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1. Introduction

Increasing velocity of trains results in the increase of the influence of the wave phenomenon
on the deflections and stresses of structures. Dynamic effects are generated by the load of
train current collectors, travelling through the power supply cable of the overhead contact
line. The track or the bridge span are other places where the phenomenon occurs. Upto
now the detailed analysis of the problem of the moving mass travelling on a string or
a beam can not be found in the literature. The turning point in the literature devoted
to moving loads was established by two historical publications [1, 2]. These analytical
papers were elaborated with significant mathematical simplifications. There are some
partial approaches [3]. There exist numerous review papers [4, 5, 6, 7] which discuss
the problem. For a long time the main group of publications treated the problem in
an analytical-numerical way [8, 9, 10, 11] or strictly numerically [12, 13, 14]. In our
paper [10]we give the full semianalytical solution of the string vibrating under a moving
inertial load. In the case of the massless string we proved the discontinuity of the mass
trajectory. This phenomenon exists in solutions of strings and Timoshenko beams in the
small displacement range and in such a case can be considered as a paradoxical solution.
In a real case the mass trajectory is continuous, although stresses in the final stage of the
motion can be significant.

In the paper we consider the solution derived from the Lagrange equation of the second
kind. In a particular case the formulation is identical to the solution obtained by a direct
analysis of the differential equation with the Dirac delta component.

In this paper, we consider a cable as the string-beam model, since it has a certain
flexible stiffness. The Bernoulli-Euler beam with additional tensile effect comprises this
phenomenon (Fig. 1). In the paper the differential equation of the motion of a string-beam
is derived from the Lagrange equation of the 2nd kind.
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2. The Fourier solution

The string motion under the moving load, both massless and inertial, is described by the
following equation

N 82u(X, t) A 82U(X, t)
- 8x2 + P 8t2

8(x - vt) P _ 8( t) lJ2u(vt, t)x-v m 8t2 (1)

We assume boundary conditions

u(O, t) o u(l, t) = 0 (2)
and initial conditions

u(x,O) = 0 8u(x, t) I = 0 .
at t=O

(3)

The partial differential equation of the motion 1) is reduced to the ordinary differential
equation by using of the Fourier transform in the finite interval < 0, I >

t .
V(j, t) = Jo u(x, t) sin J~X dx , (4)

where the string displacement is expressed by an infinite series

u(x, t) = ~ f V(j, t) sin j~X .
;=1

In order to (5) the acceleration under the moving load is described as follows

82u(vt,t) = ~ ~ [V(k ) . k1(vt 2k1fvY(k) k1(vt _ k21(2V
2
V(k ) . k1(vt]

8t2 I W ' t sin l + l ' t cos I l2 ,t sin l
k=1

(6)

(5)

The transformed motion equation (4) has a form
j2 1(2. .. . . j1(vtNT V(J,t) + pA V(J,t) = P sm-l-

(7)

Finally the substitution of (6) and rearrangement of terms in (7) results in the ordinary
differential equation with variable coefficients

00 00

pA V(j, t) + a I:V(k, t) sinwkt sinwjt + 2a I:Wk Y(k, t) COSWkt sinwjt +
k=1 k=1

+ n2 V(j, t)
00

a I:w~ V(k, t) sinwkt sinwjt
k=1

(8)
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Figure 1: A string under the moving mass.



-101-

where

k1rv
1

j1rV
Wj = -1-

2m
-I . (9)

3. The Lagrange equation

The kinetic energy of the whole system (ie. both the string and the moving mass) is given
below

s, = ~pA l [8u~,t)]2 dx + Ekm , (10)

where
E = ~ [au(vt,t)]2

km 2m at . (11)

Now we consider the infinitesimal segment of the string and we compute the potential
energy of the entire string

The form of the term in parenthesis is complex for further analysis so we expand it into
the Maclaurin series

1+ [au(x, t)] 2 _ 1 = ~ [au(x, t)] 2 _ ! [au(x, t)] 4 + 2_ [au(x, t)] 6

ax 2 ax 8 ax 16 ax
. (13)

Here we can decide what accuracy will be assumed in our analysis. We assume small
displacements and in this case we can consider only the first term of the infinite expansion
(13) as an accurate approach

Finally the potential energy of the string with the moving force has the following form

1 r [au(x, t)] 2
Ep = '2 N Jo ----a;-. dx - Pu(vt, t) . (15)

In generalized coordinates the displacements of a string are defined by an infinite series
00

u(x, t) = LUj(X)~j(t) .
i=l

(16)

au~~, t) = f U,(X)€i(t) ,
i=l

(17)

We can write the solution under the follower mass point
00

u(vt, t) = L Ui(Vt)~j(t)
i=l

(18)
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Now we compute the velocity of displacements by using of the chain rule differentiation
with respect to t

(19)

and (19) is a function of both ~i and ~i

ou(vt, t) (')at = f ~;,~; , (20)

With respect to (16) the kinetic energy (10) can be computed

1 ~, , 11 1 [oU(vt,t)]2s; = 2 pA L ~i(t)~j(t) U;(x)Uj(x)dx + 2 m a
iJ=l 0 t

(21)

We assume the function Ui(x), which assumes our boundary conditions (2) in a natural
way

U () ,i1rx
i X = sin -l- ,

This function is orthogonal with following properties

(22)

r {IlJo U;(x)Uj(x)dx = 6 if i = j,
if i :f j

(23)

