States about 40% bridges
are obsolete or are not able to support current requirements. Research proves
that half of the cost of maintenance the bridge is traffic redirection to an-
other route, during its construction or reconstruction. In the world there
are attempts to construct bridges with composite structures. The use of the
lightweight layered prefabricated elements allows us to speed up the construc-
tion significantly and thereby save tax cash. Additionally, there is a benefit
associated with a lack of corrosion. In this type of structure the layered el-
ements with an intelligent core could be used. Properly developed adaptive
control strategies in smart sandwich structures subjected to a moving load
would significantly increase load carrying capacity of the bridge.

The core material influences the beam properties. Its controllability gives
us new opportunities for modelling. The control of the shear variable is the
simplest way to modify the stiffness. Both outer bending elements can be
joined in many ways. Frictional junction can be performed by various locks,
for example electromagnetic. Friction dissipates energy or shifts frequencies
of vibration to higher modes. In such a case the energy of vibrations at higher
frequencies dissipates more intensively than at lower frequencies. Frictional
elements can not be designed as structural elements. They require a sup-
plementary material. In our opinion a uniform intelligent filling material in
sandwich beams is more promising. Elastomers and granular materials will
be used in further investigations. Various kinds of each of them require pro-
ceeding study of material parameters. Static stiffness, inter-granular friction,
dissipation, and resulting homogenisation must be determined dynamically
and finally verified in various structures. Otherwise results will not be cred-
ible. In the next Chapter we will present properties of exemplary materials
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used in our study. Flexibility to shape and ability to fill the space is assumed
as their major advantage.

In the book we will present some adaptive techniques efficient in applications
to bended or twisted elements. Beams with semi-active control of transverse
displacements and rotating shafts will be considered as commonly used struc-
tural elements in civil and machinery engineering.

First non-classical materials useful in the control will be described. Magne-
to-rheological fluids, magnetic elastomers and vacuum-steered granular ma-
terials will be presented. Then selected engineering problems will be for-
mulated and analytically solved. Methods of numerical analysis will also be
derived. Further contributions to the control theory and semi-active methods
will be given. Analytical and numerical examples will prove the efficiency
of the approach. Finally experimental verifications of prior analyses will
demonstrate practical efficiency of semi-active methods of the vibration con-
trol in comparison with passive damping. Comments and remarks will reveal
the prospects for further research and applications.
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Chapter2

Smart Materials in Vibrations

Damping

In the process of machinery and structures designing, whether bridges, build-

ings, suspension of a car or an airplane wing, actions leading to vibration

attenuation prevents the system from the risky states and failures, assure its

robustness, enhance the fatigue life and the comfort of use. The develop-

ment of modern engineering materials motivates to study the possibility of

improving the damping properties of structures.

The commonly used term for material that exhibits adjustable, time-

dependent response is the intelligent material. Structures which use these

materials as a basis for their operation are called intelligent structures. To

be classified as intelligent material, it needs to have some kind of built in or

intrinsic sensing mechanism, processing ability, and respond to a stimulus

in a predetermined manner, and extent in a reasonably short time. As the

stimulus is removed, the material should retain possibility to revert to its

original state, thus having some kind of feedback mechanism.

Moreover, the term smart materials is often used alternatively to in-

telligent materials, adaptive structures or even multifunctional materials.

The main features of these structures seem quite general, but they describe

qualities which are necessary for the material to be classified as smart, and

have been repeatedly expanded and clarified in numerous works [1, 60, 70].

The term intelligent seems somehow exaggerated, so smart material is rather

preferred. However, some authors precisely distinguish these two groups,

specifying smart materials as those that posses only some of the features
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attributed to more complex, intelligent materials. In this work we limit the

expression smart in relation to materials that change their properties under

the influence of external stimuli in a prescribed manner, and exhibit almost

real-time, reversible response.

The group of smart materials ranges from photo-, thermo- and elec-

trochromic materials, through photo-, thermo- and electroluminescent sub-

stances, piezoelectrics, magnetostrictive materials, magnetorheological and

electrorheological fluids and gels, self-healing materials and many others.

In each of these groups we can distinguish materials that take on different

states of matter. They can be a product of various fields of technology and

share specific features that can be classified as smart. In the following sec-

tions we will concentrate on the basic properties and operation principals of

smart materials that are most commonly used for the semi-active vibration

attenuation.

To face undesired dynamical effects, either passive, active or semi-active

damping method needs to be put into practice. The obvious drawback of

a passive damping system is the lack of possibility to dynamically adjust its

parameters. Once the mass, stiffness or damping properties of the system are

configured, these parameters cannot be changed easily and passive vibration

damping strategies become ineffective, when the dynamics of the system

or frequency of disturbance vary in time. Materials mostly used in passive

damping are composites [42], polymers, urethanes and synthetic rubbers

[18, 19, 85] or viscous fluids [69].

There are numerous techniques that are more efficient in vibration atten-

uation than a simple, passive material damping. The active damping solu-

tions, which are usually based on the force actuators attached to a vibrating

structure require an external power source to operate. The parameters of

the system can be controlled in real time to increase its stability or perform

the desired trajectories of motion [46, 68]. The most interesting damping

method seems to be the semi-active control. Parameters of the mechani-

cal system, such as the stiffness or coefficients of damping can be modified

to increase the stability of the system or to obtain the desired dynamical

response. This is where the adjustable smart materials like magneto- and

electrorheological fluids or controllable elastomers may show their full po-

tential. In our work we also investigate the possibility to use the controlled

special granular structures as a lightweight, low cost, interesting alternative

for the common damping solutions.



2.1 Magnetorheological Fluids 31

2.1. Magnetorheological Fluids

Controllable fluids are one of the branches of smart materials. They are
characteristic of the possibility of changing their rheological properties in
response to an external control. The most recognized and common of this
group are the electrorheological and magnetorheological (MR) fluids. Ba-
sically, these materials share similar mechanical behaviour, but the magne-
torheological fluids (MRF) turned out to be more popular. They are easier
to control, and provide better rheological properties than the electrorheolog-
ical fluids. The yield stress displayed by the electrorheological fluids are in
the range of 3–5 kPa, whereas the yield stress of magnetorheological fluids
reaches up to 150 kPa, which requires generation of the magnetic field of in-
tensity 150–250 kA/m. The voltage source requirement for electrorheological
fluids is 2–5 kV, while MR devices operates with 24 V DC power supply.

The phenomenon of changing mechanical properties of a specially com-
posed fluid placed in an electrostatic field was first observed by Willis Winslow
in the late 30’s of XX’th century, and presented in [82]. Soon, after Winslow
discovered his liquid with electrorheological properties, another scientist, Ja-
cob Rabinow composed a fluid with mechanical properties depending on the
magnetic field. Since the discovery of the magnetorheological effect by Ra-
binow in 1948 [57, 58], these type of smart materials have developed into
a family with MR fluids, foams, greases, gels, and elastomers. Generally, the
MR materials are ferromagnetic, micrometer sized, carbonyl iron particles
suspended in a carrier medium. The most common in this group are the
fluids, with ferrous particles usually suspended in a silicone oil, glycol, liquid
hydrocarbon or hydrofluor [5].

Typical MR fluid contains 75–80% weight, spherical, carbonyl iron parti-
cles with the density of 7500–8000 kg/m3. The diameter of the iron particles
ranges from 3.0 µm up to 8.0 µm, as presented in Fig. 2.2a. The carbonyl
iron particles are coated by a thin layer of an active, anti-oxidation agent,
which also prevents them from clustering and settlement.

The carrier fluid serves as an insulating medium, and is chosen due its
temperature stability, compressibility, and corrosiveness. When exposed to
the magnetic field, the ferrous particles polarize along the magnetic flux
lines in a chain-like structures (Fig. 2.1b and 2.2b). The rheology of the fluid
reversibly and instantaneously changes from the free-flowing, Newtonian like
behaviour, to a semi-solid state, which is called the active one or ON-state.

The yield stress of the fluid increases as a consequence of the particles
rearrangement, which start to form a highly ordered structures. The inten-
sity of the process can be controlled by adjusting the magnetic field which
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a) b)

Figure 2.1. Behaviour of the ferromagnetic particles in OFF state a) and in the
presence of magnetic field b).

a) b)

Figure 2.2. SEM images of ferromagnetic particles, randomly dispersed for no
magnetic field a), and forming chain like structures in active state b).

is usually generated by an electric coil. The transition between the ON-
and OFF-state is a fully reversible process and takes only several millisec-
onds to complete. The possibility of controlling the yield stress of the MR
fluids by means of the magnetic field predestines them to be utilized in de-
vices like dashpots, rotary brakes, clutches, bearings, stabilisers, etc. The
characteristic of typical MR fluid is presented in Fig. 2.3.

The magnetic saturation of the fluid is an important thing to be noticed.
When certain value of the magnetic field is achieved, further increase has no
effect on the value of the yield stress. The non-linear characteristic of the
smart fluids hinders designing an accurate model of their complex behaviour.
This non-linearity represents the relationship between the applied magnetic
field and the resulting resistance force.
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a) b)

Figure 2.3. Properties of a typical magnetorheological fluid MRF-140CG by Lord:
yield stress vs. magnetic field strength a) and magnetization curve b).

For the analysis and design purposes, the most common description of
the quasi-static behaviour of the magnetorheological fluid is carried out with
the Bingham model. It is represented by an ideal plastic solid in parallel with
a linear viscous fluid, as presented in Fig. 2.4a. In this model the material
does not flow until it is stressed beyond the critical yield stress. When
the critical yield stress is reached the behaviour is close to the Newtonian
fluid at constant viscosity (Fig. 2.4b). The following expression describes its
behaviour

τ = τ0(B)sgn (γ̇) + µγ̇ , (2.1)

where τ0 is the yield stress caused by the applied magnetic field, γ̇ is the shear
strain rate, µ is the plastic flow viscosity, and sgn is the signum function.

a b

Figure 2.4. Lumped parameter Bingham model a), and its characteristic for
different states of the magnetorheological fluid b).
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Although numerous research results strongly support the Bingham vis-
coplastic behaviour of the MR fluids, one need to be aware that more ad-
vanced approach should be considered to model complex and more realistic
behaviour. In addition, MR fluids may exhibit shear thickening or shear
thinning behaviour. Figure 2.5 compares the quasi-steady response for Bing-
ham model with the shear thickening or shear thinning behaviour, where the
apparent viscosity tends to change with the shear rate.

Figure 2.5. Shear thickening and shear thinning behaviour of MR fluids.

In order to illustrate the complex response of the fluid, numerous models
are being developed. The most popular are the Bouc-Wen hysteresis model
[81], Herschel-Bulkley [36], Gamota and Filisko [26], Casson [25], McKinley
[21], BingMax [14], fractional models and others.

Despite the fact of growing number of practical applications, producing
high-quality MR fluids with desired properties is still hard to achieve. Dif-
ferent types of commercially available fluids share similar limitations like
susceptibility to settling and sedimentation, wearing of the ferrous iron par-
ticles and clustering. They also tend to change their properties with temper-
ature [5], which may result in decreased efficiency of the devices working in
a heavy-duty conditions. Moreover, the high content of magnetic particles
comprised in a carrier fluid is an inevitable condition for enhanced magne-
torheological performance, leading to constitution of a high-weight system.
This stimulates searching for modified types of fluids with the improved
properties.

In [29] the authors modified the MRF by mixing and adding amine an-
tioxidant additives Zn–DTP and Mo–DTC to improve the stability and anti-
wear properties. According to [39], incorporation of the magnetic fibers to
the MRF composition results in a remarkable increase of the yield stress.
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In [75] authors discussed encapsulating MR fluid in a polymeric solid to
achieve higher yield stress value, which was later studied in [76]. The iron
nanopowder and micron-powder were mixed with the hydraulic oil to create
the nanoscale MRF, more resistant to settlement [61, 65]. Magnetorheolog-
ical gels exhibit good stability and low sedimentation, and high shear yield
stress value. They can be injected into elastomers, as described in [78]. In
[86], the MR material based on supermolecular interactions between the low
molecular weight hydrogelators and the surface modified magnetic nanopar-
ticles was introduced as an alternative to typical MR gels.

There are also studies on the rheological properties of MRF with the
addition of non-magnetic, polymer spheres filled with gas. The addition
of specially composed, polymer particles allows to obtain a compressible,
non-Newtonian fluid with properties different from the common MRF. The
lightweight compressible additive introduces elastic behaviour and affects the
viscosity and yield stress. Moreover, such a fluid retains the possibility of
controlling its state by the magnetic field [23, 56]. It also significantly reduces
density of the fluid, prevents the particles from settling, and thus can lead
to an enhanced practical efficiency of the device. The cognitive study of
a damper with non-typical kind of fluid is also described in a dedicated
subsection 2.1.2 (page 43).

2.1.1. Magnetorheological Devices and Applications

Although the magnetorheological devices differ in operation mode and me-
chanical construction, whether a linear stroke or rotary damper, clutch or
brake, the principles of operation are similar. The magnetorheological fluid
devices have a semi-controllable output that depends on the input signal
which is usually an electric current or voltage. For example, magnetorhe-
ological fluid dampers have a controllable damping force that depends on
the current which is the electric coil’s input. On the other hand, the rotary
damper have a semi-controllable torque output that also depends on the
electric current which generates the magnetic field. Basically there are three
modes of operation for the MR device: flow/valve mode, direct shear mode,
and squeeze-flow mode, which are illustrated in Fig. 2.6.

In the classic linear stroke damper the fluid operates in the valve regime

(Fig. 2.6a), which is the basic mode for most of the MR devices. In this
mode the annular throttled flow is treated as a flow between two parallel
fixed plates, which form a narrow gap. The flow resistance is controlled by
affecting the magnetic field. The vector of the magnetic field is normal to
the direction of the flow. The adjustment is performed by changing the coil’s
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a) valve/flow operating mode

b) direct shear mode

c) squeeze mode

Figure 2.6. Different operation modes of the magnetorheological fluid.

electric current. The valve mode is valid when the height of the gap is much
smaller then its length and width, therefore the flow is considered as a flow
between two parallel plates.

In the shear mode (Fig. 2.6b) the fluid is sheared between two parallel
plates. One or both of them are either rotating or sliding. This mode is
typical for rotating MR devices like torsion dampers, brakes and clutches.

The squeeze mode (Fig. 2.6c) is the least frequently used. One or
both of the plates are free to move in the direction parallel to the applied
magnetic field. This movement depends on the fluid’s tension, compression,
and shear forces. This mode is most suitable when the system requires small
displacements and large forces to control, such as in engine mounts subjected
to axial load.
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The number of solutions utilising smart materials like the magnetorheo-
logical fluids, still does not reach the number of applications supported with
typical, hydraulic and pneumatic systems. Insufficiently developed proposed
and evaluated solutions based on controllable fluids holds back the appli-
cation engineers from the deployment of such devices. The high cost and
difficult access to quality fluids are the other important factors. The evolu-
tionary devices are mainly prototype units designed at academic or research
centres. The recently observed interest in the field of smart fluids by the
industry, academic and research institutes, may fortunately facilitate to in-
troduce them to a greater number of engineering applications.

Magnetorheological dampers are successfully used in the automotive in-
dustry as parts of an intelligent suspension. They have also been used as the
isolators for driver seats, usually applied in heavy-duty trucks to improve
the comfort and safety of travelling [37]. The first shock absorber solution
that was affordable for casual customers was known as MagneRide. It was
manufactured for primary vehicle suspension system by Delphi Co. and used
the MR fluid produced by LORD company.

The unexpected, dangerous vibrations still occasionally plague modern
structures. The MR dampers are also applied in stabilisation of build-
ings vulnerable to seismic activity [49] or in semi-active control of bridge
structures [7]. The use of the concrete girder bridge over the Volga River
(Fig. 2.7a) was inaugurated in October 2009 and closed by the authori-
ties to all motor traffic on May 2010, due to severe, wind-driven twisted
mode vibrations. The problem was solved in fall 2011, by installing a com-
plex, tuned mass damping system, based on the magnetorheological dashpots
(Fig. 2.7b). The solution was described thoroughly in [77]. That type of the

a) b)

Figure 2.7.VolgaBridge plagued by the unwanted oscillations in 2009 a), and the
tuned mass magnetorheological damping system installed in 2011 b) [77].



38 2 Smart Materials in Vibrations Damping

solution was also found to be effective in mitigating vibration of the Lon-
don Millennium Footbridge which was closed since the opening day in 2000,
due to the unexpected synchronous lateral movements. The MR dampers
have been also used in suspension bridges for vibrations abatement of stay
cables, like in the Dong Ting Lake Bridge in China or cable stayed bridge
near Dubrovnik (Croatia), equipped with several MR dampers to counteract
gusts of wind (Fig. 2.8a).

a) b) c)

Figure 2.8. MR dampers installed on the cable stayed bridge near Dubrovnik a),
and the MR damper by Pangu MRF (China) used in ZLH50 excavator b), integrated
magnetorheological prosthesis unit RheoKnee c) (Source: Empa, Pangumrf, Ossur).

Specially designed dampers have been used for vibration attenuation in
large-scale washing machines drums, and for damping of excavator blades
and hydraulically controlled booms (Fig. 2.8b). Currently, an intensive work
is carried on to adapt the MR dampers in orthopedics, particularly in the
construction of prostheses and orthoses. Figure 2.8c shows RheoKnee using
magnetorheological dampers controlled by the microprocessor, applied as
lower limb intelligent prosthesis.

The magnetorheological fluids are also used as non-contact, self-repair
seals for rotating shafts of engines operating under special conditions, such
as in mines, fans and assemblies of chemical and biochemical reactors [34, 72].
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They have also been used in special purpose finishing machines, used for man-
ufacturing complex optics with figure accuracy <50 nm and surface rough-
ness <1 nm [27, 29].

2.1.2. Linear Stroke Damper

One of the most typical design of a linear stroke magnetorheological damper
is presented in Fig. 2.9a. The photography of the real prototype device
named T–MR–SIMR is presented in Fig. 2.9b, with the disassembled parts
in Fig. 2.9c.

a)

b)

c)

Figure 2.9. Design of a typical MR damper a), photography of the prototype unit
named T-MR-SIMR b) and the disassembled parts of the device c).

This is a custom made prototype unit filled with MRF–132DG by LORD
type of fluid. The chosen fluid is a suspension of a 10 µm sized, magnetically
susceptible particles in a hydrocarbon fluid. According to the datasheet,
the density of the fluid is 3000 kg/m3 and the viscosity is 0.09 Pa·s. The
maximum yield stress value is 50 kPa, and it is achieved for the magnetic
induction of 1.5 T. The fluid features fast response time, and high yield stress
in the presence of the magnetic flux, and very low yield stress in absence.
It enables a wide range of controllability. The coil is powered through the
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electric wires placed inside the double sided rod. In the magnetic field,
particles align with the direction of the flux lines in a chain-like combination,
thereby restricting the fluid’s movement within the gap, in proportion to the
strength of the magnetic field.

An alternative design of the magnetorheological absorber involves one-
sided rod and a gas accumulator placed inside one of the chambers, that
serves to balance the volume change during the rod’s motion. One of the
most popular commercially available dampers of this type is LORD RD–
1005–3. The gas-filled membrane as a spring introducing additional elastic
force, that counteracts the movement of the pressed piston. The design of
such a device is presented in Fig. 2.10.

Figure 2.10. Linear stroke MR damper with one-sided rod and gas accumulator.

Let us take a closer look at the unique performance of linear stroke MR
dampers. Sample results of the F (x) relations, obtained for different pis-
ton velocities and electric current for double-sided damper T–MR–SIMR
are presented in Fig. 2.11. The sine displacement excitation was applied.
The results were obtained by the authors for three different gap heights:
5 · 10−4, 7 · 10−4 and 10 · 10−4 m. The damper behaviour was investigated
experimentally at the ambient temperature of 21◦C. The temperature of the
device remained constant during the experiment.

Increasing the electric current intensifies the magnetic field flux and thus,
increases the yield stress τ0(B). Consequently the damping force is enhanced.
The larger the electric current is, the higher value of the force is obtained.
For this type of damper’s design there is no gas accumulator and therefore
the obtained force responses are almost X-axis symmetrical.

The results obtained for the commercial damper Lord RD–1005–3 with
a gas spring are presented in Fig. 2.12, and extensively discussed in [9].
A higher input current results in a larger force response in the force-displace-
ment profiles. The response in no longer symmetrical, since the gas spring
element introduces additional force of 180 N. Increasing the frequency, larger
damping force is obtained. Nevertheless this impact is minor, compared to
the influence of the magnetic field.
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a) gap height 5 · 10−4 m and frequency 1.7 Hz

b) gap height 7 · 10−4 m and frequency 3.3 Hz

c) gap height 10−3 m and frequency 5.0 Hz

Figure 2.11. Experimental characteristics for F (x) relation for different gap
height’s of T–MR–SIMR damper prototype unit.
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a) force vs. displacement for 1.5 Hz b) force vs. velocity for 1.5 Hz

c) force vs. displacement for 3.6 Hz d) force vs. velocity for 3.6 Hz

e) force vs. displacement for 5.4 Hz f) force vs. velocity for 5.4 Hz

Figure 2.12. Experimental characteristics for F (x) relation of commercial damper
Lord RD–1005–3 with a gas spring.
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Damper with Compressible Magnetorheological Fluid

Here the MR damper with a non-standard MR fluid is investigated. The
commercial MR fluid was removed from T–MR–SIMR damper unit and re-
placed with a modified composition of the fluid. The fluid involves additives
of resilient spherical particles which were stirred with a ferrous iron pow-
der, and mixed with synthetic oil. This resulted in an additional elastic
force that can be developed when the fluid is compressed due to the pressure
change between the chambers of the damper. The microstructural obser-
vation indicates that the polymer-gas additive affects the package density
of iron particles in the carrier fluid of the MR suspension, both with and
without the magnetic field. Thus, the density of the MR fluid was reduced.
Moreover, the polymer microspheres additive was found to increase twice the
volume of the MR suspension. The fluid’s magnetic permeability depends
on the volume fraction of iron particles. Increasing the amount of magnetic
particles allows to modify the characteristic of the fluid to be more responsive
to magnetic stimulus.

The trace of damping force obtained at different frequencies of sine ex-
citation is shown in Fig. 2.13. For no magnetic field applied and frequency
of excitation 0.3 Hz (Fig. 2.13a), the movement of the rod was resisted at
almost constant force. For the frequency of 1.8 Hz and no magnetic field
applied, additional elastic force was present. When the internal pressure
in both chambers is large enough to compress the microspheres, the elastic
force is increased (Fig. 2.13b and 2.14b). For the non-zero coil current, the
device exhibits additional force due to the incremented value of the yield
shear stress and compression caused by the pressure difference.

a) b)

Figure 2.13. Damping force vs. time for unit with modified compressible fluid
under sinusoidal excitation 0.3 Hz a), and sinusoidal excitation 1.8 Hz b).
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a) Force vs. displacement for 0.3 Hz b) Force vs. velocity for 0.3 Hz

c) Force vs. displacement for 1.8 Hz d) Force vs. velocity for 1.8 Hz

Figure 2.14. Experimental characteristics of force–displacement and force–
velocity loops for compressible MR fluid for sinusoidal excitation.

The area enclosed by the force-displacement loops (Fig. 2.14a and c)
represents the energy dissipated in a single vibrations cycle. Figure 2.15
shows that when the current increases, the initial increase of dissipation is
notable. When the current enhances above certain value, no more dissipation
energy is developed because the material becomes magnetically saturated.
Figures 2.14b and 2.14d show the force-velocity curves for two frequencies
of excitation and different coil current. The increase of the magnetic field
involves the increase of the force required to yield the MR fluid is higher and
develops the hysteresis loop response.

Experiments showed that the compressible fluid used in linear stroke
dashpot allows to adjust the stiffness, with the remaining possibility to con-
trol the damping properties by an external magnetic field. The addition, the
gas-filled spheres reduces the density of the fluid and therefore the weight of
the device, and prevents the sedimentation of the ferrous particles. Presented
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a) b)

Figure 2.15. Dissipation energy for different electric current and frequency of
excitation 0.3 Hz a) and 1.8 Hz b).

results indicate that the new type of magnetorheological fluid can meet re-
quirements in different types of applications and can be applied in standard
MR devices, giving new possibility to control the vibration of structures with
a liquid spring-like features.

2.1.3. Rotary Damper

The rotating MR devices like brakes and clutches, operate in a direct-shear
mode. The design and cross-section of the prototype rotary MR device is
presented in Fig. 2.16. The shear stress in the narrow gap, formed between

Figure 2.16. Construction of the rotary magnetorheological brake.
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the rotor and the housing is controlled by changes of the magnetic field, the
same as for linear stroke devices. The vector of the magnetic field is perpen-
dicular to the direction of the fluids flow. The magnetic field intensity can
be adjusted by the electric current in the coil winding. The coil is mounted
in the way that enables rotations with the shaft. The electric current is sup-
plied by electrical brushes. The construction of the solenoid should enable
a step change in the value of the magnetic field and minimisation of the
magnetic remanence effect. The photography of the real device is presented
in Fig. 2.17a. This large scale brake is designed for heavy military vehicles
of special purpose. It can work as a brake or in a clutch configuration in
torque transmission systems [4].

a) b)

Figure 2.17. Photography of the large scale rotary magnetorheological brake a),
and thermal camera photography showing heating of the device b).

The experiment allowed to examine carefully the response of the MR
brake for different magnetic field strengths, taking into consideration param-
eters important for the real-life applications: rotational speed, temperature
and exploitation time. Recording the temperature of the MR fluid inside
the gap is hard to achieve and impractical. Instead, experiments were car-
ried on using thermal camera to measure the temperature of the housing
(Fig. 2.17b). Figure 2.18 presents the braking torque value in time, for rota-
tional speed 3 rpm. The measurements were taken at constant temperature
of the device 21◦C. For the low speed, the temperature remains constant,
and thus the braking torque does not change in time. The relations between
the braking torque and the rotational speed, for different values of coil cur-
rent and higher rotation speed are presented in Fig. 2.19. The braking torque
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Figure 2.18. Evolution of the braking torque in time for rotation speed 3 rpm –
temperature remains constant.

Figure 2.19. Braking torque as a function of rotational speed, for different values
of coil current – temperature increases in time.

increases with increase of the coil current. For 0.5 A the average torque value
was 10 Nm, while for 2.0 A torque increased to 25 Nm. The coil current over
2.0 A results in just a minor enhance of the braking torque. This is due to
the fact that used magnetic fluid type MRF–132DG reaches saturation for
magnetic field strength 300 kA/m.

At increasing rotational speed, the breaking torque should grow respec-
tively if no heating up is present. However, the temperature of the device
rises due to the disintegration of the MR fluid particle chains formed in the
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presence of the magnetic field. This leads to a notable reduction of the yield
stress of the non-Newtonian fluid, and thus the braking torque noticeably
declines (Fig. 2.20).

Figure 2.20. Decrease of the braking torque as a function of temperature of the
device for constant rotational speed.

Taking into consideration time dependencies in Fig. 2.21, it can be stated
that the MR brake can work efficiently for periods of 100 s for speed up to
500 rpm and high electric current before overheating. For 1420 rpm, the
device can work continuously only for short periods of 60 s with maximum
coil current without being overheated.

a) b)

Figure 2.21. Temperature of the device over working time, obtained for
500 rpm a) and for 1420 rpm b).
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2.1.4. Designing Linear Stroke Magnetorheological Dampers

Basic computations concerting the design of the magnetic circuit and the
parameters of the linear stroke damper operating in the valve mode will be
discussed below.

Geometry of the Damper

Let us denote the basic geometrical parameters of the damper as presented
in Fig. 2.22. First we propose the initial diameter of the piston and the rod,
on the basis on certain application requirements.

Figure 2.22. Basic damper parameters denotation: R1, R2 – outer and inner gap
radius, R3 – piston radius, Rrod – rod radius, h – gap height, w – coil width, ap –
piston length.

The effective average circumference of the gap is

b = π(R1 +R2) . (2.2)

The effective gap area is
Agap = b · h , (2.3)

where h = R1 − R2 is the height of the gap. The total damping force may
be expressed as a sum of particular forces

Fdamp = Fτ + Fµ + Ft , (2.4)

where Fτ is the controlled force, related to the actual yield stress of the
activated MR fluid, Fµ is the viscous resistance force, and Ft is the friction
force. In the valve mode, the flow is simplified by assuming the parallel plates



50 2 Smart Materials in Vibrations Damping

and Bingham’s fluid model. For the axial symmetry boundary conditions,
the pressure gradient equations reduce to the 5th degree equation [53]

3(χ− 2σ)2[χ3 − (1 + 3σ − υ)χ2 + 4σ3] + συ2χ2 = 0 , (2.5)

where χ is the dimensionless pressure gradient, and σ is the dimensionless
stress gradient. The dimensionless velocity can be expressed as follows

υ =
bhν

2Q
, (2.6)

where ν is the velocity of the piston. The volumetric flow rate of the MR
fluid can be calculated as

Q = ν ·Ap , (2.7)

where Ap is the area of the piston. The pressure gradient is given as

χ =
bh3∆p

12Qµa
, (2.8)

while the stress gradient equals to

σ =
bh2τ0
12Qµ

. (2.9)

a = ap −w is the length of the area where the MR fluid is influenced by the
magnetic field. In the absence of the magnetic field the dimensionless stress
σ = 0. Therefore the Eq. (2.5) simplifies to

χ = 1− υ = 1−
bhν

2Q
. (2.10)

From (2.8) and (2.10) we claim that the pressure drop caused by the viscous
flow can be expressed as

∆pµ =
12Apapνµχ

bh3
. (2.11)

The damping force related only to the viscosity of the fluid can be expressed
as

Fµ = ∆pµAp . (2.12)

Substituting the relation (2.11) to (2.12) we obtain

Fµ =
12Ap

2apνµχ

bh3
. (2.13)
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The total viscous force is obtained combining Eqs. (2.10) and (2.13)

Fµ =

(
1−

bhv

2Q

)
12ApapQµ

bh3
. (2.14)

Noting that Ap ≫ b, we obtain simplified form

Fµ =
12Ap

2apvµ

π(R1 +R2)h3
. (2.15)

The approximate solution to Eq. (2.5) is

χ(σ, υ) = 1 + 2.07σ − υ +
σ

1 + 0.4σ
. (2.16)

The pressure drop in the gap caused by the non-zero yield stress value, can
be expressed as

∆pτ = c
τ0(B)a

h
, (2.17)

where c is the constant approximated with the accuracy of 3% by the rela-
tion [55]

c = 2, 07 +
1

1 + 0.4σ
. (2.18)

Taking into consideration the simplifying assumptions, we can determine the
value of the damping force, controlled with the magnetic field

Fτ = kp∆pτAp , (2.19)

where kp is the constant correction factor, related to the distortion of the
magnetic field. Usually the roundness of the magnetic field lines and fringing
increase the obtained force. From Eqs. (2.15) and (2.19), one can notice that
reducing the height of the gap increases the maximum damping force of the
device. The final form of the sum of the forces is

Fdamp = kpc
τ0(B)aAp

h
+

12Ap
2apvµ

π(R1 +R2)h3
+ Ff . (2.20)

The value of the friction force Ff depends on the type of the used sealing,
construction materials, type of their machining, piston velocity and other
parameters. The friction force value can be estimated on the basis of exper-
imental data.

Additionally, it is necessary to determine the maximum value of the en-
ergy dissipated by the damper. The value of the energy corresponds to the
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work which is done by the non-Newtonian fluid, during its flow through the
gap, and can be calculated as

W = Q(∆pτ +∆pµ) . (2.21)

Another important parameter is the control range, which is the ratio of the
controllable force to the non controllable component

D =
Fτ

Fµ + Ff
=
cτ0(B)bh2∆p

12Wµ+ Ff
. (2.22)

The maximum value of this parameter results in the highest range of the
controlled damping force.

The presented order of calculations allows to obtain initial parameters
which are crucial for the proper design of the linear stroke damper with
the MR fluid. However, we must emphasize that the above relations are
simplified in our complex problem and they give only approximated results.
The assumed simplifications of the phenomena connected with the operation
of the device have major influence on the computational inaccuracies. The
study on the discrepancies between the computed and real-life results were
examined in [9].

The increase of the gap height increases the disparity between the com-
putational and the experimental value of the damping force. The continuous
line in Fig. 2.23 shows the experimental data for the maximum force Fdamp,
for the highest coil current. It was compared with the computational results
marked as the dotted line. For the gap height 5·10−4 m the calculated values

Figure 2.23. Comparison of the theoretical and experimental damping force value.
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tend to the experimental ones, as the velocity of the piston increases. For
other gap heights, the results diverge. In the case of the gap heights 7·10−4

and 10−3 m, with the increase of the velocity, the total error of the force
estimation also increases. The greater the annular gap is, the inaccuracy
caused by the simplification of the parallel plates flow model is higher. For
the higher gap, the magnetic flux lines distort. It leads to extending of the
zone in which the fluid is in the active state. This may explain the underval-
uation of the computed damping force value for the gap height of 7·10−4 m
and 10−3 m compared with the experimental results.

