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1 Introduction

The space-time discretization of the structure has some advantages. First, it en-
ables the non—stationary partition of a structure. It allows to solve in a simple way
quite new problems: problems with moving edge, mesh adaptation in hyperbolic
problems, mesh condensation which moves together with a travelling force. Second,
the evolution of the domain considered in nonlinear problems can be efficiently mod-
elled by the continuous change of geometry in time. The method of the space-time
finite elements, described for the first time by Oden [1] and then developed in papers
[2, 3,4, 5] has considerably been changed as compared with its first formulation. The
fundamental difference concerns the approximation of characteristic parameters. In

commonly used time integration schemes it has the form

u(,t) = N(z) - q(t) 0
whereas in the space-time approximation we use

u(e,t) = N(z,t) q, . (2)

The same question concerns both the state parameters and the geometry of a struc-
ture. Thus the evolution of the geometry has a continuous representation in the
formulation and in the equilibruim equation.

In the paper we will discuss some numerical properties of the time integration
method derived from the formula (2). The first approach to the formulation de-
veloped here can be found in [6, 7]. The reader can also find there the historical
background. It should be emphasized that we do not apply directly the Hamilton
principle (nor any other energy methods). The method has various possibilities of
modifications. The order of the error can be evaluated and changed according to
our requirements. The artificial damping can easily be introduced and controlled.
Engineering problems with the evolution of geometry can be solved with much more
higher efficiency than with the use of other numerical tools. The approach can be

extended to non—linear evolution of geometry within the time interval. It could allow



us to increase considerably the time step of calculation with material and geometrical
nonlinearities. Thermo—mechanical coupling, temperature problems, problems with
phase change can be modelled in a natural way by using non—rectangular space—time
elements.

Let us shortly recall and develop the formulation.

2 Formulation

We start from the differential equation of motion

dv
— 4+ kx=0. :
m 7 +kzx=0 (3)

The principle of virtual power gives the form

(m% + k;v) v =0, (4)

where v* 1s the function of virtual velocity.

We assume the linear distribution of real velocity v over the time internal 0 <

t < h.
1 1
v = <1 — %> Vo + %‘01 . (5)
The displacement x(t) is described by the integral

t h t\? 1?

Here the proper choice of distribution of the virtual velocity v* is the fundamental
problem of the method. The convergence, efficiency, accuracy of time integration
and accuracy of the solution in the case of geometrical nonlinearities depend on the

form of v*. The simplest one is the Dirac distribution:

t
'v*:'vl(S(%—a) , 0<a<1 (7)

The form (7) is convenient for our purpose since it reduces the computational effort

and allows us to select the parameter « according to the stability condition.



The integration of (4) in time interval [0, A], with respect to (5), (6) and (7) gives

the following formula:

v = _%[1_(1_0[)2]1; —Eih T (8)
RS O

which allows us to compute v; if the initial conditions vg, zg for time step [0, A]
are known. Now the geometry z; is the last unknown value we must determine to
proceed to the next step [h,2h]. The average value of the velocity taken at point
Bh, 0 < 3 <1 results in the formula

1 = x0 + h[(1 — B)ve + Bu1] . (9)

The energy at the end of the time interval is preserved if 3 =1—«a . Then we have
finally
z1 = 2o + hlave + (1 — a)vq] . (10)

It was proved in [7] that the unconditional stability of the process (8), (10) occurs for
? < a < 1. For a=1 we have the explicit formula while for other values (0 < o < 1)

the scheme is implicit and requires iterations to determine the geometry z;.

