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1 Introduction
Several ways of modelling are considered in problems of structures yibt"ating under it

travelling load. Two main kinds of a load, a moving massless force or a moving inertial
force (Figure 1) result in different mathematical and numerical tr(latme:llt. Displacemenjs
in time also significantly differ. What is more, solutions differ qualitatiyely.

The analysis of the moving massless force is relatively Simple and has been' treated
in numerous publicat.ions [1, 2J. Wejnc,ude in this group all the. Pl!.p¢rs devote<l:to
the travelling. Oscilla.tor, i.e. a mass particlejoined to the base with a.,spt~ng. Although
the authors call 'this type of a load an inertial one, we ¢onsider it as 4 Ifia,sslessforpe
generated only by the particle's inertj,a. 'rhe inel:tial force moving Over the structure is
rarely reported in the literature [3.4, 516, 7). In the present paper we £oe\)sour attention
on the true inertial travelling load and on solutions of the problem in a finiteciolllain. The
existing solutions which deal with the problem are not satisfactory. Examples 6f practical
problems are presented in Figure 2.

The solution in a form of series was presented in IS}. However, the ~i$9ontinuity
of the mass trajectory, ie, the fundamental feature of the solution w$S.eXhibited in [8J.
The broad discussion of the. discontinuity was also proved there. This phenomenon has
not been previously .r:eported in li~()l'ature. In this paper we presellt ~be·<:(Jf:llparisonof
displacements of Iistructure under the massless and inertial moving load in the case of a
string, and Bernoulli-Euler and Tlmoshenko beams. A similar analysis canbe performed
in the case of 11.. plate, however it will not be included. in this text.

m~
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Figure 1: Moving loads; massless load (a), inertial load (b), and inertil}j load with a
massless force (c).
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Figure 2: Examples of practical applications: a power receiver and a wheel-rail interaction.

In thepaper [51 the author deals with the problem of a moving mass by the integro-
differential eqtiation. In 18J the same solution is obtained with the Fourier method applied
directly to the motion differential equation. In both approaches the mathematical treat-
ment of the distribution function results in serious questions on the continuity of the
solution. The detailed discussion of the problem was given in [9] .. Finally, in the paper
[10] the Lagra.I1ge equation of the second kind was applied. This approach allows us to
avoid troubles with treatment of the Dirac delta in the consequent mathematical solution
applied to the differential equation of the motion. Especially we do not transform the
distribution function.

Finally we must mentipl1 here about numerical procedures derived Jor the Sa.I11Cclass
of problems. It lllust be emphasised here that the correct numericalsolution with the
use of the ;ctassical time integration method (for example the Newmark method) can not
be obtained with the approaches g\ven In literature. The intuitlve apptoach to discrete
analysis with the ad hoc lumping of forces and masses to neighbouring nodes with the
use of the Renaudot formula always fails. Sometimes, especially in the case of beams,
numerical solutions are limited, but significantly inaccurate. In the case ofa string such
a strategy results in divergent solutions. We emphasise here that the travelling mass
problem is not trivi.al. even ~ at first sight that seems to be the case .. Up to date numerical
solution can be obtained withthe regular space-time analysis of the finite element carrying
the mass particle. Such an element, called the space-time finite element. exhibits almost
absolute precision, comparing with the semi-analyttcalsolution [11, 12, 13].The problem
starts to be important in the case of a multipoint load and mutual interaction induced by
the vehiclc frame. ThiS problem should be investigated separately.

2 Mathematical formulation
Let us consider a string, a simply supported Bernoulli-Euler beam and a Timoshenko
beam of the length l, erose-sectional area A, mass density p, subjected to a mass Tn

moving. at a constant speed u, We assume a permanent contact of the mass with the
structure.

There are two components of the moving load. As the first, term we consider the
massless gravity force my proportional to the gravity acceleration ,9, constant at each
time step. The second term, the inertial force mil varies together with variation of vertical
displacements. In the first case the analyticalsolutions exist, e.g. [21. The analysis of the
inertial moving mass effect is mud). more complex. Since the closed solution call not be
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determined in an analytical way we must integrate the intermediate form ofthe solution
numerically. In order to reduce the partial differential equation to the system of ordinary
differential equations, we apply the Fourier sine integral transformation in a finite range
< Oil >.