The precise computations of the magnetic induction are complicated and
accurate experimental research are time, and effort consuming. The τ0(B)
dependency is usually only approximated and imprecise. It negatively influ-
ences the accuracy of further computations. By analysing the average error
value over the piston velocity, it can be stated that the increase of the piston
velocity causes an increase of an error of the damping force estimation. This
error grows when the height of the gap increases. The smallest error values
related to the damping force are obtained for the narrow gap. Depending
on the coil current, the average error vs. the piston velocity varies from 3%
to 6%. The value of the error over coil current ranged from 3% to 11%. It
can be concluded that the most accurate calculations can be obtained for
the smallest gap heights, due to the possibility of the precise determination
of the magnetic field, and the smallest error of the simplified model of the
flow between the parallel plates.

Magnetic Circuit Design

We must consider coupled problems of electromagnetism, fluid mechan-
ics, and thermal phenomena, while designing the magnetorheological devices.
The simplified models allow to study the impact of the magnetic circuit di-
mensions, properties of the used materials and performance of the device
with fair accuracy.

The effective magnetic circuit design of the magnetorheological device
should meet the following requirements:

• they should have low magnetic reluctance, which allows concentrating
the magnetic field in the damper’s gap,

• they should provide the highest possible magnetic field that restricts
energy losses,

• they should reduce the amount of the material required to generate
the magnetic field with given parameters in a shortest possible time.
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When designing the magnetic circuit, we need to consider:

• axial symmetry of the magnetic transducer,

• nonlinear magnetisation characteristics of the MR fluid and the solenoid’s
core material,

• magnetic fringing, distortions and energy losses in the contact between
interfaces.

It is recommended to consider the applicable magnetic core material from
the one made of low carbon steel with high magnetic permeability and sat-
uration. For the best performance the carbon content of the steel should
be lower than 0.15% [71]. Usually AISI–12L14, AISI–1008, AISI–1010 or
AISI–1018 type of steel is used. The following computations are considered
for direct current power supply in ambient temperature. The magnetic field
flux is perpendicular to the direction of the flow inside the gap, as presented
in Fig. 2.24.

Figure 2.24. Simplified path of the magnetic field inside the magnetorheological
damper assembly.

The value of magnetic field induction Bk for k-th element of the circuit
is denoted as

Bk = µ0µkHk , (2.23)

where µ0 = 4π · 10−7 H/m is the absolute permeability of vacuum, µk is the
relative permeability of the k-th section, Hk is the magnetic field strength
in k-th element. Based on the equality of the magnetic flux in individual
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sections, and assuming that all sections are made of the same material we
can write the equality of the magnetic flux in the fluid and the steel core

Φfluid = Φcore or BfluidAfluid = BcoreAcore. (2.24)

For the flat surface and the uniform magnetic field the dependence of the
magnetic flux Φ needs the correction, to take into consideration the magnetic
field distortions

Φ = BkÃk , (2.25)

where Ãk is the effective area of the k-th section, assuming distortions and
magnetic fringing, and Bk is the magnetic induction in this section. Partic-
ularly for the magnetorheological fluid we can write

Φfluid = BfluidÃfluid . (2.26)

From the magnetisation characteristic of the selected solenoid’s material we
can define the operating induction value

Bcore =
BfluidÃfluid

Acore
. (2.27)

For the selected ARMCO 0.2% C type of steel, from the B-H magnetisation
characteristics (Fig. 2.25), the value of the magnetic field was defined as
Hsteel = 500 kA/m and the magnetic induction Bsteel = 0.88 T.

Figure 2.25. Magnetisation curves for certain magnetic materials: low carbon
ARMCO iron, silicon iron and normal iron.
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Further analysis of the remaining elements of the magnetic circuit is
based on the Kirchhoff’s law for the magnetic circuits. The required number
of the coil turns and the electric current to generate the desired magnetic
flux is specified below

∮
Hdl = NI =

n∑

k=1

Hklk , (2.28)

where H is the magnetic flux intensity, N is the number of coil turns, I is
the coil supply current, and lk is the length of the magnetic flux in section k.
The magnetic reluctance can be computed as

ℜ =
MMF

Φ
=
NI

Φ
, (2.29)

where MMF is the magnetomotive force. In the case of classic MR device’s
circuit we can extract the elementary magnetic circuits of the structure as
presented in Fig. 2.26a and then reduce them to the circuit presented in
Fig. 2.26b.

a) b)

Figure 2.26. Elementary a) and reduced magnetic circuit of the magnetorheolog-
ical device assembly b).
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The reluctance can also be noted from the Ohm’s law for the magnetic
circuits

MMF = Φ

n∑

k=1

ℜk . (2.30)

Finally the expression for the approximated number of the coil turns is ob-
tained

N =
ℜtotalΦ

I
=
ℜtotalµ0µfluidHfluidAfluid

I
. (2.31)

The resistance of the coil winding can be computed as follows

RW =
lwρW
AW

, (2.32)

where lw is the total length of the coils winding, ρw is the resistivity of the
coils wire, and Aw is the cross sectional area of the wire. The magnetic
circuit power equals to

P = I2RW . (2.33)

Optimisations of the magnetic circuit parameters can be achieved using the
finite element method (FEM), which takes into account nonlinear properties
of the used materials. In the finite element analysis, the coil and mag-
netic gap models were defined for the axi-symmetric problem, with symmet-
ric boundary conditions. In Fig. 2.27 half of the cross section through the

Figure 2.27. Finite element mesh of the magnetorheological damper’s piston, coil
and the gap.

damper is presented with the implemented finite element mesh. The value
of the current density in the coil is defined as

J =
NI

A
. (2.34)

The non-linear B-H magnetisation characteristics was introduced for each of
the materials to the ANSYS program. Figure 2.28 shows a cross section of
the 2D plane with the plotted amplitude of the magnetic induction B and
the magnetic field intensity H inside the gap.
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a) b)

c)

Figure 2.28. Vector of the magnetic flux density a), nodal solution for magnetic
flux density b), and the magnetic field vector c).
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2.1.5. Designing Rotary Magnetorheological Devices

The magnetorheological devices subjected to rotary motion operate in a di-
rect shear mode. Usually the liquid is filling the gap which is formed by the
outer diameter of the rotor and the inner diameter of the stationary housing.
Another solution is achieved when the liquid is located in the slot formed by
the lateral surfaces of the movable and fixed parts of the structure. There
are also solutions combining these two constructions.

Let us assume one part of the structure fixed and the other one rotating
at the angular velocity ω. The linear velocity ν of the liquid particles is the
highest at the surface of the moving cylinder and decreases to zero at the
fixed cylinder’s surface. Denoting the geometrical parameters as in Fig. 2.29
we can determine the angular velocity of the liquid layer. It depends on the
radius r as

ω =
ν

r
. (2.35)

The strain rate is

γ̇ =
dγ

dt
=
rdω

dr
. (2.36)

The torque can be computed as

M = 2πr2aτ , (2.37)

where a is the length of the rotor.

Figure 2.29. Scheme of the gap of the rotary magnetorheological device.

For the viscoplastic Bingham model of the MR fluid the tangential stress is
given by the relations

τ = Gγ for τ < τ0 ,
τ = τ0 + γ̇µp for τ > τ0 .

(2.38)



60 2 Smart Materials in Vibrations Damping

Finally we can write

dω =
M

2πµpar3
dr −

τ0
µpr

dr . (2.39)

After integration we get the torque relation

M = 4πa

[
rwrz

rw2 − rz2

(
µpω + τ0 ln

rw
rz

)]
. (2.40)

The third possibility to obtain a magnetorheological device is to place the
fluid between two rotating discs, which form a slit. The computations are
similar to the presented above. We assume that one of the discs is fixed,
while the other one is rotating.

2.2. Magnetorheological Elastomers

Magnetorheological elastomers (MRE) are the new branch in the group of
magnetorheological materials. They are the solid analogues of the fluids but
the magnetizable particles are dispersed in a non-magnetic, solid polymer
matrix. Usually they are composed of randomly mixing particles in the
matrix or alternatively, using strong uniaxial magnetic field to induce dipole
moments in the particles, pointing along the constant magnetic field. When
the elastomer matrix is cured, the ferrous particles chains are locked and
embedded in the matrix, as shown in Fig. 2.30.

The magnetorheological elastomers exhibit unique mechanical perfor-
mance comparing with other materials. Shearing of the cured elastomer

a) b)

Figure 2.30. Alignment of ferromagnetic particles in the magnetorheological elas-
tomer: randomly dispersed particles a), and aligned particles b) [31].
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a) b)

Figure 2.31. Comparison of typical characteristics of magnetorheological elas-
tomer a) and fluid b).

causes particle displacement from the low net energy state. It requires addi-
tional work, which increases with the applied magnetic field. Thus it results
in a field dependent shear modulus (Fig. 2.31a), while fluids have a field-
dependent yield stress (Fig. 2.31b). The particles within elastomers typi-
cally operate in the pre-yield regime while the MR fluids usually operate in
the post-yield continuous shear or flow regime. This makes MR fluids and
elastomers complementary materials, rather than competitive to each other.
From Fig. 2.31a it can be seen that the shear modulus of elastomer increases
with the magnetic induction, until the material reaches the magnetic satu-
ration. Further enhancement of the magnetic field does not affect the value
of the shear modulus. The fraction of the magnetisable particles should be
sufficient to provide the required on-state mechanical properties.

The main advantage of the MR elastomers over the fluids is their stability
against sedimentation, coagulation and particle clustering [40]. As a conse-
quence of the fact that the chain-like particle structures are locked in the
matrix material during the process of curing, the rearrangement of the parti-
cles is eliminated when the external magnetic field is applied. Consequently
the response time of MRE is significantly shorte than for the fluids.

Elastomers are easy to process, which gives possibility of embedding them
between beams or plates to obtain a layered structure. Furthermore, the
size and shape of the pad can be designed to meet particular requirements.
The urge for container to keep the MR fluid in place is eliminated for the
elastomers. Also they do not change their properties rapidly with the tem-
perature, as it can be observed for the fluids.
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Although much research on MRE is still at a primary stage, undoubtedly
they are predestined for the applications focused on three main areas:

• sound and vibration control, especially for the vehicle applications,
like the tuned vibration absorbers [20, 84] (Fig. 2.32a),

• controllable stiffness change and deformation, like in the
stiffness tunable mounts and suspensions used to stabilize buildings
(Figs. 2.32b, c) [2], variable impedance surfaces, or adaptive spring
elements for the system’s natural frequency shift (Fig. 2.32d) [17, 33],

• sensors and magnetoactive actuators like the one described in
US20056877193 [50] and US20040074066 [73] which reports the com-
plex releasable fastener system with MRE hooks; it provide changes in
shape, orientation or flexural modulus of the fastener elements.

a) b)

c) d)

Figure 2.32. Exemplary, prototype applications of magnetorheological elastomers:
vibration absorber a), laminated MRE isolator b), elastomeric bearings c), control-
lable spring elements d).
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The use of smart materials in layered structures with the participation of con-
trollable materials is a natural way to meet the requirements imposed by the
innovative industries. A series of theoretical papers on smart sandwich struc-
tures deals with the parametric instability regions, natural frequencies, and
the loss factors for different values of the electric or magnetic fields [48, 88].
Also an experimental work related to the assessment of the dynamic param-
eters of layered structures using electrorheological and magnetorheological
materials with varying electric or magnetic field was carried out [28, 67, 79].
In US7086507 [24], the authors elaborated the device for vibration isolation
of mechanical systems for random shock events by changing the storage and
loss modulus of the MRE core embodied between magnetic activation lay-
ers. In [47] the authors study the transverse deflection of a three-layered
magnetorheological elastomer embedded viscoelastic cored sandwich beam
with conductive and non-conductive skins. They studied how the size and
locations of the MRE patches influence the vibration properties of the struc-
ture. Ying and Ni [89] adapted the MRE for damping of the micro-vibration
of a clamped-free sandwich beam under stochastic micro-motion excitation.
In several studies the influence of the magnetic field on the vibration sup-
pression capabilities of such beams is described in the form of variations
in loss factors, vibration amplitudes and shifts in natural frequency values
[35, 59, 80, 87].

Nevertheless, elastomers compared with fluids have only found limited
applications, mainly due to the fact that the field-dependent modulus change
is not wide enough to meet the demands of the particular applications.
Groups of researchers have taken effort to improve the parameters, reporting
on elastomers with magnetorheological effect enhanced several times [54, 64].
Further material technology development is crucial for significant improve-
ment of the characteristics of these materials.

There are numerous industrial applications which may be the potential
recipient of the smart elastomer based solutions. Vibrations generated by
the vehicle drive system and the suspension could be suppressed by the
self-adaptive absorbers, or smart lightweight suspension beams (Fig. 2.33a),
stabiliser bar (Fig. 2.33b) or suspension bushings in order to reduce the
shudder effect. The electrical current could be supplied from the automotive
electrical system. It would be particularly useful to adjust the vibration
of the adjacent structures in response to present conditions such as vehicle
speed, load, road type and weather conditions. The seismic performance
efficiency of the base isolation system, which decouples the civil structures
from the ground motion can be highly improved by adapting the smart
materials. The controlled elastomers with stiffness-tuning ability strive to



64 2 Smart Materials in Vibrations Damping

a) b)

Figure 2.33. Potential application for magnetorheological elastomers: wheel guid-
ing transverse springs a), stabiliser bar b). (Source: Freyrom, ZF).

alleviate limitations of existing passive-type base isolators, which works well
on a site with a stiff soil condition, but are not effective on a site with a softer
soil.

2.2.1. Beam with Magnetorheological Elastomer

The layered beam with the magnetorheological damping element was studied
by the authors. The smart elastomer was placed at the tip of two parallel
aluminium beams, presented in Fig. 2.34. Both of them were 720 mm long,
and had a rectangular cross-section 40×0.5 mm.

Figure 2.34. Dimensions (in mm) of the sandwich beam with the MRE damping
member.

The beams were connected at the tip by the MR elastomer element. The
shear modulus of the elastomer was 310 kPa for no magnetic field, and
330 kPa for magnetic flux density of 0.5 T, which was the maximum ap-
proachable value. Two island-pole electromagnets were used as actuators to
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control the properties of the smart core in the desired manner. The mag-
nets were placed on opposite sides of the beam. The first magnet’s pole was
N-type polarised while the other magnet’s pole was S-type. That type of
configuration (Fig. 2.35) increased the maximum value of the induced mag-
netic field flux density between poles up to 0.5 T and created a field flux
that was normal to the sheared area of the elastomer.

Figure 2.35. Polarization and placement of the electromagnets on the cantilever
beam with the embedded MR elastomer.

The presented results of the displacement were considered for the tip of
the beam, where the maximum amplitude occurs. Only the first mode of
vibration was studied. The plots show how the magnetic field affects the
X-component of the amplitude of the displacement of the beam’s tip for an
initial deflection 0.06 m. Two different cases were studied: MRE not acti-
vated and MRE turned on constantly in time (Fig. 2.36). The embedded MR
elastomer undergoes changes in its modulus, which influences the apparent
stiffness and damping of the whole composite.

By examining the free-decay time traces, one may find that when the
MRE is activated, a significant reduction of the amplitude of vibrations is
observed when compared to no magnetic field. The envelopes of the dis-
placement curves were plotted in Fig. 2.36b. After 60 s, the amplitude of
the displacement for 0 T (0 V DC) is 12 mm, which was 20% of the initial
deflection (black line). For the MRE activated constantly (blue line), the
amplitude after 60 s of vibrations decreased to 4.2 mm. It is 7% of the
initial value. The activated magnetic flux density was 0.5 T for 24 V DC,
which was the value inducing maximum magnetorheological effect. It re-
sulted in the highest value of the shear modulus. The computed logarithmic
decrement of damping was 0.034 for 0 V, and 0.052 for the case when the
magnetorheological elastomer was activated.
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a)

b)

Figure 2.36. Displacement in time for the MRE damping element a), and the
envelopes of the displacement for the activated elastomer b).

Further analysis required to transform the time domain figures into the
frequency dependencies. The Fourier transform (FT) yields the average char-
acteristics of the amplitude and the frequency contents over the full time span
of the signal. The amplitude on the FT plots is the relative strength of the
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harmonic component present in the original signal. Since the strengths are
relative to the original signal value, the Y-scale of the graphs is dimension-
less. The results in Fig. 2.37 show the free vibrations response with the
frequency of 0.75 Hz for no magnetic field. The frequency shifts toward the
higher values when the MRE is activated. This is the natural consequence of
the fact that the activated elastomer characterises with an intensified flexural
rigidity since the stronger particle interactions are formed by the magnetic
field.

Figure 2.37. Frequency response of the structure for different cases of damping.

Meanwhile, the peaks representing the vibration amplitudes decline due
to the increased damping. The damping coefficient was estimated using the
half-power bandwidth method. It may give us an overall idea about the
damping of the system, when the average damping is constant in time and
related to viscous effects in the material. In this method the damping is
evaluated from frequencies on either sides of the peak in frequency spectrum
observed at resonance condition. The non-dimensional damping ratio is de-
fined as the ratio of the frequencies observed at the two half power points of
the natural frequency:

ψ =
ω2 − ω1

2ωn
, (2.41)

where ω1, ω2 are the half power frequencies and ωn is the natural frequency.
The loss factor is computed as

η =
ψ

2π
. (2.42)
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For the case when no magnetic field was applied, the damping ratio was
η=0.0020. The damping ratio increased to η=0.0032 when the elastomer
was activated.

The experimental analysis illustrated the influence of the magnetic field
on the transient response, damping capacity, and frequency of the system.
The results showed that the frequency of the considered beam increases and
vibration amplitude beam decreases when the magnetic field is active.

2.3. Granular Materials

The granular damping methods have been widely studied over the years.
However, none of them may be considered as the one using smart material.
In this part of the book we would like to introduce an alternative type of
granular structure. It utilises granular material placed in a special hermetic
elastic envelope. The combination of granular material and airtight envelope
gives new structure features unattainable for other materials. The detailed
construction and principles of operation are discussed in the following sec-
tions. However, for full understanding of this new concept, the properties of
classic, not classified as smart granular structures, need to be reviewed first.

Most of the solutions presented in the literature lack the possibility of
adjusting the damping parameters of the system, when they are passively
based on the dissipative nature of particle interactions in the granular mate-
rial. They may be compared to a derivative of a single-mass impact dampers
(Fig. 2.38a). This is a relatively simple concept, where particles of a small
size are placed in a container that is attached to the structure, as illustrated
in Fig. 2.38b. Particle movement causes the dissipation of a part of the
energy through non-conservative interactions, which combine collisions, im-
pact loss, friction, slips, deformations, etc. This mechanism was applied in
linear stroke particle impact dampers as presented in [62, 63], or bean-bag
dampers [51]. Further it was used for damping of beam vibrations, by plac-
ing the stiff box at the tip of an oscillating cantilever [3, 43]. Furthermore,
the solution was found to be effective for the beams under centrifugal loads
[22] (Fig. 2.39a).

Instead of placing the granules inside the artificially attached con-
tainer, the bulk material can fill specially prepared cavities inside the beam
(Fig. 2.39b) [83]. Park and Palumbo in [52] described the structural vi-
bration damping capabilities of loose lightweight particles, filling cavities in
sandwich beams. The vibration of the structure induces vibration of the
micro particles in the cavities, which dissipate energy into the heat due to
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a) b)

Figure 2.38. Schematics of different types of particle impact dampers. Impact
damper a) and particle damper b).

a) b)

Figure 2.39. Granular material as a damping medium used for damping beams
under centrifugal loads a) and damping of plates with specially prepared cavities b).

the internal damping. In [44] the authors investigated vibration damping of
beams filled with tightly packed elastomeric beads. The authors in [74] in-
vestigated damping behaviour of the laminated honeycomb cantilevers with
fine solder balls placed in the hexagonal cells. The displacement attenuation
was achieved by the exchange of momentum through the repeated collisions
between the balls and the face sheets. The mechanism was found to be ef-
fective in reducing the amplitude without significantly shifting the natural
frequency of the cantilever. In all of the mentioned studies it was shown that
the conduction of the energy into the micro-sized granular material and the
following dissipation increase the vibration damping significantly.

2.3.1. Granular Structure Subjected to Underpressure

The damping solution utilising granular material subjected to underpressure
is notably different from the solutions in the publications mentioned above,
and it uses completely different principle. In our case, the granules are no
longer loosely packed in the container, since their movement is restricted by
the hermetic elastic envelope. Placing the granular material in the airtight
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envelope with the remaining possibility of adjusting the underpressure value
among the granules (Fig. 2.40), results in structure features typical for smart
materials. One can find the analogy from the real the life to the vacuum
packed food products like peanuts or coffee grains, which form a solid body,
until the package is opened. The dominant mechanism and level of energy
dissipation depends primarily on the state of the granular matter that the
particular damper is operating in. While the typical granular damper seems
to operate in the gas-like phase, the presented solution is based on the solid-
or semi-solid phase, as the granules constantly maintain contact.

Figure 2.40. Scheme of the beam with the granular damping member controlled
by the underpressure value (compliant state and jammed state).

The proposed pneumatic structure exploits fluid-like to solid-like re-
versible phase transition of the granular material, known as the jamming
[12, 16]. The transition to a jammed state is forced by subjecting the struc-
ture to an underpressure, and the properties of the structure can be real-time
controlled by adjusting the value of the partial vacuum. The particle inter-
actions in the jammed state can be weaken or intensified, depending on the
level of compression which is adjusted by the underpressure. Due to the shear
deformation of the granular member, the beam exhibits damping behaviour.

According to the definition of smart material formulated by Ahmad [1],
this special granular structure may be called smart, if the material is capa-
ble of responding to the stimulus in a predetermined manner and extent, in
a short time, and reverting to its original state as soon as the stimulus is
removed, which is a feature unattainable by the classic granular dampers.

The underpressure intensifies the mechanisms which enhance the rigid-
ity of the structure and the energy of dissipation, like the friction and slips
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a) b)

Figure 2.41. Example of medical applications of granular structures subjected to
underpressure: medical stiffener a) and haptic upper-arm orthotic b).

among the particles and between the particles and the enclosure, hence it
enables the reduction of the free transverse vibrations. For the considered
size of the particles, the phase transition is temperature-independent. Other
mechanisms, such as the particle intrusion, occur when the granules change
their position or orientation. The particle can also be pushed over an under-
lying layer as the particle hopping takes place [15]. The particle deformation
can promote or inhibit the total deformation [38]. The level of deformation of
particles depends on the hardness and stiffness of the granular material [32].

The applications of underpressure granular materials in special envelopes
nowadays are mainly limited to medical services like the vacuum medical
pillows, mattresses or splints which form a firm, uniform support for parts of
the body (Fig. 2.41a) [41]. Furthermore interesting prototype constructions
are developed, like the vacuum granular endoscope guide [38], laparoscopy
camera shaft [30] or the upper-arm orthotic [45] (Fig. 2.41b). By controlling
the inside air pressure, the orthotic can exert a stiffness or viscosity on
the joints. The interesting field of research are the soft robots that move
respectively to the underpressure [66] (Fig. 2.42a) or the universal robotic
gripper with an elastic cell filled with granules (Fig. 2.42b), which allows
picking differently shaped objects [13].

Alittle amount of works has been reported to date on the damping ca-
pacity of granular structures with controllable underpressure. The concept
itself was introduced and briefly characterized in [6]. The main research
effort was directed towards determination of the damping and elastic prop-
erties of the pneumatic granular structure used in a linear stroke damper,
subjected to axial forces [8]. The rheological models of granular conglomer-
ates under partial vacuum were presented in [90]. The constitutive model
was later expanded to a six parameters rheological model capable of captur-
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a) b)

Figure 2.42. Examples of non-medical applications of granular structures sub-
jected to underpressure: jamming unimorph snake robot a), and universal robotic
gripper Versaball b) (Source: EmpireRobotics).

ing the response of the conglomerate subjected to an axial cyclic loading [92].
The experimental approach to the analysis of the vibration of a steel beam,
fully covered with a sleeve filled with granules was given in [91] and later
compared with a simplified model of the dynamic behaviour in [10].

Principles of Operation

The jamming process itself has been widely studied in the literature on soil
mechanics, and the basic principals may be explained by analysing the effec-
tive stress among the granules. The static pressure is one of the key factors
that influences the state of the granular material and thus its parameters.
Some basic relations help to understand how the pneumatic control can in-
fluence the behaviour of the system, by affecting static pressure. Let us
consider the stresses in a plane section of the granular structure. For sim-
plicity, a section with two granules in contact is specified (Fig. 2.43).
The following force equation can be stated

N = Acpc + (Ag −Ac)p , (2.43)

where Ac is the contact surface, Ag is the single granule’s cross-section area,
pc is the stress on the contact surface and p is the pressure of the medium
among the granules. The total stress value can be formulated as

σ =
Ac

Ag
pc +

(
1−

Ac

Ag

)
p . (2.44)
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Figure 2.43. Contact between two granules of the structure.

According to Terzaghi’s principle, all of the measurable effects caused by
the change of stress, such as the compression, distortion and change of the
shearing resistance, are due to the changes in the effective stress σ′. It
describes the forces inside the skeleton

σ′ =
Ac

Ag
pc . (2.45)

If we note that Ac/Ag ≪ 1, then

σ′ = σ − p . (2.46)

In the considered case, a partial vacuum is applied to change the prop-
erties of the airtight structure. The value of the pressure p is negative, so
the effective stress increases. The underpressure intensifies the mechanisms
which enhance the rigidity of the structure and the dissipation of the system.
As a result, we obtain a new type of structural material with the possibility
of changing its parameters.

2.3.2. Beam with Smart Granular Structure

The construction of the proposed complex beam incorporates granular struc-
ture that allows changing the damping characteristics by varying the pressure
value inside it. The distinctive feature of such a beam is the ability to con-
trol the dissipation energy by varying the control signal, hence it enables
reduction of transverse vibrations [11]. The details covering the fabrication,
dimensions and principles of operation of the discussed beam are discussed
below.

The structure is composed of parallel face sheets forming a sandwich
beam. They are connected by a thin (0.2 mm) elastomer layer made of
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Figure 2.44. Schematic diagram of the experimental setup: 1 – vacuum pump,
2 – laser displacement sensors, 3 – digital underpressure sensor, 4 – data acquisi-
tion system, 5 – signal analysis software.

PVC foil, which forms a hermetic envelope. The envelope is filled with
a homogeneous granular material. It can be placed on the whole length of
the beams, or just locally in certain points, where we would like to introduce
damping. There is also a decent possibility to construct a beam, with the
metal core covered externally by an elastic sleeve filled with the granular
material.

The configuration of the beam used for the studies is presented in Fig.2.44.
When the pump is switched off, the granular structure is in compliant state
and the beam can easily bend when the particles are free to move inside the
envelope. Evacuating the air from the envelope allows triggering the jammed
state of the granules.

The mechanism of triggering the jammed state and controlling the damp-
ing ratio is reliable and relatively simple to apply, although many param-
eters like grain’s shape, size and material, affect the efficiency of it. Four
test specimens, each one filled with a distinct type of granules, which dif-
fered in size, shape or structural material were investigated. Figure 2.45
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Figure 2.45. Types of the tested granular materials, from the left: plastic rollers,
plastic spheres, steel spheres and plastic cubes.

Table 2.1. Properties of the types of granular material filling

Name Material
Grain

size [mm]
Specimen
weight [g]

Rollers ABS φ2×3 30
Plastic spheres PVC with BaCO3 φ6 65
Steel spheres stainless steel φ4 130
Cubes PMMA (Perspex) 2×2×2 40

presents macro photographs of the granules. Certain properties of the gran-
ular materials used for the experimentation are collected and presented in
Table 2.1. The final dimensions of the locally placed damping element were
equal to 50×40×20 mm. The parallel face beams of the specimen were made
of aluminium. Both of them are 720 mm long, and have the rectangular
cross-section 40×0.5 mm.

For each type of granular material, the displacement amplitude was
recorded in order to measure the influence of the underpressure on the re-
sponse of the cantilever. The underpressure value at the entrance of the
hose connector was monitored during each measurement and was set to con-
stant value chosen from the range 0–0.07 MPa which corresponds to 0–70%
vacuum.

Figure 2.46 illustrates the influence of the constant underpressure in the
component with the roller filling on the amplitude of the displacement for
initial deflection 0.06 m and zero initial velocity. The underpressure was
set individually before every measurement and remained constant during
vibrations, so that all of the measurements were performed after the ini-
tial jamming. The obtained trial was a damped sine waveform, with the
frequency and the amplitude depending on the set value of underpressure.
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Figure 2.46. Displacement for constant underpressure, granular structure filled
with rollers.

By examining the free-decay time traces of the displacement, one may
find that the displacement amplitude slightly increases when compared to
the compliant state for 0 MPa, as the jammed state interactions are inten-
sified by the higher underpressure value. The loss of the damping efficiency
is rather small and is mainly related to the restriction on the movement of
the granules, which can no longer slide easily. These observations were true
for all types of the examined materials as presented in the left column of
Fig. 2.47. By analysing the minimum and maximum beam deflections, the
envelopes of the responses were obtained. The amplitude decreases exponen-
tially at the almost constant rate, so the envelopes were approximated by
the exponentially modulated decay curves, typically used for systems with
viscous damping. This gave us a very fine agreement. In Fig. 2.48a, the ex-
emplary experimental curve (scatter) is plotted against the best fitted curve
(solid line) for the roller granules subjected to 0.07 MPa.

Right columns on Figs. 2.47 and 2.48b present the variation of the natu-
ral frequencies for a beam partially treated with the granular structure with
rollers. The amplitude on the FFT plot is the relative strength of the har-
monic component present in the original signal. The frequency slightly shifts
toward the higher values when the jamming is intensified by the negative
pressure. The jammed material has a higher density of force chain network,
and thus an intensified flexural rigidity. This was also true for all of the



2.3 Granular Materials 77

a) displacement for plastic spheres b) frequency for plastic spheres

c) displacement for steel spheres d) frequency for steel spheres

e) displacement for cubes f) frequency for cubes

Figure 2.47. Displacement and frequency responses for constant value of under-
pressure for different types of granular materials.
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a) b)

Figure 2.48. Experimental and exponentially fitted envelope for con-
stant 0.07 MPa a), and frequency response for different values of constant un-
derpressure b), granular structure filled with rollers.

examined materials, but with different intensities. The rollers exhibited the
highest change.

The comparison of the logarithmic decrement of damping for different
filling materials is presented in Fig. 2.49a. The highest logarithmic decre-
ment value was observed for the cubic granules. The second best damping
performance was obtained for the rollers. Both types of the spheres exhibit
slightly smaller logarithmic decrements of damping, with the steel spheres
having the lowest damping value. This is a consequence of the fact that the

a) b)

Figure 2.49. Logarithmic decrement of damping for constant underpressure for
different types of granules a), and frequency vs. underpressure for different granular
materials b).
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small cubic granules initially exhibit stronger force chains and high rolling
resistance, compared to other shapes. On the other hand, as the under-
pressure value is increased from 0 to 0.07 MPa, the absolute change of the
logarithmic decrement is the most notable for the spherical granules while
cubes exhibit minor change. The edgy cubic particles initially form a highly
ordered structure which is hard to reorganise. Spherical granules can be quite
easily reorganised, since they have no edges that restrict certain movements.
The performance of the roller granules can be located somewhere between
the edgy and the spherical surfaces, giving high initial damping. Also the
possibility to alternate the damping value is very fine.

The intensified jamming shifts the natural frequencies to higher values
when the underpressure is applied (Fig. 2.49b). The damping element filled
with steel spheres was the heaviest one, so the frequency for it was the lowest.
On the other hand, the cubic and roller fillings were the lightest and they
exhibited the highest frequencies. For the considered case, when only a part
of the beam was treated with the granular damping member, the absolute
frequency change was rather small, but the tendency seemed to be clear.
For the steel and plastic spheres, the increase reached 1%. For the roller and
cubic shaped granules, the increase was 0.7% and 0.3%, respectively.
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Chapter3
Controlled Structures

The development of appropriate control strategies in individual adaptation of
vibrating structures requires knowledge of respective mathematical models.
Equations of motion discussed in this chapter are described by the partial
differential equations. In this case, the classic vibration solutions are based
on the Fourier series. According to Fourier transform in space, the partial
differential equation is reduced to a system of ordinary differential equations
with respect to time. The size of the system of equations, and hence the
number of terms of the Fourier series is limited to the necessary amount to
provide the required accuracy. Properly selected mode shape functions fulfil
assumed boundary conditions. The final solution is the sum of the products
of the following mode shape functions of the problem and the corresponding
functions of time, which are the solutions of the set of the ordinary differential
equations. As an example the sine Fourier transform (3.1), (3.2) in the finite
interval [0, L] is presented

Vj(t) =

L∫

0

w(x, t) sin
jπx

L
dx , (3.1)

where

w(x, t) =
2

L

n∑

j=1

Vj(t) sin
jπx

L
, (3.2)

fulfilling e.g. boundary conditions for the simply supported Euler beam of
the length L. In order to solve the system of ordinary differential equations,
the integration with respect to time is applied. Except special cases the
analytical solutions are unknown. Diagonal and fixed in time matrices as-



88 3 Controlled Structures

sociated with the inertia, damping and stiffness of the system describe one
of them. However, in a general case we are compelled to restrict the solu-
tion with the first term of the series, or to a numerical integration approach.
The knowledge of analytical solution enables immediate information about
the state of the structure without the need of continuous computations of
the problem, as in the case of the numerical solutions. The semi-analytical
solutions, i.e. those in which the system of ordinary differential equations is
integrated numerically, are mainly used for verification solutions obtained by
approached methods.