3 Numerical dissipation

Numerical damping of higher frequencies with zero damping of the basic frequency
of the structure is the important question for each time integration method. Several
papers on this subject exist (for example [8]). The ideal solution is when we can
control the damping properties of the procedure (in particular cases the damping
should be equal to zero). Lower frequencies should not be damped while higher
should be damped relatively stronger. With respect to the shape of the damping
diagram we can divide all methods in two groups: the first one (Wilson, Houbolt
method) with the zero slope of the damping function for small h/T, growing with
the increase of h/T, and the second one (Newmark, trapezoidal rule) with a certain

slope of the damping function for A/T — 0. The practical experiences indicate that
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Figure 1: Logarithmic decrement A as a function of damping parameter v for a=0.8.

the first group damps higher modes too much, and the second group does the same
with lower modes. Other methods, which use more artificial parameters in their
formulations, improve the damping properties but their use is dangerous since the
regular dependence of properties on the parameters does not exist.

Here, let us modify the Eq. (9) by

ﬁ=1—T%—,0§7§1. (11)
v

The system (8), (9), (11) has the artificial damping which depends on the parameter
~ and on the moment ah in which the equation of motion is considered. Figures 1
and 2 present the damping decrement as a function of v for two values at a: 0.8 and
0.9. Tt can be interesting to compare the response of a 40—element model of a bar
fixed at one end and subjected to an impulse. The most characteristic results are
depicted in Fig. 3. Even small value of v allows to reduce the spurious vibrations of

higher modes. For the Courant number k=1 (k = ch/b, ¢ — wave speed, b — length

of the finite element) it suffices to take ¥=0.05+-0.10. For short time steps 4 should



Figure 2: Logarithmic decrement A as a function of damping parameter v for a=0.9.



Table 1: The order of convergence for different parameters a.

method error order coefficient
a=0 At? %
o = i At? i
a= % At? 11—2
a=3 At :
a=1 At? %

be increased. Fig. 4 presents the displacement in time of the free end of the same
bar. However, the calculation was performed with a long time step. Small artificial
damping with v=0.1 stabilizes vibration after several steps. Otherwise the response
of the numerical model does not correspond with the response of the mathematical

one.

4 Convergence

Simple error analysis enables us to determine the reminder of the Taylor expansion
of the exact solution which is not represented in the numerical solution. The order
of the error and respective coefficients for different parameters o are given in Table
1. The best case is for @« = 1/2. However, the scheme is conditionally stable. We
can decrease the error order and improve the stability by a linear combination of

several Dirac peaks introduced to (7). Then the virtual velocity has the form

t
v =1 Zwié <E - ozi> , (12)
where w; are the weights and «; are the coordinates of peaks. The formula which
corresponds to (8) is of the form

— B = w1 — o) h
o —
L+ 2% wia? STl+ L Yiwial

Tg (13)

v =
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Figure 3: Displacements in time of the free end of the 40—-element bar with selected

parameters a and « for time step h=0.1 and 1.0.
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Figure 4: Displacements in time of the free end of a 40—element bar computed with a

long time step: without damping and with 4=0.1 (thick line — theoretical solution).

Both & and m are, for simplicity, equal to 1. For example, if we take a;=0, ay=1/2,
az=1, we can determine w;=5/6, wy = —2/3, w3=5/6. The solution has the error

O(h*). The time integration scheme

h2
_ B h 1
U gt mEn gty "

is identical with the classical space—time finite element scheme described in [9]. We

should strongly emphasize here that the coincidence occurs for the simplest case
of a linear, one—degree—of—freedom system. Here we investigate such a case for the
reason of its simplicity and possibility of comparison of the results. We can notice
that in the case of linear vibration of simple oscillator, the central difference method
is identical with the velocity formulation for @ = 0. The Newmark method (3 = i,
v = %) and the trapezoid rule are identical with the case of a = @

Higher ranges of approximation are also available. In the case described above by
(14) the cost of calculations is doubled (in a general case of multi-degree-of—freedom

system). Matrices have to be determined for t = h/2 and ¢t = h. The matrix for

t = 0 is taken from the previous step.



Figure 5: Evolution of the spatial domain in two dimensions.

The phase error P for the method described by (8), (10) is given by the relation

h
pP= Ve R (15)
k(202 K+4—K) b
arctg < s )

In the limit lim,_ o P = 0.