2 00. • j1fX
u(x, t) = y L {jet) SIn -1- ,

j=1

(1)

where t . j7fX
{jet) = Jo u(x, t) SIn -1- dx . (2)

The Fourier series presented above fulfil boundary conditions. We restrict the solution
(1) to the finite number of terms (j = 150).

String under a moving inertial force can be written in the following form

_Nl)2u(x, t) A 82u(x, t) = >( _ t) ( _ d2u(vt, t))
8x2 + p 8t2 u X v m 9 dt2 ' (3)

where N is the tensile force in the string.
With respect to (1) the moving mass acceleration is expanded into a trigonometric series
fixed at a point x = vt

d2u(vt, t) _ ~.~ [i ( ) . ·k7rvt 2k7fv t ( ) k1f.vt _ k27f2V
2

C () • k1fvt] . (4)
dt2 - I L..J .,k t SIn I + I .,k t cos I [2.,k t BIn. I '

k=1

Equation (4) corresponds to the Renaudot equation which, when multiplied by the mass
m, describes the transverse inertia force, the Coriolis force and the centrifugal force, re-
spectively.

The motion of the Bernoulli-Euler beam under moving inertial load is given by the
equation

E1B4u(x,t) AB2u(x,t) = « _ t) ( _ d2U(vt,t))
8x4 + P 8t2 o x v m 9 dt2 ' (5)

where E is Young modulus and 1is moment of inertia.

The motion equation of the Timoshenko beam under moving inertial load with a con-
stant speed v has the following form

E1B4u(x, t) _ (1 k E1) B4u(x, t) 2k!._ B4u(x, t) A02u(x, t)
8x4 p + p G .8x28t2 + P G 8t' + P 8t2

_ ( ) _ k E1 82q(x, t). k_!_ 82q(x, t)
- q x, t GA ox2 + P GA Bt2 '

(6)

where

(
d2u(vt, t))q(x, t) = 8(x.,.. vt)m. 9 - dt2 .. (7)

G is the Kirchhoff modulus and k: is the coefficient of the cross-section. Delta Dirac
function 0 induces that the solution of the differential equations (3); (5) and (6) must
satisfy the theory of distribution [14).
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Below we present a brief solution with the method of Lagrange equation of the second
kind. In this. way we reduce the solution to the classical differential equations

(8)

T is the kinetic energy and U is the potential energy. The contribution of the moving
inertial load is described by the equation

T. = ~ [du(vt, t)] 2
m 2 m dt (9)

The moving gravitation force is expressed by the term

Urn = mgu(vt, t) . (10)

Both the Fourier and the Lagrange methods lead us to the identical systems of differential
equations with variable coefficients.

3 Examples
Below we present results obtained for selected structures subjected to a moving load. Two
types of diagrams are characteristic for the analysis of the problem: the displacements
in time of the contact point travelling together with the load and displacements of the
midpoint of the span.

String

In the Figure 3 displacements in time are depicted. The left hand side column shows
displacements under a travelling inertial particle and the right hand side column depicts
displacements of the midpoint .. The case of a massless force is plotted with the continuous
line while the inertial load is plotted with a dashed line. The comparison of both curves
in the case of a string exhibits the smooth form in the case of travelling mass. More, at
the final stage the mass trajectory exhibits the discontinuity. It is well seen in the case of
a speed v=0.5c, where cis the wave speed. However, it appears in a whole range of the
speed 0 < v < c.

Bernoulli-Euler beam
The simplest. model of a beam results in similar diagrams as in a more complex Timo-
shenko model, presented in the next point. Differences in displacements can reach 50%
and, although the mass trajectory is smooth, the acceleration values differ(Figure 4).
Accelerations at the final stage of the process are significantly higher in the case of the
moving inertial particle (left column in Figure 4).