The second classical method of the solution of equations of motion is the
finite element method. It is typically used for complex problems, hard to be
solved analytically. In such a case in our computations the space-time finite
element method was applied. This continuous Galerkin method discretizes
spatial variables and time variable simultaneously. Therefore, we can postu-
late a balance of energy over the time interval, not only at some instants. In
the formulation of the method, we integrate the physical quantities analyt-
ically in the time interval rather than numerically, as in the classical finite
element method. This numerical method will be used to solve the evolu-
tionary processes of vibrations. The velocity formulation of the space-time
finite element method is used. The equations of motion are discretized both
in space and time. This means that in the present numerical scheme time
marching the velocity is distributed in the finite space–time element accord-
ing to interpolation functions and nodal velocities in two adjacent time layers
used as parameters. The analytic form of the velocity function in space and
time allows the integration and differentiation with respect to these vari-
ables. Functions of displacement and acceleration determined in this way,
however, still depend on the nodal velocities. Thus, as the result we have
inertia, damping and stiffness matrices multiplied by velocities. The integra-
tion of the velocity function with respect to time results in the displacement
function and contains the term with initial displacements in time layer. Ini-
tial displacements in each time step of the time stepping scheme in the final
equation of force equilibrium express nodal forces at the beginning of time
interval. Acceleration and displacement functions allow the analytical deter-
mination of the energy of the system. The energy of the external forces is
derived from the right hand side of the equation of motion. Classical energy
minimisation and assembly of the global system leads to the following matrix
solution scheme

(Mg +Cg +Kg)

{
vi

vi+1

}
+Eg wi = Fg . (3.3)
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Here, i and i+1 denote the known and actually computed state, respec-
tively. The problem is reduced to the numerical solution of the system of
algebraic Eqs. (3.3). The vector v contains the velocities of the nodal dis-
placements and angles of rotation, while the vector w contains the nodal
displacements and the angles of rotation. Mg, Cg, Kg, and Eg are the
global matrices of inertia, damping, stiffness, and nodal forces, respectively,
and Fg is the global vector of external forces. The global matrices are assem-
bled from elemental matrices M, C, K, and E, merged in proper locations of
the global matrices based on the topology of the mesh. Similarly, the global
load vector is assembled from elemental force vectors F. The velocity vector
vi+1 is the only unknown vector in the above system of equations. Finally
we must compute the displacements wi+1 with the following formula

wi+1 = wi + h[β vi + (1− β)vi+1] . (3.4)

The first attempts at space-time modelling of physical problems were
published in 1964 by Gurtin [45, 46] and Herrera [48]. Defining the minimized
functional resulting from the theory of convolutions, the relationship between
time and the spatial variables in time-space sub-areas were derived. These
sub-areas can be interpreted as space-time finite elements. Later, in 1969,
Oden [68] proposed a generalization of the finite element method. Fried [41]
and Argyriss, Scharpf and Chan [3, 4, 5] began to treat the spatial and
time variables equally in the formulation of physical problems. The space-
time finite element method was applied successfully to wave problems [1,
40, 49], and also to acoustics [90] and fluid mechanics [47]. The space-time
element method can be considered as the extension of the traditional finite
element method in the time domain [7]. Non-stationary partition of the
structure and non-rectangular space-time elements [8, 9] enabled the solution
of a new group of problems: problems with adaptive mesh [11, 13, 14],
contact problems [10, 12], and large deformations [23].

This chapter presents the mathematical and numerical models of the se-
lected problems in the dynamic structure. The first issue is the problem of
the moving inertial load travelling along the finite beam span with controlled
supports. The semi-analytical solution and the general numerical description
of the moving mass are presented. The shaft with a controlled rotary damper
subjected to a harmonic load is the next issue. Analytical, semi-analytical
and numerical solution of the problem are presented. The following section
describes a mathematical model of a sandwich beam with controlled pa-
rameters of the core and gives the analytical and semi-analytical solutions.
Finally, a structure based on granular material controlled by partial vacuum
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is presented. The mathematical model assumes mechanical properties of the
granular material described by the Kelvin-Voigt model.

3.1. The Beam Span under the Inertial Moving Load

Inertial loads moving on strings, beams and plates with sub or super critical
velocities are especially important for engineers. Rail and road transport de-
velopments need a better understanding of phenomena accompanying trav-
elling loads. Most applications are such as the interaction between railway
wheels and a rail or a track, the effect of a vehicle moving on a bridge, in-
teraction between rail power collector and traction power network, as well
as magnetic rail. Moving loads are also widely used in aerospace, automo-
tive, and robotics industry. In railway engineering practise, problems with
travelling masses are of special interest. The influence of the mass attached
locally to the structure can not be neglected since the mass element is firmly
attached to the base (Fig. 3.1). We can only mention that the mass of a sin-
gle train wheel is 500 kg and a wheelset has a mass equal to 1500 kg. The
mass density of the rail is only 60 kg per meter. A similar problem occurs
in power collectors.

Figure 3.1. Examples of problems with a mass m2 travelling on a string or
a beam m1.

The speed of the rail vehicle in certain circumstances can reach the critical
speed. This particular speed occurs, when the circular frequency of the
exciting force is equal to the natural circular frequency of the structure. It
is manifested in extreme values of structure deflections. In such a case the
wave phenomena significantly differ from the responses of systems subjected
to loads without inertia.
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There are two types of classical problems with a travelling load: a moving
massless force and a moving inertial force (Fig. 3.2). A moving massless force

m v

vm

P

vm

Pv

a) b) c)

Figure 3.2. Massless load (a), inertial load (b), and inertial load with a massless
force (c).

is a constant or harmonic non-inertial load. On the other hand, a moving
inertial force depends on the current state of a vibrating structure. These
forces, although of a completely different nature are often confused with each
other. In most cases, exchangeability of both forces is an unacceptable sim-
plification of the moving load physical model. Despite the wide interest in the
moving loads for more than a century, still many issues remain unresolved.
In the case of non-inertial loads, for example, the gravitational force or the
forces described by the harmonic function, complete analytical solutions are
known. Moving inertial load results in more complex models. Mathemati-
cal equations do not have respective analytical solutions. Figures 3.3 and
3.4 show the trajectories for both types of moving loads travelling along the
string. The moving load velocities correspond to the fraction of the wave
speed in the string. The parameters of the task are chosen so that the wave
speed in the string is equal 1. Figure 3.3 illustrates the sharp edges of the
trajectory. In the case of inertial load smooth trajectories were observed.
In the both load cases, for the lower velocities we can observe reflections
between the returning wave in the string and the point moving load. Addi-
tionally, we note an interesting property of the solution, depicted in Fig. 3.4.
With increasing velocity of the moving mass the discontinuity of the trajec-
tory near the end of the support is observed. The convergence of the solution
near the end point is depicted in Fig. 3.5. The mass trajectory is plotted for
increasing number of terms in the series at the 0.5 wave speed. We notice
that the trajectory tends slowly to the jump at x = L. All characteristic
lines are smooth. The convergence rate is low and, especially near x = L,
the number of terms must be at least 50.
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Figure 3.3. The trajectories of the moving massless force travelling along a string
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Figure 3.4. The trajectories of the moving inertial force travelling along a string
for different speed.
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Figure 3.5. The convergence of the mass trajectory travelling with v = 0.5 wave
speed, near the end point, for various number of term (25, 50,..., 500).

The literature on the subject is extensive. At the middle of the 19th cen-
tury the pioneering works of Willis [93] and Stokes [87] were published. There
are many historical reviews concerning the moving loads problem [71, 88, 94].
One can find there hundreds of references concerning load moving on beams,
strings and plates. In most of the cases, the moving massless constant force
was considered. This problem results in the closed solutions. The analysis
of the moving massless force is relatively simple and was treated in numer-
ous papers [42, 60, 69]. We include in this group all the papers devoted to
the travelling oscillator, i.e., a mass particle joined to the base with a spring
[22, 62, 73]. Although the authors call this type of the load an inertial one, we
consider it as a massless force generated only by the particle’s inertia. Taking
into account the inertia of the moving mass results in significant mathemati-
cal complications. Saller in [82] considered the moving mass for the first time.
In [52] simplifications were applied and the solution was expressed by only
the first term of the trigonometric series. Time function fulfilled the second
order differential equation of variable coefficients. The final solution of the
differential equation of variable coefficients was proposed as an approached
infinite series. In [83] the motion of the structure under the moving mass
was considered. The method of variable separation was applied. The ordi-
nary differential equation of motion under the moving mass was expressed
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in generalised coordinates by using the second Lagrange equations. This
consideration is relatively complex and slowly converged since the final solu-
tion is expressed in terms of the triple infinite series. The both above works
can be considered as the base for the analysis of the problem of the moving
mass in successive further works [24, 65] and many others. In the literature,
we can find solutions based on both the differential equations [51, 58, 63]
and integral equations [39, 80, 91]. These are mainly semi-analytical solu-
tions or, as in the case of the mass particle moving along a massless string,
we know the analytical solution [85]. In the paper [57], the author deals
with the problem of a moving mass by the integro-differential equation. In
[33], the same solution is obtained with the Fourier method applied directly
to the motion differential equation. In both approaches the mathematical
treatment of the distribution function results in serious questions on the con-
tinuity of the solution. The detailed discussion of this problem was given
in [30]. Finally, in the paper [32] the Lagrange equation of the second kind
was applied. This approach allows us to avoid troubles with treatment of
the Dirac delta in the consequent mathematical solution. Especially, we do
not transform the distribution function. Variable speed of the moving mass
was analyzed in [2, 44, 64]. The equivalent mass influence is analyzed in
[43]. The infinitely long string subjected to a uniformly accelerated point
mass was also treated [79] and analytical solution of the problem concerning
the motion of an infinite string on the Winkler foundation subjected to an
inertial load moving at a constant speed was given [53].

In [33] were considered small vibrations of the massless and mass string
subjected to a moving inertial load. The semi–analytical solution of the
problem was proposed. The final solution has a form of a matrix differential
equation of the second order. Numerical integration results in a solution
in a full range of the velocity: sub-critical, critical, and over critical. The
correct solution of the differential equation of motion of the analysed system
exhibits unexpected phenomenon, a sharp gradient of the mass displacement
near the end support. This new feature previously was not reported in the
literature. The closed solution in the case of the massless string was analysed
and its discontinuity was proved mathematically. Numerical results obtained
for inertial string demonstrated the same feature. Since small vibrations are
considered, the discontinuity effect was of pure mathematical interest. In
the case of the Timoshenko beam the discontinuity of the mass trajectory
was presented in [34].

In numerous references, authors treated the problem in a very low range
of the mass speed. In such a case results are sufficiently accurate, even if
the inertial term contributing to moving mass is not correctly treated by
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the time integration method. Simply, the moving mass influence in such
cases is minor compared with static displacements. At low speeds, signifi-
cantly lower than the critical speed, the neglected inertia of a moving object
does not contribute a noticeable error. At higher speeds, the deflection error
can reach 50–80%. In practise, measurements of the wave speed in railway
tracks treated as beams reaches values 800–1000 km/h. In the case of soaked
ground, the speed can decrease to 500 km/h or less. Dynamic influence of
the moving load significantly increases the structure deflection. The high-
est contribution of dynamic effects in structures subjected to moving loads
determines the critical speed of motion. Practically, the critical mass speed
equals 0.4–0.5 of the wave speed. This is the range of the speed of the modern
rail vehicle.

More complex problems require the use of numerical schemes. The matri-
ces describing the moving mass are essential for proper computer simulation
of complex dynamic tasks. It is worth mentioning that the commercial pack-
ages available on the market do not support a vibration analysis of elastic
bodies which would allow a direct simulation of moving loads, especially in-
ertial ones. In consequence it is essential to develop a universal numerical
tool for the wave analysis of the moving inertial loads.

A simple intuitive modification of the global inertia matrix by adding
the moving mass ad hoc lumping in nodes (Fig. 3.6) is incorrect [16]. This
approach ignores the complexity of the motion of the material point. The
acceleration of a moving mass is expressed as a derivative which comprises
the lateral acceleration, Coriolis acceleration, and the centrifugal accelera-
tion. Numerical modelling of a moving inertial load focuses on the classical

x∆

m

P

2

2

P

m

P

m1

1

Figure 3.6. Ad hoc moving mass lumping in nodes.

finite element method, for example [25, 38, 78, 95]. In these papers, the
derived matrices were based on polynomials of higher order and they are not
comprehensive. They can not be applied to strings or Timoshenko beams,
in which the nodal displacements and angles of rotation are independently
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interpolated by linear functions. If the shape functions of finite elements of
the beam are of higher order (such are in the Bernoulli-Euler beam), then the
respective derivatives of the chain derivation in the moving coordinate sys-
tem are non-zero and respective moving mass matrices are also known [18].
In the case of the Timoshenko beam, the problem is more complex, since we
usually use linear shape functions for both deflection and rotation. In such
a case we can use the space-time finite element approach for proper formu-
lation of the solution algorithm [31]. The accuracy of the solution per one
time step is high. The classical Newmark time integration method results in
significantly lower convergence rate [35].

Classical semi-discrete approaches are effective for calculating the low fre-
quency response. Their performance is less satisfactory in solving problems
exhibiting discontinuities or sharp gradients in solutions, which are charac-
teristic for wave problems. In these cases the space-time element method
seems to be more performant. The space-time finite element method was
successfully applied to simulate inertial loads travelling along a string [15].
Further improvements were achieved with special virtual functions used in
variational formulation and in the solution [17]. We can assume a fine mesh
near the wave front. In regions where the solution is smooth, the mesh
remains coarse. Accurate solutions can be obtained without resorting to
a uniform fine mesh, which is computationally expensive. A stationary spa-
tial partition is a serious disadvantage in classical semi-discrete methods.
The local mesh refinement depending on the processes evolution is disabled.

3.1.1. Mathematical Model

Despite the fact that the equation of motion of the Bernoulli-Euler beam is
not a wave equation its mathematical simplicity and physical interpretation
involved extensive researches and numerous papers dealing with the moving
load. This part aims to present a way of deriving the differential equations
of the Euler beam, consisting of the balance of forces and moments in the
infinitesimal section of the structure. However, the main goal is to provide
a method of modelling the moving load using the Dirac delta function. The
inertial force acting on the relevant section of the beam is written by the
formula

dB(x, t) = −ρA
∂2w(x, t)

∂t2
dx. (3.5)
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On the basis of the strength of materials, in the case of small deflections,
and maintaining a sign convention we get

M(x, t) = −EI
∂2w(x, t)

∂x2
. (3.6)

According to Fig. 3.7, the balance of moments related to the centre of the
element dx is given by

M(x, t)−M(x, t)−
∂M(x, t)

∂x
dx+Q(x, t)

dx

2
+

+Q(x, t)
dx

2
+
∂Q(x, t)

∂x

dx2

2
= 0. (3.7)

x

x
Q(x,t)+            dxQ(x,t)

dB(x,t)

w(x,t)

x

q(x,t)

dx

M(x,t)+            dxM(x,t)M(x,t)

Q(x,t)

Figure 3.7. Balance of forces and moments in the infinitesimal section of the Euler
beam.

After rearranging and neglecting small higher order dx2 we get the known
formula defining the shear force

Q(x, t) =
∂M(x, t)

∂x
= −

∂

∂x

[
EI

∂2w(x, t)

∂x2

]
. (3.8)

The balance of forces on the vertical axis w(x, t) (Fig. 3.7), results in

dB(x, t) + Q(x, t) +
∂Q(x, t)

∂x
dx − Q(x, t) + q(x, t)dx = 0. (3.9)

According to (3.5) and (3.8), Eq. (3.9) takes the form

−ρA
∂2w(x, t)

∂t2
dx −

∂2

∂x2

[
EI

∂2w(x, t)

∂x2

]
dx + q(x, t)dx = 0. (3.10)
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The moving load q(x, t) acting on the section dx can be presented by the
difference of the Heaviside functions (Fig. 3.8)

q(x, t)dx = [H(x− vt)−H(x− vt− dx)]

[
P −m

d2w(vt, t)

dt2

]
. (3.11)

It takes into account both the moving gravitational force and the moving

1

vt vt+dx

H(x−vt)−H(x−vt−dx)

x

Figure 3.8. The difference of the Heaviside functions.

inertial load. According to (3.11) and (3.5), when the both sides are divided
by dx, Eq. (3.10) takes the following form

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
=

=
H(x− vt)−H(x− vt− dx)

dx

[
P −m

d2w(vt, t)

dt2

]
. (3.12)

We consider the infinitely small section of the beam (dx→ 0) and the limit
can be given by the Dirac delta

lim
dx→0

H(x− vt)−H(x− vt− dx)

dx
= δ(x − vt). (3.13)

Finally, the Euler beam equation subjected to the moving load can be written
as follows

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= δ(x− vt)

[
P −m

d2w(vt, t)

dt2

]
. (3.14)

The acceleration of the moving mass, contains the full description of the in-
ertial travelling load. Now, we can proceed to formulate the main dynamical
problem.

Let us consider the simply supported Bernoulli-Euler beam of the length
L under a concentrated mass m accompanied by a point force P travelling at
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a variable velocity v(t). Vertical displacement of the beam is denoted by w.
The boundary conditions are as follows

w(0, t) = w′′(0, t) = w(L, t) = w′′(L, t) = 0. (3.15)

The moving load is accelerated to a fix velocity, than travels through a part of
the beam and finally brakes before the end support. The examined problem
was shown in Fig. 3.9. Coordinates x1 and x2 describe the positions of the

k

m

P
v

L/3 L/3 L/3

c c1 2

1 23

L/2L/2

Figure 3.9. Scheme of the problem.

viscous supports. At x = x3 we place the spring that decreases the static
deflection of the flexible beam. Now the differential equation of motion can
be written in the following form

EI
∂4w(x, t)

∂ x4
+ ρA

∂2w(x, t)

∂ t2
+

2∑

i=1

δ(x− xi) ci
∂w(x, t)

∂ t
+δ(x− x3) kw(x, t) =

= δ(x− f(t))P − δ(x − f(t))m
d2w(f(t), t)

dt2
. (3.16)

We assume zero displacements and velocities as initial conditions

w(x, 0) = 0 , ẇ(x, 0) = 0. (3.17)

At both ends the displacements are equal zero. In Eq. (3.16) E, I, ρA, k, c1,
c2 are the Young modulus, inertia moment of the cross section, linear mass
density, stiffness and damping coefficients of supports, respectively. The
viscous term enables the control of the dynamics. The acceleration of the
moving mass describes the Renaudot formula [77]

d2w(f(t),t)

dt2
=

[
∂2w(x,t)

∂t2
+2v

∂2w(x,t)

∂x∂t
+v2

∂2w(x,t)

∂x2
+v̇

∂w(x,t)

∂x

]

x=f(t)

, (3.18)
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where

f(t) = x0 + v0t+
1

2
v̇t2 (3.19)

is the position of the load. x0 and v0 are the initial position and initial ve-
locity, respectively. In fact, it is the derivative computed with the chain rule.
The respective parts of the equation (3.18) describe the lateral acceleration,
the Coriolis acceleration, the centrifugal acceleration, and the acceleration
associated with the change of the particle velocity. The equation of motion
(3.16) is the partial differential equation with variable coefficients. Addi-
tionally, due to the Dirac delta Eq. (3.16) can be considered only in the
distribution sense. The analytical solution of this problem is unknown.

3.1.2. Semi-analytical Solution

The sine Fourier transformation (3.1) naturally fulfils boundary conditions
and leads to the coupled system of the ordinary differential equations of
the 2nd order with respect to time. The solution of this system requires
numerical integration. For this purpose, the system of ordinary differential
equations can be written in the matrix form

M




V̈1(t)

V̈2(t)
...

V̈n(t)


+C




V̇1(t)

V̇2(t)
...

V̇n(t)


+K




V1(t)
V2(t)

...
Vn(t)


 = P , (3.20)

or in the short form

MV̈ +CV̇ +KV = P, (3.21)

where

M =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


+ (3.22)

+
2m

ρAL




sin 1πf(t)
L sin 1πf(t)

L sin 1πf(t)
L sin 2πf(t)

L · · · sin 1πf(t)
L sin nπf(t)

L

sin 2πf(t)
L sin 1πf(t)

L sin 2πf(t)
L sin 2πf(t)

L · · · sin 2πf(t)
L sin nπf(t)

L

...
...

. . .
...

sin nπf(t)
L sin 1πf(t)

L sin nπf(t)
L sin 2πf(t)

L · · · sin nπf(t)
L sin nπf(t)

L



,



3.1 The Beam Span under the Inertial Moving Load 101

C =
2c1
ρAL




sin 1πx1

L sin 1πx1

L sin 1πx1

L sin 2πx1

L · · · sin 1πx1

L sin nπx1

L

sin 2πx1

L sin 1πx1

L sin 2πx1

L sin 2πx1

L · · · sin 2πx1

L sin nπx1

L

...
...

. . .
...

sin nπx1

L sin 1πx1

L sin nπx1

L sin 2πx1

L · · · sin nπx1

L sin nπx1

L



+

+
2c2
ρAL




sin 1πx2

L sin 1πx2

L sin 1πx2

L sin 2πx2

L · · · sin 1πx2

L sin nπx2

L

sin 2πx2

L sin 1πx2

L sin 2πx2

L sin 2πx2

L · · · sin 2πx2

L sin nπx2

L

...
...

. . .
...

sin nπx2

L sin 1πx2

L sin nπx2

L sin 2πx2

L · · · sin nπx2

L sin nπx2

L



+

+
4m

ρAL




1πv
L sin 1πf(t)

L cos 1πf(t)
L

2πv
L sin 1πf(t)

L cos 2πf(t)
L · · ·

1πv
L sin 2πf(t)

L cos 1πf(t)
L

2πv
L sin 2πf(t)

L cos 2πf(t)
L · · ·

...
...

. . .
1πv
L sin nπf(t)

L cos 1πf(t)
L

2πv
L sin nπf(t)

L cos 2πf(t)
L · · ·

· · · nπv
L sin 1πf(t)

L cos nπf(t)
L

· · · nπv
L sin 2πf(t)

L cos nπf(t)
L

. . .
...

· · · nπv
L sin nπf(t)

L cos nπf(t)
L



, (3.23)
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K =
EI

ρA




14π4

L4 0 · · · 0

0 24π4

L4 · · · 0
...

...
. . .

...

0 0 · · · n4π4

L4



+

+
2k

ρAL




sin 1πx3

L sin 1πx3

L sin 1πx3

L sin 2πx3

L · · · sin 1πx3

L sin nπx3

L

sin 2πx3

L sin 1πx3

L sin 2πx3

L sin 2πx3

L · · · sin 2πx3

L sin nπx3

L

...
...

. . .
...

sin nπx3

L sin 1πx3

L sin nπx3

L sin 2πx3

L · · · sin nπx3

L sin nπx3

L



−

−
2m

ρAL




12π2
v
2

L2 sin 1πf(t)
L sin 1πf(t)

L
22π2

v
2

L2 sin 1πf(t)
L sin 2πf(t)

L · · ·

12π2
v
2

L2 sin 2πf(t)
L sin 1πf(t)

L
22π2

v
2

L2 sin 2πf(t)
L sin 2πf(t)

L · · ·
...

...
. . .

12π2
v
2

L2 sin nπf(t)
L sin 1πf(t)

L
22π2

v
2

L2 sin nπf(t)
L sin 2πf(t)

L · · ·

· · · n2π2
v
2

L2 sin 1πf(t)
L sin nπf(t)

L

· · · n2π2
v
2

L2 sin 2πf(t)
L sin nπf(t)

L
. . .

...

· · · n2π2
v
2

L2 sin nπf(t)
L sin nπf(t)

L




+

+
2m

ρAL




1πv̇
L sin 1πf(t)

L cos 1πf(t)
L

2πv̇
L sin 1πf(t)

L cos 2πf(t)
L · · ·

1πv̇
L sin 2πf(t)

L cos 1πf(t)
L

2πv̇
L sin 2πf(t)

L cos 2πf(t)
L · · ·

...
...

. . .
1πv̇
L sin nπf(t)

L cos 1πf(t)
L

2πv̇
L sin nπf(t)

L cos 2πf(t)
L · · ·

· · · nπv̇
L sin 1πf(t)

L cos nπf(t)
L

· · · nπv̇
L sin 2πf(t)

L cos nπf(t)
L

. . .
...

· · · nπv̇
L sin nπf(t)

L cos nπf(t)
L



, (3.24)
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P =
P

ρA




sin 1πf(t)
L

sin 2πf(t)
L

...

sin nπf(t)
L



. (3.25)

The system of Eqs. (3.21) was numerically integrated using the classical New-
mark method [20]. Finally, according to (3.2) the solution of the problem
is the sum of the elements of the vector Vj(t) multiplied by the respective
sine shape functions. In order to illustrate the results, the following simple
dimensionless data were used: the length of the beam L = 1, mass density
ρ = 1, cross-sectional area A = 1, cross-sectional inertia moment I = 0.01,
Young’s modulus E = 1, spring stiffness k = 10, the first damper coefficient
c1 = 20, the second damper coefficient c2=20, the moving mass m = 1,
the moving force P = −1. The assumed data set fulfils the theory of thin
beams. Location of the springs and the dampers x1, x2 and x3 were assumed
as shown in Fig. 3.9. Figure 3.10 presents simulation of the motion of the
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Figure 3.10. Simulation of the beam span motion under the moving mass at speed
v=0.1 and sub-critical speed v=0.3.
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beam span subjected to the moving mass at v = 0.1 and v = 0.3 (v=const).
For this set of data the critical velocity for the simply supported Euler beam
is equal to vcr = (π/L)

√
EI/(ρA) = 0.314. n = 100 terms in the resulting

series (3.2), were taken. The static deflection of the midpoint of the Euler
beam w0 = PL3/(48EI). According to the increasing velocity of the trav-
elling mass, we can observe increased deflection and shifting the position of
the maximum displacements of the beam in time. In addition, near the final
support we notice the increase vertical acceleration of the mass.

3.1.3. Numerical Description of the Problem

The space-time finite element differs from the conventional finite element ap-
proach to solving initial-boundary problems. The main difference lies within
the discretization of the differential equations of motion. The presented con-
tinuous Galerkin method discretizes both the spatial variables and the time
variable. Therefore, we can postulate a balance of some physical quantities,
such as energy in the interval of time, not just at some particular instants.
In the formulation of the method, we integrate physical quantities analyt-
ically in the time interval rather than numerically, as it is in the classical
finite element method. The considered problem is reduced to the numerical
solution of the system of algebraic Eqs. (3.3). This approach assumes a con-
tinuous distribution of the characteristic function, i.e., the velocity in the
whole space-time area in which the structure is considered. The space-time
element method is a generalisation of the classical finite element method.

The discrete model of the beam with stationary placed supports and
dampers is simple and can be presented in a nutshell. The influence of
a moving mass particle is more complex. It can not be done with the ad-hoc
mass lumping at neighbouring nodes. In the case of a non inertial load, only
the right-hand side vector of the equation of motion is modified. Respective
elements of the load vector have contributed terms computed proportionally
to the distance from neighbouring nodes. The ad-hoc addition of the mass to
respective coefficients of the inertia matrix at each time step results in solu-
tions neither convergent nor stable. The moving mass significantly changes
the numerical procedure. Presented in this section general description of the
moving mass in the velocity variant of the space-time finite elements method
was taken from [31].

In the case of the Euler beam, the nodal displacements are closely as-
sociated with the rotation angles. Hence, the velocity approximation in the
space-time finite element is given by the following formula
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v(x, t) = N1v1 +N2θ̇1 +N3v2 +N4θ̇2+N5v3 +N6θ̇3 +N7v4 +N8θ̇4. (3.26)

According to (3.26) we use a linear interpolation in time and 3rd order poly-
nomials in space

N1 =

(
1− 3

x2

b2
+ 2

x3

b3

)(
1−

t

h

)
, N5 =

(
1− 3

x2

b2
+ 2

x3

b3

)
t

h
,

N2 =

(
x− 2

x2

b
+
x3

b2

)(
1−

t

h

)
, N6 =

(
x− 2

x2

b
+
x3

b2

)
t

h
,

N3 =

(
3
x2

b2
− 2

x3

b3

)(
1−

t

h

)
, N7 =

(
3
x2

b2
− 2

x3

b3

)
t

h
,

N4 =

(
−
x2

b
+
x3

b2

)(
1−

t

h

)
, N8 =

(
−
x2

b
+
x3

b2

)
t

h
.

(3.27)

In order to determine the virtual energy we assume the virtual hat-shaped
function given by

v∗(x) =

[(
1− 3

x2

b2
+ 2

x3

b3

)
v3 +

(
x− 2

x2

b
+
x3

b2

)
θ̇3+

+

(
3
x2

b2
− 2

x3

b3

)
v4 +

(
−
x2

b
+
x3

b2

)
θ̇4

]
.

(3.28)

According to the classical energy minimisation on the basis of (3.26), (3.27)
and (3.28) we obtain the inertia matrix M, stiffness matrix K, vector of
nodal forces e and the moving gravity load P

M=
ρA

h




−13b
35 −11b2

210 − 9b
70

13b2

420

−11b2

210 − b3

105 −
13b2

420
b3

140

− 9b
70 −13b2

420 −13b
35

11b2

210

13b2

420
b3

140
11b2

210 − b3

105

∣∣∣∣∣∣∣∣∣∣∣∣

13b
35

11b2

210
9b
70 −13b2

420

11b2

210
b3

105
13b2

420 − b3

140

9b
70

13b2

420
13b
35 −11b2

210

−13b2

420 −
b3

140 −
11b2

210
b3

105



, (3.29)

K = EIh




4
b3

2
b2 − 4

b3
2
b2

2
b2

4
3b − 2

b2
2
3b

− 4
b3
− 2

b2
4
b3

− 2
b2

2
b2

2
3b − 2

b2
4
3b

∣∣∣∣∣∣∣∣∣∣∣

2
b3

1
b2 − 2

b3
1
b2

1
b2

2
3b − 1

b2
1
3b

− 2
b3
− 1

b2
2
b3

− 1
b2

1
b2

1
3b − 1

b2
2
3b



, (3.30)
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e = EI




12
b3

6
b2 −12

b3
6
b2

6
b2

4
b − 6

b2
2
b

−12
b3
− 6

b2
12
b3

− 6
b2

6
b2

2
b − 6

b2
4
b



w0, (3.31)

P =
mg

4b




[
4b2(2κ3 − 3κ2 + 1) + v

2h2(2κ − 1)
]
/b

[
12b2κ(κ2 − 2κ+ 1) + v

2h2(3κ− 2)
]
/3

−
[
4b2κ2(2κ− 3) + v

2h2(2κ − 1)
]
/b

[
12b2κ2(κ− 1) + v

2h2(3κ − 1)
]
/3



, (3.32)

where the parameter κ describes the position of the moving load. The sta-
tionary supports and dampers are added to the corresponding terms of the
diagonal of the global matrices Cg and Kg.

Although in our problem we have the stationary mesh, the mass trajec-
tory draws non-stationary line, and in the case of the accelerated motion,
a curved line in time space. The space-time finite element method seemed
to be efficient, while we fail with the semi-discrete methods. The space-time
interpolation of displacements and velocities of the mass position on the tra-
jectory, between two successive time points and also in spatial points, allowed
us to write and minimise the virtual energy contributed by the inertial par-
ticle in terms of nodal parameters of the spatial mesh and time coordinates.
We write derivatives with respect to spacial and time variables having clear
interpretation of all the resulting terms. The fundamental question was in
what time, initial, final, or intermediate in time interval the required terms
should be computed.

The computational scheme of the solution of the moving inertial point
problem requires modification of the global matrices describing our step-by-
step scheme. We must change not only the inertia matrix, but also matrices
that express damping-like and stiffness-like effects, as a result of the deriva-
tion of the particle trajectory in time and the vector of the right hand side
of the system of equations.