5 Multidimensional case

As a multidimensional case, let us consider the change of the geometry in time
(Fig. 5). The equation of virtual work and the recurrence solution scheme is derived
in the same way as in the case of one degree of freedom. The integration is carried

out over the space time volume €Q:

/Q(’U*)Tp aa—‘t’dﬂ+/n(é*)%dﬂ - /Q(v*)Tf o (16)

The displacement is described by the integral
u(t) :u0+/0tvdt . (17)
The interpolation formulas
v=Nqg and v"=N7q (18)
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and constitutive equation o = FEe allow us to write the equilibrium of forces in the

time layer [0, k] in the form

(K+M)§=F-s (19)
where

K = // h(DNah(m))TEDN(:B,%h) dv - ah (20)

_ //:hN (g ah)y gy | (21)

s = / / [ (DN.(2)"BeodV . (22)

F - //N fz,ah)dV . (23)

K, M, s and F are the stiffness matrix, mass matrix, initial internal force vector
and external force vector, respectively. Here the integration is carried out over the
spatial volume V. Shape matrices N, are determined for the spatial geometry in
t = ah and N(2,-) for the space-time volume in a given time.

Two numerical tests prove the efficiency of the method. The first one presents
vibration of a bar element, fixed at one end. Very soft material ensures large dis-
placements, comparing with the initial element length 6=1.0. Two plots in Fig. 6
present the motion in the phase plane. They are obtained for the initial condition
vo=1.0. The first one was performed for h=0.1 and for different values of a. The
second one compares the results for A=0.5 obtained by the space—time procedure
(solid line) and by the modified Newton—Raphson method with central difference
method for time integration (dashed line). The precision of the calculation is suf-
ficiently high in spite of the large geometry change per step. The second test was
performed for the viscoplastic material. The Norton constitutive law [10] was taken
for calculation. The 3 x 3 finite element square hits a rigid base with the initial
speed vg. Displacement of the upper corner as a function of time is depicted in
Fig. 7. Different time steps were taken. The fastest calculation was obtained for

h=5 with a=0.5 (5 steps with 3—4 iterations per step). The second interesting case
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Figure 6: Motion of a bar in the phase plane.

is for h=1.0 and a=1.0. Here we have the explicit formula (no iterations) for which

we need 15 time steps.

6 Numerical examples.

More complex numerical examples prove high efficiency of the presented approach
to problems of evolution of geometry. Two examples of viscoplastic deformation
are presented below. The first one is the benchmark. The cylinder (H=3.24 cm,
R=0.32 cm, p=8.93 g/cm?, K=0.005, m=0.1) hits a rigid base with a speed v=0.0227
cm/ps. The computation was performed with a=0.5 and h=1 ps in 80 steps (Fig.
8). Finally, the following results were obtained: height 2.12 ¢m, radius 0.71 cm,
maximum strain 3.0. Other authors got the following range of values: height
2.08—2.16 cm, radius 0.67—0.72 cm, maximum strain 2.6—3.2. It is essential that
other methods (for example [11, 12]) require 9500 steps or 3200—12600 cycles. On

12
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Figure T: Test of viscoplastic deformation.

this background the space—time approach is much more efficient. The second exam-
ple has 1250 spatial quadrangular elements. The axi—symmetric viscoplastic cylinder
(H=10 cm, Rint=2 cm, Rexy=2.2 cm) is crashed with a speed v=180 km/h. The
calculation lasts longer in this case since an internal contact is considered. There is
no friction between parts of the material. The deformed mesh and 3—dimensional

view is depicted in Fig. 8 and 9.

7 Conclusions

In the paper we have presented a new approach to the space-time finite element
method. The formulation is based on the velocity vector as a basic parameter.
Problems with nonlinear geometry evolution can simply and efficiently be solved.
In this case we can choose both the explicit and implicit scheme. Real engineering
problems can be solved with a small number of time steps and small number of
iterations per step.

The properties of the time integration scheme depend on the parameters of the

formulation. The accuracy, degree of approximation, reduction of higher mode

13



Figure 8: Impact of a bar — deformed mesh and generalized strain.
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