Timoshenko beam

The Timoshenko beam exhibits similar properties as in the case of a string. The dis-
continuous trajectory can be noticed especially at a speed v=0.3 and v=0.5. We use
dimensionless data. Vertical acceleration of the travelling mass is high and noticeable
jumps must be taken into account in engineering calculations. Although inreal struc-
tures describedby nonlinear equations we observe a smooth response, we should expect
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Figure 3: Moving inertial load travelling along a string: a under the t;r!loVel.lillgmass, h
at the midpoint
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Figure 4: Moving inertia.lload travelling along. the Bernoulli-Euler beam: a - under the
travelling mass; b - at the midpoint
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Figure 5: Moving inertial load travelling along the 'I'imoshenko beam: a - under the
travelling mass, b -- at the midpoint

high vertical acceleration as a physical feature of the problem. We sl:l9.u1~emphasise e
significant difference in the caseof both types ora load (Figure 5) ', Generally we can say
that in the case of inertial load displacements are lower while accelerations are higher.

4 Conclusions
vVe can briefly conclude that inertial loads moving along continuous str\lcturt!!l result
in higher jumps of a load near supports. In this case we can expect darnages Of both
a structure and a vehicle. The finite element method, commonly used in engineering
practice, upto now does not allow a proper analysis of inertial movirig load problems.
The alternate approach presented in [11, 12J will be developed for the classical Newmark
time integration scheme.



-80-

References
[I] M. 01s80n. On the fundamental moving load problem. J. Sound Vibr., 154(2):299-

307, 1991.

[2] L. Fryba, Vibmtions of solids and structures under moving loads. Thomas Telford
House, 1999.

13] S. Sadiku and H.H.E. Leipholz. On the dynamics of elastic systems with moving
concentrated masses. Ing. Archiv, 57:223-242, 1987.

[4] M.A. Foda and Z. Abduljabbar. A dynamic Green function formulation for the
response of a beam structure to a moving mass. J. Sound Vibr., 210:295-306, 1998.

[5] U. Lee. Separation between the flexible structure and the moving mass sliding on it.
J. Sound Vibr., 209(5):867-877, 1998.

[6] M. Ichikawa, Y. Miyakawa, and A. Matsuda. Vibration analysis of the continuous
beam subjected to a moving mass. J. Sound Vibr., 230:493-506, 2000.

[7] A.V. Kononov and R. de Borst. Instability analysis of vibrations of a uniformly mov-
ing mass in one and two-dimensional elastic systems. European J. Meeh., 21:151-165,
2002.

(8) B. Dyniewicz and C.L Bajer. Paradox of the particle's trajectory moving on a string.
Arch. Appl. Mech., 79(3):213-223, 2009.

[9] B. Dyniewics: Dynamic properties of the hybrid systemsubjected to moving sorees of
perturbances (in Polish). PhD thesis, IPPT PAN, Warszawa, 2008.

(10) B. Dyniewicz and C.l. Bajer. Discontinuous trajectory of the mass particle moving
on a string or a beam. Machine Dyn. Probl., 31(2):66-79, 2007.

[11] C.l. Bajer and B. Dyniewicz. Space-time approach to numerical analysis of a string
with a moving mass. Int. J. Numer. Meth. Engng., 76(10):1528-1543, 2008.

(12) C.l. Bajer and B. Dyniewicz. Virtual functions of the space-time finite element
method in moving mass problems. Comput. and Struct., 87:444-455, 2009.

[13] C.L Bajer and B. Dyniewicz. Numerical modelling of structure vibrations under iner-
tial moving load. Arch. Appl. Meeh., 79(6-7):499 - 508,2009. DOl: 10.1007/800419-
008-0284-8.

(14) P. Antosik, J. Mikusinski, and R. Sikorski. Theory of distributions. The sequential
approach. Elsevier-PWN, Amsterdam-Warszawa, 1973.


	skanuj0031.pdf
	skanuj0032.pdf
	skanuj0033.pdf
	skanuj0034.pdf
	skanuj0035.pdf
	skanuj0036.pdf
	skanuj0037.pdf
	skanuj0038.pdf