We assume a linear shape function of the velocity v in x and t

v(x, t) =
4∑

i=1

Ni(x, t) vi . (3.33)
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In the domain Ω= {(x, t): 0 ≤ x ≤ b, 0 ≤ t ≤ h} (Fig. 3.11), the matrix
shape function N has the following form

N =

[
1

bh
(x− b)(t− h) , −

1

bh
x(t− h) , −

1

bh
(x− b)t ,

1

bh
x t

]
. (3.34)
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Figure 3.11. Mass trajectory in space-time finite element.

The displacements are computed from the velocity equation by integrating
the velocity

w(x, t) = w(x, 0) +

t∫

0

(N1v1 + . . .+N4v4)dt = w(x, 0) +

t∫

0

Nv dt . (3.35)

Finally, we have

w(x, t) = w(x, 0)+
xt2

2bh
(v1−v2−v3+v4)+

xt

b
(−v1+v2)+

t2

2h
(−v1+v3)+v1t .

(3.36)
The derivative ∂w/∂x can also be computed

∂w

∂x
=

t2

2bh
(v1 − v2 − v3 + v4) +

t

b
(−v1 + v2) +

dw

dx

∣∣∣∣
t=0

. (3.37)

The last term of (3.37) denotes the initial strain ε0. The proper choice of
the virtual functions v∗ is a fundamental issue in the space-time approach.
Different functions result in solution schemes with different accuracy and
stability. In most cases we propose a simple form with distribution δ in
t = αh (Fig. 3.12)

v∗(x, t) = δ(t − αh)
[(

1−
x

b

)
v3 +

x

b
v4

]
. (3.38)
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Figure 3.12. Virtual delta function.

Other virtual shape functions in forms of a hat shape, triangle shape,
and roof shape are presented in [17].

The vertical point acceleration of the moving inertial particle is computed
from the displacement of the contact point determined on the supporting
structure w(f(t), t). f(t) is the position of the mass in time. We must
apply twice the chain rule of derivation in terms of time (see Eq. (3.18)).
Unfortunately, we can not adapt this formula to our discrete approach since
our interpolation functions must be differentiated twice. The increment of
time, dt, is in consequence the increment of the spatial coordinates x as well
as the time coordinates t, since space is associated with time by the mass
trajectory.

The virtual energy in the space-time domain Ω, describing a moving
material point, can be written in the following form

Πm =

h∫

0

b∫

0

v∗(x, t) · δ(x− f(t))m
d2w(f(t), t)

dt2
dx dt . (3.39)

In the domain Ω, we assume a linear distribution of the nodal velocity in
space x and time t (see (3.33) and (3.34)). In this case, it is impossible to
determine all parts of (3.18). Moreover, it is impossible to reduce the order
of the derivative as a result of integration by parts, due to the distribution in
(3.39). The Renaudot formula (3.18) can be written in the equivalent form

d2w(f(t), t)

dt2
= ∂v(x,t)

∂t

∣∣∣
x=f(t)

+ v
∂v(x,t)

∂x

∣∣∣
x=f(t)

+ v
d
dt

[
∂w(x,t)

∂x

∣∣∣
x=f(t)

]
+

+v̇
∂w(x,t)

∂x

∣∣∣
x=f(t)

. (3.40)
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According to (3.33) and (3.34) we obtain

∂v(x, t)

∂t
= −

1

h

(
1−

x

b

)
v1 −

1

h

x

b
v2 +

1

h

(
1−

x

b

)
v3 +

1

h

x

b
v4 , (3.41)

∂v(x, t)

∂x
= −

1

b

(
1−

t

h

)
v1 +

1

b

(
1−

t

h

)
v2 −

1

b

t

h
v3 +

1

b

t

h
v4. (3.42)

In the case of the third term of (3.40), we assume the backward difference
formula. We have then

d

dt

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]
=
1

h

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]t+h

−
1

h

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]t
. (3.43)

The upper indices indicate time at which the respective terms are defined.
Direct differentiation of Eq. (3.36) led to the rejection of the nodal forces
arising in the mass transition between elements.

At the time of transition of the moving load between the neighbouring
elements k and k + 1 (Fig. 3.13), the current displacements are calculated
for the element k + 1

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]t+h

=
1

b

(
wk+1
4 − wk+1

3

)
. (3.44)

t

x

h

b b
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s t
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Figure 3.13. The transition mass between elements.

The initial displacement in turn are computed in the element k

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]t
=

1

b

(
wk
2 − w

k
1

)
. (3.45)
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The lower indices indicate the numbers of nodes (Fig. 3.11). According
to (3.4), (3.44), and (3.45) the finite difference scheme (3.43) is written as
follows

d

dt

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]
=

1

bh

(
wk+1
2 − wk

2 − w
k+1
1 + wk

1

)
+

+
1

b

[
−βvk+1

1 + βvk+1
2 − (1− β)vk+1

3 + (1− β)vk+1
4

]
. (3.46)

The accurate solution is obtained with β = 1 − α [7]. Therefore, we can
write

d

dt

[
∂w(x, t)

∂x

∣∣∣∣
x=f(t)

]
=

1

bh

(
wk+1
2 − wk

2 − w
k+1
1 + wk

1

)
+

+
1

b

[
−(1− α)vk+1

1 + (1− α)vk+1
2 − αvk+1

3 + αvk+1
4

]
. (3.47)

In order to calculate the virtual energy describing the motion of a moving
inertial point (3.39), we assume a virtual delta function (Fig. 3.12) given
by (3.38). We can control the properties of the solution procedure with
the parameter α. By minimising the virtual energy Πm we obtain matrices
describing the inertial moving load

Mm =
m

h

[
−(1− κ)2 −κ(1− κ)

−κ(1− κ) −κ2

∣∣∣∣∣
(1− κ)2 κ(1− κ)

κ(1− κ) κ2

]
, (3.48)

Cm=
2mv

b

[
(κ− 1)(1 − α) (1− κ)(1− α)

−κ(1− α) κ(1 − α)

∣∣∣∣∣
(κ− 1)α (1− κ)α

−κα κα

]
, (3.49)

Km=
mv̇h

b

[
(1− κ)(α

2

2 − α) (κ− 1)(α
2

2 − α)

κ(α
2

2 − α) −κ(α
2

2 − α)

∣∣∣∣∣
(κ− 1)α

2

2 (1− κ)α
2

2

−κα2

2 κα2

2

]
, (3.50)

and

em =
mv

bh



(1− κ)

(
wk+1
2 − wk

2 − w
k+1
1 + wk

1

)

κ
(
wk+1
2 − wk

2 − w
k+1
1 + wk

1

)


+

+
mv̇

b

[
(1− κ)

(
wk
2 − w

k
1

)

κ
(
wk
2 − w

k
1

)
]
, (3.51)
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with the coefficient κ that describes the instantaneous position of the mass
in the element

κ =
f(αh)

b
, 0 < κ ≤ 1. (3.52)

According to the current position of the moving load the matrices (3.48) and
(3.49) fall into the appropriate cells of the global inertia and damping matri-
ces describing the whole structure. Algorithm 1 presents the computational
steps. The vector of nodal forces (3.51) calculated based on displacements
from the current and previous step increases the right hand side vector de-
scribing the external load, i.e., the gravitational moving load. The matrices
(3.48), (3.49), (3.50) and the vector (3.51) are originally developed by the
authors. These general characteristic matrices of finite elements carrying an
inertial particle can be applied directly to almost all types of structures.

3.2. The Shaft under the Harmonic Excitation

Torsional vibrations cause an expedited wear of bearings, material fatigue
and an increased risk of failure. They cause noise and excessive energy
consumption. The effective reduction of vibrations level below an accept-
able limit is the problem of special importance. Smart design of the ro-
tor allows to improve the exploitation conditions and to increase safety of
the devices. Dynamics of rotors and shaft is widely examined in literature
[26, 37, 67, 72, 76].

In practise, the detection and elimination of vibrations is difficult. The
machine should be re-designed or at least the use in the critical range of pa-
rameters should be reduced to a minimum. One of a few works devoted
to a rotor mechanical model [59] presents two different control schemes:
the on-off scheme and the feedback linearization scheme. It is shown that
a magneto-rheological damper can provide sufficient damping for ground res-
onance stabilization. Issues related to the discrete-continuous modelling and
the selection of the damping coefficient in rotating systems were presented
in [74, 86, 89]. In [36], the semi-active damping control of the torsional vi-
brations of a shaft was considered. Developed control strategy was verified
by using the magneto-rheological brake. The advantage of the semi-active
approach is evident when we consider the energy consumed by the dampers.
The piezoelectric system to active torsional vibrations control was also con-
sidered [70].
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Algorithm 1 Space–time element method applied to a Timoshenko beam.

1. Define geometric and material data, velocity v, length of the element
b, time step h, etc.

2. Compute element matrices of repeated structural elements and formu-
late global coefficient matrix.

3. Initialise the loop parameter the number of elements carrying the mass
ielrem = 1.

4. Perform computations of a single time step:

• Number of the current step it = 0, current time of the beginning
of the time interval t = 0.

• Number of the element carrying the load iel = INT(t ·v/b−eps)+
1, eps = 0.0001.

• Position of the mass on the element x0 = t · v − (iel − 1) · b,
parameter κ = (x0 + vαh)/b.

• Compute mass space–time element and load vector.

• Compute the nodal force vector of the mass element:
em = mv

bh (w
ielmem
r − wielmem

l − wielmem
r + wielmem

l ) (lower index
is left of right node of the element, upper index is number of
element; notice that iel = ielmem always except in the passage
from element to element.

• Formulate the system of algebraic equations.

• Solve the system of equations for velocities v (see (3.3))

• Compute displacements at time t+ h (see (3.4)).

• Compute nodal forces of the beam.

• Remember the number of the element ielrem = iel.

• Shift displacements and velocities: wi ← wi+1, vi ← vi+1.

5. Increment the time step.
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3.2.1. Mathematical Model

The analysis of vibrations for a longer time can only be performed stochas-
tically, i.e., assuming that the amplitudes achieve their extremal values not
in accordance with a smooth function of the initial conditions and mate-
rial parameters. Therefore, the deterministic way of investigation forces us
to perform analytical calculation at the first stage. This will facilitate the
estimation of the sensitivity of the structure to selected parameters.

The model of the shaft, however, will first be reduced to the shaft of
a uniform cross section, without concentrated masses placed on it [36]. Only
in such a case can we successfully carry out the mathematical analysis. First
we will consider the problem with an excitation applied to the point A and
with a single damper placed at the point B (Fig. 3.14).

A

f(t)

B
c
Id

L/4 L/2 L/4

Figure 3.14. Scheme of the problem for theoretical analysis.

We consider the hyperbolic differential Eq. (3.53) which describes the
motion of the rotating shaft. The second Eq. (3.54) describes the motion of
the damper. They are coupled at the point B:

−GI
∂2ϕ

∂x2
+ ρI

∂2ϕ

∂t2
+ δ(x − xB)c

(
∂ϕ

∂t
−
∂ϑ

∂t

)
= δ(x− xA) f(t) , (3.53)

Id
d2ϑ

dt2
+ c

(
dϑ

dt
−

dϕ

dt

)
= 0 . (3.54)

We assume the following boundary conditions:

ϕ′(0, t) = 0, ϕ′(L, t) = 0 . (3.55)

Here, ϕ(x, t) is the angular displacement in time t of the point x of the
shaft, ϑ is the angular displacement of the rotating disk of the damper with
inertia Id, and c is the damping coefficient. Two Dirac delta functions select
arguments at the point where the force is applied and at the point of the
damper. f(t) can be an arbitrary external load function. We assume it as
a harmonic function F sin(ωt).
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The closed solution of the above equation is complicated. We take two
ways to approximate the solution: an analytical solution with a one term
expansion of the Fourier series, and a semi-analytical solution with an n-
term expansion. The first solution allows us to examine features of the
solution and test its sensitivity to the parameters. The second one allows on
a quantitative investigation.

3.2.2. Analytical Solution

Now we will solve the system of differential Eqs. (3.53)–(3.55) with the an-
gular displacements ϕ as the unknown functions. We can apply the cosine
Fourier transformation

Φj(t) =

L∫

0

ϕ(x, t) cos
jπx

L
dx, (3.56)

where

ϕ(x, t) =
1

L
Φ0(t) +

2

L

n∑

j=1

Φj(t) cos
jπx

L
, (3.57)

which fulfils the boundary conditions. The number of terms is limited ac-
cording to the required accuracy. For the reason of simplicity, we limit the
solution to the first term of the series (3.57). The analytical solution allows
us to, first, determine the characteristic features of the solution, such as its
sensitivity to inertia and the damping of the damper, second, to compare
the solution with numerical results and estimate the accuracy of the result.
The equations of motion (3.53), (3.54) can be written in the form

ρIΦ̈0(t) +
c

L
Φ̇0(t)− cϑ̇(t) = F sin(ωt), (3.58)

Idϑ̈(t) + cϑ̇(t)−
c

L
Φ̇0(t) = 0. (3.59)

According to (3.58), the velocity of the oscillating mass is the following

ϑ̇(t) =
ρI

c
Φ̈0(t) +

1

L
Φ̇0(t)−

F

c
sin(ωt). (3.60)

Its acceleration equals to

ϑ̈(t) =
ρI

c
˙̈Φ0(t) +

1

L
Φ̈0(t)−

F

c
ω cos(ωt). (3.61)
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Now we will focus our attention on the vibration of the rotating shaft.
Substituting (3.60) and (3.61) into (3.59), we obtain the third order non-
homogeneous ordinary differential equation [36]

˙̈Φ0(t) + c

(
1

Id
+

1

ρIL

)
Φ̈0(t) =

Fω

ρI
cos(ωt) +

Fc

ρIId
sin(ωt) (3.62)

with zero initial conditions

Φ0(0) = 0 , Φ̇0(0) = 0 , Φ̈0(0) = 0. (3.63)

Let us consider the Laplace–Carson transformation [29, 92]

f̂(p) = p

∞∫

0

f(t) e−pt dt, (3.64)

and original

f(t) =
1

2πi

a+i∞∫

a−i∞

f̂(p)

p
etp dp. (3.65)

According to (3.64) the differential Eq. (3.62) can be written in algebraic
form

p3Φ̂0(p) + c

(
1

Id
+

1

ρIL

)
p2Φ̂0(p) =

Fω

ρI

p2

p2 + ω2
+

Fc

ρIId

ωp

p2 + ω2
. (3.66)

Here, the following notation was introduced:

β =
1

Id
+

1

ρIL
. (3.67)

After some rearrangement of the terms, we obtain

Φ̂0(p) =
Fω

ρI

1

p2 + ω2

1

p+ cβ
+
Fωc

ρIId

1

p2 + ω2

1

p(p+ cβ)
. (3.68)

In order to return to the time variable, the partial fraction decomposition
was used

1

(p2 + ω2)(p+ cβ)
≡
C1p+ C2

p2 + ω2
+

C3

p+ cβ
, (3.69)

1

p(p2 + ω2)(p+ cβ)
≡
D1

p
+
D2p+D3

p2 + ω2
+

D4

p+ cβ
. (3.70)
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The constants in (3.69) and (3.70) are

C1 =
−1

c2β2 + ω2
, C2 =

cβ

c2β2 + ω2
, C3 =

1

c2β2 + ω2
, (3.71)

D1 =
1

cβω2
, D2 =

−cβ

ω2(c2β2 + ω2)
,

D3 =
−1

c2β2 + ω2
, D4 =

−1

cβ(c2β2 + ω2)
.

(3.72)

Now by using (3.69)–(3.72) and (3.65), the equation (3.68) can be trans-
formed to time domain

Φ0(t) =
F

ρI

ω

c2β2 + ω2

[
c2β2 + ω2

Idβω2
t−

1

ω

(
1 +

c2β

Idω2

)
sin(ωt) +

+
c

ω2

(
β −

1

Id

)
(1− cos(ωt)) +

1

cβ

(
1−

1

Idβ

)(
1− e−cβt

)]
.

(3.73)

Finally, according to (3.57), the displacement including only the constant
term can be written

ϕ(t) =
1

L
Φ0(t). (3.74)

The solution is periodic. The displacements in time at the location of
the damper related to the motion of the centre of gravity, are depicted in
Fig. 3.15. The following data were assumed: ρI=1.6·10−6 kgm, Id=0.25
kgm2, L=1 m, F=100 Nm, ω=1s−1. Four values of the damping coefficient,
c=0.2, 0.5, 0.8, and 1.0 Nms, result in amplitudes of 1279, 893, 836, and
823 rad, respectively. We notice that the increase of the damping causes
a disproportionately slower decrease of the amplitudes of torsion. With in-
creasing damping, the mass of the damper starts to be firmly joined with
the shaft and vibrates in the same phase. The energy dissipation then is
significantly lower than in the case of out of phase vibrations. We will try
to choose the optimal c and, what is more important, in which time interval
of the single period of vibrations we should activate the dampers.



3.2 The Shaft under the Harmonic Excitation 117

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5  6

ϕ

time

c=0.2
c=0.5
c=0.8
c=1.0

Figure 3.15. Displacements in time in the case of various damping constants,
c=0.2, 0.5, 0.8, and 1.0 Nms.

3.2.3. Semi-analytical Solution and Numerical Model

The full expansion of (3.53) and (3.54) into infinite series is then limited to
n terms and finally results in the matrix differential equation
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Its solution requires time integration with zero initial conditions for the an-
gular displacement and its first time derivatives. The convergence is suffi-
cient, although it exhibits different magnitudes for the odd and even terms
(Fig. 3.16).
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Figure 3.16. Successive terms of the Fourier expansion (3.75).

The semi-analytical solution is accurate. Unfortunately, we can not eas-
ily modify our structure and its boundary conditions. The finite element
model is more practical. The numerical model always allows one to consider
a wide range of parameters and various excitation functions. That is why
in further control analysis we will use a space-time finite element approach.
The velocity variant was applied. The following notations were introduced

ϕ̇ = ξ, ϑ̇ = ζ. (3.76)

According to the equation of motion (3.53) and (3.54) the linear distribution
of angular velocities were assumed

ξ(x, t) =
4∑

i=1

Ni(x, t) ξi, (3.77)
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ζ(x, t) =

4∑

i=1

Ni(x, t) ζi, (3.78)

where the shape function N is given by (3.34). Adequate virtual functions
were applied

ξ∗(x, t) = δ(t− αh)
[(

1−
x

b

)
ξ3 +

x

b
ξ4

]
, (3.79)

ζ∗(x, t) = δ(t − αh)
[(

1−
x

b

)
ζ3 +

x

b
ζ4

]
. (3.80)

Finally, the virtual energy of the coupled rotating system (3.53) and (3.54)
can be written in the following form

Πξ =

h∫

0

b∫

0

ξ∗(x, t) ·

{
−GI

∂2ϕ

∂x2
+ ρI

∂ξ

∂t
+

+ δ(x− xB)c (ξ − ζ)− δ(x− xA) f(t)} dx dt,

(3.81)

Πζ =

h∫

0

b∫

0

ζ∗(x, t) ·

{
Id

dζ

dt
+ c (ζ − ξ)

}
dx dt. (3.82)

Minimisation of the virtual energy (3.81) results in matrices Ms, Cs, Ks,
Es describing the shaft and the external forces Fs. From (3.82) we obtain
matrices Md and Cd describing the attached system. Elemental matrices
and vectors are assembled in global system of equations.

The left and the right part of the stiffness matrix of the shaft are tri-
diagonal. The inertia matrix is a consequent one, i.e., computed taking into
account finite element space-time interpolation functions (shape functions).
No simple lumping was used. A small internal material damping is assumed.
In practise, for simplicity, we employ a damping proportional to the velocities
of angular deformations together with a numerical damping of the calculation
procedure. Since such a damping is low comparing with the damping of the
attached damper, we do not focus our attention on it.

3.3. Vibrations of the Sandwich Beam Induced

by the Initial Conditions

The dynamics of layered structures was extensively investigated for many
years. Pioneering work [55] refers to the transversal vibration of an in-
finitely long beam with the damping layer. In [27, 28] the longitudinal free
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vibrations of the finite three-layer beam with viscoelastic core were exam-
ined. Transversal oscillations of the sandwich beam of the finite length with
external force excitation was considered in [61]. In the significant part of the
later papers the identification of loss factor [75] or stability of the system
[54] is considered. In [21] a non-uniform shear stress variation across the
thickness of each layer was assumed. The analytical model that takes into
account the compressional vibration of the layered beam is shown in [84].
Attempts to describe sandwich beams with simple models were given in [6].
Large amplitudes of vibrations of sandwich structures, in nonlinear range
are investigated in [50, 56].

Theoretical analysis can not be performed for arbitrary structures with
required simplicity. For the analytical solution, we choose the simply sup-
ported beam as one of the most representative structures. The governing set
of differential equations for the vibrating sandwich beam is derived in [61].
The necessary assumptions and simplifications of the analytical model are
described below.

3.3.1. Mathematical Model

Let us consider a three-layered sandwich beam. Its cross-sectional geome-
try has the characteristic width b and the thicknesses of each layer is h1,
h2, and h3 (Fig. 3.17). Longitudinal displacements u in the x direction and
transversal displacements w in the z direction of the beam are taken into
account. The face-plates are assumed to be purely elastic, with Young mod-

Figure 3.17. Dimensions and coordinate system of a three-layered beam with the
viscoelastic core.
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ules E1 and E3, respectively. The core is linearly viscoelastic and defined
by the shear modulus G. The obtained mathematical model is the result
of some physically simplifying assumptions. The shear strains in the outer
layers and the stresses in the longitudinal direction in the core are neglected.
Moreover, the transversal direct strains in each layer is neglected as well,
so the displacements w of the entire cross-section of the beam are constant
(Fig. 3.18).

Figure 3.18. Displacements of a beam element (left), forces, moments and loads
acting on it (right).

The shear strain in the core is given by the formula

γ =
∂w

∂x
+
∂u

∂z
. (3.83)

The geometrical relationships in the deformed beam allows describing the
term ∂u/∂z by the displacement pattern u1, u3 and ∂w/∂x of the face plates

∂u

∂z
=

1

h2

[(
u1 +

h1
2

∂w

∂x

)
−

(
u3 −

h3
2

∂w

∂x

)]
. (3.84)

It should be mentioned that the applied dependency has certain restrictions
and is accurate for h2 tending to zero. Otherwise, for large h2, we should
expect some discrepancies between the computed results and the real motion.
By substituting Eq. (3.84) into Eq. (3.83), and after some rearrangements
we obtain

γ =
d

h2

∂w

∂x
+
u1 − u3
h2

, (3.85)

where d = (h1 + 2h2 + h3) /2 is the distance between the mid-planes of the
outer face plates. If we know the explicit form of γ, we can determine the
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shear force in the core. The shear forces in both remaining layers are also
computed. We assume zero longitudinal direct stress in the core

τ = G · γ. (3.86)

The total shear force consists of three main components. The shear force of
the upper beam and shear force on the lower beam (Fig. 3.18) are as follows

S1 = D1
∂3w

∂x3
, (3.87)

S3 = D3
∂3w

∂x3
(3.88)

and the force introduced by the core shear stress is

S2 = −τdb, (3.89)

where D1 and D3 are the flexural rigidities of the face layers.
The total force is the sum of above three forces

S = S1 + S2 + S3 = (D1 +D3)
∂3w

∂x3
−Gdb

[
d

h2

∂w

∂x
+
u1 − u3
h2

]
. (3.90)

The assumption that the transversal load is carried by the total shear force
p = ∂S/∂x on the section, after rearrangements gives the following formula

p = Dt
∂4w

∂x4
−G

d2b

h2

∂2w

∂x2
−G

db

h2

(
∂u1
∂x
−
∂u3
∂x

)
, (3.91)

where Dt = E1I1+E3I3 is the sum of the flexural rigidities of the upper and
lower face plates. I1 and I3 are the cross-sectional inertia moments of face
plates.

Let us denote the longitudinal force in the face plates P1 and P3. They
act in the midplane and are related to the longitudinal displacements by the
relations

P1 = E1h1b
∂u1
∂x

, (3.92)

and

P3 = E3h3b
∂u3
∂x

. (3.93)

The total longitudinal force along the section equals to 0, so P1 = −P3 and
hence we obtain the relation

∂u1
∂x

=
−E3h3
E1h1

∂u3
∂x

. (3.94)
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Considering the physical system we can write

E1h1u1 = −E3h3u3. (3.95)

Finally the Eq. (3.91) can be rewritten as

p = Dt
∂4w

∂x4
−
bGd2∂2w

h2∂x2
+
bGd

h2

(
E1h1 + E3h3

E1h1

)
∂u3
∂x

. (3.96)

The second equation coupling w and u3 is derived from the equilibrium of
the longitudinal forces on an infinitesimal element of the lower face

δP3 = −τδx. (3.97)

This equation assumes the equilibrium of the axial forces in the outer layer
and the longitudinal force resulting from the shear stress in the core. With
respect to the longitudinal force on the lower face plate, Eq. (3.97) can be
written in the following form

−τ = E3h3b
∂2u3
∂x2

. (3.98)

In order to determine the relationship between the longitudinal displace-
ments u1 and u3, and the relationship between their derivatives with respect
to x, the condition of zero axial force on the whole section was assumed

∂2u3
∂x2

−
G (E3h3 + E1h1)

E1h1h2E3h3b
u3 = −

Gd

h2E2h3b

∂w

∂x
. (3.99)

Finally, we obtain the couple of differential equations

∂4w

∂x4
− gY

∂2w

∂x2
+ g

db

Dt
E3h3

∂u3
∂x

=
p

Dt
, (3.100)

∂2u3
∂x2

−
g

b
u3 = −gY

Dt

E3h3b2d

∂w

∂x
, (3.101)

where

g =
G

h2

(
1

E1h1
+

1

E3h3

)
, (3.102)

Y =
d2b

Dt

E1h1E3h3
E1h1 +E3h3

, (3.103)

are the shear and stiffness parameters. This mathematical formulation is
used for the simply supported three-layered beam with a controllable core.
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3.3.2. Analytical Solution

Let us consider the simply supported three-layered beam of the mass density
µ and the length L, with point mass m placed in the middle of the struc-
ture. The examined sandwich beam is depicted in Fig. 3.19. The following

L

L/2

z,w

x,u

sandwich beam
m

Figure 3.19. Simply supported sandwich beam.

boundary conditions were assumed

w(0, t) = w(L, t) = 0, M(0, t) =M(L, t) = 0,

u′3(0, t) = u′3(L, t) = 0,
(3.104)

where the total bending moment of the sandwich beam model defined in the
previous section is given by the formula

M =M1 +M2 +M3 = Dt
∂2w

∂x2
+ E3h3db

∂u3
∂x

. (3.105)

Dt is the sum of the flexural rigidity of both face plates. Vibrations of
the beam are induced by the initial conditions. The structure is initially
deflected according to the formula

w0(x) = 4w̄0
x

L

(
1−

x

L

)
. (3.106)

Then the following initial conditions were assumed

w(x, 0) = w0(x) , ẇ(x, 0) = 0 , u3(x, 0) = 0. (3.107)

The motion equations of the sandwich beam from Fig. 3.19 are described
by Eqs. (3.100) and (3.101), where the transversal loading is written in the
following form

p = −µ
∂2w

∂t2
− δ

(
x−

L

2

)
m
∂2w

∂t2
. (3.108)
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Finally, the governing equations of considered problem take the form

∂4w

∂x4
− gY

∂2w

∂x2
+

g

αb

∂u3
∂x

+

[
µ

Dt
+ δ

(
x−

L

2

)
m

Dt

]
∂2w

∂t2
= 0,

∂2u3
∂x2

−
g

b
u3 + gY α

∂w

∂x
= 0.

(3.109)

The simplification of the above formula is enabled with the substitution

α =
Dt

E3h3db2
. (3.110)

The system of partial differential equations (3.109) can be solved by separa-
tion of variables. Transversal displacement is develop into the sine Fourier
series (3.1) (w → Uj) while the longitudinal displacement is develop into the
cosine Fourier series (3.56) (u3 → Vj). The series (3.2) and (3.57) satisfy
the boundary conditions (3.104). As a result of the Fourier transformation
of (3.109), we obtain

j4π4

L4
Uj(t) + gY

j2π2

L2
Uj(t)−

g

αb

jπ

L
Vj(t)+

µ

Dt
Üj(t)+

m

Dt
sin

jπ

2

∂2w

∂t2

∣∣∣∣
x=L

2

= 0,

−
j2π2

L2
Vj(t)−

g

b
Vj(t) + gY α

jπ

L
Uj(t) = 0.

(3.111)
According to (3.2) the acceleration of the concentrated mass m in the middle
of the beam is given by the series

∂2w

∂t2

∣∣∣∣
x=L

2

=
2

L

n∑

k=1

Ük(t) sin
kπ

2
. (3.112)

After rearrangement the set of Eqs. (3.111) can be written as one equation
dependent on Uj(t)

µ

Dt
Üj(t) +

2m

DtL
sin

jπ

2

n∑

k=1

Ük(t) sin
kπ

2
+ ω4

j

(
1 +

gY b

ω2
j b+ g

)
Uj(t) = 0,

(3.113)
where

ωj =
jπ

L
. (3.114)

The sine Fourier transformation (3.1) of initial condition of the sandwich
beam (3.106) is as follows

Uj =

L∫

0

w0(x) sin
jπx

L
dx = 8w̄0

L

j3π3
[
1− (−1)j

]
= Uj(0+). (3.115)
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The initial deflection of the beam is symmetrical, so the resulting series
contains zeros in even terms. The system of Eqs. (3.113) can be written in
a matrix form and solved numerically for unrestricted number of terms in
the solution. The following data was assumed

• length of the beam L = 2.88m,

• width of the beam b = 0.04m,

• thickness of the face plates h1 = h3=0.5·10−3 m

• thickness of the core h2=5·10−3 m

• cross-sectional inertia moment of the face plates I1=I3=0.42·10−12 m4,

• Young’s modulus of the face plates E1=E3=69GPa,

• shear modulus of the core G=45kPa,

• mass of the sandwich beam µ=0.33 kg/m,

• granulate mass m=0.74 kg,

• amplitude of the initial displacement w0=0.06m.

Figure 3.20 presents the solution of the problem for 1 and 10 terms of the sine
Fourier expansion (3.2). We see that the first single term gives us sufficiently
accurate results.

The closed analytical solution of (3.113) requires limiting to the first
term of the series (3.2). The resulting ordinary differential equation has the
following form

(
µ

Dt
+

2m

DtL

)
Ü1(t) + ω4

1

(
1 +

gY b

ω2
1b+ g

)
U1(t) = 0. (3.116)

After the Laplace-Carson transformation (3.64) we obtain

(
µ

Dt
+

2m

DtL

)
p2
[
Û1(p)− U1(0+)

]
+ ω4

1

(
1 +

gY b

ω2
1b+ g

)
Û1(p) = 0. (3.117)

The solution of the algebraic form (3.117) is given by the following formula

Û1(p) =
p2

p2 + β2
U1(0+), (3.118)
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Figure 3.20. Free vibration of the sandwich beam with 1 na 10 terms of the
Fourier expansion.

with the coefficient

β = ω2
1

√
DtL

µL+ 2m

(
1 +

gY b

ω2
1b+ g

)
. (3.119)

Now, Eq. (3.118) can be transformed back (3.65) to the time variable

U1(t) = U1(0+) cos βt. (3.120)

Finally, according to (3.2) the first term of transversal displacement can be
written in the following form

w(x, t) = 32w̄0
1

π3
cos βt sin

πx

L
. (3.121)

This formula is a base for our optimisation. The parameter β contains all the
material and geometrical data. We can now simply derive both the velocity
and acceleration of the layered structure.

3.4. The Structure Based on the Granular Material

There are many attempts to mathematical description of the mechanical
behaviour of bulk materials. Broad overview of the models for loose and
compacted granular materials is presented in books [66, 81]. However, rela-
tions between these models and the case when the state of granular material
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is dynamically switched between two unsteady states. The concept was in-
troduced and briefly characterised in the paper [19]. The rheological models
of granular conglomerates under partial vacuum were presented in [96]. Then
the rheological model was developed to six parameters. It reproduces well
the axial cyclic loading [97]. Nevertheless these models can not be directly
applied to sandwich beams.

This section deals with a sandwich beam comprising smart granular
structure. Mathematical model of the layered beam with the controllable
core is represented by a two degrees of freedom system with the Kelvin-Voigt
constitutive material with a controllable stiffness of a spring and a viscous
damper with variable coefficient.

3.4.1. Mathematical Model

Software packages like LMGC90, PFC3D or YADE are capable of modelling
collections of deformable or rigid particles with various shapes and sizes,
defining interaction laws (contact, friction, cohesion, fracture, wear, etc.)
including multiphysic coupling. However, at this point, an in-depth look on
the particle interactions in the granular structure encapsulated in an elastic
envelope would be a complex and time consuming issue. Such a meticulous
model would be impractical for the optimal control problem.