Finally the kinetic energy has a form

s, = ~pAl ~e(t) + ~m [oU(vt,t)]2
4 L' 2 at

i=1

(24)

We follow the same way in the case of the potential energy

(25)

The general form of the Lagrange equation of the second kind is written below

(26)

We compute required derivatives of the kinetic energy

oEkm = ou(vt,t) d (ou(vt,t)) (27)
o~; m at d~i at

oE~m = mou(vt,t) d, (ou(vt,t)) , (28)
O~i at d~i at

ee, se.; [ 2 ~ ij1r2 i1rvt j1rvt c (t) ~ i1r i1rvt, j1rvt i: .(t)]- = -- = m v L -2-cos-Z-cos-l-,>j + v L Tcos-l-sm-l-'>J
~ ~ ~IZ ~

(29)
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Figure 2: Semi-analytical solution (left) and displacements of the string under the oscil-
lator (right).

1 ~ . [ ~ j7r . i7rvt j7rvt"2 pAL tt {i(t) + m v.~ T SIll -1- cos -l-{;(t) +

~ . i7rvt . ir«, ]+ ;~ sm-l-sm-l-{;(t)

1 ~ . BEIcm"2 pAL L..,.{;(t) + -.-
.=1 B{.

and potential energy
(30)

BE" 1 Loo
i2

7r
2 Eoo

. ixut- = -Nl -~·(t) - P sm-
B{; 2 . z2 -" . I',=1 ,=1

(31)

From rearranged Eqn. (26) we obtain the motion equation in generalized coordinates

- ~~- ~ ~ ~~~. ~ ~
(.(t) + At L..,.~;(t) sin -1- sin -1- + At L..,.-l-E;(t) sin "T' cos "T" +

P j=1 P ;=1

N i27r2 2m ~ j27r2V2 . i7rvt . j7rvt 2P. i7rvt+ A:7(i(t) - At L..,.-l2-E;(t)sm-l-sm-l- = Atsm-l- .
p p j=1 P

(32)

We notice that the Eqn. (32) has a form similar to the Eqn. (8). Both relations differ
only with the right-hand-side terms, precisely with the multiplier 2/l. Finally displace--
ments u(x, t) are identical in both cases, since displacements (16) and (5) differ with this
multiplier only.

4. Results

Results of the semi-analytical solution are depicted in Fig. 2. The diagram can be com-
pared with displacements of the string under moving oscillator. The analysis of the
spring-mass system motion was performed for a relatively rigid spring. However, for sig-
nificantly high spring rigidity the convergence of the solution was poor of completely lost.

The convergence near the end point is depicted in Fig. 3. The mass trajectory is
plotted for increasing number of term at the speed v = O.5e. We notice that the function
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Figure 3: The convergence of the mass trajectory travelling with v = 0.5e near the end
point, for various number of term (25, 50,..., 500).

tends slowly to the jump at x = l. All characteristic lines are smooth. The convergence
rate is low and especially near x = I the taken number of term must be at least then 50.
At high velocity range (in our case v > 0.8) sufficiently low time step of the integration of
the resulting equation (8) must be applied (even 10-5) to avoid small oscillations of the
solution in the last stage.

More detailed presentation of the string motion is given in Fig. 4. We can notice the
sharp edge of the wave and reflection from both supports. Moreover, the wave reflection
from the travelling mass is clearly visible. Both the mass trajectory and waves are de-
picted. We must emphasize here that the results can not be simply compared with results
of commercial codes. Moving load problems on elastic structures are not implemented in
the most popular systems.

5. Conclusions

In the paper we prove the identity of the analysis performed with the Fourier transform
analysis and the analysis with the Lagrange equation of the second kind. The point mass
moving with the constant or variable speed involves difficulties in analysis. Especially, the
first solution carried on by the Fourier method the transform of the Dirac delta function
with its derivatives may require respective proofs. In the case of the Lagrange approach
the analysis is clear. Moreover, it was shown that an analysis for large displacements can
be performed if the second term in the expansion is taken into account. In further works
more accurate analysis, ie. with two terms in the expansion of the potential energy of a
string will be undertaken.
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Figure 4: Simulation of the string motion under the mass moving at v=0.2c, O.Sc, 1.0c
and l.Se.
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OGOLNA METODA ROZWIJ\ZYWANIA ZADAN Z RUCHOMJ\ MASJ\

Streszczenie
W pracy przedstawiono dwa r6wnowa:ine rozwiazania problernu drgari struny pod on-
ciazeniem inercyjnym. Rozwazania mozna stosowac do rowniez do innych konstrukcji,
jak np. belki, ramy lub plyty. Pokazano, ze w wyniku analizy z wykorzystaniem trans-
formacji Fouriera uzyskuje si~ identyczny wynik jak w przypadku wykorzystania r6w-
nania Lagrange'a drugiego rodzaju. 0 ile w przypadku pierwszej metody dyskusje moga
wywolywac adpowiednie przeksztalcenia deity Diraca, obrazujacej skupiona mase, oraz jej
pochodnych, to w przypadku podejscia Lagrange'a takich watpliwosci nie rna. Co wiecej,
pozostawiajac drugi wyraz rozwiniecia w szereg enetgii potencjalnej struny mozemy roz-
patrywac duze przemieszczenia. Niestety, pelne uwzglednienie drugiego skladnika mocno
komplikuje rozwazania
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