Let us consider two parallel cantilevers coupled by the dynamical system
at free ends. The length of both beams is L and the flexural stiffness is
EI. The conjugated dynamical system includes two point mass, a damper
and a spring. These mechanical elements were defined by the parameters
m, c and k. All the considered parameters are real numbers, greater than
zero. Generally, the vibrations of the system were described by the set of
the discrete-continuous equations of motion. In order to obtain a closed
analytical solution of the problem the inertia of the beams was neglected.
Moreover, the stiffness of each of the continuous beams is replaced by the
discrete spring. According to the scheme depicted in Fig. 3.21 the problem
was reduced to a two degrees of freedom system. The simplified problem
describes vibrations of the coupled ends of the beams. The transversal dis-
placements of each of them were described by the functions w1 and w2.

The partial differential equations describing the discrete-continuous case
are given as follows

EI w′′′′
1 = f1(x, t),

EI w′′′′
2 = f2(x, t),

(3.122)
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Figure 3.21. Phenomenological model of the two cantilever beams coupled with
the granular damping structure.

where

f1(x, t) = −δ(x− L) [mẅ1 + c (ẇ1 − ẇ2) + k (w1 − w2)] ,

f2(x, t) = −δ(x− L) [mẅ2 + c (ẇ2 − ẇ1) + k (w2 − w1)] .
(3.123)

Appropriate initial and boundary conditions are included as well.

In order to solve the discrete-continuous model with respective simplifica-
tions, the theory of distribution was applied. The properties of convolution
were used to calculate the reduced stiffness of the massless cantilever beam

w(x, t) = G(x, s) ∗ f(s, t) =

L∫

0

G(x, s)f(s, t)ds, (3.124)

where G(x, s) is the influence Green function, obtained by solving the basic
equation according to boundary conditions for the cantilever beam

wi(0, t) = w′
i(0, t) = w′′

i (L, t) = w′′′
i (L, t) = 0, i = 1, 2. (3.125)

The basic equation was established by replacing the right-hand side of
Eq. (3.122) by the Dirac’s delta δ(x−s). The solution of the complete equa-
tion is the convolution of the fundamental solution and the inhomogeneity
(3.123). Finally, according to Eq. (3.124) we obtain

mẅ1 + c (ẇ1 − ẇ2) + k (w1 − w2) +Kw1 = 0,

mẅ2 + c (ẇ2 − ẇ1) + k (w2 − w1) +Kw2 = 0,
(3.126)
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where

K =
3EI

L3
, K > 0, (3.127)

is the substitute stiffness of the beams in the simplified model. Vibrations
of the system (3.126) were induced by the initial conditions as follows

wi(0) = wi, ẇi(0) = ẇi, i = 1, 2. (3.128)

The simplified problem can be integrated in the analytical way.

3.4.2. Analytical Solution

The integral Laplace-Carson transformation (3.64) was applied in the solu-
tion of Eqs. (3.126). These equations can be solved algebraically. According
to initial conditions (3.128) the set of equations can be written in the follow-
ing form

(
ms2 + cs+ k +K

)
ŵ1(s)− (cs+ k)ŵ2(s) =

= ms [sw1(0+) + ẇ1(0+)]− cs [w2(0+)− w1(0+)] ,

(
ms2 + cs+ k +K

)
ŵ2(s)− (cs+ k)ŵ1(s) =

= ms [sw2(0+) + ẇ2(0+)] + cs [w2(0+)− w1(0+)] .

(3.129)

The solutions of the above set of equations describe the response of an indi-
vidual degrees of freedom. For the first degree of freedom we obtain

ŵ1(s) =
ms2

(
ms2 + cs + k +K

)
+ cs

(
ms2 +K

)

(ms2 + cs+ k +K)2 − (cs+ k)2
w1(0+) +

+
ms
(
ms2 + cs+ k +K

)

(ms2 + cs + k +K)2 − (cs+ k)2
ẇ1(0+) +

+
s (kms− cK)

(ms2 + cs + k +K)2 − (cs+ k)2
w2(0+) +

+
ms (cs+ k)

(ms2 + cs+ k +K)2 − (cs+ k)2
ẇ2(0+). (3.130)

To return to the time domain the inverse transformation (3.65) must be
performed. In order to perform the inverse Laplace-Carson transform we
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must apply the decomposition of the integrand into simple fractions. The
roots of the polynomial of the denominator of (3.130) are as follows

s1,2 = ±i

√
K

m
, s3,4 = −

c

m
±

√
c2 −m(K + 2k)

m
. (3.131)

Identification of the parameters of a granular material is restricted by the
condition

c2 −m(K + 2k) < 0. (3.132)

Finally, displacements of the first degree of freedom can be written in the
following form

w1(t) =
w1(0+) + w2(0+)

2
cos

(
t

√
K

m

)
+

+
ẇ1(0+) + ẇ2(0+)

2

√
m

K
sin

(
t

√
K

m

)
+

+exp
(
−
c

m
t
){w1(0+)− w2(0+)

2

[
cos
( η
m
t
)
+
c

η
sin
( η
m
t
)]

+

+
ẇ1(0+)− ẇ2(0+)

2

m

η
sin
( η
m
t
)}

, (3.133)

where

η =
√
m(K + 2k)− c2. (3.134)

According to (3.132) the parameter η is a real number and greater than zero.
For the second degree of freedom the displacement is given by the formula

w2(t) =
w1(0+) + w2(0+)

2
cos

(
t

√
K

m

)
+

+
ẇ1(0+) + ẇ2(0+)

2

√
m

K
sin

(
t

√
K

m

)
+

+exp
(
−
c

m
t
){w2(0+)− w1(0+)

2

[
cos
( η
m
t
)
+
c

η
sin
( η
m
t
)]

+

+
ẇ2(0+)− ẇ1(0+)

2

m

η
sin
( η
m
t
)}

. (3.135)
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In order to illustrate the result (3.135) the simple calculation was per-
formed. Let us assume the following data: K = 0.23 N/m, m = 0.18 kg,
c = 0.031 Ns/m and k = 8.7 N/m, which fulfil the condition (3.132). The
following initial conditions for both degrees of freedom were taken into ac-
count w1(0+) = 0.09 m, w2(0+) = 0.03 m and ẇ1(0+) = ẇ2(0+) = 0. The
displacements in time of the 1st and the 2nd degree of freedom were depicted
in Fig. 3.22.
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Figure 3.22. Displacements in time of the 1st and the 2nd degrees of freedom.

The closed solutions for particular degrees of freedom (Eqs. (3.133) and
(3.135)) allow us to derive the formulas for the velocities and accelerations.
We know the state of the structure at the selected time without solution of
the entire problem. It allows us to elaborate the efficient semi-active control
strategy of the damping parameter c and stiffness k.
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Chapter4

Optimal Control for Vibrating

Mechanical Systems

The study of optimal control problems goes back to 1950s. In that time, two
important advances were made. One was Bellman’s Principle of Optimal-
ity and the corresponding Dynamic Programming, formulated by Richard
Bellman in 1957 [5]. Dynamic Programming is a procedure that reduces the
search for the optimal control to finding the solution of a partial differential
equation (the Hamilton–Jacobi–Bellman Equation) [52]. The other was the
Maximum Principle formulated by Pontryagin in 1962 [40]. The Maximum
Principle is a set of necessary conditions for a control function to be optimal.
Based on these theories, numerous computational methods were developed
during 1960s and 1970s [10] and put into practice in various engineering
applications.

In this chapter, the fundamental optimal control techniques in applica-
tion to vibrating mechanical systems will be studied. At first, we will give
a brief state of the art on active and semi-active control methods. Next,
a general finite horizon optimal control problem will be formulated. Basic
solution properties and the necessary optimality condition will be given. In
the sequel, we will direct our focus toward the problems related to the sys-
tems controlled by means of the smart materials. Regarding mathematical
structures of such systems, these problems will be classified as the optimal
control problems for bilinear systems. We will demonstrate in details the so-
lution methods supported with several examples for semi-active oscillators.
The presented methodology will be brought into vibrating structures within
the next chapter.
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4.1. State of the Art

One of the first concept of the semi-active control in mechanical systems was
proposed by Karnopp, Crosby and Harwood. In the work [23] they presented
the idea of active suppression of the oscillator with one degree of freedom,
moving upon uneven ground. The algorithm developed by the authors –
Skyhook – is today one of the most widely used in suspension control systems
for vehicles. The idea was designed to improve comfort of passengers. One
of the most popular issues, in which the Skyhook is applied, is the oscillator
problem. The extensive results are demonstrated in the following papers
[12, 20]. In some recent works, the variable dampers are incorporated also
for seismic isolation. This approach is presented in the papers [45, 53]. In
[19], the authors propose to control both parameters, stiffness and damping.
Control decision led to maximum dissipation of energy. In general, a decrease
in vibration amplitude was to be achieved.

The problem of reducing beam vibrations via active control methods is
also widely considered in literature. For details see, for example, [18]. An
active constrained layer is applied in the approach presented in the work [4].
A beam subjected to a harmonic load was also controlled by an active method
in [37]. The analysis in the frequency domain allowed the authors to reduce
the maximum amplitudes. The actively controlled string system was consid-
ered in [51]. The problem of optimal design of structures with active support
is analyzed in the paper [7]. The approach presented by the authors provides
a useful tool for the determination of the number, positions and generalised
forces of actuators. They considered two different cases with fixed and vary-
ing load, respectively. They concluded that application of the active support
essentially changes the structure response and enables significant increase of
structure stiffness or decrease of maximal deflection. To the active meth-
ods in structural control we can also include the track shape control. Pawel
Flont and Jan Holnicki-Szulc developed the approach that uses active smart
sleepers. These smart sleepers are equipped with actuators that enable the
track to shift up and down. The results are presented in details in the paper
[17]. The objective was to minimise total track deflection.

Semi-active systems have also found numerous applications in structures
subjected to seismic excitation. The works that should be mentioned here
are: [47, 53]. The task for semi-active control system is to stabilize system
when lost the equilibrium state. Solutions are obtained by minimization of
the cost function determined on the infinite time interval. This refers to the
Linear Quadratic Regulation method (LQR). It should be mentioned here
the lack of mathematical precision in formulating and solving the minimi-
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sation task in that way. The LQR method can not be directly used in the
case of bilinear systems. The problem lies within the directions of damp-
ing forces acting on the structure. These directions strictly depend on the
velocities of the vibration. Thus, for some time intervals there is no possi-
bility to generate the desired controls that result from the LQR. In terms of
mechanical systems the LQR method is dedicated to active control systems
and can not be directly used in case of parametric control problems. How-
ever, Mohler developed the iterative method which is analogous to the LQR,
but applied for bilinear systems. This method is presented in details in his
work [31]. Another approach is to derive the switching rules using Lyapunov
stability theory. Methods based on the so-called optimal Lyapunov func-
tions [33] deserve a special attention here. The switched input trajectories
can drive the system to the equilibrium point. The energy of the system in
those cases corresponds to the exponential function with the maximum rate
of convergence.

Problems of vibration control are also widely considered in the robotic
systems. Technological processes aided manipulators require high accuracy,
without sacrificing production rate. The large inertia of the effectors and
the object of manipulation may cause significant errors in the desired tra-
jectory. Active control methods implemented in the state feedback loops,
allows to compensate these errors. The application of PD regulators were
proposed, among others, by Choura and Yigit in the paper [13]. The method
based on the concept of “H-infinity” and fuzzy logic was presented by Yang
and Kim [35]. Kang and Mills used the piezoelectric layers as sensors and
actuators [22].

Most of the active and semi-active methods that have been developed
lead to feedback controls determined by state-space measures. In the case
of the distributed parameter systems, such an approach is typically complex
due to observer design. The alternative method is pre-computed open-loop
control. This is particularly useful in problems with a well-defined excitation.
In linear mechanical systems, semi-active control methods usually result in
switching operations, where the parameters to be controlled (damping, stiff-
ness) are switched between two or more values. The switching conditions are
based on state or time events. Optimally switched linear systems are widely
considered in literature. Interesting results may be found, for example, in
the paper [14].

Intensive studies on the semi-active control of systems represented by
Partial Differential Equations (PDE) have opened a lot of unsolved problems.
One of them occurs if the cost function is limited to a fixed period of time.
The switching scheme for control is given in implicit form and it depends
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on state and adjoint state variables. Solving the corresponding Two-Point
Boundary Value Problem is time consuming and in general difficult to solve
in the case of multidimensional problem. Another unsolvable problem that
occurs in the case of systems described by PDE is stability of a switched
system. The asymptotic stability of a switched system can be proven in the
simplest cases only. The extensive research on these problems was treated in
terms of the Lie algebra and it was done by Liberzon et al. in the following
works [27, 28].

The early idea of the semi-active control of one-dimensional continuum
under a travelling load was presented in [6]. The extension of the idea was
reported in the work [38]. The span was supported by a set of dampers placed
on the rigid base. Open loop control of damping parameters allowed us to
actively reduce the deflection of a string or a beam supporting a traveling
load. The control of beam vibrations exhibited a significantly higher control
efficiency than in the case of a string.

The idea of straight-line passage is based on the principle of a two-sided
lever. The first part of the beam which is subjected to a moving load is
supported by semi-active damper placed on the rigid base (see Fig. 4.1b).
The first damper is active while the second is passive. At this stage, a part of
the beam is turned around its centre of gravity, levering the right hand part
with a passive damper attached. The temporal increment of displacements
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Figure 4.1. The idea of passive (a) and semi-active (b) control of a beam deflection
under a travelling load.
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on the right hand part of the beam enables us to exploit it during the second
stage of passage.

Technical difficulties with the rigid support of the bottom parts of dampers
require new, more practical solutions. Dampers are supported with an elastic
string or bar system. However, the elastic support reduces the efficiency of
the performance and also involves technological problems. In the paper [39],
a new and significantly more efficient idea presented in Fig. 4.2a is consid-
ered. The main stiff simply-supported beam is covered by a supplementary
beam, joined to the main beam by a set of controlled dampers. This up-
per beam can be assumed as a simply supported as well, since this type of
boundary condition can be implemented in a natural way. Such a modifica-
tion does not require the rigid base and it can be easily incorporated into
existent guideways (see Fig. 4.2b). We assume the upper beam as signifi-
cantly less rigid than the main lower beam. We must emphasize here that
a desired dynamic effect is obtained from the relative transverse velocity of
both lower and upper beams. Let us consider the second stage of the motion
depicted in Fig. 4.2a. The upper beam subjected to a force is deflected. At
the same time, the velocity of the lower beam allows to lever the joining
damper and effectively support the upper beam. The relative velocity of
both lower and upper beam enable us to design the efficient control for the
straight line passage. The dynamic response of a double-beam system tra-
versed by a constant moving load was studied in [1]. The authors explored
the effects of the moving speed of the load and the damping and stiffness of
the viscoelastic layer on the deflections of the beams.

a) b)

Figure 4.2. Semi-active linear guideway: a) principle of acting, b) real view.



144 4 Optimal Control for Vibrating Mechanical Systems

4.2. Finite Horizon Optimal Control Problem

Most of the optimal processes in mechanical systems are performed by re-
solving the finite time horizon optimal control problems. These problems
are repeated sequentially and the solutions are implemented through the
receding horizon scheme (briefly presented in Subsec. 4.5). This technique
enables to take into account change of both, model parameters and boundary
conditions. Since the control inputs are bounded (the bounds are charac-
terised by the specification of the actuators and the controlled dampers),
the system is not fully controllable, and thus the optimal control problems
are formulated with free-endpoint state. The methodology presented in this
chapter is based on the assumption that a mechanical system is described
by a set of the first order Ordinary Differential Equations (ODE). For the
distributed parameter systems, the ODE representation is derived according
to the methods presented within the previous chapter.

Throughout this chapter, we will use the following notation:

x = [x1(t), x2(t), ..., xn(t)]
⊺ ∈ R

n – state of the system with the initial state
x(0) = x0 (in the numerical examples, the state will be represented by the
vector y),

u = [u1(t), u2(t), ..., um(t)]⊺ ∈ U ⊂ R
m – set of bounded controlled inputs,

where U is the set of admissible controls,

f(x, u) – a continuous function describing the system dynamics,

f0(x, u) – a continuous function describing the control objective,

J – objective function.

Consider a dynamical system represented by

ẋ(t) = f(x(t), u(t)) , x(0) = x0, u ∈ U . (4.1)

The free-endpoint finite time horizon optimal control problem is formulated
as follows

Problem 4.1 Finite time horizon optimal control problem

Find u∗ = argminu∈U J =

tf∫

0

f0(x, u)dt

under ẋ(t) = f(x(t), u(t)) , x(0) = x0 .

(4.2)
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Here the set U is bounded by the minimum and maximum admissible values
(umin and umax) related to the specification of the controlling device. In the
case of the active control, the bounds are usually symmetrical, i.e., −umin =
umax. For the semi-active systems, both values are non-negative. The time
horizon tf can take into account the whole process or the cycle time, if the
process is periodic.

For the objective function, the most common in use are based on the
following norms:

f0(x, u) = ||x||
2
Q = x⊺Qx – with positive semi-definite matrix Q, if the goal

is to minimize the vibration levels,

f0(x, u) = ||x− xd||
2 – if the goal is to track a desired trajectory xd.

The existence of the optimal control u∗ can be verified by means of the
classical Weierstrass Theorem [49]. The theorem states that any continuous
function described on a compact domain takes its minimum and maximum
value. For the Problem 4.1, the existence of the minimizer u∗ is not fully
provided by the continuity of J and the compactness of U . Instead of the
compactness of U , it is required that compact is the set of points reachable
from x0 using controls that take values in U [26]. For nonlinear systems,
explicit computation of reachable sets is usually not feasible. Instead, we
can rely on the Filippov’s theorem [16] which states that the reachable set
for (4.1) is compact if the set {f(x, u) : u ∈ U} is compact and convex.

4.2.1. First Order Necessary Optimality Condition

In this section, we will derive the first order necessary optimality condition
for the Problem 4.1. The derivation will be carried out by using the calculus
of variations. In the sequel, the definition of the functional derivative will
be given. Based on the functional derivative, the steepest descent method
to determine the optimiser u∗ will be presented.

Let us consider the function J as defined in (4.2). For every control u,
we have:

J(u+ δu)− J(u) = δJ(u)δu + rJ(u, δu) . (4.3)

Here, δu and δJ stands for the first variation of control and objective func-
tion, respectively, and rJ(u, δu) = o(δu), i.e.: rJ(u, δu)/‖δu‖→0 as ‖δu‖→0.
The first order necessary condition for optimality of u = u∗ is that the first
variation of the objective function is equal to zero

δJ(u) = 0 . (4.4)
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To represent the condition (4.4) for the Problem 4.1, we first introduce the
adjoint state p, and then rewrite the objective function as follows

J =

tf∫

0

(f0 + p⊺ (ẋ− f)) dt , (4.5)

Next, we introduce the Hamiltonian of the following form

H(x, p, u) = p⊺ f(x, u)− f0(x, u) . (4.6)

Then, the objective function is represented by:

J =

tf∫

0

(p⊺ẋ−H) dt . (4.7)

Infinitesimal change δu causes the variations of the functions δx, δẋ, δp.
This results in the following increment of the objective function

δJ δu=

tf∫

0

{
−
∂H

∂u
δu−

(
∂H

∂x

)
⊺

δx+ p⊺δẋ+

(
ẋ−

∂H

∂p

)
⊺

δp

}
dt. (4.8)

Since
∂H

∂p
= f(x, u) , (4.9)

the last term in (4.8) vanishes. Now, under the assumption

δẋ =
d

dt
(δx) , (4.10)

the integration by parts yields

δJ δu =

tf∫

0

−
∂H

∂u
δudt−

tf∫

0

(
ṗ+

∂H

∂x

)
⊺

δx dt+ [p⊺δx]
tf
0 . (4.11)

Respecting the fact that the state trajectory is fixed at the boundary condi-
tion, i.e.: δx(0) = 0 and by setting

ṗ = −
∂H

∂x
, p(tf ) = 0 , (4.12)
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we finally get

δJ δu =

tf∫

0

−
∂H

∂u
δudt . (4.13)

Summarising, the first order necessary optimality condition for the Problem
4.1 is written as follows

∂H

∂u
= 0 , H = p⊺ f − f0 ,

ẋ =
∂H

∂p
, x(0) = x0 ,

ṗ = −
∂H

∂x
p(tf ) = 0 .

(4.14)

The condition (4.14) can be effectively used only in the cases where the
Problem 4.1 is stated with H being smooth enough, i.e. where ∂H/∂u = 0
leads to a control that is explicitly given as a function of state and/or adjoint
state. The example of such a case is the Linear Quadratic Regulator prob-
lem, briefly studied in the next section. For more general optimal control
problems, one should consider a generalized necessary optimality condition
formulated by Pontryagin [40].

Theorem 4.2.1 Pontryagin Maximum Principle, L. S. Pontryagin,

1962.
Assume u∗ is optimal control and x∗ is the corresponding trajectory. Then,
there exists a function p∗ such that

ẋ∗ =
∂H

∂p
, (4.15)

ṗ∗ = −
∂H

∂x
, (4.16)

and

H(x∗, p∗, u∗) = max
u∈U

H(x∗, p∗, u) , t ∈ [0, tf ] . (4.17)

In addition,

the mapping t→ H(x∗, p∗, u∗) is constant. (4.18)

Finally, we have the terminal condition

p∗(tf ) = 0 . (4.19)

For proofs see, for example, [2, 15, 29].
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4.2.2. Solution Methods

As demonstrated in (4.14), the optimality condition consists of the Two
Point Boundary Value Problem. To solve this problem, the shooting [48]
and the relaxation [41] methods can be applied. In the shooting method, the
idea would be to find the initial condition for the adjoint state such that its
terminal condition if fulfilled. The usual methods for finding roots may be
employed here, such as the bisection method or the Newton’s method. Relax-
ation method implements another approach. The time domain is represented
as a set of points creating mesh. The dynamical equations are transformed
into the finite difference equations. An iterative procedure is adjusting all
the state and adjoint state values on the mesh to bring them into succes-
sively closer agreement with the finite-difference equations together with the
boundary conditions. In many cases, shooting and relaxation methods are
combined together. Both methods exhibit good performance in the case of
low dimensional problems excluding solutions that are highly oscillatory or
not smooth.

To solve the necessary optimality condition, we can also employ a wide
range of gradient based methods. Below, we will give a solution procedure
based on the method of steepest descent. Before we do it, we will now define
the gradient for the Problem 4.1. From (4.13) we have

δJ =

tf∫

0

−
∂H

∂u
dt . (4.20)

The first variation δJ is the quantity that carries the information on how
the function changes, when the whole control trajectory changes by a small
amount. To derive the gradient, we need to extract the information on how
the functional changes, when the control value at any given time τ ∈ [0, tf ]
changes by a small amount. The gradient corresponding to time τ denoted
by ∇u(τ)J can be computed as follows

∇u(τ)J =

tf∫

0

−
∂H

∂u
δ(t− τ)dt . (4.21)

Here δ(·) is the Dirac delta function. From (4.21), we conclude that

∇u(τ)J = −
∂H

∂u

∣∣∣∣
t=τ

. (4.22)
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To solve the Problem 4.1, one can follow the following steps

Procedure 4.1 Steepest descent method for the Problem 4.1

Step 1 Initialize: u∗ = uini and assume ǫ as small positive number.

Step 2 Solve the state Eq. (4.1) by substituting: u = u∗.

Step 3 Solve the adjoint state Eq. (4.12) by backward integration. Use
u = u∗ and the corresponding state.

Step 4 Compute the descent directions: −∇uJ = ∂H
∂u

∣∣
t=τ

.

Step 5 Update the control values: u∗(τ) = u∗(τ)− λ∇u(τ)J . Here the
step size λ > 0 is taken such to provide that u∗ ∈ U . Optionally
perform the line search by solving the problem:
λ∗ = argminλ J(u

∗(τ)− λ∇u(τ)J) and update the control values
by setting λ = λ∗.

Step 6 Repeat Steps 2–5 until the terminal condition is met:
||∇u(τ)J || < ǫ.

The necessary optimality condition results in u∗ being a local minimizer.
If the structure of the objective J is not well identified, then it may be es-
sential to run the Procedure 4.1 under different initial control guesses. That
test is commonly used to justify whether the solution is global or only local
minimizer. To guarantee that the necessary condition results in a global min-
imizer, one should consider a convex objective J over a convex set U . A typ-
ical example of a convex optimal control problem is the Linear Quadratic
Regulator problem. Its finite time horizon version is stated as follows

Problem 4.2 Finite horizon Linear Quadratic Regulator

problem

Find u∗ = argmin J =
1

2

tf∫

0

x⊺Qx+ u⊺Rudt

under ẋ = Ax+Bu , x(0) = x0 .

(4.23)

Here the set of admissible control is unbounded, the symmetric matrices Q
and R are assumed to be positive semi-definite and positive definite, respec-
tively. The necessary optimality condition (4.14) results as follows:
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u = R−1B⊺ p ,

ẋ = Ax+Bu , x(0) = x0 ,

ṗ = −A⊺p+Qx , p(tf ) = 0 .

(4.24)

By defining K(t) : K(tf ) = 0 and setting

p(t) = −K(t)x(t) , for all t ∈ [0, tf ] , (4.25)

the adjoint state equation takes the form

ṗ = A⊺K x+Qx . (4.26)

The control is rewritten as

u = −R−1B⊺K x . (4.27)

From (4.25) we know that

ṗ = −K̇x−Kẋ . (4.28)

Combining (4.26), (4.28), the state equation and (4.27), we can compute the
matrix K by backward integration of

A⊺K +K A−KBR−1B⊺K +Q = −K̇ , K(tf ) = 0 , (4.29)

referred as the Riccati differential equation. Identical result can be derived
by using Bellman’s Principle of Optimality (see, for instance, [15]).

4.3. Optimal Control Problem for Switched Systems

Wide group of controlled vibrating systems can be described by switched
systems. As an example, we can consider a structure equipped with smart
materials allowing for change of the damping or stiffness parameter between
a finite set of values. Each change results in the switch of the right hand side
of the system dynamics (4.1). In this section, we will discuss the finite horizon
problem under the governing equation given as a discrete time switched
dynamical system. We will discuss solution methodology with the emphasis
on the computational difficulties, due to the switching system structure.
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The finite time horizon optimal control problem for a switched system can
be written as follows

Problem 4.3 Finite horizon optimal control problem for

switched system

Find u∗ = argminu∈U J =

k=tf∑

k=0

f0(x(k), u(k))∆t

under x(k + 1) = x(k) + ∆t fs(x(k), u(k), k) , x(0) = x0 .

(4.30)

Here fs is a switched function (s represents a switched parameter) that
appears in the number of modes that results from all admissible values of
the switched parameter. For simplicity, let us assume that the governing
equation is given in the autonomous form, i.e., its right hand side function
does not depend explicitly on time. This form can be derived by extending
the state vector with the component representing time, i.e., by introducing

xext(k + 1) = xext(k) + 1 , xext(0) = 0 . (4.31)

Then, the boundary conditions being represented by time series can be ap-
proximated by relevant functions of this state component. By using the
extended state vector x̄ = [x, xext]

⊺ and the extended right hand side func-
tion f̄s = [fs, 1]

⊺, we can rewrite the dynamical equation in the Problem 4.3
as follows

x̄(k + 1) = x̄(k) + ∆t f̄s(x̄(k), u(k)) , x̄(k = 0) = [x0, 0]
⊺ . (4.32)

There exists a variety of methods for solving the problems of optimal con-
trol of switched systems. Some of them can be applied to generally stated
problems like the Problem 4.3, but the most efficient are those dedicated
to certain groups of problems, where, for instance, a sequence of switched
modes does not depend on the control decision and can be precisely identi-
fied. Several computational algorithms for optimization of continuous time
switched systems are compared in [9]. A general study on the existence
of optimal control for switched systems is presented in [8]. Depending on
the length of the time horizon and the expected system behaviour, one can
adopt a relevant switched system optimization techniques. For the system
where the switched parameter is not a decision parameter (it depends on the
state and the control), the methods based on the Maximum Principle (for
example, [36] and [50]) can be employed. For more general problems of opti-
mal control of switched systems (under non-determined switching sequence)
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a suboptimal solution was proposed in [46]. In the case of piecewise-affine
systems and quadratic objective functions, the method based on solving
the Hamilton-Jacobi-Bellman equation was developed in [44]. In the most
general cases, an optimal control problem for a switched system can be for-
mulated as a mixed-integer programming problem [34].

4.4. Distributed Optimal Control via Nash Games

In recent years, distributed controllers have attracted a special attention
from the practising engineers. A good number of mechanical systems can be
represented as a set of modules. The functionality and incorporated compu-
tational procedures for every module is the same. It computes its optimal
decision by using local state information and necessary information arriving
from other controllers. The global time consuming optimisation problem is
then divided into local problems of reduced size that can be solved on-line.
Modular control architectures are very convenient for system assembling and
maintenance. In the case of a failure, only the malfunctioning module needs
to be replaced. In addition, a decentralisation plays an important role for
safety. Suppose a malfunction of the central computer computing the opti-
mal decision for every controller. An incorrect signal is then sent to whole
control system that may drive the structure to dangerous states. In dis-
tributed control architectures, this risk is reduced to local failures.

In this section, we will formulate a non-cooperative Nash game problem.
The goal is to demonstrate that for a wide group of mechanical systems
this formulation allows on solving an optimisation problem in a distributed
manner. In particular, the Nash game approach can be effectively applied
to the systems exhibiting wave-like solutions, for instance, vibrating strings.
For such systems, we can define a set of interconnected subsystems (that,
for instance, may be related to controlled string sections) that are involved
in the Nash game problem. A consensus set of optimal decisions taken by
each of the subsystems is the solution of the Nash game, and it is referred
as the Nash equilibrium. A distributed controller’s architecture required for
solving the Nash game problem is strictly dependent on the system inter-
connectivity that may be represented by graph. In this section, we will be
particularly interested in the systems that are interconnected through the
line graphs that represent a wide class of the systems governed by partial
differential equations of hyperbolic type.
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Let us consider again the Problem 4.1 . In the general case, where the ob-
jective function depends on the whole state vector and the system dynamics
is not separable, the solution is performed through a centralised controller’s
architecture. By using decomposition methods, the problem can be solved
in a distributed manner only under some special structures of the system
and the objective function (see, for example, [42] and [43]). An alternative
method for distributed optimisation is to solve a corresponding Nash game
discussed below.

Let us consider a set of subsystems {Sj}, each with one control input uj
and its controllable state vector xj . For each of the subsystems we associate
the objective Jj . The subsystems are interconnected, and thus Jj may be
also affected by some of the other control inputs. Consider the system inter-
connected according to the directed graph as depicted in Fig. 4.3. An arrow
from Si to Sj indicates that subsystem Si affects subsystem Sj. In this case,
we have the following objective dependencies

J1(u1), J2(u2,

u
−2︷ ︸︸ ︷

{u1, u3, u4}), J3(u3,

u
−3︷ ︸︸ ︷

{u1, u4}), J4(u4,

u
−4︷ ︸︸ ︷

{u1, u3}) . (4.33)

Here by u−j we denote the set of control decisions except uj that affects
the objective Jj . Note that ui ∈ u−j, if there is a directed path from Si to
Sj in the interconnectivity graph. Under the introduced setting, the non-
cooperative Nash game problem is stated as follows.

S1 S2 S3

S4

Figure 4.3. A generic interconnectivity graph. An arrow from Si to Sj indicates
that subsystem Si affects subsystem Sj .

Problem 4.4 Non-cooperative Nash game

Find {u∗j} such that ∀j : u∗j = argmin Jj(uj , u
∗
−j) . (4.34)

The set of decisions {u∗j} is called the Nash Equilibrium and this is the
strategy such that no unilateral deviation in decision by any single player
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is profitable for that player. For extensive studies on the Nash equilibrium
solution concept a reader is refereed to [3]. To guarantee that the Nash
equilibrium exists, every objective function Jj needs to be continuous in all
its arguments and strictly convex in uj .

To demonstrate that the Nash equilibrium search for the system repre-
sented by Fig. 4.3 can be resolved in a distributed manner, let us now write
the solution procedure:

Procedure 4.2 Solution of the Nash game for the system

depicted in Fig. 4.3

Step 1 Guess u∗4 and assume ǫ2, ǫ3, ǫ4 as small positive numbers.

Step 2 Find u∗1 = argmin J1(u1) and send the solution to S2 and S4.
S4 conveys the solution to S3.

Step 3 Find u∗3 = argmin J3(u3, {u
∗
1, u

∗
4}) and send the solution to S2

and S4.

Step 4 Find u∗2 = argmin J2(u2, {u
∗
1, u

∗
3, u

∗
4}).

Step 5 Find u∗4 = argmin J4(u4, {u
∗
1, u

∗
3}) and send the solution to S3.

S3 conveys the solution to S2.

Step 6 Repeat Steps 3–5 until ∆‖J2‖ < ǫ2, ∆‖J3‖ < ǫ3 , ∆‖J4‖ < ǫ4
(∆‖Jj‖ stands for incremental change of norm of the objective
function Jj).

The communication required to perform the Procedure 4.2 is that of sending
and conveying the optimal decisions in the Steps 2, 3 and 5. It is easy to
verify that the topology of this communication follows the system intercon-
nectivity.

Let us now consider the systems, where the interconnectivity is repre-
sented by the line graphs as shown in Fig. 4.4. In these cases, we have the
following objective dependencies

case a: J1(u1) , J2(u2,

u
−2︷︸︸︷
{u1}) , J3(u3,

u
−3︷ ︸︸ ︷

{u1, u2}) , J4(u4,

u
−4︷ ︸︸ ︷

{u1, u2, u3}) ,

case b: J1(u1) , J2(u2,

u
−2︷ ︸︸ ︷

{u1, u3, u4}) , J3(u3,

u
−3︷ ︸︸ ︷

{u1, u2, u4}) , J4(u4) .

(4.35)
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a

b S1 S2 S3 S4

S1 S2 S3 S4

Figure 4.4. Line graphs representing system interconnectivity. An arrow from Si

to Sj indicates that subsystem Si affects subsystem Sj .

To solve the corresponding Nash games, one can execute the following pro-
cedures

Procedure 4.3a Solution of the Nash game for the system

depicted in Fig. 4.4a

Step 1 Find u∗1 = argmin J1(u1) and send the solution to S2. S2 conveys
the solution to S3 and S3 conveys the solution to S4.

Step 2 Find u∗2 = argmin J2(u2, {u
∗
1}) and send the solution to S3. S3

conveys the solution to S4.

Step 3 Find u∗3 = argmin J3(u3, {u
∗
1, u

∗
2}) and send the solution to S4.

Step 4 Find u∗4 = argmin J4(u2, {u
∗
1, u

∗
2, u

∗
3}).

Procedure 4.3b Solution of the Nash game for the system

depicted in Fig. 4.4b

Step 1 Guess u∗3 and assume ǫ2, ǫ3 as small positive numbers.

Step 2 Find u∗1 = argmin J1(u1) and send the solution to S2. S2 conveys
the solution to S3. Find u∗4 = argmin J4(u4) and send the solution to
S3. S3 conveys this solution to S2.

Step 3 Find u∗2 = argmin J2(u2, {u
∗
1, u

∗
3, u

∗
4}) and send the solution to S3.

Step 4 Find u∗3 = argmin J3(u3, {u
∗
1, u

∗
2, u

∗
4}) and send the solution to S2.

Step 5 Repeat Steps 3 and 4 and until ∆‖J2‖ < ǫ2, ∆‖J3‖ < ǫ3 .
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By analysing the Procedures 4.3a and 4.3b we can observe that the sys-
tems represented by the line graphs require much less iterative processes
during the Nash equilibrium search. In particular, if a decision may be
transferred in only one direction (case a from Fig. 4.4), then the game can
be solved without any iterative loops. For such cases, the optimisation can
be performed in the real-time over large scale systems.

4.5. Receding Horizon Control Scheme

The efficiency of the optimal controllers is highly dependent on the knowledge
of the optimised system. For the best performance, it is required to have well
developed mathematical model together with precisely estimated parameters
and boundary conditions. In the case of the finite horizon optimisation, this
requirements must be met at least within a considered time horizon. In
the systems subjected to rapidly changing external excitation (for instance,
a bridge under travelling vehicles or a building subjected to an earthquake),
a precise prediction of the model parameters and the boundary conditions is
not feasible. Thus, the most reliable for optimisation is a method that allows
on a permanent model update. This method is the receding horizon control,
often referred also as the model predictive control (see, for example, [11]).

The receding horizon control method is formulated as a finite horizon
optimisation to be repeated on-line. The basic principle of the method is
demonstrated in Fig. 4.5. Based on the measured (or estimated) current
state and the predicted evolution of the exogenous signals, the controller

time step

control/prediction horizon T

optimal control sequence

predicted boundary condition

k k+1 k+2 k+T

predicted optimal state
measured state

futurepast

u
∗(k)

Figure 4.5. Principle of the receding horizon control scheme.
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determines the optimal input over the control/prediction horizon. From the
sequence of the optimal decisions, only the first one is applied to a system,
while for the next time sample the procedure is repeated. A fundamental
theory underlying the receding control scheme is the Bellman’s Principle of
Optimality [5] which states that: “An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from
the first decision”. In case of the completely deterministic systems, it can be
verified that the solution of the receding horizon method is equivalent to the
one obtained by using computationally heavy dynamic programming. Thus,
one of the major ideas behind the receding horizon method is to determine an
optimal feedback controller by performing an open-loop optimisation. The
receding horizon control scheme is commonly executed with the following
steps

Procedure 4.4 Receding horizon control

Step 1 At time sample k, estimate the state x(k) and predict the evolution
of the model parameters and the boundary conditions in the time
period [k, k + T ].

Step 2 Solve a finite time optimal control problem over the time period
[k, k + T ].

Step 3 Apply the optimal decision u∗(k).

Step 4 Increment time sample k = k + 1 and continue with Step 1.

4.6. Optimal Control Problem for Semi-Active Systems

There is a special group of control systems which are linear in both state
space and control functions. This group is called bilinear systems and it
is in the special interest of this work, due to the fact that they represent
the models for semi-active controlled systems. One of the pioneers that
worked on the topic of control of bilinear systems is R. R. Mohler. He
began and promoted the application of optimal control methods to bilinear
systems, beginning with his study of nuclear power plants in the 1960s.
His work is reported in the books [30–32]. Mohler presents the problems
of optimal control of bilinear systems from the perspective of engineering,
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ecology and physiology. A survey on optimal control of bilinear models for
pest population control was presented by Lee in [25].

In the dynamics of mechanical systems, the bilinear terms occur as the
products of the state vector and variable stiffness or damping functions.
Throughout the rest of this chapter, we will consider the bilinear control
systems formulated as follows:

ẋ(t) = f(x, u) = Ax(t) +

m∑

i=1

ui(t)Bix(t) + f̃(x) . (4.36)

Here A and Bi, i = 1, 2, ...,m are constant matrices. The excitation vector
f̃(x) denotes external forces acting on the system. The control functions ui
stand for variable parameters of mechanical system. For the practical reason
these variables are bounded to the specified interval so the admissible values
of input vector are limited to hypercube as follows

u(t) ∈ Ω = [umin, umax]
m = {ω ∈ R

m : umin ≤ ωi ≤ umax, i = 1, ...,m} .
(4.37)

Again, the objective function to be minimized is

J =

tf∫

0

f0(x, u) dt . (4.38)

In many applications, it is desired to find the control that steers the system
(4.36) from an initial state x(0) = x0 to some terminal state x(tf ) = xf
such to minimise (4.38) with an admissible control (4.37). In general, this
problem may have no solution due to lack of controllability, especially in the
case of bilinear systems driven by bounded controls.

The widespread Linear Quadratic Regulator approach can be applied for
bilinear systems. By introducing a quadratic performance index

J =
1

2

tf∫

0

(
x⊺Qx+ ru2

)
dt+

1

2
x⊺(tf )Pfx(tf ) , (4.39)

it can be shown that for the system

ẋ(t) = Ax(t) +Bu(t)x(t) + bu(t) (4.40)

there exists an optimal feedback controller, and it can be computed as a limit
of the following sequence

uk+1(t) = r−1
[
Bxk+1(t) + b

]
⊺

Kk+1(t)xk+1(t) . (4.41)
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Here Kk+1 is the solution of the differential Riccati equation (for details see
[21]). A key reason for using feedback is to reduce the effects of uncertainty
which may appear in different forms as disturbances or imperfections in
models. However, the iterative method that produces the feedback control
(4.41) requires a fast computing controller. Moreover, the method is limited
to particular form of the objective function (4.39). For more general problems
we can compute the optimal controls by applying the first order necessary
optimality condition given in the following section.

4.6.1. Necessary Optimality Condition

In this section, we will discuss the impact of the Pontryagin Maximum Prin-
ciple when applied to the following bilinear control problem:

Problem 4.5 Optimal control problem for bilinear system

Find u∗ = argmin J =

tf∫

0

f0(x) dt ,

under ẋ(t) = Ax(t) +
m∑

i=1

ui(t)Bix(t) + f̃(x) , x(0) = 0 ,

u(t) ∈ Ω .

(4.42)

While the objective function is given as explicitly independent on control,
we can easily derive the optimal controls. Hamiltonian for the Problem 4.5
is of the following form

H(x, p, u) = p⊺(t)

(
Ax(t) +

m∑

i=1

ui(t)Bix(t) + f̃(x)

)
− f0(x) . (4.43)

Thus, as a result of the Pontryagin Maximum Principle optimal control func-
tions are bang-bang type

u∗i (t) =

{
umax, p⊺(t)Bi x(t) > 0
umin, p⊺(t)Bi x(t) < 0

, (4.44)

where

ṗ(t) = −
∂H

∂x
, p(tf ) = 0. (4.45)

Remark : We do not consider singular cases by assuming that the set of
instants t such that p⊺(t)Bi x(t) = 0 is a null set.
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4.6.2. Prediction of Switches in Optimal Controls

In general, for multidimensional problem it is difficult to predict the structure
of the solutions of (4.44). We are not able to predict whether the switches
occur, i.e., if there exists an instant t such as the term p⊺(t)Bi x(t) changes its
sign. In mechanical systems, where the damping coefficient is the parameter
to be controlled and the objective is to dissipate the energy in the optimal
sense, in some cases we can suspect that the best performance is exhibited
by the system steered by a constant maximum value control. So when can
we expect the optimal switching control? To answer this question let us
consider the system (4.36) with m = 1 for simplicity, that is

ẋ = Ax+ uBx+ f̃(x) , (4.46)

with the adjoint system

ṗ = −
∂H(x, p, u)

∂x
. (4.47)

We propose the following theorem that states sufficient condition for the
existence of the control u∗ 6= umax that results in more beneficial value of
the objective function given by (4.42).

Theorem 4.6.1 Let xumax
(t) and pumax

(t) be the solutions of the state (4.46)
and the adjoint state (4.47) equations when the following constant control
function is given u(t) = umax. If there exists an interval [t1, t2] ⊆ [0, tf ] such
that for all t ∈ [t1, t2] we have (p⊺umax

(t)Bxumax
(t)) < 0, then there also exists

a control u∗ ∈ Ω, u∗ 6= umax such that J(u∗) < J(umax).

Proof Let u∗ = umax + δu. Then, we can write the differential of the cost
function in the following form:

J(umax + δu) − J(umax) = δJ(umax)(δu) + rJ(umax, δu) , (4.48)

where δJ(umax)(δu) is first variation of the function J(umax) and
rJ(umax, δu) = o(δu), i.e., rJ(umax, δu)/‖δu‖ → 0 as ‖δu‖ → 0. For a suffi-
ciently small δu the sign of the right hand side of (4.48) depends on the sign
of the variation. Therefore, we need to prove that δJ(umax)(δu) < 0.

J =

tf∫

0

[f0(x) + p⊺ (ẋ− f)] dt , (4.49)

where p = p(t) : [0, tf ]→ R
n is the adjoint state. We introduce Hamiltonian

of the standard form

H : Rn × R
n × Ω→ R , H(x, p, u) = p⊺f − f0(x) , (4.50)
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J =

tf∫

0

(p⊺ẋ−H)dt . (4.51)

Infinitesimal change δu causes variations of the functions δx(t), δẋ(t), δp(t).
This results in the following variation of cost function:

δJ(u)(δu) =

tf∫

0

{
−
∂H

∂u
δu−

(
∂H

∂x

)
⊺

δx+ p⊺δẋ+

(
ẋ−

∂H

∂p

)
⊺

δp

}
dt .

(4.52)
To fulfill Eq. (4.66), the last term must be equal to zero: (ẋ− f)⊺ δp = 0.
Now, under the assumption δẋ = d

dt (δx), the integration by parts yields

δJ(u)(δu) =

tf∫

0

−
∂H

∂u
δudt−

tf∫

0

(
ṗ+

∂H

∂x

)
⊺

δx dt+ [p⊺δx]
tf
0 . (4.53)

The second and last term vanishes by setting

ṗ = −
∂H

∂x
, p(tf ) = 0 (4.54)

and respecting the initial boundary condition δx(0) = 0. Then

H = p⊺
(
Ax+ uBx+ f̃(x)

)
− f0 , (4.55)

δJ(u)(δu) = −

tf∫

0

(p⊺Bx) δudt . (4.56)

Next, we set the variation of control as follows:

δu =





0, t ∈ [0, t1)
ǫ < 0, t ∈ [t1, t2]
0, t ∈ (t2, tf ] .

(4.57)

Then u∗ ∈ Ω. For such a control we conclude that

∀t ∈ [t1, t2] p
⊺

umax
(t)Bxumax

(t) < 0 =⇒ δJ(umax)(δu) =

= −

t2∫

t1

(
p⊺umax

(t)Bxumax
(t)
)
ǫ dt < 0 .

(4.58)

The Theorem 4.6.1 can be easily generalized to the system (4.36).
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4.6.3. Numerical Example: Optimal Semi-Active Controlled Oscillator
(Gradient Based Method)

In this section, we will examine the gradient descent method for one of the
most common semi-active optimal control problem. The object under con-
trol is an oscillator subjected to harmonic force. As the parameter to be
controlled we will take the damping coefficient. The goal is to test the ef-
ficiency of the gradient descent method (see Procedure 4.1) in the case of
parametric control of the oscillating system and also to provide the com-
parative results for the method of parametrised switching times that will be
presented in Subsec. 4.6.4.

We consider the following optimal control problem

Problem 4.6 Optimal control of semi-active oscillator

Find u∗ = argmin J =

tf∫

0

{
(y1)

2 + (y2)
2
}

dt

under ẏ1 = y2,

ẏ2 = −ky1 − uy2 + P sin(ωy3),

ẏ3 = 1.

Here u(t) ∈ [umin, umax]

and y(t) = [y1(t), y2(t), y3(t)] ∈ R
3 , y(0) = [1,−1, 0]⊺ .

(4.59)

The parameters are set as follows:

k = 1 , P = 5 , ω = 5 , umin = 10−5 , umax = 3.

For the sake of application of the Pontryagin Maximum Principle, the system
is given in autonomous form, where the last component of the vector state
represents time. Here f0 is chosen as simple quadratic form and its value
is related to the total energy of the system. So, the desired goal of the
variable damping control is to provide a minimum of the integrand of the
energy of the system under excitation in the specified time interval [0, tf ].
The computations will be carried out for two cases, each with different final
time: tf = 0.67 and tf = 1, respectively.
The Hamiltonian for the problem (4.59) is of the form

H(y, p, u) =



p1
p2
p3



⊺ 


y2
−ky1 − uy2 + P sin(ωy3)

1


−(y1)2−(y2)2 . (4.60)
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Here, the adjoint system is described by the equations:

ṗ1 = kp2 + 2y1 ,

ṗ2 = −p1 + up2 + 2y2 ,

ṗ3 = −ωP p2 cos(ωy3) ,

(4.61)

and it fulfills the terminal condition p(tf ) = 0. From the Pontryagin Maxi-
mum Principle we immediately get the optimal control

u∗(t) =

{
umax, p2 y2 < 0
umin, p2 y2 > 0

. (4.62)

Corollary : The switchings occur whenever p2 or y2 change their signs. The
number of switchings and instants of switchings can not be predicted be
means of the solution (4.62).

Numerical treatment of the Problem 4.6 is based on the Procedure 4.1 .
Here, the descent direction is

−∇uJ =
∂H

∂u
= − p2 y2 . (4.63)

The step size is assumed to be constant for every iteration λ = 1. The
computations are terminated after performing 500 iterations. The discrete
time interval [0, tf ] is split into 500 equal sub-intervals. We assume the
constant control for any of these sub-intervals. The initial control is assumed
to be the constant function, set to the maximum value for all sub-intervals
u0(t) = umax, ∀t ∈ [0, tf ].

Case 1: tf = 0.67

In the first case, the time horizon, after a few attempts, is taken tf = 0.67, so
to capture at least one switching in the optimal control function. Figure 4.6
depicts the trajectory of this control. A clearly visible point of switching
appears as the slope part of the trajectory (in the case of more precise com-
putation the angle of slope approaches 90◦). The switching occurs in the
instant when the trajectory of velocity changes the sign, i.e., y2(tswitch) = 0.
It is shown in Fig. 4.7. On the other hand the trajectory of p2 (see Fig. 4.8)
does not meet the abscissa (apart from the final zero condition). This results
in only one switching during the time interval (0, tf ). The values of objective
function in every iteration are plotted in Fig. 4.9. Note that in the beginning
of iterative procedure the initial control was set as u(t) = umax. So, we can
clearly observe the improvement from constant maximum value control by
replacing it with the switching one.
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Figure 4.6. Optimized control function – the gradient method.
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Figure 4.7. Trajectories of the optimised state.
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Figure 4.8. Trajectories of the corresponding adjoint state.
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Figure 4.9. Cost function with respect to the number of iteration.
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Case 2: tf = 1

In this case, the time interval is assumed to be [0, tf ] = [0, 1]. It captures
three switches in the optimal control function as depicted in Fig. 4.10.
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Figure 4.10. Optimised control function – the gradient method.

The first and the third switchings are caused by changing the sign of velocity
y2 (Fig. 4.11), while the second one results from the crossing the abscissa by
trajectory p2 (see Fig. 4.12).

In Fig. 4.13, the objective function with respect to number of iteration
is presented. The rate of convergence in the presented cases is very satisfac-
tory, even if the line search method is not applied. The computations were
performed on the standard PC (Intel Pentium Core 2) and it took less then
180 seconds for any of the presented examples.
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Figure 4.11. Trajectories of the optimised state.
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Figure 4.12. Trajectories of the corresponding adjoint state.
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Figure 4.13. Cost function with respect to the number of iteration.

4.6.4. The Method of Parameterized Switching Times

In the example presented in the previous section, we can observe that the
numerical results coincide with the theoretical predictions. The postulated
switching nature of optimised control is confirmed. In the case of more com-
plex systems, we can expect difficulties in obtaining so accurate, switching
shaped, numerical solutions. Increasing precision of calculations is associ-
ated with higher dimensional optimisation problem which turns in the rapid
extension of time required for computations. There is a need to use more
efficient numerical algorithm for computing the optimal switching control
solutions. For this purpose, it is very intuitive to parametrise the switching
times and reformulate the Problem 4.6. The objective function is now op-
timised with respect to new parameters – the switching times. In fact, the
optimal control problem becomes a nonlinear programming problem, where
gradient based optimisation methods can be applied.

In this section, we will develop the method of parametrised switching
times which will be based on the derivative of objective function with respect
to these times. In calculations, we will use the fundamental facts from the
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calculus of variations as well as the property of Dirac delta function. After
derivation, the complete numerical algorithm will be given.

We again investigate the bilinear control systems given in autonomous
form (the last term of state vector stands for time)

ẋ = Ax+

m∑

i=1

uiBix+ f̃(x) . (4.64)

For simplicity, let us consider a system driven by only one switching control

u = umax U(t− τ) , τ ∈ [0, tf ] . (4.65)

Here, U stands for the unit step function. Thus, system (4.64) can be rewrit-
ten as follows

ẋ = f(x, τ) = Ax+ umax U(xn − τ)Bx+ f̃(x) . (4.66)

Here, again x = x(t) : [0, tf ]→ R
n, xn(t) = t, f = f(x, τ) : Rn×[0, tf ]→ R

n.
Next, we introduce the objective function to be minimised

J =

tf∫

0

f0 dt , (4.67)

where f0 = f0(x) : R
n → R and tf is fixed. The objective function subjected

to system governed by (4.66) can be rewritten as follows

J =

tf∫

0

[f0 + p⊺ (ẋ− f)] dt . (4.68)

where p = p(t) : [0, tf ] → R
n is the adjoint state. The Hamiltonian for the

considered problem is given as follows

H : Rn × R
n × [0, tf ]→ R , H(x, p, τ) = p⊺f − f0 . (4.69)

By inserting the Hamiltonian into the formula for the objective function, we
obtain

J =

tf∫

0

(p⊺ẋ−H)dt . (4.70)
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Infinitesimal change dτ causes variations of the functions δx(t), δẋ(t), δp(t).
This results in the following variation of the objective function

δJ =

tf∫

0

{
−
∂H

∂τ
dτ −

(
∂H

∂x

)
⊺

δx+ p⊺δẋ+

(
ẋ−

∂H

∂p

)
⊺

δp

}
dt . (4.71)

To fulfill Equation (4.66), the last term must be equal to zero (ẋ− f) δp = 0.
Now, under the assumption δẋ = d

dt (δx), the integration by parts yields

δJ =

tf∫

0

−
∂H

∂τ
dτ dt−

tf∫

0

(
ṗ+

∂H

∂x

)
⊺

δx dt+ [p⊺δx]
tf
0 . (4.72)

The second and last terms in (4.72) vanish by using the definition for adjoint
state, respecting its final condition

ṗ = −
∂H

∂x
, p(tf ) = 0 (4.73)

and also regarding the initial boundary condition δx(0) = 0. For small dτ
we can now use the following approximation

∆J ≈ δJ = −

tf∫

0

∂H

∂τ
dτ dt =


−

tf∫

0

∂H

∂τ
dt


dτ . (4.74)

This implies that the total derivative of the objective function with respect
to switching time fulfills the following equation

∂J

∂τ
= −

tf∫

0

∂H

∂τ
dt . (4.75)

Hamiltonian for the system (4.66) takes the following form

H = p⊺
(
Ax+ umax U(yn − τ)Bx+ f̃(x)

)
− f0 . (4.76)

Then, the approximated gradient of the cost function is

∂J

∂τ
= −

tf∫

0

p⊺(t)Bx(t)
∂ [umax U(t− τ)]

∂τ
dt . (4.77)
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Finally, we get

∂J

∂τ
= umax

tf∫

0

p⊺(t)Bx(t) δ(t− τ)dt = umaxp
⊺(τ)Bx(τ) . (4.78)

Now, we consider the next switching action defined by the control

ū = umax U(t)− umax U(t− τ̄) , τ ∈ [0, tf ] . (4.79)

By following the previous procedure, we immediately get the gradient of the
objective function with respect to the switching time τ̄

∂J

∂τ̄
= −umax p

⊺(τ̄)Bx(τ̄) . (4.80)

To summarize the obtained results, the switching actions and the appropriate
gradients are listed below

Switching action(t = τ) : [off] −→ [on] ,
∂J

∂τ
= umax p

⊺(τ)Bx(τ) ,

Switching action(t = τ̄) : [on] −→ [off] ,
∂J

∂τ̄
= −umax p

⊺(τ̄ )Bx(τ̄) .

(4.81)

Alternate methods for computation of switching times were presented by
Mohler in [31] and Kaya et al. in [24].

Before we develop the computational algorithm, the number of controls
m is presumed. Next, for such controls we assume n to be the number of
switching actions [off] → [on] or [on] → [off]. Therefore, we can collect the
switching times into two matrices: τ = [τi,j]m×n, τ̄ = [τ̄i,j]m×n, where {τi,j}
and {τ̄i,j} are increasing sequences with respect to j, where for every pair
(i, j) we have τi,j ∈ [0, tf ), τ̄i,j ∈ (0, tf ]. Moreover, we assume that τi,j < τ̄i,j
for all i, j. The state equation is then as follows

ẏ = Ay + umax

m∑

i=1

n∑

j=1

[U(t− τi,j)− U(t− τ̄i,j)]Biy + f̃(y) . (4.82)

The computational algorithm based on the predefined gradient method com-
pounds of the steps presented in the Procedure 4.5.

Remark: The Step 5* can be performed with the analogy to Step 5 in the
Procedure 4.1, where the control vector is now replaced by the components
of matrices [τi,j] and [τ̄i,j].
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Procedure 4.5 The method of parametrised switching times

Step 1 Guess initial matrices [τi,j] and [τ̄i,j].

Step 2 Solve the state equation (4.82) by substituting [τi,j] and [τ̄i,j].

Step 3 Calculate Hamiltonian (4.69), then solve the adjoint state (4.73)
by backward integration.

Step 4 Compute the derivatives (4.81) for all components of switching
time matrices.

Step 5* Modify time switching matrices by using first-order optimisation
algorithm.

Step 6 Check whether switching times τi,j or τ̄i,j extend their limited
values 0 or tf , respectively. If so, then set these switchings to
appropriate infinium or supremum of the set [0, tf ] and then go to
Step 2.

Step 7 Check if length of any of interval [τi,j, τ̄i,j ] approaches zero. If so,
discard those switching time, resize the matrices [τi,j], [τ̄i,j] and go
back to Step 2.

Step 8. Repeat Steps 2–7 until the a terminal condition (based, for example,
on the norm of the gradient) is fulfilled.

The approach presented in this section is not limited to the bilinear
systems only. As soon as the controls are assumed to be bang–bang or the
bang–bang type results from the application of the Pontryagin Maximum
Principle, the problem of finding the required controls becomes one of finding
switching times.

4.6.5. Numerical Example: Optimal Semi-Active Controlled Oscillator
(Method of Switching Times)

In this section, the method of parametrised switching times is applied to
the optimal control problem formulated in Subsection 4.6.3. The goal is
to examine the performance of the switching method as well as to provide
the comparative results to these obtained by using previously investigated
gradient method.
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Assuming [τ1,j ] and [τ̄1,j ] as the switching time matrices, the Hamiltonian
for the system described in (4.59) can be written in the form

H(x, p, τ , τ̄ ) =



p1
p2
p3



⊺ 


y2
−ky1 + P sin(ωy3)

1


+

+



p1
p2
p3



⊺ 


0
−y2
0


 umax

n∑

j=1

[U(t− τj)− U(t− τ̄j)]− (y1)
2 − (y2)

2 .

(4.83)

Thus, the derivatives of cost function with respect to switching times are

Switching action(t = τ) : [off] −→ [on] ,
∂J

∂τ
= −umax p2(τ)y2(τ) ,

Switching action(t = τ̄) : [on] −→ [off] ,
∂J

∂τ̄
= umax p2(τ̄)y2(τ̄)) .

(4.84)

Numerical computations will be performed on the discretized time in-
terval [0, tf ], that is split into 1000 equal subintervals. As the first order
optimisation method, used in Step 5* in the Procedure 4.5, the gradient
descent is applied. The step size λk is chosen in such a way, that for every
iteration the inequality holds λk dk ≥ [0, tf ]/1000. This condition provides
modification of elements of τ and τ̄ in every iteration. The computation
stops when all components of τ and τ̄ oscillate between two nearest values
of the discretized time domain.

Case 1: tf = 0.67

Likewise in Subsec. 4.6.3, we first consider the problem in the time interval
[0, tf ] = [0, 0.67]. The computations are performed for two cases, each with
the different initial matrices: (case A) τ = 0.1 tf , τ̄ = 0.9 tf , (case B)
τ = 0.7 tf , τ̄ = 0.8 tf . The length of matrices is assumed on the basis of
results obtained by gradient method.

Figure 4.14 displays switching times convergence. The point of conver-
gence is the same for both cases A and B.
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Figure 4.14. Switching time values with respect to the number of iteration.

The optimal control trajectory is show in Fig. 4.15.
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Figure 4.15. Optimised control function – the switching times method.

Comparing the solution obtained by the gradient method (Fig. 4.6), we can
observe that the instant of switching denoted as τ is equal to the coordinate
of the middle point of the slope in Fig. 4.6. Thus, the coincidence of the
results is very high.
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Figure 4.16. Cost function with respect to the number of iteration.

In Fig. 4.16, we present the evolution of the objective function in the iterative
process. Finally, Fig. 4.17 demonstrates the optimised state and adjoint
trajectories: y1(t), y2(t) and p1(t), p2(t), respectively.
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Figure 4.17. Optimized state and adjoint state trajectories.

Case 2: tf = 1

In the second case, the initial switching matrices are assumed to be τ =
[0.4 tf , 0.8 tf ] , τ̄ = [0.6 tf , 0.9 tf ]. The evolution of the switching times and
objective function in the iterative process are shown in Fig. 4.18.
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Figure 4.18. Switching times and cost function with respect to the number of
iteration.

In Fig. 4.19, the trajectory of optimized switching control is depicted.
The coincidence with Fig. 4.10 is clearly visible. For comparison the state
and adjoint trajectories are presented in Fig. 4.20.
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Figure 4.19. Optimised control function – the switching times method.
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Figure 4.20. Optimized state and adjoint state trajectories.

In order to check the correctness of the Procedure 4.5, the computations
were also performed with larger size of initial matrices τ , τ̄ . In each of pre-
sented cases the algorithm forced discarding of extra switches. While the
proper sizes of initial matrices are assumed, the time required for computa-
tion is reduced more then five times in comparison to the gradient method.
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Chapter5
Engineering Problems

In the Chapter we will present four experiments that will prove the effi-
ciency of the semi-active control of vibrating structures. Our experimental
stands enable verification of theoretical derivations and numerical simula-
tions. Usually, theoretical considerations are more optimistic and resulting
efficiency exceeds experiments. Although expected phenomena are observed
in both theory and practice, in the latter case, when realistic parameters
were assumed: dimensions, material modules, and the speed range of some
parameters, the expected effect can be lower. Also for the reason of com-
plexity of the investigated problem, experimental results may be poor. In
subsequent sections we present four test, previously analysed and simulated.

In the Subsec. 5.1 and 5.2 the simply supported beam is subjected to
a moving load. Our aim is to minimise vertical displacements under the
moving load and in selected stationary points.

The next test (Subsec. 5.3) was performed for rotating structure. Angular
amplitudes of harmonically excited shaft have to be minimized with the use
of magnetorheological dampers. The advantage of the controlled approach
is significant.

The Subsec. 5.4 describes results for a cantilever sandwich beam filled at
its tip with an elastomer containing ferromagnetic particles. The controlled
shear modulus allows us to increase damping over the damping with per-
manent action. The fourth example (Subsec. 5.5) is similar to the previous
one. Instead of elastomer insert a small parcel filled with granular mate-
rial controlled with a vacuum is used for minimising free vibrations. The
small underpressure is sufficient to obtain the improved result of damping.
Three examples are devoted to bending structures. However, a wide range
of problems can be treated in the same way.
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5.1. Semi-active Control of Beam Subjected to a Moving Load

In this section, we will formulate the optimal control problem which corre-
sponds to the problem of finding the straight line passage of a moving load
upon an elastic one-dimensional body. First, we will define a corresponding
objective function. Then, in order to derive the optimal controls, the Pon-
tryagin Maximum Principle will be applied (see Subsec. 4.2.1). Finally, the
adjoint system will be written.

As representative example of elastic one-dimensional body we consider
the Bernoulli-Euler beam of the total length L, bending stiffness EI and
density per unit length µ. The objective is to reduce the total deflection of
a load travelling over the beam at constant speed v. The objective function
can be written as the L

2 norm of w(vt, t), representing the deflection of the
beam at the position vt and in time t

J = 〈w(vt, t)|w(vt, t)〉 =

tf∫

0

[w(vt, t)]2 dt. (5.1)

Here tf = L/v stands for the time of the passage. For the control devices
we assume m rheological dampers supporting the beam at the positions ai.
Each of the dampers can operate with damping coefficient ui within the
closed interval bounded by minimum umin and maximum umax admissible
values. The optimal control problem can be formulated as follows:

Minimize J =

tf∫

0

[w(vt, t)]2 dt,

under

EI
∂4w(x, t)

∂x4
+µ

∂2w(x, t)

∂t2
=−

m∑

i=1

δ(x− ai)ui(t)
∂w(x, t)

∂t
+δ(x− vt)P,

w(x = 0, t) = 0 , w(x = L, t) = 0 ,

(
∂2w(x, t)

∂x2

)∣∣∣∣
x=0

= 0 ,

(
∂2w(x, t)

∂x2

)∣∣∣∣
x=L

= 0 , (5.2)

w(x, t = 0) = 0 , ẇ(x, t = 0) = 0 ,

u(t) ∈ Ω = [umin, umax]
m .
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The equivalent optimization problem, but given in the state space represen-
tation (state given by the vector y of the size n), can be rewritten in the
form:

Minimize J =

tf∫

0


L
2

n/2∑

k=1

y2k−1(t) sin

(
kπvyn+1(t)

L

)

2

dt ,

subject to ẏ(t) = Ay(t) +
m∑

i=1

uiBiy(t) + f(y) ,

u(t) ∈ Ω = [umin, umax]
m .

(5.3)

For such a problem we can write the Hamiltonian

H(y, p, u) = pT

(
Ay(t) +

m∑

i=1

uiBiy(t) + f(y)

)
+

−


L
2

n/2∑

k=1

y2k−1(t) sin

(
kπvyn+1(t)

L

)

2

.

(5.4)

The problem (5.3) is analogous with the Problem 4.5 studied in the previous
chapter. The application of the Pontryagin Maximum Principle yields the
optimal controls of the bang-bang type

u∗i (t) =

{
umax, pT (t)Bi y(t) > 0
umin, pT (t)Bi y(t) < 0

. (5.5)

Here the adjoint system is given in the following form

ṗ = −
∂H

∂y
= −pT

(
A+

m∑

i=1

uiBi +
∂f

∂y

)
+

+
∂

∂y






L
2

n/2∑

k=1

y2k−1(t) sin

(
kπvyn+1(t)

L

)

2


(5.6)

with the terminal condition p(tf ) = 0.
Below, we will demonstrate the solution to the problem (5.3) obtained by

means of both, the gradient method and the switching times method. The
goal will be to establish the relevant number of switching actions to achieve
good performance of resulting control system. Reduction in the number
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of switches is beneficial for two reasons: the system is less sensitive for
errors and the time required for computations is significantly shortened. The
comparison of the objective function values obtained by different methods
will be given in the end of the section.

It is worth mentioning that the gradient method used in this work leads
to local optima that refer to sub-optimal solutions. The assumption that has
to be made is that the objective function is locally convex with respect to
control functions. By the optimization we mean the process of searching for
the solution that for some objective is better than one taken as initial value in
the optimization process. In fact, in this work we look for the solutions that
outperform the passive cases. Thus, it is reasonable to assume the passive
cases as the initial values in the optimization procedures.

We will consider a system shown in Fig. 5.1 that represents a bridge
span. We assume the following elastic body: HE – A 300A steel beam
(according to DIN 1025 and Euronorm 53 − 62). The parameters for the
beam are as follows: the length L = 24 m, the mass density µ = 88.3 kg/m,
the bending stiffness EI = 38.3 · 106 Nm2 (E = 210 · 109 Pa). The force
P = 104 N travels with the velocity v = 0.7vcr, where vcr = (π/L)

√
EI/µ

is the critical speed (in this case vcr = 86.2 m/s). In the computations, the
following placements of the two active dampers are assumed: 0.33L, 0.66L.
For every damper the value of variable damping coefficient belongs to the
set [umin, umax] = [103, 5 ·105 ] Ns/m. 10 first harmonic modes are taken into
account in the computations.

� -L

-

6

?

-
v

-
P
-

� � � �

u1(t) u2(t) u3(t) um(t)

a1 a2 a3 am

EI, µ
W
-

X
-

w(x, t)

Figure 5.1. Bernoulli-Euler beam system supported by controlled viscous
dampers.
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5.1.1. Passive Cases

In this section, we will execute the simulations of the system 5.1 in the case of
constant controls. The purpose is to show that among the passive cases the
control functions which values are set to umax exhibit the best efficiency for
the straight line passage of a moving load. Thus, in further investigations it
is reasonable to compare the trajectories driven by these best passive controls
with the variable control functions obtained by optimization. For simplicity
we assume here that all controls are set to the same value. The simulation
are performed for the following cases: u1 = u2 = 0.25umax, u1 = u2 =
0.5umax, u1 = u2 = 0.75umax, u1 = u2 = umax. The results are presented in
Fig. 5.2.

0.2 0.4 0.6 0.8 1.0
t�tf

-0.010

-0.008

-0.006

-0.004

-0.002

wHvt,tL@mD
0.25umax

0.5umax

0.75umax

umax

Figure 5.2. Comparison of moving load trajectories under constant controls.

5.1.2. Optimal Case (Gradient Based Method)

In this part, the problem (5.3) is solved by using the gradient method (see
Procedure 4.1). In the computation, we assume a constant time step for
every iteration. The discrete time interval [0, tf ] is split into 1000 equal
sub-intervals. For each of these sub-intervals we assume constant control.
The initial controls are set to the maximum values for all sub-intervals
uinitiali (t) = umax (i = 1, 2), ∀t ∈ [0, tf ]. This refers to the passive case.
The computations are terminated after performing 200 iterations.

Optimal controls are demonstrated in Fig. 5.3. The switching structures
of the optimal control functions can be clearly noticed.
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t�tf0
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u1HtL�umax

0 0.2 0.4 0.6 0.8 1
t�tf0

1

u2HtL�umax

Figure 5.3. Control functions optimized by using the gradient method.

When observing the optimal controls one can distinguish four switches for
control u1 and two major switching actions for control u2. This information
will be used to assume the number of switches for the application of he
switching times method.

In Fig. 5.4, we demonstrate the optimized moving load trajectory (con-
trolled). It is compared with the uncontrolled case, i.e., when the system
is under constant controls ui(t) = umax (i = 1, 2), ∀t ∈ [0, tf ]. The uncon-
trolled trajectory is typical for the moving load when transversing the span
supported with passive dampers. The clearly visible local maximas that oc-
cur near the instants t = 0.33tf and t = 0.66tf are the evidence of presence
of supports. In the controlled case these maximas are shifted toward the line
w = 0 along with the whole moving load trajectory.

The values of the objective function are presented in Fig. 5.5. The
controlled case clearly outperforms the uncontrolled one (uncontrolled state

0.2 0.4 0.6 0.8 1.0
t�tf

-0.003

-0.002

-0.001

wHvt,tL@mD uncontrolled

controlled

Figure 5.4. Moving load trajectories optimized by using the gradient method.
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is set for the first iteration in the optimizing operation). The time required
for computation did not exceed 500 seconds (PC, Intel Pentium Core 2).

0 50 100 150 200
iter8.´ 10-7

1.´ 10-6

1.2´ 10-6

1.4´ 10-6

1.6´ 10-6

1.8´ 10-6

2.´ 10-6
cost

Figure 5.5. The objective function values versus iteration in the case of the
gradient method.

5.1.3. Optimal Case (Switching Times Method)

The optimal control problem (5.3) will be now solved by using the switching
times method. We will assume four switching actions for every control, and
then will apply the Procedure 4.5. As in the case of the gradient method,
the discrete time interval [0, tf ] is split into 1000 equal sub-interval and
the computations are terminated after 200 iterations. The initial values for
switching times matrices are assumed as follows:

[τi,j] = tf ·

[
0.01 0.5
0.1 0.7

]
, [τ̄i,j] = tf ·

[
0.2 0.8
0.5 0.9

]
. (5.7)

Figures 5.6, 5.7 demonstrate the switching times as the functions of it-
eration number. In order to highlight how τ̄2,1 coincide with τ2,2, below
we plot in Fig. 5.8 the zoomed version of Fig. 5.7. As a result of this coinci-
dence, the switches are discarded. Finally, it is found approximately that the
optimal control are structured as follows: uT = [umin, umin] on [0, 0.001)tf ,
uT = [umax, umin] on [0.001, 0.28)tf , uT = [umax, umax] on [0.28, 0.51)tf ,
uT = [umin, umax] on [0.51, 0.63)tf , uT = [umax, umax] on [0.63, 0.91)tf ,
uT = [umin, umax] on [0.91, 0.94)tf , uT = [umin, umin] on [0.94, 1)tf . This
is depicted in Fig. 5.9. When omitting narrow strips in the controls ob-
tained by using the gradient methods one can find that the shapes of 5.3
and 5.9 concur.

Figure 5.10 displays a comparison of two optimized moving load trajec-
tories. The agreement of the results is very high. In Fig. 5.11, we present
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Figure 5.6. Switching times versus iteration for the control function u1.
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Figure 5.7. Switching times versus iteration for the control function u2.
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Figure 5.8. Switching times versus iteration for the control function u2 (zoomed
version).

the evolution of the objective function in the iterative process. The time re-
quired for computations is approximately five to twenty times shorter than
in case of the gradient method. This is an obvious result of the size of the
optimization problem. In the case of the switching times method, the size
was equal to 8 in contrast to the gradient method where the size was equal
to 1000 for the same problem.
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Figure 5.9. Control functions optimized by using the switching times method.
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Figure 5.10. Optimized moving load trajectories. Gradient method versus switch-
ing times method.

Now we can pose the following question. What is the impact of further
limitation in switching actions on the performance of the control system?
To answer to this question let us consider the same optimal control problem
(5.3), however this time any of the control function can switch only twice.
We assume the following initial values for the switching times vectors:

[τi,j] = tf ·

[
0.1
0.5

]
, [τ̄i,j] = tf ·

[
0.8
0.9

]
. (5.8)

The evolution of the switching times in the iterative process is demonstrated
in Figs. 5.12, 5.13.
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Figure 5.11. The objective function values versus iteration in the case of the
switching times method.
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Figure 5.12. Switching times versus iteration for the control function u1.
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Figure 5.13. Switching times versus iteration for the control function u2.

In this case no switching is discarded. The controls and the corresponding
trajectory are presented in Figs. 5.14 and 5.15, respectively. In comparison
with the previous example now the control u1 is simplified while the shape
of u2 is retained with high accuracy.
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Figure 5.14. Control functions optimized by using the switching times method.

0.2 0.4 0.6 0.8 1.0
t�tf

-0.0025
-0.0020
-0.0015
-0.0010
-0.0005

0.0005
0.0010

wHvt,tL

gradient method

switching method

Figure 5.15. Optimized moving load trajectories. Gradient method versus switch-
ing times method (two switches per control).

This result confirms the intuitive prediction of the shapes of controls, as
demonstrated in Fig. 4.1a. The left damper is activated as the first. Due
to the switch off mode of the right damper, the beam is able to rotate
providing a beneficial trajectory for a moving load during the second stage
of the passage.

To summarize the results presented within this section, in the Table 5.1
we list the objective values obtained by each of the methods. The best effi-
ciency is performed for the control computed by the gradient method. The
system steered by the switching controls where the number of switches is

Table 5.1. Cost values comparison.

uncontrolled controlled controlled controlled
Gr. Method Sw. T. Method (4) Sw. T. Method (2)

0.2167 · 10−5 0.0875 · 10−5 0.0883 · 10−5 0.0886 · 10−5
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equal to 2 (SW. T. METHOD (2)) exhibits comparable result with the vari-
ant of four switching actions (SW. T. METHOD(4)). Any of the presented
control methods outperforms the passive (uncontrolled) cases.

5.2. Beam Under the Moving Mass

In this section we will focus our investigations on the control functions u1(t)
and u2(t) of the dampers supporting the Euler beam under the inertial load
(see Eq. (3.16)). The objective function J should be efficiently minimised.
The control of the system can be performed in several ways to achieve the
prescribed goal. From the engineering point of view, the following control
functions can be considered essential:

• limited vertical displacement of selected points of the beam,

• limited vertical displacement under the travelling load,

• limited stress in the beam,

• low accelerations at selected points or under the load.

The basic parameters of the system, i.e., the bending stiffness of the beam
and the range of damping coefficients, can be chosen during the design and
optimisation stage as constant values. They allow us to provide the required
load carrying capacity under the dynamic load. However, the damping co-
efficients that can vary allow of increasing the performance of the system.

Here we consider a vibrating beam in Ω = {x : 0 ≤ x ≤ L}, with
boundary conditions in ∂Ω = {0, L}, w(x) = 0, w(x)′′ = 0, subject to
a gravity load, with the concentrated inertia of the moving mass. The beam
is supported with a damping material u(x, t). The state of such a system is
constituted by vertical displacements w(x, u, t), and the control input u(x, t)
as the damping coefficients of the dampers. The objective of the control is
to distribute the damping of each damper over time to achieve the desired
vibrations, here denoted by wd(x, t). We assume a finite time horizon T .
The optimisation problem can be written in the following form:

Minimise J =
1

2

T∫

0

∫

Ω

[w(x, u, t) − wd(x, t)]
2 dx dt (5.9)
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subject to the constraints

EI
∂4w(x, t)

∂ x4
+ ρA

∂2w(x, t)

∂ t2
+

2∑

i=1

δ(x − xi)ui(t)
∂w(x, t)

∂ t
+

+δ(x− x3) kw(x, t) = δ(x − f(t))P − δ(x− f(t))m
d2w(f(t), t)

dt2
,

w(x, t)|t=0 = w0(x) on Ω , (5.10)

∂w(x, t)

∂t

∣∣∣∣
t=0

= ẇ0(x) on Ω ,

w(x, t) = 0, w′′(x, t) = 0 on ∂Ω

u ∈ U .

U is a set of admissible controls. U = {u ∈ Rr : umin ≤ ui ≤ umax, i =
1, ..., r}. In our problem we have two variables: r = 2. This minimises
the displacements of a linear system of differential equations in a quadratic
form. The problem is a linear quadratic hyperbolic control problem with
distributed control. The treatment of this type of problem is difficult, due
to the weak smoothing property of the associated solutions.

The numerical algorithms developed for optimisation problems with par-
tial differential equations are dedicated to convex problems where the objec-
tive function is, for example, quadratic. In such cases, the problems have
unique solutions. Moreover, quadratic functions enable us to derive simple
formulae for the gradients by introducing the adjoint state. In our case, the
objective function has local minima and a global search is required. Since
gradient tools are ineffective and the number of design variables is low, we
can successfully use random methods. We will intentionally employ a small
number of time intervals n, since the controlled damping devices in real ap-
plications can not be switched instantaneously and a certain delay in action
is typical. We will also consider larger n and compare the time trajectories
of the considered design variables, i.e., the damping.

The brutal force method (systematic search) is useless due to the long
computational time. One test last for example 0.1 s, and the number of test
required in the case of quantification of the control variables each 0.01 in the
interval [0, 1] gives 100 test. The number of variables equal 40 gives 1080

test. We applied our own method, similar to genetic methods and partly
to gradient methods. In brief, it is the Monte Carlo method, with variable
number of decision variables in each several steps. Variables are drawn from
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the proximity of the so far best solution. The proximity radius is changed
during the process, allowing searching once near the optimum, once in wide
range. We search for the solution in successively smaller cube, allowing from
time to time global search. This approach tends to minimum with certain
probability and in our opinion is efficient in our problem.

Let us compare the control functions for two values of damping, u=500
Ns/m and 1000Ns/m. Figures 5.16and 5.17 depict time variation of damping.
We will consider three velocities: v=1, 2, and 3 m/s, with the accelerations
and decelerations a = 7, 7, and 4 m/s2, respectively. Diagrams of the velocity
vs. time or passed distance are depicted in Fig. 5.18. In the third scheme,
the acceleration is smaller since the motor power at the higher speed is too
weak to brake the motion successfully before the end. In further tests we
will use the fastest motion v = 3 m/s as the most characteristic case for our
research. Other velocities, i.e., v = 1 and 2 m/s,will be used for comparison.
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Figure 5.16. Control functions that minimise the displacements at the travelling
point at the speed v = 3 m/s and with u = 500 Ns/m, for partitions into a) 5,
b) 10, c) 20, and d) 40 time intervals,
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Figure 5.17. Control functions that minimize the displacements at the travelling
point at the speed v = 3 m/s and with u = 1000 Ns/m, for partitions into a) 5,
b) 10, c) 20, and d) 40 time intervals,

The control functions applied to both dampers that minimise the de-
flection under a mass travelling at the speed v = 3 m/s are depicted in
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Figure 5.19. Control functions that minimize the displacements at the travelling
point, for partitions into a) 5, b) 10, c) 20, and d) 40 time intervals.

Fig. 5.19. The increasing resolution n equals 5, 10, 20, and 40 intervals,
slightly decreases the value of the objective function. The minimisation of
the deflection at point No. 2 requires the control depicted in Fig. 5.20. In-
creasing resolution produces diagrams of control functions that can differ
from each other. A slightly changed action of the damper at the early stage
of the motion may require a significantly different action of the damper at
subsequent stages.

The efficiency of the control computed numerically for v = 3 m/s and
a = 4 m/s2 is presented in Table 5.2. Controlled damping in each case
improves the objective function.

A comparison of the displacements of the second measured point in terms
of the damping coefficients is presented in Fig. 5.21. A numerical simula-
tion of constant damping is compared with three curves that correspond to
different solutions of the minimisation problem. Each of them coincides for
most of the process. The curves at the final phase may differ, since the last
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Figure 5.20. The control functions minimising the displacements at the second
measure point, for partitions into a) 5, b) 10, c) 20, and d) 40 time intervals.

Table 5.2. Deflections obtained with different resolution n at v = 3 m/s.

objective function n = 5 n = 10 n = 20 n = 40 u=const.

min. disp. under the mass 4.4590 4.3448 4.3447 4.3444 4.4678
min. disp. of the point 2 4.7493 4.6818 4.6591 4.5636 4.8590

intervals of the control do not increase the objective function. The higher
difference between the min/max damping exhibits significantly better per-
formance of the system. We can add here that a larger number of dampers
improves further the efficiency of the strategy of semi-active damping.

Let us compare the efficiency of the simulated controlled damping in the
case of various velocities v. Figure 5.22 depicts the displacements of the
point No. 2 under a load moving at a velocity of v = 1 m/s, acceleration
a = 7 m/s2, and v = 3 m/s, a=4 m/s2. We notice that at the lower velocity,
the efficiency of displacement reduction is of the same range as in the case
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Figure 5.21. Displacements in time of the point 3 for different damping coeffi-
cients: a) u = 500 Ns/m, b) u = 1000 Ns/m, c) u = 2000 Ns/m, d) u = 5000
Ns/m.

of higher speed. The optimisation procedure locates our solutions in local
minima that have almost the same values of the objective function.

5.2.1. Experimental results

The laboratory test stand consists of a single Hepco construction beam with
a nominal length of 4.05 m and a cross section of 317 mm2. The beam
is a guideway for a moving inertial load. The beam is supported by two
pivots that are attached to the steel plate fixed to the aluminium truss
frame. By using conical shanks to connect the truss frame components,
a high stiffness of the structure has been obtained. This eliminates clearances
between its elements. One pivoting handle provides for rotating the beam
end around the pivot axis. The second pivot has two degrees of freedom,
which enables longitudinal and rotational movements of the second end of
the beam. Such a support enables an increase in the vertical displacements of
the beam during tests. The vertical displacements are measured by four laser
displacement sensors OADM 12I6430/S35A. These sensors have a maximum



5.2 Beam Under the Moving Mass 199

 -0.060

 -0.050

 -0.040

 -0.030

 -0.020

 -0.010

  0.000

  0.010

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

di
sp

la
ce

m
en

t [
m

]

time [s]

const. damp.
controlled

 -0.060

 -0.050

 -0.040

 -0.030

 -0.020

 -0.010

  0.000

  0.010

 0  0.5  1  1.5  2  2.5

di
sp

la
ce

m
en

t [
m

]

time [s]

const. damp.
controlled

 -0.050

 -0.040

 -0.030

 -0.020

 -0.010

  0.000

  0.010

 0  0.5  1  1.5  2  2.5

di
sp

la
ce

m
en

t [
m

]

time [s]

const. damp.
controlled

Figure 5.22. Comparison of displacements of point 2 in time, for v = 1, 2, and
3 m/s.

measurement resolution of 0.01 mm. Two laser sensors are mounted near
the MR dampers and the third sensor measures the deflection in the middle
of the beam. The last sensor is mounted on the bogie (trolley) carrying the
moving mass and it measures the deflection of the beam under the moving
mass.

A double-phase stepping motor FL110STH is the driving source of a mass
that is movable along the beam. An electric motor of 21 Nm braking torque
drives the rollers with radius r = 0.1 m and the moving mass by means of the
belt transport system shown in Fig. 5.23. The motor speed can be changed
by the USN-1D8A controller and monitored by the AMT 103 rotary encoder
mounted on the axis of the driving motor. Additionally, the encoder allows
registration of the distance traversed by the moving mass during testing.
The mass mounted on the trolley can be accelerated and decelerated with
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Figure 5.23. The belt transport system driving the moving mass [3].

rates up to 7 m/s2. These settings enable us to get a maximum mass velocity
of 4 m/s. More parameters of this test stand can be found in Table 5.3.

Table 5.3. Technical parameters of the test stand.

maximum torque of the driving motor 21 Nm
velocity range of the moving mass 0–4 m/s
max. acceleration and deceleration of the moving mass 7 m/s2

range value of the moving mass (min–max) 0.7–10 kg
guideway length 4.05 m
damping (min-max) 100–650 Ns/m
stiffness of one supporting spring 1000 N/m

In the middle of its length, the test stand beam is supported by a spring of
stiffness 1 N/mm attached to the truss frame. These springs enable returning
the beam to its initial position after passing the moving mass. The system
of a single beam is supported by a set of rotary magneto-rheological (MR)
dampers (brakes) mounted on the truss, too. The MR dampers are connected
with the control unit by a current amplifier, which generates a control current
proportional to a voltage signal which regulates the damping rate of the MR
actuators. These dampers are turned on and off by a computer equipped
with the control algorithm adapted in the LabView environment. It has
been used to communicate with the measurement and control devices.

A suitably slender guideway is consistent with the theory of the Euler
beam and provides a relatively low speed of wave propagating in the beam.
The modular construction of the supporting structure allows extending the
trolley route without much ado. Figure 5.24 shows the assembled test stand.
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Figure 5.24. View of the test stand.

First we will verify the quality of the measurements and the coincidence
of the numerical simulations with the experimental results. The damping
coefficient of the dampers is the most difficult parameter to be determined.
A magneto-rheological fluid is not exactly a viscous fluid. Its viscosity is
perturbed by the metal particles that change the velocity-force relation and
contribute friction. Preliminary tests of our MR dampers exhibit hysteresis
that varies depending on the supply current. Figure 5.25 depicts the relation
between the velocity in the range ±100 mm/s, and the force. In the case
of zero current the viscous parameter u is about 100 Ns/m. A current of
I = 0.5 A gives a damping of u = 370 Ns/m around the point of low velocity.
A current of I = 1 A gives a damping of u = 650 Ns/m. The damping in
a wider range of velocities is lower. In further tests we will apply a current
of I = 0.75 A and an average damping of 500 Ns/m.

Let us compare the numerical results with the corresponding results of
an experiment performed with both dampers being permanently active. Fig-
ure 5.26 depicts the displacements registered at three measuring points and
the mass trajectory. They coincide sufficiently well with the numerical re-
sults. This proves that the average damping coefficient u = 500 Nm/s as-
sumed for the computations was appropriate. We must emphasise here the
experimental inaccuracies concerning the supplementary inertia of the mov-
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c=500 Ns/m

c=650 Ns/m c=370 Ns/N

c=100 Ns/m

Figure 5.25. The velocity-force relation in the MR damper [3].

ing parts of the dampers, the static friction in the dampers, and the influence
of the drive belt.

Now we will compare the simulated efficiency of the control with with
the experimental data. Figure 5.27 depicts the displacements in time at
three measured points and under the mass travelling at a velocity of v = 3
m/s. The pair of control functions is depicted in Fig. 5.27d. The improve-
ment of the results, at a level of 10%, is noticeable. The control functions
have short breaks, sufficient for easy rearrangement of the beam near the
dampers. A lower velocity, v = 2 m/s, results in a lower efficiency of the
control. Figure 5.28 depicts the displacements in time of three points and
the displacement under the mass. The gain of the displacements in the case
of the follower point is lower than in the case of the stationary points located
inside the span.

5.2.2. Conclusions

The Section presented the strategy of semi-active damping of the vibrations
of a beam under a moving inertial load. Intermediate supports as electri-
cally controlled dampers decreased the transverse displacements. Periodi-
cally acting dampers are more efficient than permanently acting ones. The
amplitudes at selected points and under the moving load are reduced by
10–40%, depending on the velocity of the load relative to the critical speed
or to the wave speed. In this paper, we considered a relatively short beam,
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Figure 5.26. Coincidence of displacements in time in the 1st (a), 2nd (b), and
3rd (c) measuring point and the mass trajectory (d): numerical simulation and
experiment.
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Figure 5.27. Displacements in time in the 1st (a), 2nd (b), 3rd (c) point, and the
control functions (d), in the case of controlled damping and permanent damping at
v = 3 m/s, a = 4 m/s2.
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Figure 5.28. Displacements in time at v = 2 m/s, a = 7 m/s2 in the 1st (a),
2nd (b), 3rd (c) point, and at the mass trajectory (d).

considering the fact that the load had to be first accelerated to the travel-
ling velocity and finally decelerated before the end. The distance passed at
the highest speed was short. Lower speeds allowed accelerating the inertial
load faster. Then, although the segment of the constant speed is longer, at
the same time lower speed exhibits the phenomenon less (Fig. 5.18). The
improvement of damping in theoretical simulations of longer beams reaches
40%. In the case of the parameters in our experimental test stand, the gain
is about 10%. The results would be better for a denser fluid and a higher
damping coefficient. In such a case, the amplitudes permanently damped
and controlled could reach the ratio 2:1.

Several disadvantages worsen our results. The complex velocity–force
relation of the dampers is the first weak point. The second question is the
high sensitivity of the system to certain parameters. Local minima establish
the shape of the control functions that result in the objective function’s being
significantly higher than the global minimum.

Further research and applications could consist in replacing the set of
dampers with continuous material of variable rheological properties. Unfor-
tunately, the fabrication of such a physical material is a challenge in itself.
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5.3. Rotating Shaft

The real structure under consideration is here simplified. The example of
the model is depicted in Fig. 5.29. The model of the shaft, however, will
first be reduced to the shaft of a uniform cross section, without concentrated
masses placed on it. Only in such a case can we successfully carry out the
mathematical analysis. First we will consider the problem with an excitation
applied to the point A and with a single damper placed at the point B

(Fig. 3.14).

Figure 5.29. The test stand.

5.3.1. Optimal Control Problem for the Vibrations

In this section, we will not give a detailed discussion of the mathematical
aspects of the solution method based on control theory. We will rather
focus our investigation on the engineering efficiency of the solution when are
finally applied to the real structure. It, however, must minimise the objective
function in an efficient range.

The control of the system can be performed in several ways. The param-
eters of the system, i.e., the mass and the damping of the passive absorber,
can be chosen during the design stage as constant values based on the op-
timisation procedure. In more complicated damping systems, the damping
can vary in time in a periodic way. Usually the on-off technique is used.
However, the magneto-rheological dampers allow a fractional action. The
higher controlled switching frequency of dampers required by high frequency
vibrations practically limits the efficiency of the control method. The delay
of the action of controlled dampers limits the applicability of the solution.
However, in our practical test, its efficiency was demonstrated throughout
the entire frequency range investigated, i.e., up to 80 Hz.
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From the engineering point of view, the following control functions can
be essential:

• limited stress in the shaft as the basic strength condition τ(x, t) < τR,
for arbitrary points x and times t,

• bounded natural frequencies of the structure ωL < ωi < ωU , i =
1, 2, . . . N , where N is the number of first natural frequencies being
considered,

• limited amplitudes of angular displacements at selected points or
throughout the entire structure.

Here, we consider a vibrating shaft in Ω = {x : 0 ≤ x ≤ L}, subjected to
a load distributed on its surface. The state of such a system is the rotational
displacement field ϕ(x, u, t), and the control input u(x, t) is the damping
coefficient of the damper. The objective of the control is to distribute the
damping over time to achieve the desired vibrations, here denoted by ϕd(x, t).
We assume a finite time horizon. The optimisation problem can be written
in the following form.

Minimize J =
1

2

T∫

0

∫

Ω

[ϕ(x, u, t) − ϕd(x, t)]
2 dx dt (5.11)

subject to the constraints
∂2ϕ

∂t2
+ u

∂ϕ

∂t
−
∂2ϕ

∂x2
= f on Ω ,

ϕ|t=0 = ϕ0 on Ω, (5.12)

∂ϕ

∂t

∣∣∣∣
t=0

= ϕ̇0 on Ω ,

ϕ = 0 on ∂Ω ,

u ∈ U .

This minimises displacements of a linear system of differential equations
in a quadratic form. This problem is a linear quadratic hyperbolic control
problem with distributed control. The treatment of these type of problems is
much more difficult, due to the weaker smoothing properties of the associated
solutions.

Most of the numerical algorithms developed for the optimisation of par-
tial differential equations are dedicated to convex problems, in particular to
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problems where the objective function is quadratic. There are a few reasons
for this. The most important reason is that the convex problem has a unique
solution and, therefore, gradient methods can be used. Moreover, quadratic
functions enable us to derive simple formulae for the gradients by introduc-
ing the adjoint state. It is also worth mentioning that in such a case, the
partial differential equation for the adjoint state reflects the properties of the
state equation.

For practical reasons, we adopt an objective function which minimises the
amplitudes of the torque at a specified point. We will take n time intervals
per period T and denote by ci, i = 1, 2, ..., n the damping level in each period.
Then our problem is defined as follows:

Ω = {x : 0 ≤ x ≤ 1} ,

∂Ω = {0, 1} , (5.13)

0 ≤ ci ≤ 1, i = 1, 2, ..., n,

with the governing Eq. in (5.12) having the form

ρI
∂2ϕ

∂t2
+ c

∂ϕ

∂t
−GI

∂2ϕ

∂x2
= f(t) on Ω . (5.14)

Let us now try to verify whether variable damping reduces the ampli-
tudes. The single period is divided into intervals. Variable damping is ap-
plied to each interval and its values are limited: 0 < c ≤ 1. Successive
subdivisions result in lower amplitudes. However, we notice a high sensitiv-
ity of the solution to the control parameters. The functional is almost flat
and local solutions are usually found. Gradient tools usually fail. For ex-
ample, the well known package IPopt for large-scale nonlinear optimisation
performed by the interior point method exploits the first and the second
derivatives. If no Hessians are provided, IPopt approximates them using
numerical methods. It is efficient at finding local solutions in large scale
problems. In our case, the Monte Carlo method or genetic algorithms give
significantly better results at early computational steps. Then IPopt was
used for the precise solution, taking as a starting point just the Monte Carlo
solution. Successive time refinements into 10, 20, and 40 subdomains re-
duces the objective function to 439, 401, and 377, respectively (Fig. 5.30).
The damping function takes on an almost harmonic shape with double the
frequency of the displacement solution.

Let us use more terms of the Fourier expansion. In this case we must use
numerical time integration methods. This semi-analytical solution allows us
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Figure 5.30. The control of the damper in refined subdivisions of the period of
vibrations.

to estimate the error of our simplification and perform the analysis for real
objects.

The finite element model was used for numerical verification of the pre-
vious analytical results. The shaft was split into 60 segments. The external
load was applied to the node along 1/4 of its length and the damper was
fixed for 3/4 of the length. Furthermore, the right-hand end was elastically
supported with a relatively small spring kϕ=20 Nm. We use the bang-
bang control of the damping. The action of the damper is demonstrated in
Fig. 5.31. The significantly high amplitudes of shear strain when undamped
decrease in the case of an action of the damper which is permanent in time.
However, the action which is variable in time reduces the deformations by
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20%–50%. The applied control coincides with that obtained with the ana-
lytical model (Fig. 5.30). The Newmark method requires a β higher than
1/4, because of the unconditional stability criterion in the case of no stiffness
coefficient in the joined mass of the damper.

5.3.2. Experiment

The experimental verification of the theory was performed on the test stand.
It differs from our previous model, since it has not a uniform cross section
area and has point masses. We will try to apply our control technique to
this real structure. The laboratory drive system presented in Figs. 5.29 and
5.32 imitates the functioning of an industrial rotating machine. The princi-
ple of the reduction of vibrations with the additional rotary inertia fixed to
the main system with dampers and the early tests on the presented stand
were described in [2]. The power is transmitted from the servo-asynchronous
motor to the driven machine tool in the form of an electric brake. The drive
system, which is made up of a multi-segmented shaft, is supported by bear-
ings. It contains an electromagnetic overload coupling, two multi-disk elastic
couplings with built in torque meters, two rotary dampers with magneto-
rheological fluid, and a measurement control system. Moreover, this drive
system is equipped with two inertial disks with adjustable mass moments of
inertia and the possibility of axial positioning. This enables us to tune the
drive train to the proper natural frequencies. The control voltage is applied
to the magneto-rheological damper with sliders. The external magnetic field
acts on the fluid inside the damper. Consequently, the characteristics of the
magneto-rheological fluid are changed, in a way that controls the torsional
vibrations. Since the average rotational speeds of the ring and of the shaft
are similar, only small wearing effects can be expected and vibrations can
be suppressed without significantly influencing the rigid body motion of the
drive system. The measurement-control system consists of voltage amplifier
controlled in real time by a computer using the appropriate converting sys-
tems. This enables us to monitor and register all the measurements. This
is possible through the use of a control-communication unit by means of
the TCP/IP protocol. The measurements were taken with frequencies above
15 kHz. This allowed accurate detection of even very rapid changes in torque.
The torques are non-contact measurement. The computer carried out real
time FFT analyses of the interval lengths per second and recorded the values
of the two major peaks of the FFT. This allowed us to keep the value of the
dominant peak, depending on the amplifiers of the control signal voltage.
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Figure 5.31. Torque in the case of: a) no damping, b) continual damping, c), d) se-
lective damping.
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Figure 5.32. The scheme of the test stand.
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Figure 5.33. Maximum of the spectra for the undamped system and the contin-
ually damped system.

First let us compare the responses of the undamped experimental stand
excited over a wide range of frequencies with those of the same system when
continually damped at a level of c = 0.5 Nms. Figure 5.33 shows, for both
cases, the maxima of the spectra obtained for frequencies of excitation up to
200 Hz in steps of 1 Hz. The advantage of damping is evident. Below, we
will consider two selected excitation frequencies: 45 and 50 Hz.
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The left hand end of the shaft was excited by a driving motor with a sine
torque. Its amplitude was set to 1 Nm. The frequency as set within the
range 30–60 Hz. The right hand end was terminated with an electric brake.
At this point, the boundary condition ϕ(L, t) = 0 was used. This condition
can be changed in other tests and, for example, a constant rotational velocity
can be imposed. However, we can always shift our results as a rigid body
motion.

Below we present the system response for the case of continual damping
and for the case of a rectangular input signal applied to the damper. Its
form is depicted in Fig. 5.34. Figure 5.35 shows the torque registered with
constant and periodic damping of the damper, with excitation 50 Hz. The
spectral analysis of both the response to constant damping and the response
to periodic damping is presented in Fig. 5.36. We notice the advantage of
the periodically activated damping. The difference between both spectra is
clearly visible in Fig. 5.37. The improvement, i.e., the reduction of torque
response, reaches 10%.

Figure 5.34. Example of rectangular input signal applied to the damper (beside
a sine signal of excitation).

Another set of tests was carried out for rotation of the driving motor with
the constant frequency f=45 Hz. The torque in time in the case of both the
constant and periodic damping is depicted in Fig. 5.38. The vibrations with
periodic damping exhibit 15% lower amplitudes. The spectral analysis of the
system response yields the same conclusion as in the previous case (Fig. 5.39).
The difference between the spectra is depicted in Fig. 5.40.
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5.4. Sandwich Beam with Magnetic Elastomer

The control strategy, in a general case, depends on the type of the struc-
ture, the geometry and topological scheme, boundary conditions, rheological
models of used material, initial conditions and the type of excitation. In our
research we will prove the efficiency of the controlled damping in the case of
free damped vibrations, in relation to the permanently damped structure.

Here, we will consider a vibrating beam in Ω = {x : 0 ≤ x ≤ L},
subjected to initial displacements. The displacement field being reduced
w(x, u, t) depends on the control input u(x, t) that influences the shear stiff-
ness of the filling material. The objective of the control is to distribute the
shear stiffness G(x, t) over time to achieve the highest damping of vibrations.
In our problem the filling core material has a uniform shear stiffness over the
length. It can only vary in time. We assume a finite time horizon. The
optimisation problem can be written in the following form:

Minimize J =
1

2

T∫

0

L∫

0

[w(x, u, t) − wd(x, t)]
2 dx dt (5.15)

subject to the constraints

∂4w

∂x4
− gY

∂2w

∂x2
+

g

ηb

∂u3
∂x

+

[
µ

Dt
+ δ

(
x−

L

2

)
m

Dt

]
∂2w

∂t2
= 0,

∂2u3
∂x2

−
g

b
u3 + gY η

∂w

∂x
= 0 ,

w(x, 0) = w0(x) on Ω, (5.16)

w = 0 on ∂Ω,

u ∈ U .

The above problem displacements of a linear system of differential equations
in a quadratic form. This problem is a linear quadratic hyperbolic control
problem with distributed control. The treatment of these type of problems is
much more difficult, due to the weaker smoothing properties of the associated
solutions.

Most of the numerical algorithms developed for the optimisation of par-
tial differential equations are dedicated to convex problems. The solution
is simply obtained if the objective function is quadratic. There are a few
reasons for this. The most important one is that the convex problem has
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a unique solution and, therefore, less or more efficient gradient methods can
be used. Moreover, quadratic functions enable us to derive simple formulae
for the gradients by introducing the adjoint state.

For practical reasons, we assume an objective function which minimises
the amplitudes of the displacement at a midpoint. We will take n time
intervals per observation time T and denote by ui, i = 1, 2, ..., n the control
variable in each period i. Then our problem is defined as follows:

Minimize J=
1

2

T∫

0

[w(L/2, u, t) −wd(L/2, t)]
2 dt (5.17)

Ω = {x : 0 ≤ x ≤ L} ,

∂Ω = {0, L} ,

0 ≤ ui ≤ 1, Gi = Glow · (1 + 0.2ui) i = 1, 2, ..., n ,

with the governing Eq. (5.16).

In our numerical implementation of the optimisation problem we divide the
limited period of observation into short intervals of identical length. In
each interval the constant control function is assumed. We search for values
in these intervals. The higher number of intervals is assumed, the more
precise resulting control function is obtained. In the case of steady state
vibrations subjected to an oscillatory force, we can successfully adjust the
control to a single period of vibrations. In the case of free vibrations being
controlled by a chosen material parameter, each action modifies the form
of vibrations in successive cycles. Both the period of vibrations and the
function of displacements in time are charged. For this reason we must
consider several successive cycles and the entire process must be treated
homogeneously.

Our problem is characteristic of the following features:

• the change of one control (decision) variable at a particular time in-
fluences the response of the remaining process, starting from that mo-
ment,

• less acceptable local response can result in advantageous entire re-
sponse,

• neighbouring different values can assume radically different values, al-
though mostly they have similar values,
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• optimum solutions can be achieved for zero-one control variables,

• the objective function is very sensitive to control variables.

The elongated observation requires higher number of control variables. We
propose the observation of four cycles divided into 40–400 intervals. Since
our objective functions are not convex, the known computational methods
for minimisation are ineffective (for example IPopt package). First attempts
shoved the efficiency of random methods. The simple Monte Carlo method
is, unfortunately, inefficient. The increased number of variables dramatically
diminishes the convergence rate. Genetic algorithms, which seems to be good
for some problems of minimisation, in our case also fail. We can explain
the limited efficiency of the known algorithms with particular features of
our task. The process is continuous in time and locally estimated control
function can be demolished by few variables re-established in the proceeding
moments. The change of the period of vibrations is a sufficient reason of such
a scenario. That is why we optimise the problem in small groups of variables,
usually defining values of the control function in successive moments. Such
subsequences of variables have alternating length and move along the time
of simulation, and from time to time these subsequences contain variables
from the entire set, i.e. inconsecutive.

The control problem (5.15), (5.16) was computed with two levels of shear
stiffness of the core: Glow = 45 · 103 Pa, Ghigh = 1.2×Glow. The remaining
data are following: length L = 1.44 m, width b = 0.04 m, height h1 =
0.5 · 10−3 m, h2 = 5 · 10−3 m, h3 = 0.5 · 10−3 m, point mass m = 0.740 kg,
Young modulus of outer layers E1 = E3 = 69 · 109 Pa. The initial deflection
of the end of the beam w0 = 0.06 m.

Small number of decision variables results in sufficiently accurate nor-
malised control function (Fig. 5.41a). Increasing precision improves shapes
of slopes in the diagram. All the values practically vary between extreme
values, i.e. zero and one. Our control requires activation at times of extreme
displacements and switching off at times of static equilibrium state, i.e. after
1/4 of the vibration period. The action of the activated magnetorheological
elastomer is carried on during half of the total time. For comparison dia-
grams in Fig. 5.41 depict vibrations without control and with permanent
control. It is obvious that the structure vibrating with constant-in-time low
or high shear stiffness of the inner layer and excited with the same initial
deflection differ only in period of vibrations.

If the form of the control function is known, we can replace the great
number of variables that constitute it with much smaller number of variables
that define limits of zero-one rectangular periods. In such a case we can use
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Figure 5.41. The control function computed with partition of the time horizon
into a) 40, b) 80, c) 160, d) 240, and e) 480 time intervals.
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ten or twenty variables instead of about 200. This technique was previously
applied to a beam supported with a set of dampers, controlled semi-actively
[5, 6].

Our control function that enables the reduction of amplitudes differs from
the solution of a similar problem described in [2]. The enhanced damping
of rotating shaft controlled with magnetorheological dampers occurred with
sinusoidal control function.

5.4.1. Experimental Verification

The experiments were carried out in order to validate, whether by placing
the magnetorheological elastomer at the tip of the beam the overall damp-
ing ratio of the structure could be increased. Theoretically obtained control
strategy for the smart core was verified and evaluated on the fabricated beam.
The laboratory stand (Fig. 5.42) intended for the research of free vibrations
of beams consists of a fixture frame, supported firmly to a steady base plate.
A massive mount, acting as mechanical vice attached to the frame, allows
suspending the tested beam vertically in a clamped-free configuration. In
order to set initial displacement of the beam, a holding band was connected
to the free tip of the beam. The band was strained to give the initial trans-
verse displacement of 0.06 m. The data acquisition starts when the holding
band is released and the beam start to oscillate around the equilibrium point.
The component of the displacement of the amplitude was the basic, directly
measured parameter. The displacement was measured at three points (top,
middle and bottom of the beam) with dedicated laser sensors, with resolu-
tion up to 8 µm and 10 kHz sampling frequency. The measurement system
featured functions for compensation of the inaccuracy of measurements up
to 15◦ of inclination angle. A 16-bit data acquisition card connected to the
computer was used to record the measurement results. The Programmable
Logic Controller (PLC) with relay outputs allows to directly program the
cycles of turning the actuators on and off, depending on the control strat-
egy. The photo of the real, deflected specimen and measurement system is
presented in Fig. 5.43.

The parallel face beams are made of aluminium of Young modulus E =
69 GPa. Both of them are 720 mm long, and have a rectangular cross-section
40×0.5 mm. The beams are connected at the tip by an magnetorheological
elastomer element of dimensions 40×20×6 mm, which weights 20 g. The
magnetorheological elastomer was custom fabricated, isotropic material of
density 3560 kg/m3. The iron particles fraction was 8% of the volume. The
matrix was made of rubber, cured for 20 min at 145◦C. The shear modulus
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Figure 5.42. Schematic diagram of the experimental setup: 1 – laser displacement
sensors, 2 – electromagnets, 3 – displacement signal amplifier, 4 – PLC controller,
5 – data acquisition system.

Figure 5.43. Photography of the deflected sandwich beam with embedded mag-
netorheological elastomer.
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Figure 5.44. Control signal over time for semi-active control of the damping.

of the elastomer is G = 310 kPa for no magnetic field, and G = 340 kPa
for magnetic field induction of 0.5 T, which is the maximum approachable
value. Two island-pole electromagnets were used as actuators to control the
properties of the smart core in a desired manner. They were also treated
as a 0.37 kg point mass which decreases the natural frequency of the sys-
tem. Each of the magnets are placed on the opposite side of the beam. The
magnets are circuited in a way that the first magnet’s pole is N-type po-
larised, and the other magnets pole is S-type. That type of configuration
(Fig. 2.35) increases the maximum value of the induced magnetic field flux
density between poles up to 0.5 T and creates a field flux Φ that is normal
to the sheared area of the elastomer.

The presented results of the displacements in time are considered for
the tip of the beam, where the maximum amplitude occurs (signal from the
bottom laser sensor), as only the 1st mode of vibration was excited. The
On/Off control was performed, switching the magnetic induction between 0
and 0.5 T in the moments as presented in Fig. 5.44. The control signal was
applied according to the numerically determined strategy, i.e. it achieved
high level at extremal deflection and low value at zero displacement state.

Figure 5.45 illustrates first segment of 30 seconds of vibration. The pre-
sented plots show that the magnetic field affects the amplitude of the dis-
placement of the beam’s tip for initial deflection 0.06 m, in three different
cases: MRE not activated, MRE turned constantly on, and MRE activated
in selected moments. The case of free vibrations of a beam with the non-
activated smart core is treated as the reference measurement. In this case
the only damping mechanisms were related to the shear deformation of the
non-activated MRE.
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Figure 5.45. Displacement in time for different states of MRE damping element
caused by the magnetic field.

All three curves in Fig. 2.36 exhibit damping. The elastomer, although
merged locally in the sandwich beam, causes significant decrease of ampli-
tudes both in constant and periodic magnetic action. The experiment differs
in this case from our theoretical analysis. However, the efficiency of the con-
trol with a small elastic inclusion, related to the entire length of the beam
is effective. Longer observations allowed us to estimate the rate of damping.
After 60 s the amplitude of displacement for 0 T is 12 mm, which is a 20% of
the initial deflection. If MRE was activated constantly, the amplitude after
60 s of vibrations decreased to 4.2 mm. It is 7% of the initial value. In the
controlled case the amplitude dropped to 2.6 mm, i.e. to 4% of the initial
value.

5.4.2. Conclusions

The concept of utilising shaped magnetorheological elastomer in order to sup-
press a particular vibration mode of a three-layered adaptive beam has been
validated. The embedded magnetorheological element undergoes changes in
its modulus, which influences the apparent stiffness and damping of the whole
composite. The material properties are controlled by switching the applied
magnetic field. It is evident from theoretical and experimental study that
the magnetic field modification affects the stiffness and the damping mecha-
nism. As predicted by the theory, the appropriate vibration attenuation can
be more or less efficient, depending on the control strategy.
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Mathematical model of the structure with semi-active damping element
with field dependent elastic modulus was proposed. The resulting control
function has a rectangular on-off shape. Modified shear stiffness of the core
layer in the theoretical analysis allows to obtain highly efficient damping.
Experimental verification is less efficient since the controlled elastomer is
placed only locally at the tip of the beam. The experimental analysis proved
the efficiency of the control strategy on the dynamic response, damping
capacity and frequency of the system.

The presented semi-active treatment can lead to further improvements
of available damping systems and increase number of applications utilis-
ing properties of MRE. This gives us a chance of manufacturing a low-cost
damping elements, that allow for some shape design flexibility and material
tailoring variation to obtain desired dynamical performance and functional-
ity in the structure.

5.5. Granular Material

The recent trend is to replace the active force actuators with devices utilis-
ing smart materials. This motivates to search for an alternative materials,
eliminating disadvantages of commercially available solutions. The smart
material proposed in this work is based on the idea of placing loose grains
in an airtight elastic envelope, which is then merged between two elastic
beams (Fig. 5.46) [1]. The proposed semi-active control strategy allowed
reducing the amplitude of vibration up to 40% compared with the passive
solution. The dynamic behaviour of the jammed granular materials with
an underpressure variable is time were not investigated so far. The moti-
vation for studying the damping parameters of the considered structure is
the possibility of using the concept of periodically jamming and unjamming
the granular structure to semi-actively suppress any vibrations. Selecting
proper moments of switching the state of the granular structure aims at re-
leasing of the strain energy accumulated during deformation. The general
idea is similar to switchable-stiffness for piezo-actuators and magnetorhe-
ological materials or Prestress-Accumulation-Release strategies [4]. In our
research we will prove the efficiency of a controlled damping in the case of
free vibrations, in relation to the permanently damped beam.

5.5.1. Identification of the Parameters

Prior to solving the optimal control problem, the identification of parameters
k and c of the structure had to be done. First of all, an experimental research
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Figure 5.46. Construction of the cantilever with granular structure controlled by
the underpressure.

of the response of the real cantilever with damping structure treated passively
was considered. Four types of granular materials, different in size, shape and
material were considered and examined to find the most promising one. The
material was subjected to constant value of underpressure, ranging from 0
to 70% of vacuum. For every set value of underpressure, the beam was let
to vibrate freely to acquire the desired characteristic. This research took
major effort and was described in Chapter 2. The experiments proved that
even small change of the parameters can drastically influence the efficiency of
damping. The roller granules subjected to underpressure of 0.07 MPa were
chosen as the most promising material for the switched damping concept.

The Table 5.4 presents the computed parameters of the model of the
system and estimation error ǫ, while the Fig. 5.47 shows how they change
for different values of underpressure. The estimation error ǫ is computed
as the Euclidean norm of the difference between the numerically computed
displacement w and experimental displacement w̄.

ǫ = ‖w(t)− w̄(t)‖2 . (5.18)

The minimization problem allows to identify the material parameters in the
way similar to the least square method. The first 30 seconds of vibrations
are compared with the chosen model of the structure. In computations the
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Table 5.4. Parameters in the Kelvin-Voigt model for roller filling.

∆p [MPa] k1 [N m−1] c [N s m−1] ǫ [10−3m]

0.00 8.601 0.0308 0.083
0.01 8.633 0.0312 0.086
0.02 8.672 0.0316 0.098
0.03 8.682 0.0324 0.114
0.04 8.690 0.0318 0.104
0.05 8.705 0.0309 0.093
0.06 8.706 0.0304 0.086
0.07 8.707 0.0301 0.083

Figure 5.47. Trace of the parameters of the Kelvin-Voigt model.

mean error ǫ of the displacement wi is obtained as follows

ǫ =
1

n

√√√√
n∑

i=1

(wi − w̄i)
2, (5.19)

where n is the number of steps in the simulation. A set of surrogate pa-
rameters mimics the qualitative changes of the performance of the original
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structure, and shows that the operating conditions can be altered by the un-
derpressure. The stiffness k is the parameter which is of our greatest interest,
as it is responsible for an effective switching control. The theoretical depen-
dency of stiffness over underpressure presented in Fig. 5.47, can be quite
well related to the experimental data. The change is monotonic and exhibits
saturation, as the underpressure approaches maximum value. On the other
hand, the change of damping coefficient c is not monotonic. The extremes
are observed for the mid-values of underpressure, around 0.03 MPa. Com-
pared to the experimental results of logarithmic decrement of damping, one
can see that this non-monotonic behaviour is present in the original struc-
ture, but far less noticeable. Since these phenomenological models provide
only two parameters to be tuned, the parameter c bonds several mechanism
of damping present in the original structure, and is sensitive to the exper-
imental data provided in the optimization problem. However, parameter c
is of much less importance than the stiffness k when the parametric control
is considered as the target application. Probably addition of more complex,
nonlinear element to the phenomenological model would allow to extract
this behaviour to a separate nonlinear parameter. This would result in de-
composing the parameter c into more variables, including nonlinear friction.
Nevertheless, this would far more complicate the identification problem, ex-
tend the computational time, and make future optimization difficult. As the
switched stiffness is considered, the damping coefficient has far less influence
on the results than the stiffness. The non-monotonic change in the experi-
mental results may be connected with the fact, that the compressed granules
may exhibit increase in the effective dissipation when the granules are still
in the solid-like phase, close to the point where particles tend to roll over
each other, demonstrating convective patterns, which would be achieved for
the mid-values of underpressure.

5.5.2. Adaptive Control Strategy

First we will solve the problem of finding the control strategy for the case
when the stiffness k is the only variable that we modify over time. Then,
we can analyse the case when stiffness k and damping coefficient c are con-
trolled simultaneously. One can imagine, that there are particular points of
switching the variables that will result in an better damping behaviour than
other. We assume the time of observation equals 1.5 of the main period of
vibrations, which is divided into n number of time intervals. Then, the m
successive number of amplitudes are to be minimised, preserving the oscil-
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latory form of the displacements. The objective function I for the switched
stiffness is formulated as

I =
1

m

m∑

i=1

A(k)2i . (5.20)

For the switched stiffness and damping coefficient, the objective function is

I =
1

m

m∑

i=1

A(k, c)2i . (5.21)

The damping is efficient when the sum of the squared values of the ampli-
tudes significantly decreases. The number of successive amplitudes taken
into account should be low to keep the problem simple. The larger num-
ber m would introduce adverse local minima and increase computational
time. This would lower the regularity of the observed periodic motion of the
beam, as additional cycles would be considered in the optimisation problem,
making the solution complicated.

Figure 5.48 shows how does the discrete control of variable k and both k
and c affects the results. It is clear, that changing the number of time inter-
vals highly influences the results of the optimisation, so picking up the right
number of n time intervals seems difficult. The first candidate is n = 10 (on
both plots), where the curves reach first local minimum. The next minimum
indicating better results is achieved for n = 20 and n = 21 for Fig. 5.48a and
b, respectively. Higher number of time intervals does not result in much of
an additional improvement.
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Figure 5.48. Results for switching only parameter k a) and both, stiffness k and
damping coefficient c b).

Figure 5.49 presents the simulation results without any control (black
line) and with control (red line), obtained for the analytical solution of
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Figure 5.49. Displacements in time for the control of variable k performed in 10,
20, and 80 intervals (left column a) and control of k and c performed in 10, 21, and
80 intervals (right column b).

Eqs. (3.133) and (3.135). The plots in the left column show displacement
over time for the case when the stiffness k is the only decision variable. Three
different time resolutions of the control function are considered: 10, 20, and
80 time intervals. The plots in the right column show respective results for
the case when k and c are the controlled variables. The time was split into
10, 21, and 80 intervals.
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It may be noted that the change of the stiffness k is the major component
that contributes significantly to the vibration abatement. The additional
influence of the damping c is rather marginal. The resulting form of the
control signal may be simplified by distinguishing dominant stages. In the
first stage, when the vibration starts, the control signal is turned constantly
on. The control variables (weather it is k or k and c simultaneously) are
maximum. Then, after some time, the control signal is rapidly turned off and
the control variables are equal to zero. Then, depending on the time intervals
considered, the process is repeated, but the moments of switching the control
On and Off changes in time. For 10 time intervals the tendency is very clear,
and the particular moments of switching can be estimated from the graphs.
The control requires activation at times of the extreme displacements (ẋ = 0)
and keeping the signal turned on, until the beam crosses the equilibrium
point x = 0. Shortly after crossing the equilibrium, the control signal can
be switched off until the beam reaches another maximum.

For larger number of time intervals the points of switching are not so
easy to pick, but some conclusions can be drawn. For the first cycle of the
response, when the sinusoidal waveform is regular, it is recommended to
keep the underpressure constantly activated, and turn it Off three times,
before the beam reaches another maximum deflection point. After the first
cycle, further control introduces higher mods of vibration, movement is less
regular and thus the control strategy becomes difficult. Optimal damping of
higher modes introduces not only switching between the extremes, but also
between intermediary values. That type of strategy would be hard to adapt
in real structure and made it less operative. Also at some stages, moments of
turning signal on and off are very short. This would be hard and impractical
to achieve on a physical object, shortening the live time of electromechanical
actuators controlling the underpressure. By assuming some hysteresis, the
real control signal may be simplified (Fig. 5.51). The switching between two
extreme values of vacuum is easy to achieve, and eliminates the necessity to
continuously measure and adjust the underpressure in short periods of time.
This may be classified as a Bang-Bang control strategies, where the actuator
can assume only two states.

5.5.3. Experimental Study

The granular structure is connected through the electrovalve to the vac-
uum pump, supplying underpressure to the accumulator. Proper periodic
switching of the electrovalve alternately connects the granular structure to
the vacuum source and the atmosphere, resulting in switching between two
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extreme values of the pressure. The simplified control strategy was adapted
to a Programmable Logic Controller (PLC) with relay outputs, controlling
the state of the electrovalve. By constant comparison of the displacement of
the beam’s tip with the threshold value set in the PLC, underpressure was
activated and deactivated in particular moments. The process of evacuating,
and supplying the air to the structure takes some time, which results in time
lag effect. The delay determines the maximum frequency of the response,
and thus the range of potential applications. The shape of the underpres-
sure signal is presented in Fig. 5.51 (bottom waveform). The combination of
an efficient vacuum pump, armature and fast response electrovalve allowed
to switch the underpressure between 0 and maximum value up to 8 times
per second, maintaining desired shape of the underpressure signal. For the
described beam 3 switches per second were enough. By applying an under-
pressure accumulator, even less efficient pump can be used to achieve faster
and more sharp shape of the switching waveform. The scheme of the test
stand is presented in Fig. 5.50.

Figure 5.50. Schematic diagram of the experimental setup.

The parallel face beams of the specimen are made of aluminium of Young’s
modulus E = 69 GPa. Both of them are 720 mm long, and have a rectangu-
lar cross-section 40×0.5 mm. The beams are connected at the end by a 2 mm
thin, hermetic elastomer envelope. The envelope is filled with a roller shaped
granular material (Fig. 5.46). The dimensions of the damping element are
20×40×50 mm. A total of 0.37 kg mass was placed at the tip to decrease
the natural frequency of the system.
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The presented results of the displacement in time are considered for the
tip of the beam. In Fig. 5.51 the particular moments of switching the un-
derpressure are marked. Also the figure shows how does the underpressure
inside the envelope change over time as the vacuum is switched.

Figure 5.51. Displacement, control function and underpressure over time.

In Fig. 5.52 the response for controlled underpressure of the beam with
the roller filling was compared with the reference results for one-time, passive
selection of constant underpressure 0.07 MPa. The results confirmed that
the proposed controlled jamming system outperforms the passive one, and
may be efficiently utilised in mitigating the responses of the structure. For
the semi-active case, after 60 s of vibration the displacement was suppressed
from initial 60 mm to 3 mm (95% drop), compared to 10 mm (84% drop)
for the passive damping.

The agreement between theoretical and experimental results was satisfy-
ing, nevertheless the damping capacity was less effective than the numerical
results. This is the consequence of the modelling simplifications and differ-
ences between the assumed model and the real structure. Nevertheless the
global trend was correct, and the computed control algorithms were proven
to be effective.
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Figure 5.52. Displacement for passive and On/Off control.

5.5.4. Conclusions

Due to its conceptual simplicity, effectiveness and low cost, the proposed so-
lution for controlling the mechanical properties of vacuum granular structure
is an interesting alternative to classic damping systems based on composites
and expensive smart materials. The preliminary results showed that the
switched-jamming of the granular materials placed in special envelope may
be effectively used to obtain vibration attenuation. The modified Kelvin-
Voigt model of the system was proposed and the equations were derived.
The optimal control problem was solved, considering the concept of peri-
odically switching the parameters of the system to efficiently attenuate the
displacement’s amplitude. The resulting control function has a rectangular
On–Off shape, which is easy to adapt to a classic electromechanical relay
system. The numerical analysis showed that the idea of periodically chang-
ing the material properties can be efficient if the switching is presumed in
a proper manner. The issue of modelling the structure is still an open prob-
lem, and further model development is necessary, including the friction and
slips between the grains. The investigated functional material has many
application prospects, which provides an impetus for continued research in
this area. The applicably is limited to low frequency excitations, since the
granules need some time to reorganise. Although the idea presented in this
work is in the initial phase, its potential seems to be very attractive and it
deserves major attention.
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Chapter6

Conclusions and Perspectives

Designing lighter, safer and more efficient damping structures which are
cost effective, has been in high demand in modern vibroisolation technol-
ogy. However, the vibration abatement is a complex, and frequently misun-
derstood subject. From the foregoing examples it can been clearly seen that
defining the problem, modelling the system, designing and implementing the
proper treatment is effort and time consuming process, which cannot be done
by a “hit and miss” approach. Properly designed adaptive structures with
smart materials allow significant improvement of the dynamic properties of
systems, compared to their passive equivalents. The damping approach us-
ing smart materials provides an attractive solution because it is practical and
cost-effective when compared with other alternatives. These methods utilise
the motion of the system to develop control forces, so the energy requirement
is lower than in case of active treatment and the system is safer in the case
of malfunction.

The investigation of semi-active and adaptive methods using smart mate-
rials for shock isolation and residual vibration control, have been presented
in this book. The structures with magnetorheological fluids benefit from
the fact that we can control the yield stress of the fluid, and thus alter the
damping parameters. For the beam with the magnetorheological elastomer
the distinctive feature is the ability to control the shear modulus of the mate-
rial by varying the magnetic field. For the beam with the granular structure
the vibration attenuation is obtained by changing the underpressure value
among the granules.

Mathematical models and numerical analysis proved that the idea of
periodical changing of material properties can be very efficient if the switch-
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ing is presumed in a proper manner. The smooth control functions can be
successfully replaced with a periodic on/off switching function (bang–bang
type). To demonstrate the validity of the control strategies obtained nu-
merically, the experiments were carried out for the real structures like the
rotating shaft, beam with the travelling inertial load, double beam system
and sandwich cantilevers. Depending on the type of granular filling and the
number of performed switches, it was possible to reduce the amplitude of
vibrations 20%–30% faster compared to passive damping. The bang–bang
control exhibited the same rate of improvement in the experimental results
as in the simulations, although the theoretical form of the control function
was applied in practice with a certain inaccuracy.

6.1. Perspectives

The elastomers and the granular structures provide some flexibility in the
shape design and material tailoring variation to obtain desired dynamical
performance and functionality. The change from one state of the elastomer
to another takes a short time (order of milliseconds), therefore the MRE
are excellent for applications where strong dynamic features are required.
The granular materials encapsulated in elastic envelopes can possess almost
any suitable shape which allows installing them in irregular-shaped spaces.
The applicably of the special granular structures controlled pneumatically
is limited to the applications with lower frequency excitations, since the
granules need some time to reorganise, and it takes some time to evacuate the
air from the envelope. Dampers with magnetorheological fluids can be easily
adapted to structures which use classic, viscous dampers. The structures
may also benefit from implementing proper control algorithms, based on the
presented study of the switching concept. Each of the investigated functional
smart materials has many prospective applications and provides an impetus
for continued research in this area.

One of the branches of applications of the magnetorheological elastomers
and fluids is the aerospace industry in which structures are mostly based on
the metallic and composite layered solutions including carbon fibre-reinforced
plastics, which have low internal damping. The proposed material and con-
trol strategy can be used to mitigate vibrating parts of the plane, and effi-
ciently reduce wind flutter effects.

The automotive industry may also be a potential recipient of both of the
proposed damping variants. Vibrations generated by the vehicle drive system
and the suspension could be suppressed by self-adaptive absorbers, or smart
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lightweight suspension beams, stabiliser rods or suspension bushings in order
to reduce the shudder effect. The electrical current could be supplied from
the automotive electrical system, while the underpressure could be generated
by one of the pumps. It would be particularly useful to adjust the vibration of
the adjacent structures in response to the present conditions such as vehicle
speed, road type and whether conditions, vehicle load and similar.

The semi-active solution with an efficient control algorithm may also be
used for applications where we have to deal with the fast travelling load
such as train-track, vehicle-bridge, crane-weight systems or robotic linear
guideways which are of a special interest for practising engineers. Existing
structures could be reinforced by supplementary supports with magnetorheo-
logical elastomers and dampers controlled externally to improve the stability
of the structure.

The seismic performance efficiency of the base isolation system, which
decouples the civil structures from the ground motion can be highly im-
proved by adapting the concept of smart materials controlled according to
the switching strategy. The controlled elastomers with stiffness-tuning abil-
ity strive to alleviate limitations of existing passive-type base isolators, which
works well on a site with a stiff soil condition, but are not effective at all on
a site with a softer soil.

The granular-based system would be preferred in mitigating the low fre-
quency vibrations of a tower pole of a wind turbine, where they can be
employed as an environmentally friendly solution operating in relation to
time changing wind speed and variable speed mode used in a large scale
turbines. For normal operating condition the structure could be damped by
the loose granular material, while the switched jamming strategy would be
active for an exceeded level of vibrations.

Properly adapted, smart granular damping elements may also be used
in intelligent rail ties, speed bumps, marine dock buffers, loading bumpers,
fenders in the warehousing industry, pedestrians’ walkways, pipeline sys-
tems, speed humps and many other types of structures. It is an attractive
alternative in semi-active damping due to its conceptual simplicity, poten-
tial effectiveness and very low cost. In spite of these benefits, the proposed
semi-active damping systems bear some drawbacks, primarily because they
are more complex than the passive counterpart and require additional sen-
sors, actuators and controllers. Numerous applications, which make use of
controllable stiffness and the unique characteristics of smart materials, will
be developed and the efforts will be paid off in the near future.
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6.2. Recommendations

The numerical results showed that the switching times methods can be very
efficient if the proper number of switchings is presumed. The effective damp-
ing ratio of the experimental system was very similar to the predicted value
considering the mechanical properties of the system. However, there are
some aspects found during the investigation that might be worthy of further
study, as mentioned below.

The work on the travelling load created a lot of important and previ-
ously unexplored problems. It provided the qualitative results that should
be extended with more complex models to make the proposed ideas fully ap-
plicable. For the travelling load, in practice we require much more complex
mathematical model to approach a real physical object. The inertial forces of
the object should be included to the governing equation. We could also con-
sider many other control objectives: travel comfort, structural damage of the
span, damage of the surrounding buildings. An interesting issue that rises
from the work may be posed as the following: find a decentralised control
method such that the desired global behaviour of the system is preserved. It
might turn out that the optimal passage of a moving load can be achieved
by using local interaction between some states and it is not necessary to use
centralised computations.

In order to study in details the possibilities of controlling the vibrations
of the beams treated with smart material, it is necessary to analyse the
response of systems subjected to dynamic exploitation loads and harmonic
excitations, for example reproducing the excitation caused by the vehicle
riding on the bumpy road, seismic vibrations or environmental load or an
impulse-excited system.

The optimal composition and geometric parameters of the damping mem-
bers, and minimising their weight by selecting their optimal placement can
help in maximisation of modal damping ratios and modal strain energies
and can lead to significant saving in the amount of used material. The
study on core architectures would be interesting. By varying configuration
and dimensions of the core and the material of the face sheets of sandwich
structures, it is possible to obtain various properties and desired damping
performance. The study devoted to the damping performance of the pneu-
matically controlled granular material is cognitive and it is limited to the
most fundamental issues only. In the authors’ opinion, further research on
the topic is to be highly recommended.






